Microscopic segmentation and classification of COVID‐19 infection with ensemble convolutional neural network

The detection of biological RNA from sputum has a comparatively poor positive rate in the initial/early stages of discovering COVID‐19, as per the World Health Organization. It has a different morphological structure as compared to healthy images, manifested by computer tomography (CT). COVID‐19 dia...

Full description

Saved in:
Bibliographic Details
Published in:Microscopy research and technique Vol. 85; no. 1; pp. 385 - 397
Main Authors: Amin, Javeria, Anjum, Muhammad Almas, Sharif, Muhammad, Rehman, Amjad, Saba, Tanzila, Zahra, Rida
Format: Journal Article
Language:English
Published: Hoboken, USA John Wiley & Sons, Inc 01.01.2022
Wiley Subscription Services, Inc
Subjects:
ISSN:1059-910X, 1097-0029, 1097-0029
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The detection of biological RNA from sputum has a comparatively poor positive rate in the initial/early stages of discovering COVID‐19, as per the World Health Organization. It has a different morphological structure as compared to healthy images, manifested by computer tomography (CT). COVID‐19 diagnosis at an early stage can aid in the timely cure of patients, lowering the mortality rate. In this reported research, three‐phase model is proposed for COVID‐19 detection. In Phase I, noise is removed from CT images using a denoise convolutional neural network (DnCNN). In the Phase II, the actual lesion region is segmented from the enhanced CT images by using deeplabv3 and ResNet‐18. In Phase III, segmented images are passed to the stack sparse autoencoder (SSAE) deep learning model having two stack auto‐encoders (SAE) with the selected hidden layers. The designed SSAE model is based on both SAE and softmax layers for COVID19 classification. The proposed method is evaluated on actual patient data of Pakistan Ordinance Factories and other public benchmark data sets with different scanners/mediums. The proposed method achieved global segmentation accuracy of 0.96 and 0.97 for classification. Denoise convolutional neural network regression model used for noise removal to enhance images quality. Model deeplabv3 is used as a backbone of the ResNet‐18 model to segment infected lungs region. Segmented images are further supplied to stack sparse autoencoder model for COVID‐19 classification.
AbstractList The detection of biological RNA from sputum has a comparatively poor positive rate in the initial/early stages of discovering COVID‐19, as per the World Health Organization. It has a different morphological structure as compared to healthy images, manifested by computer tomography (CT). COVID‐19 diagnosis at an early stage can aid in the timely cure of patients, lowering the mortality rate. In this reported research, three‐phase model is proposed for COVID‐19 detection. In Phase I, noise is removed from CT images using a denoise convolutional neural network (DnCNN). In the Phase II, the actual lesion region is segmented from the enhanced CT images by using deeplabv3 and ResNet‐18. In Phase III, segmented images are passed to the stack sparse autoencoder (SSAE) deep learning model having two stack auto‐encoders (SAE) with the selected hidden layers. The designed SSAE model is based on both SAE and softmax layers for COVID19 classification. The proposed method is evaluated on actual patient data of Pakistan Ordinance Factories and other public benchmark data sets with different scanners/mediums. The proposed method achieved global segmentation accuracy of 0.96 and 0.97 for classification. Denoise convolutional neural network regression model used for noise removal to enhance images quality. Model deeplabv3 is used as a backbone of the ResNet‐18 model to segment infected lungs region. Segmented images are further supplied to stack sparse autoencoder model for COVID‐19 classification.
The detection of biological RNA from sputum has a comparatively poor positive rate in the initial/early stages of discovering COVID‐19, as per the World Health Organization. It has a different morphological structure as compared to healthy images, manifested by computer tomography (CT). COVID‐19 diagnosis at an early stage can aid in the timely cure of patients, lowering the mortality rate. In this reported research, three‐phase model is proposed for COVID‐19 detection. In Phase I, noise is removed from CT images using a denoise convolutional neural network (DnCNN). In the Phase II, the actual lesion region is segmented from the enhanced CT images by using deeplabv3 and ResNet‐18. In Phase III, segmented images are passed to the stack sparse autoencoder (SSAE) deep learning model having two stack auto‐encoders (SAE) with the selected hidden layers. The designed SSAE model is based on both SAE and softmax layers for COVID19 classification. The proposed method is evaluated on actual patient data of Pakistan Ordinance Factories and other public benchmark data sets with different scanners/mediums. The proposed method achieved global segmentation accuracy of 0.96 and 0.97 for classification.
