Thermally Activated Delayed Fluorescence Materials: Towards Realization of High Efficiency through Strategic Small Molecular Design
Thermally activated delayed fluorescence (TADF) is one of the most intriguing and promising discoveries towards realization of highly‐efficient organic light emitting diodes (OLED) utilizing small molecules as emitters. It has the capability of manifesting all excitons generated during the electrolu...
Saved in:
| Published in: | Chemistry : a European journal Vol. 25; no. 22; pp. 5623 - 5642 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Germany
Wiley Subscription Services, Inc
17.04.2019
|
| Subjects: | |
| ISSN: | 0947-6539, 1521-3765, 1521-3765 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Thermally activated delayed fluorescence (TADF) is one of the most intriguing and promising discoveries towards realization of highly‐efficient organic light emitting diodes (OLED) utilizing small molecules as emitters. It has the capability of manifesting all excitons generated during the electroluminescent processes, consequently achieving 100 % of internal quantum efficiency. Since the report of the first efficient OLED based on a TADF small molecule in 2012 by Adachi et al., the quest for optimal TADF materials for OLED application has never stopped. Various TADF molecules bearing different design concepts and strategies have been designed and produced, with the aim to boost the overall performances of corresponding OLEDs. In this minireview, the general principles of TADF molecular design based on three basic categories of TADF species: twisted intramolecular charge transfer (TICT), through‐space charge transfer (TSCT) and multi‐resonance induced TADF (MR‐TADF) are discussed in detail. Several key aspects with respect to each category, as well as some effective methods to enhance the efficiency of TADF materials and corresponding OLEDs from the molecular engineering perspectives, are summarized and discussed to exhibit a general landscape of TADF molecular design to a wide variety of scientific researchers within this particular disciplinary area.
Let it shine: A comprehensive review of TADF categories based upon frontier molecular orbit distribution and composition is presented with some general design strategies as well as specific with regard to some unique TADF systems to help realize optimal TADF characteristics. Strategic molecular engineering from device perspective is also illustrated in this Minireview to help researchers better understand and design the ultimately efficient TADF materials. |
|---|---|
| AbstractList | Thermally activated delayed fluorescence (TADF) is one of the most intriguing and promising discoveries towards realization of highly-efficient organic light emitting diodes (OLED) utilizing small molecules as emitters. It has the capability of manifesting all excitons generated during the electroluminescent processes, consequently achieving 100 % of internal quantum efficiency. Since the report of the first efficient OLED based on a TADF small molecule in 2012 by Adachi et al., the quest for optimal TADF materials for OLED application has never stopped. Various TADF molecules bearing different design concepts and strategies have been designed and produced, with the aim to boost the overall performances of corresponding OLEDs. In this minireview, the general principles of TADF molecular design based on three basic categories of TADF species: twisted intramolecular charge transfer (TICT), through-space charge transfer (TSCT) and multi-resonance induced TADF (MR-TADF) are discussed in detail. Several key aspects with respect to each category, as well as some effective methods to enhance the efficiency of TADF materials and corresponding OLEDs from the molecular engineering perspectives, are summarized and discussed to exhibit a general landscape of TADF molecular design to a wide variety of scientific researchers within this particular disciplinary area. Thermally activated delayed fluorescence (TADF) is one of the most intriguing and promising discoveries towards realization of highly-efficient organic light emitting diodes (OLED) utilizing small molecules as emitters. It has the capability of manifesting all excitons generated during the electroluminescent processes, consequently achieving 100 % of internal quantum efficiency. Since the report of the first efficient OLED based on a TADF small molecule in 2012 by Adachi et al., the quest for optimal TADF materials for OLED application has never stopped. Various TADF molecules bearing different design concepts and strategies have been designed and produced, with the aim to boost the overall performances of corresponding OLEDs. In this minireview, the general principles of TADF molecular design based on three basic categories of TADF species: twisted intramolecular charge transfer (TICT), through-space charge transfer (TSCT) and multi-resonance induced TADF (MR-TADF) are discussed in detail. Several key aspects with respect to each category, as well as some effective methods to enhance the efficiency of TADF materials and corresponding OLEDs from the molecular engineering perspectives, are summarized and discussed to exhibit a general landscape of TADF molecular design to a wide variety of scientific researchers within this particular disciplinary area.Thermally activated delayed fluorescence (TADF) is one of the most intriguing and promising discoveries towards realization of highly-efficient organic light emitting diodes (OLED) utilizing small molecules as emitters. It has the capability of manifesting all excitons generated during the electroluminescent processes, consequently achieving 100 % of internal quantum efficiency. Since the report of the first efficient OLED based on a TADF small molecule in 2012 by Adachi et al., the quest for optimal TADF materials for OLED application has never stopped. Various TADF molecules bearing different design concepts and strategies have been designed and produced, with the aim to boost the overall performances of corresponding OLEDs. In this minireview, the general principles of TADF molecular design based on three basic categories of TADF species: twisted intramolecular charge transfer (TICT), through-space charge transfer (TSCT) and multi-resonance induced TADF (MR-TADF) are discussed in detail. Several key aspects with respect to each category, as well as some effective methods to enhance the