Microscopic segmentation and classification of COVID‐19 infection with ensemble convolutional neural network
The detection of biological RNA from sputum has a comparatively poor positive rate in the initial/early stages of discovering COVID‐19, as per the World Health Organization. It has a different morphological structure as compared to healthy images, manifested by computer tomography (CT). COVID‐19 dia...
Saved in:
| Published in: | Microscopy research and technique Vol. 85; no. 1; pp. 385 - 397 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Hoboken, USA
John Wiley & Sons, Inc
01.01.2022
Wiley Subscription Services, Inc |
| Subjects: | |
| ISSN: | 1059-910X, 1097-0029, 1097-0029 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The detection of biological RNA from sputum has a comparatively poor positive rate in the initial/early stages of discovering COVID‐19, as per the World Health Organization. It has a different morphological structure as compared to healthy images, manifested by computer tomography (CT). COVID‐19 diagnosis at an early stage can aid in the timely cure of patients, lowering the mortality rate. In this reported research, three‐phase model is proposed for COVID‐19 detection. In Phase I, noise is removed from CT images using a denoise convolutional neural network (DnCNN). In the Phase II, the actual lesion region is segmented from the enhanced CT images by using deeplabv3 and ResNet‐18. In Phase III, segmented images are passed to the stack sparse autoencoder (SSAE) deep learning model having two stack auto‐encoders (SAE) with the selected hidden layers. The designed SSAE model is based on both SAE and softmax layers for COVID19 classification. The proposed method is evaluated on actual patient data of Pakistan Ordinance Factories and other public benchmark data sets with different scanners/mediums. The proposed method achieved global segmentation accuracy of 0.96 and 0.97 for classification.
Denoise convolutional neural network regression model used for noise removal to enhance images quality. Model deeplabv3 is used as a backbone of the ResNet‐18 model to segment infected lungs region. Segmented images are further supplied to stack sparse autoencoder model for COVID‐19 classification. |
|---|---|
| AbstractList | The detection of biological RNA from sputum has a comparatively poor positive rate in the initial/early stages of discovering COVID‐19, as per the World Health Organization. It has a different morphological structure as compared to healthy images, manifested by computer tomography (CT). COVID‐19 diagnosis at an early stage can aid in the timely cure of patients, lowering the mortality rate. In this reported research, three‐phase model is proposed for COVID‐19 detection. In Phase I, noise is removed from CT images using a denoise convolutional neural network (DnCNN). In the Phase II, the actual lesion region is segmented from the enhanced CT images by using deeplabv3 and ResNet‐18. In Phase III, segmented images are passed to the stack sparse autoencoder (SSAE) deep learning model having two stack auto‐encoders (SAE) with the selected hidden layers. The designed SSAE model is based on both SAE and softmax layers for COVID19 classification. The proposed method is evaluated on actual patient data of Pakistan Ordinance Factories and other public benchmark data sets with different scanners/mediums. The proposed method achieved global segmentation accuracy of 0.96 and 0.97 for classification.