The detection of biological RNA from sputum has a comparatively poor positive rate in the initial/early stages of discovering COVID-19, as per the World Health Organization. It has a different morphological structure as compared to healthy images, manifested by computer tomography (CT). COVID-19 diagnosis at an early stage can aid in the timely cure of patients, lowering the mortality rate. In this reported research, three-phase model is proposed for COVID-19 detection. In Phase I, noise is removed from CT images using a denoise convolutional neural network (DnCNN). In the Phase II, the actual lesion region is segmented from the enhanced CT images by using deeplabv3 and ResNet-18. In Phase III, segmented images are passed to the stack sparse autoencoder (SSAE) deep learning model having two stack auto-encoders (SAE) with the selected hidden layers. The designed SSAE model is based on both SAE and softmax layers for COVID19 classification. The proposed method is evaluated on actual patient data of Pakistan Ordinance Factories and other public benchmark data sets with different scanners/mediums. The proposed method achieved global segmentation accuracy of 0.96 and 0.97 for classification.The detection of biological RNA from sputum has a comparatively poor positive rate in the initial/early stages of discovering COVID-19, as per the World Health Organization. It has a different morphological structure as compared to healthy images, manifested by computer tomography (CT). COVID-19 diagnosis at an early stage can aid in the timely cure of patients, lowering the mortality rate. In this reported research, three-phase model is proposed for COVID-19 detection. In Phase I, noise is removed from CT images using a denoise convolutional neural network (DnCNN). In the Phase II, the actual lesion region is segmented from the enhanced CT images by using deeplabv3 and ResNet-18. In Phase III, segmented images are passed to the stack sparse autoencoder (SSAE) deep learning model having two stack auto-encoders (SAE) with the selected hidden layers. The designed SSAE model is based on both SAE and softmax layers for COVID19 classification. The proposed method is evaluated on actual patient data of Pakistan Ordinance Factories and other public benchmark data sets with different scanners/mediums. The proposed method achieved global segmentation accuracy of 0.96 and 0.97 for classification.
The detection of biological RNA from sputum has a comparatively poor positive rate in the initial/early stages of discovering COVID‐19, as per the World Health Organization. It has a different morphological structure as compared to healthy images, manifested by computer tomography (CT). COVID‐19 diagnosis at an early stage can aid in the timely cure of patients, lowering the mortality rate. In this reported research, three‐phase model is proposed for COVID‐19 detection. In Phase I, noise is removed from CT images using a denoise convolutional neural network (DnCNN). In the Phase II, the actual lesion region is segmented from the enhanced CT images by using deeplabv3 and ResNet‐18. In Phase III, segmented images are passed to the stack sparse autoencoder (SSAE) deep learning model having two stack auto‐encoders (SAE) with the selected hidden layers. The designed SSAE model is based on both SAE and softmax layers for COVID19 classification. The proposed method is evaluated on actual patient data of Pakistan Ordinance Factories and other public benchmark data sets with different scanners/mediums. The proposed method achieved global segmentation accuracy of 0.96 and 0.97 for classification. Denoise convolutional neural network regression model used for noise removal to enhance images quality. Model deeplabv3 is used as a backbone of the ResNet‐18 model to segment infected lungs region. Segmented images are further supplied to stack sparse autoencoder model for COVID‐19 classification.