efficiency of TADF materials and corresponding OLEDs from the molecular engineering perspectives, are summarized and discussed to exhibit a general landscape of TADF molecular design to a wide variety of scientific researchers within this particular disciplinary area. Thermally activated delayed fluorescence (TADF) is one of the most intriguing and promising discoveries towards realization of highly‐efficient organic light emitting diodes (OLED) utilizing small molecules as emitters. It has the capability of manifesting all excitons generated during the electroluminescent processes, consequently achieving 100 % of internal quantum efficiency. Since the report of the first efficient OLED based on a TADF small molecule in 2012 by Adachi et al., the quest for optimal TADF materials for OLED application has never stopped. Various TADF molecules bearing different design concepts and strategies have been designed and produced, with the aim to boost the overall performances of corresponding OLEDs. In this minireview, the general principles of TADF molecular design based on three basic categories of TADF species: twisted intramolecular charge transfer (TICT), through‐space charge transfer (TSCT) and multi‐resonance induced TADF (MR‐TADF) are discussed in detail. Several key aspects with respect to each category, as well as some effective methods to enhance the efficiency of TADF materials and corresponding OLEDs from the molecular engineering perspectives, are summarized and discussed to exhibit a general landscape of TADF molecular design to a wide variety of scientific researchers within this particular disciplinary area. Let it shine: A comprehensive review of TADF categories based upon frontier molecular orbit distribution and composition is presented with some general design strategies as well as specific with regard to some unique TADF systems to help realize optimal TADF characteristics. Strategic molecular engineering from device perspective is also illustrated in this Minireview to help researchers better understand and design the ultimately efficient TADF materials. |
| Author | Zheng, You‐Xuan Tu, Zhen‐Long Liang, Xiao |
| Author_xml | – sequence: 1 givenname: Xiao surname: Liang fullname: Liang, Xiao organization: Nanjing University – sequence: 2 givenname: Zhen‐Long surname: Tu fullname: Tu, Zhen‐Long organization: Nanjing University – sequence: 3 givenname: You‐Xuan orcidid: 0000-0002-1795-2492 surname: Zheng fullname: Zheng, You‐Xuan email: yxzheng@nju.edu.cn organization: Nanjing University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30648301$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkcFv0zAUhy00xLrBlSOyxIVLiu0kdsJtKh2dtGoSK-fIdp5bT0487GRTuPKP465jSJPQTk-yv-89-_dO0FHve0DoPSVzSgj7rHfQzRmhFSnrkr1CM1oymuWCl0doRupCZLzM62N0EuMNIaTmef4GHeeEF1VO6Az93uwgdNK5CZ_pwd7JAVr8FZycUj13ow8QNfQa8DpdBStd_II3_l6GNuLvIJ39JQfre-wNXtntDi-NsdomY8LDLvgxHV0PIblbq_H1fhJeewd6dDKkQdFu-7fotUl94d1jPUU_zpebxSq7vPp2sTi7zHQhOMuUrJRgShCjaGtEoQqlSGlKqFqiad6WoIpKGEN5WwkmuVa6LeuKAa8VoYbnp-jToe9t8D9HiEPT2fQ552QPfowNo6LOK8r4Hv34DL3xY-jT6xrGKEkUFUWiPjxSo-qgbW6D7WSYmr_xJmB-AHTwMQYwTwglzX5_zX5_zdP-klA8E7QdHgJOGVr3f60-aPfWwfTCkGaxWq7_uX8A4EOxIw |
| CitedBy_id | crossref_primary_10_1002_anie_202303262 crossref_primary_10_1063_5_0264797 crossref_primary_10_1002_chem_202101807 crossref_primary_10_3390_nano12142497 crossref_primary_10_1002_ange_202015411 crossref_primary_10_1002_adom_202001981 crossref_primary_10_1016_j_cclet_2022_108124 crossref_primary_10_1016_j_jphotochemrev_2020_100340 crossref_primary_10_1002_adom_202301242 crossref_primary_10_1016_j_cej_2022_138459 crossref_primary_10_1002_chem_201902615 crossref_primary_10_1038_s42004_020_00366_1 crossref_primary_10_1002_adom_202402464 crossref_primary_10_1007_s11426_025_2716_6 crossref_primary_10_3390_app132112020 crossref_primary_10_1002_chem_201904411 crossref_primary_10_1038_s41566_021_00870_3 crossref_primary_10_1002_adom_202502755 crossref_primary_10_3390_mi13122150 crossref_primary_10_1016_j_ccr_2022_214843 crossref_primary_10_1016_j_orgel_2019_06_008 crossref_primary_10_1016_j_saa_2025_126021 crossref_primary_10_1002_adfm_202102739 crossref_primary_10_1002_adom_202000260 crossref_primary_10_1016_j_molliq_2020_113814 crossref_primary_10_1515_znb_2025_0004 crossref_primary_10_1002_anie_201913210 crossref_primary_10_1016_j_cej_2020_126173 crossref_primary_10_1039_D5NJ02578H crossref_primary_10_1002_ange_202200290 crossref_primary_10_1039_C9PY00701F crossref_primary_10_1002_chem_201902587 crossref_primary_10_1039_D0QM00851F crossref_primary_10_1016_j_saa_2025_126856 crossref_primary_10_1039_D2RA07450H crossref_primary_10_1016_j_synthmet_2023_117285 crossref_primary_10_6023_A21010009 crossref_primary_10_1016_j_dyepig_2021_109192 crossref_primary_10_1002_qua_27454 crossref_primary_10_1002_adom_202201291 crossref_primary_10_1039_D5TC00953G crossref_primary_10_1016_j_orgel_2019_105550 crossref_primary_10_1021_jacs_4c05043 crossref_primary_10_1016_j_orgel_2024_107154 crossref_primary_10_1039_D1PY01700D crossref_primary_10_1002_adom_201900727 crossref_primary_10_3389_fchem_2020_541331 crossref_primary_10_1016_j_jphotochem_2025_116749 crossref_primary_10_1002_chem_201904590 crossref_primary_10_1016_j_dyepig_2025_112878 crossref_primary_10_1002_adts_202200056 crossref_primary_10_1002_chem_202202572 crossref_primary_10_1002_adfm_202312622 crossref_primary_10_1002_adom_202101343 crossref_primary_10_1039_D3SC06989C crossref_primary_10_1016_j_dyepig_2023_111185 crossref_primary_10_1002_adma_202107951 crossref_primary_10_1039_D1SC02042K crossref_primary_10_1002_adfm_202010281 crossref_primary_10_1016_j_cej_2021_128550 crossref_primary_10_1016_j_ccr_2020_213283 crossref_primary_10_1021_acs_nanolett_4c06632 crossref_primary_10_1002_adma_202511230 crossref_primary_10_1002_adom_201901150 crossref_primary_10_1007_s40843_024_3049_1 crossref_primary_10_1016_j_ccr_2023_215100 crossref_primary_10_1002_smll_202405156 crossref_primary_10_1002_adma_202100677 crossref_primary_10_1016_j_jphotochemrev_2025_100700 crossref_primary_10_1016_j_jlumin_2019_116899 crossref_primary_10_1016_j_molstruc_2024_139126 crossref_primary_10_3389_fchem_2020_00373 crossref_primary_10_1016_j_dyepig_2020_108324 crossref_primary_10_1016_j_cej_2021_133249 crossref_primary_10_1016_j_tet_2022_132692 crossref_primary_10_1039_C9CP05907E crossref_primary_10_1002_agt2_144 crossref_primary_10_1002_ange_201913210 crossref_primary_10_1016_j_jphotochem_2020_113089 