Denoise convolutional neural network regression model used for noise removal to enhance images quality. Model deeplabv3 is used as a backbone of the ResNet‐18 model to segment infected lungs region. Segmented images are further supplied to stack sparse autoencoder model for COVID‐19 classification. The detection of biological RNA from sputum has a comparatively poor positive rate in the initial/early stages of discovering COVID‐19, as per the World Health Organization. It has a different morphological structure as compared to healthy images, manifested by computer tomography (CT). COVID‐19 diagnosis at an early stage can aid in the timely cure of patients, lowering the mortality rate. In this reported research, three‐phase model is proposed for COVID‐19 detection. In Phase I, noise is removed from CT images using a denoise convolutional neural network (DnCNN). In the Phase II, the actual lesion region is segmented from the enhanced CT images by using deeplabv3 and ResNet‐18. In Phase III, segmented images are passed to the stack sparse autoencoder (SSAE) deep learning model having two stack auto‐encoders (SAE) with the selected hidden layers. The designed SSAE model is based on both SAE and softmax layers for COVID19 classification. The proposed method is evaluated on actual patient data of Pakistan Ordinance Factories and other public benchmark data sets with different scanners/mediums. The proposed method achieved global segmentation accuracy of 0.96 and 0.97 for classification. The detection of biological RNA from sputum has a comparatively poor positive rate in the initial/early stages of discovering COVID-19, as per the World Health Organization. It has a different morphological structure as compared to healthy images, manifested by computer tomography (CT). COVID-19 diagnosis at an early stage can aid in the timely cure of patients, lowering the mortality rate. In this reported research, three-phase model is proposed for COVID-19 detection. In Phase I, noise is removed from CT images using a denoise convolutional neural network (DnCNN). In the Phase II, the actual lesion region is segmented from the enhanced CT images by using deeplabv3 and ResNet-18. In Phase III, segmented images are passed to the stack sparse autoencoder (SSAE) deep learning model having two stack auto-encoders (SAE) with the selected hidden layers. The designed SSAE model is based on both SAE and softmax layers for COVID19 classification. The proposed method is evaluated on actual patient data of Pakistan Ordinance Factories and other public benchmark data sets with different scanners/mediums. The proposed method achieved global segmentation accuracy of 0.96 and 0.97 for classification.The detection of biological RNA from sputum has a comparatively poor positive rate in the initial/early stages of discovering COVID-19, as per the World Health Organization. It has a different morphological structure as compared to healthy images, manifested by computer tomography (CT). COVID-19 diagnosis at an early stage can aid in the timely cure of patients, lowering the mortality rate. In this reported research, three-phase model is proposed for COVID-19 detection. In Phase I, noise is removed from CT images using a denoise convolutional neural network (DnCNN). In the Phase II, the actual lesion region is segmented from the enhanced CT images by using deeplabv3 and ResNet-18. In Phase III, segmented images are passed to the stack sparse autoencoder (SSAE) deep learning model having two stack auto-encoders (SAE) with the selected hidden layers. The designed SSAE model is based on both SAE and softmax layers for COVID19 classification. The proposed method is evaluated on actual patient data of Pakistan Ordinance Factories and other public benchmark data sets with different scanners/mediums. The proposed method achieved global segmentation accuracy of 0.96 and 0.97 for classification. The detection of biological RNA from sputum has a comparatively poor positive rate in the initial/early stages of discovering COVID‐19, as per the World Health Organization. It has a different morphological structure as compared to healthy images, manifested by computer tomography (CT). COVID‐19 diagnosis at an early stage can aid in the timely cure of patients, lowering the mortality rate. In this reported research, three‐phase model is proposed for COVID‐19 detection. In Phase I, noise is removed from CT images using a