Author Saba, Tanzila
Amin, Javeria
Zahra, Rida
Anjum, Muhammad Almas
Sharif, Muhammad
Rehman, Amjad
AuthorAffiliation 2 Dean of University, National University of Technology (NUTECH) Islamabad Pakistan
4 Artificial Intelligence & Data Analytics Lab CCIS Prince Sultan University Riyadh Saudi Arabia
3 Department of Computer Science COMSATS University Islamabad Wah Campus Wah Cantt Pakistan
1 Department of Computer Science University of Wah Wah Cantt Pakistan
AuthorAffiliation_xml – name: 4 Artificial Intelligence & Data Analytics Lab CCIS Prince Sultan University Riyadh Saudi Arabia
– name: 1 Department of Computer Science University of Wah Wah Cantt Pakistan
– name: 3 Department of Computer Science COMSATS University Islamabad Wah Campus Wah Cantt Pakistan
– name: 2 Dean of University, National University of Technology (NUTECH) Islamabad Pakistan
Author_xml – sequence: 1
  givenname: Javeria
  surname: Amin
  fullname: Amin, Javeria
  organization: University of Wah
– sequence: 2
  givenname: Muhammad Almas
  surname: Anjum
  fullname: Anjum, Muhammad Almas
  organization: Dean of University, National University of Technology (NUTECH)
– sequence: 3
  givenname: Muhammad
  surname: Sharif
  fullname: Sharif, Muhammad
  organization: COMSATS University Islamabad Wah Campus
– sequence: 4
  givenname: Amjad
  orcidid: 0000-0002-3817-2655
  surname: Rehman
  fullname: Rehman, Amjad
  email: rkamjad@gmail.com
  organization: CCIS Prince Sultan University
– sequence: 5
  givenname: Tanzila
  orcidid: 0000-0001-6718-3866
  surname: Saba
  fullname: Saba, Tanzila
  organization: CCIS Prince Sultan University
– sequence: 6
  givenname: Rida
  surname: Zahra
  fullname: Zahra, Rida
  organization: University of Wah
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34435702$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1TAQhS1URH9gwwOgSGwqpLT-TeINErptoahVNwWxsxxn0vri2Jc46VV3PEKfkSfBuWkrqBCrGc18c3RGZxdt-eABodcEHxCM6eESuuGAMknYM7RDsCzzNJVbUy9kLgn-to12Y1xiTIgg_AXaZpwzUWK6g_y5NX2IJqysySJcdeAHPdjgM-2bzDgdo22tmUehzRYXX0-Pfv28IzKzvgWzma_tcJ2Bj9DVDjIT_E1w47TRLvMw9psyrEP__SV63moX4dV93UNfTo4vF5_ys4uPp4sPZ7nhZcFyromBqiK0lrKpKsNNqQEoa8qilqUuaKkZI6KFitGCMp3-bYWoOeZNRaSo2R56P-uuxrqDxqSvkgu16m2n-1sVtFV_b7y9VlfhRlUFT4JlEti_F-jDjxHioDobDTinPYQxKioKLrkgpUjo2yfoMox9-j1RBaFMUCJlot786ejRykMUCcAzMOURe2iVsXMUyaB1imA1pa2mtNUm7XTy7snJg-o_YTLDa-vg9j-k-nx8fjnf_AZsZbzy
CitedBy_id crossref_primary_10_3390_math10183291
crossref_primary_10_1155_2022_6507542
crossref_primary_10_3233_JCM_237025
crossref_primary_10_1002_jemt_24088
crossref_primary_10_1111_coin_70031
crossref_primary_10_1155_2023_6850772
crossref_primary_10_3390_life12081126
crossref_primary_10_3390_diagnostics12040823
crossref_primary_10_3390_app13053108
crossref_primary_10_1007_s12597_024_00836_3
crossref_primary_10_1089_big_2022_0042
crossref_primary_10_1016_j_compbiomed_2022_106028
crossref_primary_10_1016_j_neucom_2024_127317
crossref_primary_10_1155_2022_5871385
crossref_primary_10_3233_JIFS_230312
crossref_primary_10_1007_s00354_024_00279_w
crossref_primary_10_1016_j_patcog_2025_111371
crossref_primary_10_3390_jpm12091454
crossref_primary_10_3390_diagnostics13010101
crossref_primary_10_1080_21681163_2023_2219767
Cites_doi 10.1016/j.tmaid.2020.101623
10.1109/MITP.2020.3036820
10.1016/j.cmpb.2019.05.015
10.1148/radiol.2020200905
10.1016/j.ijsu.2020.04.018
10.1109/TIP.2017.2662206
10.1002/jemt.22998
10.1016/j.compeleceng.2020.106960
10.1007/978-3-030-01234-2_49
10.1109/CVPR.2016.90
10.1148/radiol.2019181960
10.1016/S2589-7500(20)30054-6
10.1016/j.compbiomed.2020.103795
10.1016/j.ijsu.2020.02.034
10.1002/jemt.22867
10.1002/jmv.25725
10.1186/s40779-020-00240-0
10.1109/ACCESS.2020.3016627
10.1016/j.eti.2021.101531
10.7150/ijbs.45134
10.1002/jemt.23702
10.1038/s41598-020-74164-z
10.1101/2020.07.16.20155093
10.1016/S0042-6989(97)00169-7
10.1109/ICCISci.2019.8716400
10.1109/ISBI48211.2021.9434047
10.1109/ICCISci.2019.8716449
10.1002/jemt.23429
10.1007/s10916-019-1475-2
10.1002/jemt.23275
10.1002/jemt.23326
10.1142/S0219519418500380
10.1109/ACCESS.2021.3094720
10.14569/IJARAI.2015.040406
10.1186/s41747-020-00173-2
10.1007/s12098-020-03263-6
10.1016/j.patcog.2021.107828
10.1007/s00521-019-04650-7
10.1148/radiol.2020200642
ContentType Journal Article
Copyright 2021 Wiley Periodicals LLC.