crossref_primary_10_1039_D2CP00777K crossref_primary_10_1002_adma_202110344 crossref_primary_10_1021_acs_chemrev_3c00755 crossref_primary_10_1002_ange_202303262 crossref_primary_10_1016_j_dyepig_2024_112398 crossref_primary_10_1016_j_orgel_2021_106171 crossref_primary_10_1002_adom_201901283 crossref_primary_10_3390_ma12162646 crossref_primary_10_1002_anie_202015411 crossref_primary_10_1016_j_cej_2023_141416 crossref_primary_10_1002_chem_202301114 crossref_primary_10_1002_adom_202001432 crossref_primary_10_1002_ajoc_202100780 crossref_primary_10_1002_anie_202424694 crossref_primary_10_1016_j_dyepig_2024_111978 crossref_primary_10_1016_j_optmat_2024_116572 crossref_primary_10_1016_j_cclet_2019_08_032 crossref_primary_10_1021_acsami_5c01192 crossref_primary_10_1016_j_orgel_2024_107085 crossref_primary_10_1002_advs_202303504 crossref_primary_10_1039_D2PY00511E crossref_primary_10_1039_D4SC04429K crossref_primary_10_1002_slct_202201647 crossref_primary_10_3390_photonics11090864 crossref_primary_10_1002_sdtp_15485 crossref_primary_10_1016_j_molstruc_2022_134213 crossref_primary_10_1016_j_matt_2021_02_017 crossref_primary_10_1002_adts_201900076 crossref_primary_10_1016_j_cej_2020_127418 crossref_primary_10_1002_chem_202301885 crossref_primary_10_1002_aelm_201900843 crossref_primary_10_1002_ange_202424694 crossref_primary_10_1002_adfm_202103875 crossref_primary_10_1002_adma_202509857 crossref_primary_10_1016_j_dyepig_2023_111548 crossref_primary_10_1016_j_dyepig_2022_110268 crossref_primary_10_6023_A21070355 crossref_primary_10_3390_catal10090953 crossref_primary_10_1002_anie_202200290 crossref_primary_10_1039_D5QM00104H crossref_primary_10_1002_chem_201902998 crossref_primary_10_1002_chem_202404752 crossref_primary_10_1016_j_dyepig_2022_110383 crossref_primary_10_1002_anie_202301896 crossref_primary_10_1039_D1SC00347J crossref_primary_10_1002_chem_202002916 crossref_primary_10_1016_j_orgel_2025_107236 crossref_primary_10_1016_j_dyepig_2020_108705 crossref_primary_10_1039_D3RA03289B crossref_primary_10_1002_chem_202201605 crossref_primary_10_1016_j_heliyon_2024_e40750 crossref_primary_10_1002_adma_202300510 crossref_primary_10_1016_j_biomaterials_2022_121691 crossref_primary_10_1016_j_cclet_2022_107934 crossref_primary_10_1016_j_trechm_2023_08_003 crossref_primary_10_1002_adma_202500269 crossref_primary_10_1039_D2SC02480B crossref_primary_10_1088_1361_6633_ace06a crossref_primary_10_1039_D5SC01503K crossref_primary_10_1002_ange_202301896 crossref_primary_10_1093_nsr_nwab222 crossref_primary_10_1039_D5SC03813H crossref_primary_10_1002_advs_202305745 crossref_primary_10_1002_chem_202103532 crossref_primary_10_1016_j_optmat_2024_115621 crossref_primary_10_1016_j_cplett_2020_137437 crossref_primary_10_1016_j_orgel_2020_106017 crossref_primary_10_1016_j_ijleo_2023_171462 crossref_primary_10_1039_D0QM00190B crossref_primary_10_1016_j_orgel_2020_106012 |
| Cites_doi | 10.1002/asia.201601384 10.1021/acsami.8b00053 10.1002/anie.201506687 10.1016/j.tet.2017.12.022 10.1039/C6CP06308J 10.1038/pj.2016.82 10.1002/adma.201401393 10.1002/chem.201804666 10.1039/C7SC04669C 10.1002/anie.201603232 10.1039/C8TC02849D 10.1039/C6TC04821H 10.1002/adma.201601675 10.1016/j.dyepig.2016.10.029 10.1021/acs.chemmater.6b03979 10.1002/adfm.201802031 10.1038/lsa.2015.5 10.1002/anie.201412107 10.1039/C3TC31936A 10.1002/adma.201804228 10.1021/acs.chemmater.6b05324 10.1039/C8TC01210E 10.1016/j.orgel.2018.03.024 10.1039/C6CC05203G 10.1002/adfm.201502995 10.1021/acs.chemmater.5b02515 10.1021/acs.chemmater.6b01484 10.1002/chem.201803580 10.1016/j.dyepig.2014.06.008 10.1021/cm500802p 10.1038/s41566-018-0112-9 10.1021/acsami.6b14438 10.1021/ja306538w 10.1002/adfm.201802558 10.1002/adom.201701256 10.1021/acsami.8b14070 10.1002/ange.201508270 10.1039/C6TC04994J 10.1021/acsami.8b10595 10.1002/adma.201506391 10.1246/cl.140360 10.1002/adma.201701476 10.1002/ange.201412107 10.1016/j.synthmet.2011.02.007 10.1088/0957-4484/21/15/155202 10.1021/acsami.6b05877 10.1039/C3CC44179B 10.1021/acsami.8b09418 10.1007/s10895-016-1970-5 10.1002/adom.201800565 10.1002/adma.201604265 10.1021/jp511061t 10.1021/acs.chemmater.6b01691 10.1016/j.orgel.2013.06.022 10.1002/adom.201801071 10.1002/anie.201809945 10.1002/adma.201300753 10.1039/C8SC03636E 10.1002/adfm.201400495 10.1039/C7NJ04482H 10.1063/1.98799 10.1002/adom.201701147 10.1002/adma.201605444 10.1002/ange.201603232 10.1002/adfm.201606458 10.1016/j.dyepig.2017.01.036 10.1039/c3cc47130f 10.1021/acs.joc.5b01496 10.1016/j.cplett.2016.10.069 10.1039/C8CC04594A 10.1039/C6RA18374C 10.1021/acsami.8b08083 10.1002/ange.201806323 10.1002/adma.201702464 10.1002/adom.201800020 10.1021/acs.chemmater.7b03490 10.1002/ange.201206289 10.1002/adom.201800568 10.1002/ejoc.201300544 10.1021/acs.jpclett.7b00462 10.1039/C8TC03796E 10.1002/adom.201700051 10.1002/adfm.201602507 10.1002/ange.201809945 10.1246/cl.130907 10.1002/anie.201509231 10.1039/C5CC04126K 10.1038/nature11687 10.1039/C6CC08501F 10.1039/C6CC06729H 10.1002/adma.201705005 10.1021/acsami.5b11895 10.1021/jacs.5b07932 10.1063/1.4749285 10.1021/jacs.7b00873 10.1038/nmat4154 10.1039/C8SC01703D 10.1016/j.orgel.2015.05.013 10.1002/anie.201806323 10.1021/acsami.8b09013 10.1002/adfm.201505106 10.1002/anie.201206289 10.1038/ncomms9476 10.1039/C6RA03281H 10.1021/acsami.5b04090 10.1039/c3cp52255e 10.1016/j.dyepig.2016.09.008 10.1002/ange.201509231 10.1039/C6CS00368K 10.1002/ange.201506687 10.1039/C6CC02856J 10.1039/b105159h 10.1002/adma.201404967 10.1016/j.tsf.2010.12.097 10.1002/ange.201802060 10.1002/adma.201003128 10.1039/C5TC01373A 10.1002/adma.200900983 10.1039/C7TC05392D 10.1039/C5CP02810H 10.1016/j.dyepig.2016.08.023 10.1002/ijch.201800049 10.1016/j.orgel.2015.11.019 10.1021/acsami.6b08546 10.1039/C7TC05709A 10.1039/C5CC07999C 10.1002/anie.201806800 10.1002/anie.201802060 10.1021/ct500957s 10.1016/j.dyepig.2017.12.048 10.1039/C5CC04105H 10.1016/j.orgel.2015.02.022 10.1021/acsami.6b15272 10.1002/adfm.201505602 10.1002/adfm.201701002 10.1002/adma.201401476 10.1039/C8TC04867C 10.1039/C4TC01289E 10.1021/jacs.7b03848 10.1016/j.jlumin.2017.03.038 10.1002/adma.201402532 10.1039/C6CC05076J 10.1021/acsami.6b07107 10.1021/cm402428a 10.1088/0957-4484/27/22/224001 10.1039/c2cc36237f 10.1002/anie.201508270 10.1039/C5CC00307E 10.1002/adfm.201706023 10.1021/jacs.6b00850 10.1039/C6TC02027E 10.1039/C6TC04786F 10.1039/C6TC04377A 10.1039/C5RA09168C 10.1039/C6TC02702D 10.1002/adom.201800437 10.1002/adma.201405474 10.1002/adma.201502053 10.1021/acsami.6b14638 10.1021/jacs.7b10578 10.1016/j.orgel.2015.05.009 10.1039/c2cc31468a 10.1002/adma.201505491 10.1039/C5CC00511F 10.1002/ange.201806800 10.1021/acsami.6b07563 10.1039/C5CC05022G 10.1039/C8TC02628A 10.1021/jp501017f 10.1063/1.4882456 10.1088/0957-4484/21/13/134020 10.1007/s13391-011-0601-1 |