denoise convolutional neural network (DnCNN). In the Phase II, the actual lesion region is segmented from the enhanced CT images by using deeplabv3 and ResNet‐18. In Phase III, segmented images are passed to the stack sparse autoencoder (SSAE) deep learning model having two stack auto‐encoders (SAE) with the selected hidden layers. The designed SSAE model is based on both SAE and softmax layers for COVID19 classification. The proposed method is evaluated on actual patient data of Pakistan Ordinance Factories and other public benchmark data sets with different scanners/mediums. The proposed method achieved global segmentation accuracy of 0.96 and 0.97 for classification. Denoise convolutional neural network regression model used for noise removal to enhance images quality. Model deeplabv3 is used as a backbone of the ResNet‐18 model to segment infected lungs region. Segmented images are further supplied to stack sparse autoencoder model for COVID‐19 classification. |
| Author | Saba, Tanzila Amin, Javeria Zahra, Rida Anjum, Muhammad Almas Sharif, Muhammad Rehman, Amjad |
| AuthorAffiliation | 2 Dean of University, National University of Technology (NUTECH) Islamabad Pakistan 4 Artificial Intelligence & Data Analytics Lab CCIS Prince Sultan University Riyadh Saudi Arabia 3 Department of Computer Science COMSATS University Islamabad Wah Campus Wah Cantt Pakistan 1 Department of Computer Science University of Wah Wah Cantt Pakistan |
| AuthorAffiliation_xml | – name: 4 Artificial Intelligence & Data Analytics Lab CCIS Prince Sultan University Riyadh Saudi Arabia – name: 1 Department of Computer Science University of Wah Wah Cantt Pakistan – name: 3 Department of Computer Science COMSATS University Islamabad Wah Campus Wah Cantt Pakistan – name: 2 Dean of University, National University of Technology (NUTECH) Islamabad Pakistan |
| Author_xml | – sequence: 1 givenname: Javeria surname: Amin fullname: Amin, Javeria organization: University of Wah – sequence: 2 givenname: Muhammad Almas surname: Anjum fullname: Anjum, Muhammad Almas organization: Dean of University, National University of Technology (NUTECH) – sequence: 3 givenname: Muhammad surname: Sharif fullname: Sharif, Muhammad organization: COMSATS University Islamabad Wah Campus – sequence: 4 givenname: Amjad orcidid: 0000-0002-3817-2655 surname: Rehman fullname: Rehman, Amjad email: rkamjad@gmail.com organization: CCIS Prince Sultan University – sequence: 5 givenname: Tanzila orcidid: 0000-0001-6718-3866 surname: Saba fullname: Saba, Tanzila organization: CCIS Prince Sultan University – sequence: 6 givenname: Rida surname: Zahra fullname: Zahra, Rida organization: University of Wah |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34435702$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kc1u1TAQhS1URH9gwwOgSGwqpLT-TeINErptoahVNwWxsxxn0vri2Jc46VV3PEKfkSfBuWkrqBCrGc18c3RGZxdt-eABodcEHxCM6eESuuGAMknYM7RDsCzzNJVbUy9kLgn-to12Y1xiTIgg_AXaZpwzUWK6g_y5NX2IJqysySJcdeAHPdjgM-2bzDgdo22tmUehzRYXX0-Pfv28IzKzvgWzma_tcJ2Bj9DVDjIT_E1w47TRLvMw9psyrEP__SV63moX4dV93UNfTo4vF5_ys4uPp4sPZ7nhZcFyromBqiK0lrKpKsNNqQEoa8qilqUuaKkZI6KFitGCMp3-bYWoOeZNRaSo2R56P-uuxrqDxqSvkgu16m2n-1sVtFV_b7y9VlfhRlUFT4JlEti_F-jDjxHioDobDTinPYQxKioKLrkgpUjo2yfoMox9-j1RBaFMUCJlot786ejRykMUCcAzMOURe2iVsXMUyaB1imA1pa2mtNUm7XTy7snJg-o_YTLDa-vg9j-k-nx8fjnf_AZsZbzy |
| CitedBy_id | crossref_primary_10_3390_math10183291 crossref_primary_10_1155_2022_6507542 crossref_primary_10_3233_JCM_237025 crossref_primary_10_1002_jemt_24088 crossref_primary_10_1111_coin_70031 crossref_primary_10_1155_2023_6850772 crossref_primary_10_3390_life12081126 crossref_primary_10_3390_diagnostics12040823 crossref_primary_10_3390_app13053108 crossref_primary_10_1007_s12597_024_00836_3 crossref_primary_10_1089_big_2022_0042 crossref_primary_10_1016_j_compbiomed_2022_106028 crossref_primary_10_1016_j_neucom_2024_127317 crossref_primary_10_1155_2022_5871385 crossref_primary_10_3233_JIFS_230312 crossref_primary_10_1007_s00354_024_00279_w crossref_primary_10_1016_j_patcog_2025_111371 crossref_primary_10_3390_jpm12091454 crossref_primary_10_3390_diagnostics13010101 crossref_primary_10_1080_21681163_2023_2219767 |