2022 Wiley Periodicals LLC.
Copyright_xml – notice: 2021 Wiley Periodicals LLC.
– notice: 2022 Wiley Periodicals LLC.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QP
7QQ
7SC
7SE
7SP
7SR
7SS
7TA
7TB
7U5
7U7
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
RC3
7X8
5PM
DOI 10.1002/jemt.23913
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Toxicology Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Biotechnology Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Toxicology Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
MEDLINE - Academic
CrossRef
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Biology
DocumentTitleAlternate Amin et al
EISSN 1097-0029
EndPage 397
ExternalDocumentID PMC8646237
34435702
10_1002_jemt_23913
JEMT23913
Genre article
Journal Article
GroupedDBID ---
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BQCPF
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M56
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
ROL
RWI
RWR
RX1
RYL
SAMSI
SUPJJ
SV3
TWZ
UB1
V2E
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WVDHM
WXSBR
WYB
X7M
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAMMB
AAYXX
AEFGJ
AETEA
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QP
7QQ
7SC
7SE
7SP
7SR
7SS
7TA
7TB
7U5
7U7
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c4763-4a1ce8812b99d88c4c7aee23d76b97a627a3315fe832623a002f55b404d8195b3
IEDL.DBID DRFUL
ISICitedReferencesCount 22
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000688442800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1059-910X
1097-0029
IngestDate Tue Nov 04 01:45:27 EST 2025
Fri Jul 11 11:37:18 EDT 2025
Sat Nov 29 14:54:45 EST 2025
Wed Feb 19 02:27:15 EST 2025
Sat Nov 29 07:10:06 EST 2025
Tue Nov 18 22:13:47 EST 2025
Wed Jan 22 16:28:16 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Deeplabv3
ResNet-18
denoise convolutional neural network (DnCNN)
public health
stack sparse autoencoder deep learning model (SSAE)
healthcare
Language English
License 2021 Wiley Periodicals LLC.
This article is being made freely available through PubMed Central as part of the COVID-19 public health emergency response. It can be used for unrestricted research re-use and analysis in any form or by any means with acknowledgement of the original source, for the duration of the public health emergency.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4763-4a1ce8812b99d88c4c7aee23d76b97a627a3315fe832623a002f55b404d8195b3
Notes Review Editor
Alberto Diaspro
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Review Editor: Alberto Diaspro
ORCID 0000-0001-6718-3866
0000-0002-3817-2655
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8646237
PMID 34435702
PQID 2612352199
PQPubID 1016375
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8646237
proquest_miscellaneous_2564945175
proquest_journals_2612352199
pubmed_primary_34435702
crossref_citationtrail_10_1002_jemt_23913
crossref_primary_10_1002_jemt_23913
wiley_primary_10_1002_jemt_23913_JEMT23913
PublicationCentury 2000
PublicationDate January 2022
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January 2022
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: New York
PublicationTitle Microscopy research and technique
PublicationTitleAlternate Microsc Res Tech
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2021; 9
2017; 80
2015; 4
2021; 22
2017; 26
2020; 121
2020; 83
2019; 79
2018; 81
2020; 16
2020; 78
2020; 34
2020; 32
2020; 10
2021a; 23
2020; 76
2021; 90
2021b; 23
2020; 7
2018; 18
2020; 4
2019; 82
2020; 2
2021; 113
2021
2020; 296
2020
1997; 37
2020; 92
2019
2018
2016
2020; 44
2020; 87
2019; 292
2021; 84
2019; 177
e_1_2_9_30_1
e_1_2_9_31_1
Amin J. (e_1_2_9_6_1) 2019; 79
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_42_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 292
  start-page: 365
  issue: 2
  year: 2019
  end-page: 373
  article-title: Deep learning–based image conversion of CT reconstruction kernels improves Radiomics reproducibility for pulmonary nodules or masses
  publication-title: Radiology
– volume: 4
  start-page: 1
  issue: 4
  year: 2015
  end-page: 8
  article-title: Lung cancer detection on CT scan images: A review on the analysis techniques
  publication-title: International Journal of Advanced Research in Artificial Intelligence
– volume: 26
  start-page: 3142
  issue: 7
  year: 2017
  end-page: 3155
  article-title: Beyond a gaussian denoiser: Residual learning of deep CNN for Image Denoising
  publication-title: IEEE Transactions on Image Processing
– volume: 84
  start-page: 1462
  year: 2021
  end-page: 1474
  article-title: Machine learning techniques to detect and forecast the daily total COVID‐19 infected and deaths cases under different lockdown types
  publication-title: Microscopy Research and Technique
– volume: 90
  year: 2021
  article-title: Prediction of COVID‐19 ‐ pneumonia based on selected deep features and one class kernel extreme learning machine