| ContentType | Journal Article |
| Copyright | 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| Copyright_xml | – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
| DOI | 10.1002/chem.201805952 |
| DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Materials Research Database CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1521-3765 |
| EndPage | 5642 |
| ExternalDocumentID | 30648301 10_1002_chem_201805952 CHEM201805952 |
| Genre | reviewArticle Journal Article Review |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51773088 – fundername: National Natural Science Foundation of China grantid: 51773088 |
| GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29B 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACUHS ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBD EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RGC RNS ROL RWI RX1 RYL SUPJJ TN5 TWZ UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YZZ ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGYGG CITATION O8X NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
| ID | FETCH-LOGICAL-c4762-ba8b72b70fb1df74b4bb05f5e8d0c13d5eb487ff16d872a6cbcd5982e69b01f63 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 205 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000467079100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0947-6539 1521-3765 |
| IngestDate | Fri Jul 11 07:10:45 EDT 2025 Tue Oct 07 06:43:50 EDT 2025 Wed Feb 19 02:36:11 EST 2025 Sat Nov 29 07:17:01 EST 2025 Tue Nov 18 22:12:06 EST 2025 Wed Jan 22 16:49:33 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 22 |
| Keywords | TADF TICT OLED through-space multi-resonance effect |
| Language | English |
| License | 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4762-ba8b72b70fb1df74b4bb05f5e8d0c13d5eb487ff16d872a6cbcd5982e69b01f63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-1795-2492 |
| PMID | 30648301 |
| PQID | 2210381174 |
| PQPubID | 986340 |
| PageCount | 20 |
| ParticipantIDs | proquest_miscellaneous_2179381266 proquest_journals_2210381174 pubmed_primary_30648301 crossref_primary_10_1002_chem_201805952 crossref_citationtrail_10_1002_chem_201805952 wiley_primary_10_1002_chem_201805952_CHEM201805952 |
| PublicationCentury | 2000 |
| PublicationDate | April 17, 2019 |
| PublicationDateYYYYMMDD | 2019-04-17 |
| PublicationDate_xml | – month: 04 year: 2019 text: April 17, 2019 day: 17 |
| PublicationDecade | 2010 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim |
| PublicationSubtitle | A European Journal |
| PublicationTitle | Chemistry : a European journal |
| PublicationTitleAlternate | Chemistry |
| PublicationYear | 2019 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2017; 5 2017; 8 2013; 25 2011; 519 2019; 10 2017; 49 2017; 46 2014; 26 2014; 24 2016; 666 2015; 80 2018; 42 2017; 9 2012; 492 2018; 6 2018; 9 2010; 21 2013; 15 2013; 14 2012; 134 2014; 2 2015; 137 2001 2018 2018; 57 130 2012 2012; 51 124 2019; 25 2015 2015; 54 127 2018; 30 2018; 74 2011; 23 2011; 161 2014; 118 2019; 7 2018; 28 2015; 14 2015; 6 2015; 17 2015; 5 1987; 51 2009; 21 2015; 4 2012; 101 2018; 140 2015; 3 2013; 49 2015; 51 2017; 27 2015; 11 2016; 52 2017; 29 2016; 18 2014; 111 2015; 7 2017; 136 2017; 137 2011; 7 2017; 139 2014; 43 2018; 24 2016; 4 2015; 24 2015; 23 2017; 53 2016; 6 2015; 25 2015; 27 2016 2016; 55 128 2018; 151 2017; 12 2015; 21 2016; 134 2017 2017; 140 2015; 119 2016; 138 2013 2017; 187 2012; 48 2016; 29 2018; 12 2016; 28 2018; 10 2016; 27 2018; 54 2016; 26 2016; 8 2014; 104 2018; 58 2018; 57 e_1_2_9_71_2 e_1_2_9_33_2 e_1_2_9_56_2 e_1_2_9_10_1 e_1_2_9_94_2 e_1_2_9_107_1 e_1_2_9_122_2 e_1_2_9_145_2 e_1_2_9_168_1 e_1_2_9_18_2 e_1_2_9_79_2 e_1_2_9_183_1 e_1_2_9_160_2 e_1_2_9_60_2 e_1_2_9_45_2 e_1_2_9_83_2 e_1_2_9_22_2 e_1_2_9_6_1 e_1_2_9_119_2 e_1_2_9_111_1 e_1_2_9_134_2 e_1_2_9_157_2 e_1_2_9_45_3 e_1_2_9_172_2 e_1_2_9_68_2 e_1_2_9_72_2 e_1_2_9_11_1 e_1_2_9_34_2 e_1_2_9_95_2 e_1_2_9_129_2 e_1_2_9_106_2 e_1_2_9_121_2 e_1_2_9_167_1 e_1_2_9_144_2 e_1_2_9_57_2 e_1_2_9_182_1 e_1_2_9_19_2 e_1_2_9_61_2 e_1_2_9_23_2 e_1_2_9_84_2 e_1_2_9_5_1 e_1_2_9_118_2 e_1_2_9_133_2 e_1_2_9_179_2 e_1_2_9_133_3 e_1_2_9_156_2 e_1_2_9_46_2 e_1_2_9_69_2 e_1_2_9_110_1 e_1_2_9_171_1 e_1_2_9_92_3 e_1_2_9_77_2 e_1_2_9_31_2 e_1_2_9_54_2 e_1_2_9_109_2 e_1_2_9_109_1 e_1_2_9_92_2 e_1_2_9_101_1 e_1_2_9_147_1 e_1_2_9_124_2 e_1_2_9_185_2 e_1_2_9_16_2 e_1_2_9_185_1 e_1_2_9_39_2 e_1_2_9_89_1 e_1_2_9_20_2 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_81_2 e_1_2_9_136_2 e_1_2_9_159_2 e_1_2_9_113_1 e_1_2_9_8_2 e_1_2_9_136_1 e_1_2_9_174_2 e_1_2_9_151_1 e_1_2_9_28_2 e_1_2_9_78_2 e_1_2_9_93_2 e_1_2_9_55_1 e_1_2_9_32_2 e_1_2_9_108_1 e_1_2_9_70_2 e_1_2_9_100_2 e_1_2_9_123_1 e_1_2_9_146_2 e_1_2_9_169_1 e_1_2_9_161_2 e_1_2_9_184_1 e_1_2_9_17_2 e_1_2_9_21_2 e_1_2_9_44_2 e_1_2_9_67_2 e_1_2_9_7_2 e_1_2_9_82_1 e_1_2_9_135_3 e_1_2_9_158_2 e_1_2_9_112_1 e_1_2_9_135_2 e_1_2_9_173_2 e_1_2_9_29_2 e_1_2_9_150_1 e_1_2_9_98_1 e_1_2_9_52_1 e_1_2_9_75_2 e_1_2_9_90_1 e_1_2_9_149_1 e_1_2_9_126_2 e_1_2_9_103_2 e_1_2_9_14_2 e_1_2_9_37_2 e_1_2_9_187_1 e_1_2_9_141_2 e_1_2_9_164_1 e_1_2_9_41_2 e_1_2_9_87_2 e_1_2_9_64_2 e_1_2_9_2_1 e_1_2_9_138_2 e_1_2_9_115_2 e_1_2_9_49_1 e_1_2_9_130_1 e_1_2_9_176_1 e_1_2_9_153_2 e_1_2_9_26_2 e_1_2_9_153_1 e_1_2_9_30_1 e_1_2_9_99_2 Kim K.-J. (e_1_2_9_162_1) 2017 e_1_2_9_76_2 e_1_2_9_53_2 e_1_2_9_91_1 e_1_2_9_125_2 e_1_2_9_102_1 e_1_2_9_148_1 e_1_2_9_38_1 e_1_2_9_140_1 e_1_2_9_163_1 e_1_2_9_186_1 e_1_2_9_186_2 e_1_2_9_15_2 e_1_2_9_88_2 e_1_2_9_42_2 e_1_2_9_65_2 e_1_2_9_80_2 e_1_2_9_1_1 e_1_2_9_114_1 e_1_2_9_137_1 e_1_2_9_9_2 e_1_2_9_152_1 e_1_2_9_175_2 e_1_2_9_27_1 e_1_2_9_73_2 e_1_2_9_50_2 e_1_2_9_35_1 e_1_2_9_12_1 e_1_2_9_96_2 e_1_2_9_128_2 e_1_2_9_105_2 e_1_2_9_166_1 e_1_2_9_189_1 e_1_2_9_58_2 e_1_2_9_120_2 e_1_2_9_143_1 e_1_2_9_181_1 e_1_2_9_62_2 e_1_2_9_85_2 e_1_2_9_4_1 e_1_2_9_117_2 e_1_2_9_132_2 e_1_2_9_155_2 e_1_2_9_178_2 e_1_2_9_24_2 e_1_2_9_47_2 e_1_2_9_170_1 e_1_2_9_51_2 e_1_2_9_74_2 e_1_2_9_97_2 e_1_2_9_13_1 e_1_2_9_127_1 e_1_2_9_165_2 e_1_2_9_104_2 e_1_2_9_188_1 e_1_2_9_59_1 e_1_2_9_165_1 e_1_2_9_36_2 e_1_2_9_142_2 e_1_2_9_180_1 e_1_2_9_40_2 e_1_2_9_63_2 e_1_2_9_86_2 e_1_2_9_3_1 e_1_2_9_139_2 e_1_2_9_116_2 e_1_2_9_177_1 e_1_2_9_25_2 e_1_2_9_48_2 e_1_2_9_131_1 e_1_2_9_154_1 |