| Cites_doi | 10.1016/j.tmaid.2020.101623 10.1109/MITP.2020.3036820 10.1016/j.cmpb.2019.05.015 10.1148/radiol.2020200905 10.1016/j.ijsu.2020.04.018 10.1109/TIP.2017.2662206 10.1002/jemt.22998 10.1016/j.compeleceng.2020.106960 10.1007/978-3-030-01234-2_49 10.1109/CVPR.2016.90 10.1148/radiol.2019181960 10.1016/S2589-7500(20)30054-6 10.1016/j.compbiomed.2020.103795 10.1016/j.ijsu.2020.02.034 10.1002/jemt.22867 10.1002/jmv.25725 10.1186/s40779-020-00240-0 10.1109/ACCESS.2020.3016627 10.1016/j.eti.2021.101531 10.7150/ijbs.45134 10.1002/jemt.23702 10.1038/s41598-020-74164-z 10.1101/2020.07.16.20155093 10.1016/S0042-6989(97)00169-7 10.1109/ICCISci.2019.8716400 10.1109/ISBI48211.2021.9434047 10.1109/ICCISci.2019.8716449 10.1002/jemt.23429 10.1007/s10916-019-1475-2 10.1002/jemt.23275 10.1002/jemt.23326 10.1142/S0219519418500380 10.1109/ACCESS.2021.3094720 10.14569/IJARAI.2015.040406 10.1186/s41747-020-00173-2 10.1007/s12098-020-03263-6 10.1016/j.patcog.2021.107828 10.1007/s00521-019-04650-7 10.1148/radiol.2020200642 |
| ContentType | Journal Article |
| Copyright | 2021 Wiley Periodicals LLC. 2022 Wiley Periodicals LLC. |
| Copyright_xml | – notice: 2021 Wiley Periodicals LLC. – notice: 2022 Wiley Periodicals LLC. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QP 7QQ 7SC 7SE 7SP 7SR 7SS 7TA 7TB 7U5 7U7 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D P64 RC3 7X8 5PM |
| DOI | 10.1002/jemt.23913 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Toxicology Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Biotechnology Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Toxicology Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database MEDLINE - Academic CrossRef MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Public Health Biology |
| DocumentTitleAlternate | Amin et al |
| EISSN | 1097-0029 |
| EndPage | 397 |
| ExternalDocumentID | PMC8646237 34435702 10_1002_jemt_23913 JEMT23913 |
| Genre | article Journal Article |
| GroupedDBID | --- -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEFU ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BQCPF BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M56 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO ROL RWI RWR RX1 RYL SAMSI SUPJJ SV3 TWZ UB1 V2E W8V W99 WBKPD WHWMO WIB WIH WIK WJL WOHZO WQJ WRC WVDHM WXSBR WYB X7M XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAMMB AAYXX AEFGJ AETEA AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION O8X CGR CUY CVF ECM EIF NPM 7QF 7QO 7QP 7QQ 7SC 7SE 7SP 7SR 7SS 7TA 7TB 7U5 7U7 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D P64 RC3 7X8 5PM |
| ID | FETCH-LOGICAL-c4763-4a1ce8812b99d88c4c7aee23d76b97a627a3315fe832623a002f55b404d8195b3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 22 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000688442800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1059-910X 1097-0029 |
| IngestDate | Tue Nov 04 01:45:27 EST 2025 Fri Jul 11 11:37:18 EDT 2025 Sat Nov 29 14:54:45 EST 2025 Wed Feb 19 02:27:15 EST 2025 Sat Nov 29 07:10:06 EST 2025 Tue Nov 18 22:13:47 EST 2025 Wed Jan 22 16:28:16 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Deeplabv3 ResNet-18 denoise convolutional neural network (DnCNN) public health stack sparse autoencoder deep learning model (SSAE) healthcare |
| Language | English |
| License | 2021 Wiley Periodicals LLC. This article is being made freely available through PubMed Central as part of the COVID-19 public health emergency response. It can be used for unrestricted research re-use and analysis in any form or by any means with acknowledgement of the original source, for the duration of the public health emergency. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4763-4a1ce8812b99d88c4c7aee23d76b97a627a3315fe832623a002f55b404d8195b3 |