  publication-title: Computers & Electrical Engineering
– volume: 82
  start-page: 1256
  issue: 8
  year: 2019
  end-page: 1266
  article-title: Lungs nodule detection framework from computed tomography images using support vector machine
  publication-title: Microscopy Research and Technique
– volume: 44
  start-page: 37
  issue: 2
  year: 2020
  article-title: A deep learning approach for automated diagnosis and multi‐class classification of Alzheimer's disease stages using resting‐state fMRI and residual neural networks
  publication-title: Journal of Medical Systems
– volume: 34
  start-page: 101623
  year: 2020
  article-title: Clinical, laboratory and imaging features of COVID‐19: A systematic review and meta‐analysis
  publication-title: Travel Medicine and infectious Disease
– volume: 22
  year: 2021
  article-title: Viral reverse engineering using artificial intelligence and big data COVID‐19 infection with long short‐term memory (LSTM)
  publication-title: Environmental Technology & Innovation
– volume: 78
  start-page: 185
  year: 2020
  end-page: 193
  article-title: The socio‐economic implications of the coronavirus and COVID‐19 pandemic: a review
  publication-title: International Journal of Surgery
– volume: 23
  start-page: 63
  year: 2021a
  end-page: 68
  article-title: Deep learning‐based COVID‐19 detection using CT and X‐ray images: Current analytics and comparisons
  publication-title: IEEE IT Professional
– volume: 296
  start-page: E32
  issue: 2
  year: 2020
  end-page: E40
  article-title: Correlation of chest CT and RT‐PCR testing in coronavirus disease 2019 (COVID‐19) in China: A report of 1014 cases
  publication-title: Radiology
– year: 2021
– volume: 296
  issue: 2
  year: 2020
  article-title: Artificial intelligence distinguishes COVID‐19 from community‐acquired pneumonia on chest CT
  publication-title: Radiology
– volume: 177
  start-page: 69
  year: 2019
  end-page: 79
  article-title: Brain tumor detection using statistical and machine learning method
  publication-title: Computer Methods and Programs in Biomedicine
– year: 2016
– year: 2018
– volume: 121
  year: 2020
  article-title: Application of deep learning technique to manage COVID‐19 in routine clinical practice using CT images: Results of 10 convolutional neural networks
  publication-title: Computers in Biology and Medicine
– volume: 92
  start-page: 589
  year: 2020
  end-page: 594
  article-title: Evaluation of coronavirus in tears and conjunctival secretions of patients with SARS‐CoV‐2 infection
  publication-title: Journal of medical virology
– volume: 4
  start-page: 50
  issue: 1
  year: 2020
  article-title: Automatic lung segmentation in routine imaging is primarily a data diversity problem, not a methodology problem
  publication-title: European Radiology Experimental
– volume: 80
  start-page: 799
  issue: 17
  year: 2017
  end-page: 811
  article-title: Retinal imaging analysis based on vessel detection
  publication-title: Microscopy Research and Technique
– volume: 32
  start-page: 15965
  year: 2020
  end-page: 15973
  article-title: Brain tumor detection: A long short‐term memory (LSTM)‐based learning model
  publication-title: Neural Computing and Applications
– volume: 9
  start-page: 35256
  year: 2021
  end-page: 35278
  article-title: Hybrid segmentation method with confidence region detection for tumor identification
  publication-title: IEEE Access
– year: 2020
– volume: 83
  start-page: 410
  issue: 4
  year: 2020
  end-page: 423
  article-title: Microscopic melanoma detection and classification: A framework of pixel‐based fusion and multilevel features reduction
  publication-title: Microscopy Research and Technique
– volume: 81
  start-page: 449
  issue: 5
  year: 2018
  end-page: 457
  article-title: Microscopic abnormality classification of cardiac murmurs using ANFIS and HMM
  publication-title: Microscopy Research and Technique
– volume: 79
  start-page: 10955
  issue: 15
  year: 2019
  end-page: 10973
  article-title: Use of machine intelligence to conduct analysis of human brain data for detection of abnormalities in its cognitive functions
  publication-title: Multimedia Tools & Applications
– volume: 113
  start-page: 107828
  year: 2021
  article-title: Synergistic learning of lung lobe segmentation and hierarchical multi‐instance classification for automated severity assessment of COVID‐19 in CT images
  publication-title: Pattern Recognition
– volume: 76
  start-page: 71
  year: 2020
  end-page: 76
  article-title: World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID‐19)
  publication-title: International Journal of Surgery
– volume: 16
  issue: 10
  year: 2020
  article-title: COVID‐19: What has been learned and to be learned about the novel coronavirus disease
  publication-title: International Journal of Biological Sciences
– volume: 37
  start-page: 3311
  issue: 23
  year: 1997
  end-page: 3325
  article-title: Sparse coding with an overcomplete basis set: A strategy employed by V1?