| References_xml | – volume: 10 start-page: 29840 year: 2018 end-page: 29847 publication-title: ACS Appl. Mater. Interfaces – volume: 666 start-page: 7 year: 2016 end-page: 12 publication-title: Chem. Phys. Lett. – volume: 5 start-page: 1699 year: 2017 end-page: 1705 publication-title: J. Mater. Chem. C – volume: 74 start-page: 497 year: 2018 end-page: 505 publication-title: Tetrahedron – volume: 6 start-page: 8476 year: 2015 publication-title: Nat. Commun. – volume: 25 start-page: 6786 year: 2015 end-page: 6792 publication-title: Adv. Funct. Mater. – volume: 54 127 start-page: 13068 13260 year: 2015 2015 end-page: 13072 13264 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 6 start-page: 1801071 year: 2018 publication-title: Adv. Opt. Mater. – volume: 11 start-page: 168 year: 2015 end-page: 177 publication-title: J. Chem. Theory Comput. – volume: 6 start-page: 11615 year: 2018 end-page: 11621 publication-title: J. Mater. Chem. C – volume: 6 start-page: 1701147 year: 2018 publication-title: Adv. Opt. Mater. – volume: 4 start-page: 11355 year: 2016 end-page: 11381 publication-title: J. Mater. Chem. C – volume: 137 start-page: 11908 year: 2015 end-page: 11911 publication-title: J. Am. Chem. Soc. – volume: 55 128 start-page: 3017 3069 year: 2016 2016 end-page: 3021 3073 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 57 130 start-page: 16407 16645 year: 2018 2018 end-page: 16411 16649 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 9 start-page: 4769 year: 2017 end-page: 4777 publication-title: ACS Appl. Mater. Interfaces – volume: 53 start-page: 807 year: 2017 end-page: 826 publication-title: Chem. Commun. – volume: 29 start-page: 1946 year: 2017 end-page: 1963 publication-title: Chem. Mater. – volume: 8 start-page: 4811 year: 2016 end-page: 4818 publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 10276 year: 2018 end-page: 10283 publication-title: J. Mater. Chem. C – volume: 27 start-page: 5861 year: 2015 end-page: 5867 publication-title: Adv. Mater. – volume: 29 start-page: 1527 year: 2017 end-page: 1537 publication-title: Chem. Mater. – volume: 28 start-page: 4626 year: 2016 end-page: 4631 publication-title: Adv. Mater. – volume: 12 start-page: 216 year: 2017 end-page: 223 publication-title: Chem. Asian J. – volume: 30 start-page: 1462 year: 2018 end-page: 1466 publication-title: Chem. Mater. – volume: 51 124 start-page: 11311 11473 year: 2012 2012 end-page: 11315 11477 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 134 start-page: 14706 year: 2012 end-page: 14709 publication-title: J. Am. Chem. Soc. – volume: 139 start-page: 4894 year: 2017 end-page: 4900 publication-title: J. Am. Chem. Soc. – start-page: 1 year: 2017 end-page: 3 publication-title: J. Mater. Chem. C – volume: 6 start-page: 1701256 year: 2018 publication-title: Adv. Opt. Mater. – volume: 6 start-page: 1800020 year: 2018 publication-title: Adv. Opt. Mater. – volume: 28 start-page: 1706023 year: 2018 publication-title: Adv. Funct. Mater. – volume: 187 start-page: 414 year: 2017 end-page: 420 publication-title: J. Lumin. – volume: 28 start-page: 2777 year: 2016 end-page: 2781 publication-title: Adv. Mater. – volume: 46 start-page: 915 year: 2017 end-page: 1016 publication-title: Chem. Soc. Rev. – volume: 5 start-page: 1452 year: 2017 end-page: 1462 publication-title: J. Mater. Chem. C – volume: 2 start-page: 8191 year: 2014 end-page: 8197 publication-title: J. Mater. Chem. C – volume: 28 start-page: 1802031 year: 2018 publication-title: Adv. Funct. Mater. – volume: 10 start-page: 594 year: 2019 end-page: 605 publication-title: Chem. Sci. – volume: 26 start-page: 5050 year: 2014 end-page: 5055 publication-title: Adv. Mater. – volume: 10 start-page: 30022 year: 2018 end-page: 30028 publication-title: ACS Appl. Mater. Interfaces – volume: 25 start-page: 3766 year: 2013 end-page: 3771 publication-title: Chem. Mater. – volume: 23 start-page: 926 year: 2011 end-page: 952 publication-title: Adv. Mater. – volume: 52 start-page: 8149 year: 2016 end-page: 8151 publication-title: Chem. Commun. – volume: 57 130 start-page: 9290 9434 year: 2018 2018 end-page: 9294 9438 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 6 start-page: 1800437 year: 2018 publication-title: Adv. Opt. Mater. – volume: 48 start-page: 11392 year: 2012 end-page: 11394 publication-title: Chem. Commun. – volume: 6 start-page: 81631 year: 2016 end-page: 81635 publication-title: RSC Adv. – volume: 24 start-page: 1 year: 2015 end-page: 6 publication-title: Org. Electron. – volume: 54 127 start-page: 15231 15446 year: 2015 2015 end-page: 15235 15450 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 10 start-page: 35420 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 30 start-page: 1705005 year: 2018 publication-title: Adv. Mater. – volume: 9 start-page: 3277 year: 2017 end-page: 3281 publication-title: ACS Appl. Mater. Interfaces – volume: 21 start-page: 4802 year: 2009 end-page: 4806 publication-title: Adv. Mater. – volume: 28 start-page: 1802558 year: 2018 publication-title: Adv. Funct. Mater. – volume: 43 start-page: 1017 year: 2014 end-page: 1019 publication-title: Chem. Lett. – volume: 52 start-page: 339 year: 2016 end-page: 342 publication-title: Chem. Commun. – volume: 9 start-page: 7331 year: 2017 end-page: 7338 publication-title: ACS Appl. Mater. Interfaces – volume: 29 start-page: 1604265 year: 2017 publication-title: Adv. Mater. – volume: 24 start-page: 5232 year: 2014 end-page: 5239 publication-title: Adv. Funct. Mater. – volume: 138 start-page: 3990 year: 2016 end-page: 3993 publication-title: J. Am. Chem. Soc. – volume: 119 start-page: 1291 year: 2015 end-page: 1297 publication-title: J. Phys. Chem. C – start-page: 1740 year: 2001 end-page: 1741 publication-title: Chem. Commun. – volume: 29 start-page: 22 year: 2016 end-page: 26 publication-title: Org. Electron. – volume: 54 start-page: 9278 year: 2018 end-page: 9281 publication-title: Chem. Commun. – volume: 27 start-page: 2019 year: 2015 end-page: 2023 publication-title: Adv. Mater. – volume: 27 start-page: 451 year: 2017 end-page: 461 publication-title: J. Fluoresc. – volume: 118 start-page: 15985 year: 2014 end-page: 15994 publication-title: J. Phys. Chem. C – volume: 51 start-page: 13662 year: 2015 end-page: 13665 publication-title: Chem. Commun. – volume: 8 start-page: 20955 year: 2016 end-page: 20961 publication-title: ACS Appl. Mater. Interfaces – volume: 42 start-page: 4317 year: 2018 end-page: 4323 publication-title: New J. Chem. – volume: 140 start-page: 79 year: 2017 end-page: 86 publication-title: Dyes Pigm. – volume: 28 start-page: 5667 year: 2016 end-page: 5679 publication-title: Chem. Mater. – volume: 8 start-page: 32984 year: 2016 end-page: 32991 publication-title: ACS Appl. Mater. Interfaces – volume: 25 start-page: 3707 year: 2013 end-page: 3714 publication-title: Adv. Mater. – volume: 4 start-page: 9998 year: 2016 end-page: 10004 publication-title: J. Mater. Chem. C – volume: 21 start-page: 134020 year: 2010 publication-title: Nanotechnology – volume: 28 start-page: 5400 year: 2016 end-page: 5405 publication-title: Chem. Mater. – volume: 101 start-page: 093306 year: 2012 publication-title: Appl. Phys. Lett. – volume: 8 start-page: 1253 year: 2017 end-page: 1258 publication-title: J. Phys. Chem. Lett. – volume: 492 start-page: 234 year: 2012 end-page: 238 publication-title: Nature – volume: 28 start-page: 6976 year: 2016 end-page: 6983 publication-title: Adv. Mater. – volume: 136 start-page: 543 year: 2017 end-page: 552 publication-title: Dyes Pigm. – volume: 6 start-page: 13179 year: 2018 end-page: 13189 publication-title: J. Mater. Chem. C – volume: 5 start-page: 59137 year: 2015 end-page: 59141 publication-title: RSC Adv. – volume: 49 start-page: 10385 year: 2013 end-page: 10387 publication-title: Chem. Commun. – volume: 30 start-page: 1804228 year: 2018 publication-title: Adv. Mater. – volume: 6 start-page: 1543 year: 2018 end-page: 1550 publication-title: J. Mater. Chem. C – volume: 25 start-page: 642 year: 2019 end-page: 648 publication-title: Chem. Eur. J. – volume: 24 start-page: 16603 year: 2018 end-page: 16608 publication-title: Chem. Eur. J. – volume: 21 start-page: 155202 year: 2010 publication-title: Nanotechnology – volume: 27 start-page: 2096 year: 2015 end-page: 2100 publication-title: Adv. Mater. – volume: 27 start-page: 224001 year: 2016 publication-title: Nanotechnology – volume: 57 start-page: 327 year: 2018 end-page: 334 publication-title: Org. Electron. – volume: 8 start-page: 23190 year: 2016 end-page: 23196 publication-title: ACS Appl. Mater. Interfaces – volume: 51 start-page: 5028 year: 2015 end-page: 5031 publication-title: Chem. Commun. – volume: 3 start-page: 6986 year: 2015 end-page: 6996 publication-title: J. Mater. Chem. C – volume: 48 start-page: 9580 year: 2012 end-page: 9582 publication-title: Chem. Commun. – volume: 27 start-page: 1606458 year: 2017 publication-title: Adv. Funct. Mater. – volume: 7 start-page: 1800565 year: 2019 publication-title: Adv. Opt. Mater. – volume: 43 start-page: 319 year: 2014 end-page: 321 publication-title: Chem. Lett. – volume: 49 start-page: 11302 year: 2013 end-page: 11304 publication-title: Chem. Commun. – volume: 6 start-page: 4257 year: 2018 end-page: 4264 publication-title: J. Mater. Chem. C – volume: 6 start-page: 22137 year: 2016 end-page: 22143 publication-title: RSC Adv. – volume: 15 start-page: 15850 year: 2013 end-page: 15855 publication-title: Phys. Chem. Chem. Phys. – volume: 57 130 start-page: 11316 11486 year: 2018 2018 end-page: 11320 11490 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 52 start-page: 10956 year: 2016 end-page: 10959 publication-title: Chem. Commun. – volume: 4 start-page: 232 year: 2015 end-page: 232 publication-title: Light: Sci. Appl. – volume: 26 start-page: 6904 year: 2016 end-page: 6912 publication-title: Adv. Funct. Mater. – volume: 10 start-page: 34435 year: 2018 end-page: 34442 publication-title: ACS Appl. Mater. Interfaces – volume: 26 start-page: 5198 year: 2014 end-page: 5204 publication-title: Adv. Mater. – volume: 51 start-page: 913 year: 1987 end-page: 915 publication-title: Appl. Phys. Lett. – volume: 8 start-page: 23197 year: 2016 end-page: 23203 publication-title: ACS Appl. Mater. Interfaces – volume: 111 start-page: 135 year: 2014 end-page: 144 publication-title: Dyes Pigm. – volume: 519 start-page: 3352 year: 2011 end-page: 3357 publication-title: Thin Solid Films – volume: 2 start-page: 421 year: 2014 end-page: 424 publication-title: J. Mater. Chem. C – volume: 7 start-page: 77 year: 2011 end-page: 91 publication-title: Elect. Mater. Lett. – volume: 137 start-page: 480 year: 2017 end-page: 489 publication-title: Dyes Pigm. – volume: 9 start-page: 5787 year: 2018 end-page: 5794 publication-title: Chem. Sci. – volume: 151 start-page: 75 year: 2018 end-page: 80 publication-title: Dyes Pigm. – volume: 104 start-page: 233304 year: 2014 publication-title: Appl. Phys. Lett. – volume: 4 start-page: 7911 year: 2016 end-page: 7916 publication-title: J. Mater. Chem. C – volume: 26 start-page: 7931 year: 2014 end-page: 7958 publication-title: Adv. Mater. – volume: 27 start-page: 1701002 year: 2017 publication-title: Adv. Funct. Mater. – volume: 140 start-page: 1195 year: 2018 end-page: 1198 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 31515 year: 2018 end-page: 31525 publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 1385 year: 2018 end-page: 1391 publication-title: Chem. Sci. – volume: 5 start-page: 1216 year: 2017 end-page: 1223 publication-title: J. Mater. Chem. C – volume: 21 start-page: 100 year: 2015 end-page: 105 publication-title: Org. Electron. – volume: 29 start-page: 1702464 year: 2017 publication-title: Adv. Mater. – volume: 52 start-page: 11012 year: 2016 end-page: 11015 publication-title: Chem. Commun. – volume: 49 start-page: 197 year: 2017 end-page: 202 publication-title: Polym. J. – volume: 5 start-page: 1700051 year: 2017 publication-title: Adv. Opt. Mater. – volume: 57 130 start-page: 12473 12653 year: 2018 2018 end-page: 12477 12657 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 161 start-page: 823 year: 2011 end-page: 827 publication-title: Synth. Met. – volume: 14 start-page: 2497 year: 2013 end-page: 2504 publication-title: Org. Electron. – volume: 12 start-page: 235 year: 2018 publication-title: Nat. Photonics – volume: 6 start-page: 3578 year: 2018 end-page: 3583 publication-title: J. Mater. Chem. C – volume: 55 128 start-page: 7171 7287 year: 2016 2016 end-page: 7175 7291 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 23 start-page: 208 year: 2015 end-page: 212 publication-title: Org. Electron. – start-page: 7653 year: 2013 end-page: 7663 publication-title: Eur. J. Org. Chem. – volume: 51 start-page: 13268 year: 2015 end-page: 13271 publication-title: Chem. Commun. – volume: 