| Notes | Review Editor Alberto Diaspro ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Review Editor: Alberto Diaspro |
| ORCID | 0000-0001-6718-3866 0000-0002-3817-2655 |
| OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC8646237 |
| PMID | 34435702 |
| PQID | 2612352199 |
| PQPubID | 1016375 |
| PageCount | 13 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8646237 proquest_miscellaneous_2564945175 proquest_journals_2612352199 pubmed_primary_34435702 crossref_citationtrail_10_1002_jemt_23913 crossref_primary_10_1002_jemt_23913 wiley_primary_10_1002_jemt_23913_JEMT23913 |
| PublicationCentury | 2000 |
| PublicationDate | January 2022 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – month: 01 year: 2022 text: January 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: New York |
| PublicationTitle | Microscopy research and technique |
| PublicationTitleAlternate | Microsc Res Tech |
| PublicationYear | 2022 |
| Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
| References | 2021; 9 2017; 80 2015; 4 2021; 22 2017; 26 2020; 121 2020; 83 2019; 79 2018; 81 2020; 16 2020; 78 2020; 34 2020; 32 2020; 10 2021a; 23 2020; 76 2021; 90 2021b; 23 2020; 7 2018; 18 2020; 4 2019; 82 2020; 2 2021; 113 2021 2020; 296 2020 1997; 37 2020; 92 2019 2018 2016 2020; 44 2020; 87 2019; 292 2021; 84 2019; 177 e_1_2_9_30_1 e_1_2_9_31_1 Amin J. (e_1_2_9_6_1) 2019; 79 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_42_1 e_1_2_9_20_1 e_1_2_9_40_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_27_1 e_1_2_9_29_1 |
| References_xml | – volume: 292 start-page: 365 issue: 2 year: 2019 end-page: 373 article-title: Deep learning–based image conversion of CT reconstruction kernels improves Radiomics reproducibility for pulmonary nodules or masses publication-title: Radiology – volume: 4 start-page: 1 issue: 4 year: 2015 end-page: 8 article-title: Lung cancer detection on CT scan images: A review on the analysis techniques publication-title: International Journal of Advanced Research in Artificial Intelligence – volume: 26 start-page: 3142 issue: 7 year: 2017 end-page: 3155 article-title: Beyond a gaussian denoiser: Residual learning of deep CNN for Image Denoising publication-title: IEEE Transactions on Image Processing – volume: 84 start-page: 1462 year: 2021 end-page: 1474 article-title: Machine learning techniques to detect and forecast the daily total COVID‐19 infected and deaths cases under different lockdown types publication-title: Microscopy Research and Technique – volume: 90 year: 2021 article-title: Prediction of COVID‐19 ‐ pneumonia based on selected deep features and one class kernel extreme learning machine publication-title: Computers & Electrical Engineering – volume: 82 start-page: 1256 issue: 8 year: 2019 end-page: 1266 article-title: Lungs nodule detection framework from computed tomography images using support vector machine publication-title: Microscopy Research and Technique – volume: 44 start-page: 37 issue: 2 year: 2020 article-title: A deep learning approach for automated diagnosis and multi‐class classification of Alzheimer's disease stages using resting‐state fMRI and residual neural networks publication-title: Journal of Medical Systems – volume: 34 start-page: 101623 year: 2020 article-title: Clinical, laboratory and imaging features of COVID‐19: A systematic review and meta‐analysis publication-title: Travel Medicine and infectious Disease – volume: 22 year: 2021 article-title: Viral reverse engineering using artificial intelligence and big data COVID‐19 infection with long short‐term memory (LSTM) publication-title: Environmental Technology & Innovation – volume: 78 start-page: 185 year: 2020 end-page: 193 article-title: The socio‐economic implications of the coronavirus and COVID‐19 pandemic: a review publication-title: International Journal of Surgery – volume: 23 start-page: 63 year: 2021a end-page: 68 article-title: Deep learning‐based COVID‐19 detection using CT and X‐ray images: Current analytics and comparisons publication-title: IEEE IT Professional – volume: 296 start-page: E32 issue: 2 year: 2020 end-page: E40 article-title: Correlation of chest CT and RT‐PCR testing in coronavirus disease 2019 (COVID‐19) in China: A report of 1014 cases publication-title: Radiology – year: 2021 – volume: 296 issue: 2 year: 2020 article-title: Artificial intelligence distinguishes COVID‐19 from community‐acquired pneumonia on chest CT publication-title: Radiology – volume: 177 start-page: 69 year: 2019 end-page: 79 article-title: Brain tumor detection using statistical and machine learning method publication-title: Computer Methods and Programs in Biomedicine – year: 2016 – year: 2018 – volume: 121 year: 2020 article-title: Application of deep learning technique to manage COVID‐19 in routine clinical practice using CT images: Results of 10 convolutional neural networks publication-title: Computers in Biology and Medicine – volume: 92 start-page: 589 year: 2020 end-page: 594 article-title: Evaluation of coronavirus in tears and conjunctival secretions of patients with SARS‐CoV‐2 infection publication-title: Journal of medical virology – volume: 4 start-page: 50 issue: 1 year: 2020 article-title: Automatic lung segmentation in routine imaging is primarily a data diversity problem, not a methodology problem publication-title: European Radiology Experimental – volume: 80 start-page: 799 issue: 17 year: 2017 end-page: 811 article-title: Retinal imaging analysis based on vessel detection publication-title: Microscopy Research and Technique – volume: 32 start-page: 15965 year: 2020 end-page: 15973 article-title: Brain tumor detection: A long short‐term memory (LSTM)‐based learning model publication-title: Neural Computing and Applications – volume: 9 start-page: 35256 year: 2021 end-page: 35278 article-title: Hybrid segmentation method with confidence region detection for tumor identification publication-title: IEEE Access – year: 2020 – volume: 83 start-page: 410 issue: 4 year: 2020 end-page: 423 article-title: Microscopic melanoma detection and classification: A framework of pixel‐based fusion and multilevel features reduction publication-title: Microscopy Research and Technique – volume: 81 start-page: 449 issue: 5 year: 2018 end-page: 457 article-title: Microscopic abnormality classification of cardiac murmurs using ANFIS and HMM publication-title: Microscopy Research and Technique – volume: 79 start-page: 10955 issue: 15 year: 2019 end-page: 10973 article-title: Use of machine intelligence to conduct analysis of human brain data for detection of abnormalities in its cognitive functions publication-title: Multimedia Tools & Applications – volume: 113 start-page: 107828 year: 2021 article-title: Synergistic learning of lung lobe segmentation and hierarchical multi‐instance classification for automated severity assessment of COVID‐19 in CT images publication-title: Pattern Recognition – volume: 76 start-page: 71 year: 2020 end-page: 76 article-title: World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID‐19) publication-title: International Journal of Surgery – volume: 16 issue: 10 year: 2020 article-title: COVID‐19: What has been learned and to be learned about the novel coronavirus disease publication-title: International Journal of Biological Sciences – volume: 37 start-page: 3311 issue: 23 year: 1997 end-page: 3325 article-title: Sparse coding with an overcomplete basis set: A strategy employed by V1? publication-title: Vision Research – volume: 10 year: 2020 article-title: A comprehensive study on classification of COVID‐19 on computed tomography with pretrained convolutional neural networks publication-title: Scientific Reports – volume: 23 start-page: 63 year: 2021b end-page: 68 article-title: Real‐time diagnosis system of COVID‐19 using X‐ray images and deep learning publication-title: IEEE IT Professional – year: 