  publication-title: Vision Research
– volume: 10
  year: 2020
  article-title: A comprehensive study on classification of COVID‐19 on computed tomography with pretrained convolutional neural networks
  publication-title: Scientific Reports
– volume: 23
  start-page: 63
  year: 2021b
  end-page: 68
  article-title: Real‐time diagnosis system of COVID‐19 using X‐ray images and deep learning
  publication-title: IEEE IT Professional
– year: 2019
– volume: 18
  issue: 04
  year: 2018
  article-title: Automated ulcer and bleeding classification from WCE images using multiple features fusion and selection
  publication-title: Journal of Mechanics in Medicine and Biology
– volume: 87
  start-page: 281
  year: 2020
  end-page: 286
  article-title: A review of coronavirus disease‐2019 (COVID‐19)
  publication-title: Indian Journal of Pediatrics
– volume: 7
  start-page: 1
  issue: 1
  year: 2020
  end-page: 10
  article-title: The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID‐19) outbreak–an update on the status
  publication-title: Military Medical Research
– volume: 82
  issue: 9
  year: 2019
  article-title: Automated lung nodule detection and classification based on multiple classifiers voting
  publication-title: Microsc Res Tech.
– volume: 2
  start-page: e166
  issue: 4
  year: 2020
  end-page: e167
  article-title: COVID‐19 and artificial intelligence: Protecting health‐care workers and curbing the spread
  publication-title: Lancet Digital Health
– ident: e_1_2_9_42_1
– ident: e_1_2_9_37_1
  doi: 10.1016/j.tmaid.2020.101623
– ident: e_1_2_9_35_1
  doi: 10.1109/MITP.2020.3036820
– ident: e_1_2_9_3_1
  doi: 10.1016/j.cmpb.2019.05.015
– ident: e_1_2_9_26_1
  doi: 10.1148/radiol.2020200905
– ident: e_1_2_9_30_1
  doi: 10.1016/j.ijsu.2020.04.018
– ident: e_1_2_9_46_1
  doi: 10.1109/TIP.2017.2662206
– ident: e_1_2_9_14_1
  doi: 10.1002/jemt.22998
– ident: e_1_2_9_36_1
  doi: 10.1109/MITP.2020.3036820
– ident: e_1_2_9_23_1
  doi: 10.1016/j.compeleceng.2020.106960
– ident: e_1_2_9_9_1
  doi: 10.1007/978-3-030-01234-2_49
– ident: e_1_2_9_17_1
  doi: 10.1109/CVPR.2016.90
– ident: e_1_2_9_20_1
– ident: e_1_2_9_10_1
  doi: 10.1148/radiol.2019181960
– ident: e_1_2_9_29_1
  doi: 10.1016/S2589-7500(20)30054-6
– ident: e_1_2_9_7_1
  doi: 10.1016/j.compbiomed.2020.103795
– ident: e_1_2_9_41_1
  doi: 10.1016/j.ijsu.2020.02.034
– ident: e_1_2_9_19_1
  doi: 10.1002/jemt.22867
– ident: e_1_2_9_43_1
  doi: 10.1002/jmv.25725
– ident: e_1_2_9_47_1
– ident: e_1_2_9_15_1
  doi: 10.1186/s40779-020-00240-0
– ident: e_1_2_9_12_1
  doi: 10.1109/ACCESS.2020.3016627
– ident: e_1_2_9_16_1
  doi: 10.1016/j.eti.2021.101531
– ident: e_1_2_9_45_1
  doi: 10.7150/ijbs.45134
– ident: e_1_2_9_39_1
  doi: 10.1002/jemt.23702
– ident: e_1_2_9_32_1
  doi: 10.1038/s41598-020-74164-z
– ident: e_1_2_9_8_1