2019 – volume: 18 issue: 04 year: 2018 article-title: Automated ulcer and bleeding classification from WCE images using multiple features fusion and selection publication-title: Journal of Mechanics in Medicine and Biology – volume: 87 start-page: 281 year: 2020 end-page: 286 article-title: A review of coronavirus disease‐2019 (COVID‐19) publication-title: Indian Journal of Pediatrics – volume: 7 start-page: 1 issue: 1 year: 2020 end-page: 10 article-title: The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID‐19) outbreak–an update on the status publication-title: Military Medical Research – volume: 82 issue: 9 year: 2019 article-title: Automated lung nodule detection and classification based on multiple classifiers voting publication-title: Microsc Res Tech. – volume: 2 start-page: e166 issue: 4 year: 2020 end-page: e167 article-title: COVID‐19 and artificial intelligence: Protecting health‐care workers and curbing the spread publication-title: Lancet Digital Health – ident: e_1_2_9_42_1 – ident: e_1_2_9_37_1 doi: 10.1016/j.tmaid.2020.101623 – ident: e_1_2_9_35_1 doi: 10.1109/MITP.2020.3036820 – ident: e_1_2_9_3_1 doi: 10.1016/j.cmpb.2019.05.015 – ident: e_1_2_9_26_1 doi: 10.1148/radiol.2020200905 – ident: e_1_2_9_30_1 doi: 10.1016/j.ijsu.2020.04.018 – ident: e_1_2_9_46_1 doi: 10.1109/TIP.2017.2662206 – ident: e_1_2_9_14_1 doi: 10.1002/jemt.22998 – ident: e_1_2_9_36_1 doi: 10.1109/MITP.2020.3036820 – ident: e_1_2_9_23_1 doi: 10.1016/j.compeleceng.2020.106960 – ident: e_1_2_9_9_1 doi: 10.1007/978-3-030-01234-2_49 – ident: e_1_2_9_17_1 doi: 10.1109/CVPR.2016.90 – ident: e_1_2_9_20_1 – ident: e_1_2_9_10_1 doi: 10.1148/radiol.2019181960 – ident: e_1_2_9_29_1 doi: 10.1016/S2589-7500(20)30054-6 – ident: e_1_2_9_7_1 doi: 10.1016/j.compbiomed.2020.103795 – ident: e_1_2_9_41_1 doi: 10.1016/j.ijsu.2020.02.034 – ident: e_1_2_9_19_1 doi: 10.1002/jemt.22867 – ident: e_1_2_9_43_1 doi: 10.1002/jmv.25725 – ident: e_1_2_9_47_1 – ident: e_1_2_9_15_1 doi: 10.1186/s40779-020-00240-0 – ident: e_1_2_9_12_1 doi: 10.1109/ACCESS.2020.3016627 – ident: e_1_2_9_16_1 doi: 10.1016/j.eti.2021.101531 – ident: e_1_2_9_45_1 doi: 10.7150/ijbs.45134 – ident: e_1_2_9_39_1 doi: 10.1002/jemt.23702 – ident: e_1_2_9_32_1 doi: 10.1038/s41598-020-74164-z – ident: e_1_2_9_8_1 doi: 10.1101/2020.07.16.20155093 – ident: e_1_2_9_31_1 doi: 10.1016/S0042-6989(97)00169-7 – ident: e_1_2_9_22_1 doi: 10.1109/ICCISci.2019.8716400 – ident: e_1_2_9_13_1 doi: 10.1109/ISBI48211.2021.9434047 – ident: e_1_2_9_4_1 doi: 10.1109/ICCISci.2019.8716449 – ident: e_1_2_9_34_1 doi: 10.1002/jemt.23429 – ident: e_1_2_9_44_1 – volume: 79 start-page: 10955 issue: 15 year: 2019 ident: e_1_2_9_6_1 article-title: Use of machine intelligence to conduct analysis of human brain data for detection of abnormalities in its cognitive functions publication-title: Multimedia Tools & Applications – ident: e_1_2_9_33_1 doi: 10.1007/s10916-019-1475-2 – ident: e_1_2_9_25_1 doi: 10.1002/jemt.23275 – ident: e_1_2_9_38_1 doi: 10.1002/jemt.23326 – ident: e_1_2_9_27_1 doi: 10.1142/S0219519418500380 – ident: e_1_2_9_24_1 doi: 10.1109/ACCESS.2021.3094720 – ident: e_1_2_9_28_1 doi: 10.14569/IJARAI.2015.040406 – ident: e_1_2_9_21_1 doi: 10.1186/s41747-020-00173-2 – ident: e_1_2_9_40_1 doi: 10.1007/s12098-020-03263-6 – ident: e_1_2_9_11_1 – ident: e_1_2_9_18_1 doi: 10.1016/j.patcog.2021.107828 – ident: e_1_2_9_5_1 doi: 10.1007/s00521-019-04650-7 – ident: e_1_2_9_2_1 doi: 10.1148/radiol.2020200642 |
| SSID | ssj0011514 |
| Score | 2.4601216 |
| Snippet | The detection of biological RNA from sputum has a comparatively poor positive rate in the initial/early stages of discovering COVID‐19, as per the World Health... The detection of biological RNA from sputum has a comparatively poor positive rate in the initial/early stages of discovering COVID-19, as per the World Health... |
| SourceID | pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 385 |