  doi: 10.1101/2020.07.16.20155093
– ident: e_1_2_9_31_1
  doi: 10.1016/S0042-6989(97)00169-7
– ident: e_1_2_9_22_1
  doi: 10.1109/ICCISci.2019.8716400
– ident: e_1_2_9_13_1
  doi: 10.1109/ISBI48211.2021.9434047
– ident: e_1_2_9_4_1
  doi: 10.1109/ICCISci.2019.8716449
– ident: e_1_2_9_34_1
  doi: 10.1002/jemt.23429
– ident: e_1_2_9_44_1
– volume: 79
  start-page: 10955
  issue: 15
  year: 2019
  ident: e_1_2_9_6_1
  article-title: Use of machine intelligence to conduct analysis of human brain data for detection of abnormalities in its cognitive functions
  publication-title: Multimedia Tools & Applications
– ident: e_1_2_9_33_1
  doi: 10.1007/s10916-019-1475-2
– ident: e_1_2_9_25_1
  doi: 10.1002/jemt.23275
– ident: e_1_2_9_38_1
  doi: 10.1002/jemt.23326
– ident: e_1_2_9_27_1
  doi: 10.1142/S0219519418500380
– ident: e_1_2_9_24_1
  doi: 10.1109/ACCESS.2021.3094720
– ident: e_1_2_9_28_1
  doi: 10.14569/IJARAI.2015.040406
– ident: e_1_2_9_21_1
  doi: 10.1186/s41747-020-00173-2
– ident: e_1_2_9_40_1
  doi: 10.1007/s12098-020-03263-6
– ident: e_1_2_9_11_1
– ident: e_1_2_9_18_1
  doi: 10.1016/j.patcog.2021.107828
– ident: e_1_2_9_5_1
  doi: 10.1007/s00521-019-04650-7
– ident: e_1_2_9_2_1
  doi: 10.1148/radiol.2020200642
SSID ssj0011514
Score 2.4601216
Snippet The detection of biological RNA from sputum has a comparatively poor positive rate in the initial/early stages of discovering COVID‐19, as per the World Health...
The detection of biological RNA from sputum has a comparatively poor positive rate in the initial/early stages of discovering COVID-19, as per the World Health...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 385
SubjectTerms Artificial neural networks
Classification
Coders
Computed tomography
COVID-19
COVID-19 Testing
Deep learning
Deeplabv3
denoise convolutional neural network (DnCNN)
healthcare
Humans
Image enhancement
Image segmentation
Machine learning
Medical imaging
Neural networks
Neural Networks, Computer
public health
ResNet‐18
SARS-CoV-2
Sputum
stack sparse autoencoder deep learning model (SSAE)
Tomography, X-Ray Computed
Title Microscopic segmentation and classification of COVID‐19 infection with ensemble convolutional neural network
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjemt.23913
https://www.ncbi.nlm.nih.gov/pubmed/34435702
https://www.proquest.com/docview/2612352199
https://www.proquest.com/docview/2564945175
https://pubmed.ncbi.nlm.nih.gov/PMC8646237
Volume 85
WOSCitedRecordID wos000688442800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1097-0029
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011514
  issn: 1059-910X