| SubjectTerms | Artificial neural networks Classification Coders Computed tomography COVID-19 COVID-19 Testing Deep learning Deeplabv3 denoise convolutional neural network (DnCNN) healthcare Humans Image enhancement Image segmentation Machine learning Medical imaging Neural networks Neural Networks, Computer public health ResNet‐18 SARS-CoV-2 Sputum stack sparse autoencoder deep learning model (SSAE) Tomography, X-Ray Computed |
| Title | Microscopic segmentation and classification of COVID‐19 infection with ensemble convolutional neural network |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjemt.23913 https://www.ncbi.nlm.nih.gov/pubmed/34435702 https://www.proquest.com/docview/2612352199 https://www.proquest.com/docview/2564945175 https://pubmed.ncbi.nlm.nih.gov/PMC8646237 |
| Volume | 85 |
| WOSCitedRecordID | wos000688442800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1097-0029 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011514 issn: 1059-910X databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fa9UwFD_MO4WB-Gc6rc4R0ReFujZNmwR8kW0XFTdFNrlvJUnTbbKbK7t3wt72EfyMfhJzkt7Oy0QQn1qSU5om5yS_Juf8DsBz49XG2LZNjRIYkmNlKqqiSBVvFMu51YyakGyC7-2J0Uh-WoLX81iYyA_Rb7ihZYT5Gg1c6enmJWnoVzuevaKFxJS1y9QrLhvA8vbn4cGH_hQhj9zeCCG8UWejnp6Ubl4-vbggXUGZV50lfwexYRUa3v6_9t-BWx36JG-iutyFJetW4UbMR3m-CjfjJh6JsUn3wO2iux4GrvjCqT0cd4FKjijXEIPAGz2NYtGkJVsfv7zb_nnxI5dk7uTlCO70Ev-zbMf6xBL0cu-03TcE2TTDJfii34eD4c7-1tu0S9CQGubnpZSp3FjhIYKWshHCMMOVtbRoeKUlVxXlqijysrV-2vAwS_kPb8tSs4w1eHynizUYuImzD4HQDHMz0EzbUjHeCIXHm7rx-EGItsxYAi_mo1Sbjr0ck2ic1JF3mdbYn3XozwSe9bLfImfHH6XW54Ndd3Y7rZFQzUPSXMoEnvbV3uLwGEU5OznzMmXFJCs97krgQdSN_jUF8_CTZzQBvqA1vQCyeS_WuOOjwOotKub7iCfwMmjNX1pev9_Z3Q93j_5F-DGsUIzdCPtH6zCYnZ7ZJ3DdfJ8dT0834BofiY3Ogn4B5GshDw |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED-hDgQS4s9gW2CAEbyAlC1xnNh-RNuqDdqCUIf6FjmOA0Ori9YOiTc-Ap-RT4LPTjOqISTEU6Lkojj2nf3L-e53AM-1UxttmibWSmBKjpGxKLIsVrxWLOWmYlT7YhN8NBKTiXzXxuZgLkzgh-gcbmgZfr5GA0eH9O4Fa-hnM13s0Exizdo15vQo78Ha_vv-8aDbRkgDuTdiCGfVyaTjJ6W7F0-vrkiXYOblaMnfUaxfhvq3__MD7sCtFn-SV0Fh7sIVY9fhWqhI-W0dbgY3HgnZSffADjFgD1NX3MW5-ThtU5UsUbYmGqE3xhqFS7OG7L39cLT_8_uPVJJlmJcl6Osl7nfZTKtTQzDOvdV31xDk0_QHH41-H477B-O9w7gt0RBr5mammKlUG-FAQiVlLYRmmitjaFbzopJcFZSrLEvzxriJwwEt5T68yfOKJazGDbwq24CenVmzBYQmWJ2BJpXJFeO1ULjBWdUOQQjR5AmL4MVymErd8pdjGY3TMjAv0xL7s_T9GcGzTvZLYO34o9T2crTL1nLnJVKqOVCaShnB0-62szncSFHWzM6dTF4wyXKHvCLYDMrRvSZjDoDyhEbAV9SmE0A-79U79uST5_UWBXN9xCN46dXmLy0vXx8Mx_7swb8IP4Hrh-PhoBwcjd48hBsUMzm8N2kbeouzc_MIruqvi5P52ePWkH4BTFkkFw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtQwEB2hFhAS4lJugQJG8EKl0MRxYvsRdbui0C4VatG-RY7jQFE3W3W3SLzxCXwjX8KMnU1ZFSEhnhLFE8WXGfvEnjkD8MKi2ljXNLE1ikJynI5VkWWxkbURqXSV4NYnm5CjkRqP9X7nm0OxMIEfot9wI8vw8zUZuDupm81z1tAvbjJ_xTNNOWtXRa4LtMvVwYfh4W5_jJAGcm_CEGjVybjnJ-Wb528vr0gXYOZFb8nfUaxfhoY3_7MBt-BGhz_Z66Awt-GSa9fgSshI-W0NrodtPBaik-5Au0cOexS6gg9n7tOkC1VqmWlrZgl6k69ReDRt2Nb7jzuDn99_pJot3LxaRnu9DH-X3aQ6doz83Dt9x4oQn6a_eG_0u3A43D7YehN3KRpiK3BmioVJrVMIEiqta6WssNI4x7NaFpWWpuDSZFmaNw4nDgRaBhve5HklElHTAV6V3YOVdtq6B8B4QtkZeFK53AhZK0MHnFWNCEKpJk9EBC8Xw1Tajr-c0mgcl4F5mZfUn6Xvzwie97IngbXjj1Lri9EuO8udlUSphqA01TqCZ30x2hwdpJjWTc9QJi-EFjkirwjuB-XoP5MJBKAy4RHIJbXpBYjPe7mkPfrseb1VIbCPZAQbXm3-UvPy7fbegb97-C_CT-Hq_mBY7u6M3j2Ca5wCOfxm0jqszE_P3GO4bL_Oj2anTzo7-gWlSiOS |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microscopic+segmentation+and+classification+of+COVID+%E2%80%9019+infection+with+ensemble+convolutional+neural+network&rft.jtitle=Microscopy+research+and+technique&rft.au=Amin%2C+Javeria&rft.au=Anjum%2C+Muhammad+Almas&rft.au=Sharif%2C+Muhammad&rft.au=Rehman%2C+Amjad&rft.date=2022-01-01&rft.issn=1059-910X&rft.eissn=1097-0029&rft.volume=85&rft.issue=1&rft.spage=385&rft.epage=397&rft_id=info:doi/10.1002%2Fjemt.23913&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_jemt_23913 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1059-910X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1059-910X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1059-910X&client=summon |