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fa9UwFD_MO4WB-Gc6rc4R0ReFujZNmwR8kW0XFTdFNrlvJUnTbbKbK7t3wt72EfyMfhJzkt7Oy0QQn1qSU5om5yS_Juf8DsBz49XG2LZNjRIYkmNlKqqiSBVvFMu51YyakGyC7-2J0Uh-WoLX81iYyA_Rb7ihZYT5Gg1c6enmJWnoVzuevaKFxJS1y9QrLhvA8vbn4cGH_hQhj9zeCCG8UWejnp6Ubl4-vbggXUGZV50lfwexYRUa3v6_9t-BWx36JG-iutyFJetW4UbMR3m-CjfjJh6JsUn3wO2iux4GrvjCqT0cd4FKjijXEIPAGz2NYtGkJVsfv7zb_nnxI5dk7uTlCO70Ev-zbMf6xBL0cu-03TcE2TTDJfii34eD4c7-1tu0S9CQGubnpZSp3FjhIYKWshHCMMOVtbRoeKUlVxXlqijysrV-2vAwS_kPb8tSs4w1eHynizUYuImzD4HQDHMz0EzbUjHeCIXHm7rx-EGItsxYAi_mo1Sbjr0ck2ic1JF3mdbYn3XozwSe9bLfImfHH6XW54Ndd3Y7rZFQzUPSXMoEnvbV3uLwGEU5OznzMmXFJCs97krgQdSN_jUF8_CTZzQBvqA1vQCyeS_WuOOjwOotKub7iCfwMmjNX1pev9_Z3Q93j_5F-DGsUIzdCPtH6zCYnZ7ZJ3DdfJ8dT0834BofiY3Ogn4B5GshDw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED-hDgQS4s9gW2CAEbyAlC1xnNh-RNuqDdqCUIf6FjmOA0Ori9YOiTc-Ap-RT4LPTjOqISTEU6Lkojj2nf3L-e53AM-1UxttmibWSmBKjpGxKLIsVrxWLOWmYlT7YhN8NBKTiXzXxuZgLkzgh-gcbmgZfr5GA0eH9O4Fa-hnM13s0Exizdo15vQo78Ha_vv-8aDbRkgDuTdiCGfVyaTjJ6W7F0-vrkiXYOblaMnfUaxfhvq3__MD7sCtFn-SV0Fh7sIVY9fhWqhI-W0dbgY3HgnZSffADjFgD1NX3MW5-ThtU5UsUbYmGqE3xhqFS7OG7L39cLT_8_uPVJJlmJcl6Osl7nfZTKtTQzDOvdV31xDk0_QHH41-H477B-O9w7gt0RBr5mammKlUG-FAQiVlLYRmmitjaFbzopJcFZSrLEvzxriJwwEt5T68yfOKJazGDbwq24CenVmzBYQmWJ2BJpXJFeO1ULjBWdUOQQjR5AmL4MVymErd8pdjGY3TMjAv0xL7s_T9GcGzTvZLYO34o9T2crTL1nLnJVKqOVCaShnB0-62szncSFHWzM6dTF4wyXKHvCLYDMrRvSZjDoDyhEbAV9SmE0A-79U79uST5_UWBXN9xCN46dXmLy0vXx8Mx_7swb8IP4Hrh-PhoBwcjd48hBsUMzm8N2kbeouzc_MIruqvi5P52ePWkH4BTFkkFw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtQwEB2hFhAS4lJugQJG8EKl0MRxYvsRdbui0C4VatG-RY7jQFE3W3W3SLzxCXwjX8KMnU1ZFSEhnhLFE8WXGfvEnjkD8MKi2ljXNLE1ikJynI5VkWWxkbURqXSV4NYnm5CjkRqP9X7nm0OxMIEfot9wI8vw8zUZuDupm81z1tAvbjJ_xTNNOWtXRa4LtMvVwYfh4W5_jJAGcm_CEGjVybjnJ-Wb528vr0gXYOZFb8nfUaxfhoY3_7MBt-BGhz_Z66Awt-GSa9fgSshI-W0NrodtPBaik-5Au0cOexS6gg9n7tOkC1VqmWlrZgl6k69ReDRt2Nb7jzuDn99_pJot3LxaRnu9DH-X3aQ6doz83Dt9x4oQn6a_eG_0u3A43D7YehN3KRpiK3BmioVJrVMIEiqta6WssNI4x7NaFpWWpuDSZFmaNw4nDgRaBhve5HklElHTAV6V3YOVdtq6B8B4QtkZeFK53AhZK0MHnFWNCEKpJk9EBC8Xw1Tajr-c0mgcl4F5mZfUn6Xvzwie97IngbXjj1Lri9EuO8udlUSphqA01TqCZ30x2hwdpJjWTc9QJi-EFjkirwjuB-XoP5MJBKAy4RHIJbXpBYjPe7mkPfrseb1VIbCPZAQbXm3-UvPy7fbegb97-C_CT-Hq_mBY7u6M3j2Ca5wCOfxm0jqszE_P3GO4bL_Oj2anTzo7-gWlSiOS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microscopic+segmentation+and+classification+of+COVID+%E2%80%9019+infection+with+ensemble+convolutional+neural+network&rft.jtitle=Microscopy+research+and+technique&rft.au=Amin%2C+Javeria&rft.au=Anjum%2C+Muhammad+Almas&rft.au=Sharif%2C+Muhammad&rft.au=Rehman%2C+Amjad&rft.date=2022-01-01&rft.issn=1059-910X&rft.eissn=1097-0029&rft.volume=85&rft.issue=1&rft.spage=385&rft.epage=397&rft_id=info:doi/10.1002%2Fjemt.23913&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_jemt_23913
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1059-910X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1059-910X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1059-910X&client=summon