134 start-page: 562 year: 2016 end-page: 568 publication-title: Dyes Pigm. – volume: 6 start-page: 1800568 year: 2018 publication-title: Adv. Opt. Mater. – volume: 80 start-page: 9126 year: 2015 end-page: 9131 publication-title: J. Org. Chem. – volume: 52 start-page: 14454 year: 2016 end-page: 14457 publication-title: Chem. Commun. – volume: 26 start-page: 3306 year: 2016 end-page: 3313 publication-title: Adv. Funct. Mater. – volume: 18 start-page: 31330 year: 2016 publication-title: Phys. Chem. Chem. Phys. – volume: 6 start-page: 9510 year: 2018 end-page: 9516 publication-title: J. Mater. Chem. C – volume: 29 start-page: 1605444 year: 2017 publication-title: Adv. Mater. – volume: 27 start-page: 6675 year: 2015 end-page: 6681 publication-title: Chem. Mater. – volume: 10 start-page: 12886 year: 2018 end-page: 12896 publication-title: ACS Appl. Mater. Interfaces – volume: 26 start-page: 3665 year: 2014 end-page: 3671 publication-title: Chem. Mater. – volume: 58 start-page: 874 year: 2018 end-page: 888 publication-title: Isr. J. Chem. – volume: 51 start-page: 9443 year: 2015 end-page: 9446 publication-title: Chem. Commun. – volume: 17 start-page: 20014 year: 2015 end-page: 20020 publication-title: Phys. Chem. Chem. Phys. – volume: 51 start-page: 13024 year: 2015 end-page: 13027 publication-title: Chem. Commun. – volume: 139 start-page: 10948 year: 2017 end-page: 10951 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 15154 year: 2015 end-page: 15159 publication-title: ACS Appl. Mater. Interfaces – volume: 14 start-page: 330 year: 2015 end-page: 336 publication-title: Nat. Mater. – volume: 54 127 start-page: 5201 5290 year: 2015 2015 end-page: 5204 5293 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 29 start-page: 1701476 year: 2017 publication-title: Adv. Mater. – volume: 26 start-page: 1813 year: 2016 end-page: 1821 publication-title: Adv. Funct. Mater. – ident: e_1_2_9_42_2 doi: 10.1002/asia.201601384 – ident: e_1_2_9_99_2 doi: 10.1021/acsami.8b00053 – ident: e_1_2_9_136_1 doi: 10.1002/anie.201506687 – ident: e_1_2_9_182_1 doi: 10.1016/j.tet.2017.12.022 – ident: e_1_2_9_112_1 doi: 10.1039/C6CP06308J – ident: e_1_2_9_44_2 doi: 10.1038/pj.2016.82 – ident: e_1_2_9_141_2 doi: 10.1002/adma.201401393 – ident: e_1_2_9_156_2 doi: 10.1002/chem.201804666 – ident: e_1_2_9_155_2 doi: 10.1039/C7SC04669C – ident: e_1_2_9_45_2 doi: 10.1002/anie.201603232 – ident: e_1_2_9_167_1 doi: 10.1039/C8TC02849D – ident: e_1_2_9_18_2 doi: 10.1039/C6TC04821H – ident: e_1_2_9_28_2 doi: 10.1002/adma.201601675 – ident: e_1_2_9_179_2 doi: 10.1016/j.dyepig.2016.10.029 – ident: e_1_2_9_157_2 doi: 10.1021/acs.chemmater.6b03979 – ident: e_1_2_9_168_1 doi: 10.1002/adfm.201802031 – ident: e_1_2_9_76_2 doi: 10.1038/lsa.2015.5 – ident: e_1_2_9_66_1 – ident: e_1_2_9_35_1 – ident: e_1_2_9_165_1 doi: 10.1002/anie.201412107 – ident: e_1_2_9_25_2 doi: 10.1039/C3TC31936A – ident: e_1_2_9_52_1 – ident: e_1_2_9_37_2 doi: 10.1002/adma.201804228 – ident: e_1_2_9_158_2 doi: 10.1021/acs.chemmater.6b05324 – ident: e_1_2_9_49_1 – ident: e_1_2_9_67_2 doi: 10.1039/C8TC01210E – ident: e_1_2_9_163_1 doi: 10.1016/j.orgel.2018.03.024 – ident: e_1_2_9_89_1 doi: 10.1039/C6CC05203G – ident: e_1_2_9_32_2 doi: 10.1002/adfm.201502995 – ident: e_1_2_9_93_2 doi: 10.1021/acs.chemmater.5b02515 – ident: e_1_2_9_160_2 doi: 10.1021/acs.chemmater.6b01484 – ident: e_1_2_9_59_1 – ident: e_1_2_9_184_1 doi: 10.1002/chem.201803580 – ident: e_1_2_9_130_1 doi: 10.1016/j.dyepig.2014.06.008 – ident: e_1_2_9_188_1 doi: 10.1021/cm500802p – ident: e_1_2_9_106_2 doi: 10.1038/s41566-018-0112-9 – ident: e_1_2_9_61_2 doi: 10.1021/acsami.6b14438 – ident: e_1_2_9_111_1 doi: 10.1021/ja306538w – ident: e_1_2_9_86_2 doi: 10.1002/adfm.201802558 – ident: e_1_2_9_113_1 doi: 10.1002/adom.201701256 – ident: e_1_2_9_60_2 doi: 10.1021/acsami.8b14070 – ident: e_1_2_9_91_1 – ident: e_1_2_9_135_3 doi: 10.1002/ange.201508270 – ident: e_1_2_9_132_2 doi: 10.1039/C6TC04994J – ident: e_1_2_9_101_1 doi: 10.1021/acsami.8b10595 – ident: e_1_2_9_126_2 doi: 10.1002/adma.201506391 – ident: e_1_2_9_144_2 doi: 10.1246/cl.140360 – ident: e_1_2_9_100_2 doi: 10.1002/adma.201701476 – ident: e_1_2_9_165_2 doi: 10.1002/ange.201412107 – ident: e_1_2_9_173_2 doi: 10.1016/j.synthmet.2011.02.007 – ident: e_1_2_9_174_2 doi: 10.1088/0957-4484/21/15/155202 – ident: e_1_2_9_159_2 doi: 10.1021/acsami.6b05877 – ident: e_1_2_9_145_2 doi: 10.1039/C3CC44179B – ident: e_1_2_9_69_2 doi: 10.1021/acsami.8b09418 – ident: e_1_2_9_72_2 doi: 10.1007/s10895-016-1970-5 – ident: e_1_2_9_102_1 – ident: e_1_2_9_85_2 doi: 10.1002/adom.201800565 – ident: e_1_2_9_56_2 doi: 10.1002/adma.201604265 – ident: e_1_2_9_90_1 doi: 10.1021/jp511061t – ident: e_1_2_9_43_1 – ident: e_1_2_9_125_2 doi: 10.1021/acs.chemmater.6b01691 – ident: e_1_2_9_26_2 doi: 10.1016/j.orgel.2013.06.022 – ident: e_1_2_9_50_2 doi: 10.1002/adom.201801071 – ident: e_1_2_9_92_2 doi: 10.1002/anie.201809945 – ident: e_1_2_9_97_2 doi: 10.1002/adma.201300753 – ident: e_1_2_9_14_2 doi: 10.1039/C8SC03636E – ident: e_1_2_9_38_1 – ident: e_1_2_9_187_1 doi: 10.1002/adfm.201400495 – ident: e_1_2_9_129_2 doi: 10.1039/C7NJ04482H – ident: e_1_2_9_1_1 doi: 10.1063/1.98799 – ident: e_1_2_9_183_1 doi: 10.1002/adom.201701147 – ident: e_1_2_9_88_2 doi: 10.1002/adma.201605444 – ident: e_1_2_9_45_3 doi: 10.1002/ange.201603232 – ident: e_1_2_9_131_1 – ident: e_1_2_9_178_2 doi: 10.1002/adfm.201606458 – ident: e_1_2_9_19_2 doi: 10.1016/j.dyepig.2017.01.036 – ident: e_1_2_9_176_1 doi: 10.1039/c3cc47130f – ident: e_1_2_9_169_1 doi: 10.1021/acs.joc.5b01496 – ident: e_1_2_9_138_2 doi: 10.1016/j.cplett.2016.10.069 – ident: e_1_2_9_127_1 – ident: e_1_2_9_149_1 doi: 10.1039/C8CC04594A – ident: e_1_2_9_13_1 – ident: e_1_2_9_134_2 doi: 10.1039/C6RA18374C – ident: e_1_2_9_103_2 doi: 10.1021/acsami.8b08083 – ident: e_1_2_9_153_2 doi: 10.1002/ange.201806323 – ident: e_1_2_9_9_2 doi: 10.1002/adma.201702464 – ident: e_1_2_9_142_2 doi: 10.1002/adom.201800020 – ident: e_1_2_9_16_2 doi: 10.1021/acs.chemmater.7b03490 – ident: e_1_2_9_109_2 doi: 10.1002/ange.201206289 – ident: e_1_2_9_83_2 doi: 10.1002/adom.201800568 – ident: e_1_2_9_5_1 doi: 10.1002/ejoc.201300544 – ident: e_1_2_9_116_2 doi: 10.1021/acs.jpclett.7b00462 – ident: e_1_2_9_147_1 doi: 10.1039/C8TC03796E – ident: e_1_2_9_151_1 doi: 10.1002/adom.201700051 – ident: e_1_2_9_33_2 doi: 10.1002/adfm.201602507 – ident: e_1_2_9_92_3 doi: 10.1002/ange.201809945 – ident: e_1_2_9_107_1 doi: 10.1246/cl.130907 – ident: e_1_2_9_133_2 doi: 10.1002/anie.201509231 – ident: e_1_2_9_128_2 doi: 10.1039/C5CC04126K – ident: e_1_2_9_171_1 – ident: e_1_2_9_11_1 doi: 10.1038/nature11687 – ident: e_1_2_9_21_2 doi: 10.1039/C6CC08501F – ident: e_1_2_9_154_1 – ident: e_1_2_9_3_1 doi: 10.1039/C6CC06729H – ident: e_1_2_9_7_2 doi: 10.1002/adma.201705005 – ident: e_1_2_9_118_2 doi: 10.1021/acsami.5b11895 – ident: e_1_2_9_140_1 – ident: e_1_2_9_139_2 doi: 10.1021/jacs.5b07932 – ident: e_1_2_9_82_1 – ident: e_1_2_9_121_2 doi: 10.1063/1.4749285 – ident: e_1_2_9_148_1 doi: 10.1021/jacs.7b00873 – ident: e_1_2_9_105_2 doi: 10.1038/nmat4154 – ident: e_1_2_9_51_2 doi: 10.1039/C8SC01703D – ident: e_1_2_9_65_2 doi: 10.1016/j.orgel.2015.05.013 – ident: e_1_2_9_123_1 – ident: e_1_2_9_153_1 doi: 10.1002/anie.201806323 – ident: e_1_2_9_98_1 – ident: e_1_2_9_137_1 – ident: e_1_2_9_15_2 doi: 10.1021/acsami.8b09013 – ident: e_1_2_9_110_1 doi: 10.1002/adfm.201505106 – ident: e_1_2_9_109_1 doi: 10.1002/anie.201206289 – ident: e_1_2_9_29_2 doi: 10.1038/ncomms9476 – ident: e_1_2_9_47_2 doi: 10.1039/C6RA03281H – ident: e_1_2_9_57_2 doi: 10.1021/acsami.5b04090 – ident: e_1_2_9_120_2 doi: 10.1039/c3cp52255e – ident: e_1_2_9_62_2 doi: 10.1016/j.dyepig.2016.09.008 – ident: e_1_2_9_133_3 doi: 10.1002/ange.201509231 – ident: e_1_2_9_87_2 doi: 10.1039/C6CS00368K – ident: e_1_2_9_136_2 doi: 10.1002/ange.201506687 – ident: e_1_2_9_63_2 doi: 10.1039/C6CC02856J – ident: e_1_2_9_181_1 doi: 10.1039/b105159h – ident: e_1_2_9_79_2 doi: 10.1002/adma.201404967 – ident: e_1_2_9_172_2 doi: 10.1016/j.tsf.2010.12.097 – ident: e_1_2_9_185_2 doi: 10.1002/ange.201802060 – ident: e_1_2_9_4_1 doi: 10.1002/adma.201003128 – ident: e_1_2_9_24_2 doi: 10.1039/C5TC01373A – ident: e_1_2_9_10_1 doi: 10.1002/adma.200900983 – ident: e_1_2_9_70_2 doi: 10.1039/C7TC05392D – ident: e_1_2_9_161_2 doi: 10.1039/C5CP02810H – ident: e_1_2_9_119_2 doi: 10.1016/j.dyepig.2016.08.023 – ident: e_1_2_9_84_2 doi: 10.1002/ijch.201800049 – ident: e_1_2_9_46_2 doi: 10.1016/j.orgel.2015.11.019 – ident: e_1_2_9_75_2 doi: 10.1021/acsami.6b08546 – ident: e_1_2_9_177_1 – ident: e_1_2_9_124_2 doi: 10.1039/C7TC05709A – ident: e_1_2_9_166_1 doi: 10.1039/C5CC07999C – ident: e_1_2_9_186_1 doi: 10.1002/anie.201806800 – ident: e_1_2_9_185_1 doi: 10.1002/anie.201802060 – ident: e_1_2_9_94_2 doi: 10.1021/ct500957s – ident: e_1_2_9_115_2 doi: 10.1016/j.dyepig.2017.12.048 – ident: e_1_2_9_54_2 doi: 10.1039/C5CC04105H – ident: e_1_2_9_78_2 doi: 10.1016/j.orgel.2015.02.022 – ident: e_1_2_9_164_1 doi: 10.1021/acsami.6b15272 – ident: e_1_2_9_27_1 – ident: e_1_2_9_74_2 doi: 10.1002/adfm.201505602 – ident: e_1_2_9_55_1 – start-page: 1 year: 2017 ident: e_1_2_9_162_1 publication-title: J. Mater. Chem. C – ident: e_1_2_9_8_2 doi: 10.1002/adfm.201701002 – ident: e_1_2_9_58_2 doi: 10.1002/adma.201401476 – ident: e_1_2_9_180_1 doi: 10.1039/C8TC04867C – ident: e_1_2_9_30_1 – ident: e_1_2_9_80_2 doi: 10.1039/C4TC01289E – ident: e_1_2_9_36_2 doi: 10.1021/jacs.7b03848 – ident: e_1_2_9_48_2 doi: 10.1016/j.jlumin.2017.03.038 – ident: e_1_2_9_2_1 doi: 10.1002/adma.201402532 – ident: e_1_2_9_22_2 doi: 10.1039/C6CC05076J – ident: e_1_2_9_73_2 doi: 10.1021/acsami.6b07107 – ident: e_1_2_9_96_2 doi: 10.1021/cm402428a – ident: e_1_2_9_104_2 doi: 10.1088/0957-4484/27/22/224001 – ident: e_1_2_9_122_2 doi: 10.1039/c2cc36237f – ident: e_1_2_9_143_1 – ident: e_1_2_9_135_2 doi: 10.1002/anie.201508270 – ident: e_1_2_9_6_1 – ident: e_1_2_9_23_2 doi: 10.1039/C5CC00307E – ident: e_1_2_9_17_2 doi: 10.1002/adfm.201706023 – ident: e_1_2_9_53_2 doi: 10.1021/jacs.6b00850 – ident: e_1_2_9_34_2 doi: 10.1039/C6TC02027E – ident: e_1_2_9_189_1 doi: 10.1039/C6TC04786F – ident: e_1_2_9_12_1 doi: 10.1039/C6TC04377A – ident: e_1_2_9_77_2 doi: 10.1039/C5RA09168C – ident: e_1_2_9_117_2 doi: 10.1039/C6TC02702D – ident: e_1_2_9_71_2 doi: 10.1002/adom.201800437 – ident: e_1_2_9_40_2 doi: 10.1002/adma.201405474 – ident: e_1_2_9_31_2 doi: 10.1002/adma.201502053 – ident: e_1_2_9_20_2 doi: 10.1021/acsami.6b14638 – ident: e_1_2_9_114_1 – ident: e_1_2_9_152_1 doi: 10.1021/jacs.7b10578 – ident: e_1_2_9_64_2 doi: 10.1016/j.orgel.2015.05.009 – ident: e_1_2_9_146_2 doi: 10.1039/c2cc31468a – ident: e_1_2_9_150_1 doi: 10.1002/adma.201505491 – ident: e_1_2_9_108_1 doi: 10.1039/C5CC00511F – ident: e_1_2_9_186_2 doi: 10.1002/ange.201806800 – ident: e_1_2_9_41_2 doi: 10.1021/acsami.6b07563 – ident: e_1_2_9_39_2 doi: 10.1039/C5CC05022G – ident: e_1_2_9_68_2 doi: 10.1039/C8TC02628A – ident: e_1_2_9_95_2 doi: 10.1021/jp501017f – ident: e_1_2_9_81_2 doi: 10.1063/1.4882456 – ident: e_1_2_9_175_2 doi: 10.1088/0957-4484/21/13/134020 – ident: e_1_2_9_170_1 doi: 10.1007/s13391-011-0601-1 |
| SSID | ssj0009633 |
| Score | 2.648176 |
| SecondaryResourceType | review_article |
| Snippet | Thermally activated delayed fluorescence (TADF) is one of the most intriguing and promising discoveries towards realization of highly‐efficient organic light... Thermally activated delayed fluorescence (TADF) is one of the most intriguing and promising discoveries towards realization of highly-efficient organic light... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 5623 |
| SubjectTerms | Charge transfer Chemistry Design Efficiency Electroluminescence Emitters Excitons Fluorescence multi-resonance effect OLED Organic light emitting diodes Quantum efficiency Space charge TADF through-space TICT |
| Title | Thermally Activated Delayed Fluorescence Materials: Towards Realization of High Efficiency through Strategic Small Molecular Design |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.201805952 https://www.ncbi.nlm.nih.gov/pubmed/30648301 https://www.proquest.com/docview/2210381174 https://www.proquest.com/docview/2179381266 |
| Volume | 25 |
| WOSCitedRecordID | wos000467079100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1521-3765 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009633 issn: 0947-6539 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB6aTSG9tE2Ttm7ToEKhJxFLa0tybyHJ0kMTSh6wN2O9IGB2yz4COeePd8avdCml0J6MsWzJo5nxjKX5PoBPktCrjRdc28zzzHjDjQkpF7mjUkZvQ3AN2YS-uDDTafH9lyr-Fh9i-OFGltH4azLwyi6PHkFD8Z2oklwYDBBydMLbEpU3G8H26eXk5tsj8K7q6OQzzQmGtQduTOXR5hM2P0y_RZubwWvz9Zm8-P9xv4TnXeTJjltV2YUnYfYKdk56wrc9eECVQTdd1_fs2DWsZ8Gz01BX93ic1Ov5ooF-coGdV6tWcb-w62bb7ZJdYsDZlXSyeWS0fYSdNfAUVNvJOjog1oPhOnZFPbHznp0XO6KtJPtwMzm7PvnKO44G7jL0o9xWxmppdRqt8FFnNrM2zWMejE-dGPs8WEyJYhTKGy0r5azzhBkYVGFTEdX4NYxm81l4C6zwlUK5FLbCJI-I0YpCuzRGjFIKpWWWAO8nqHQdgDnxaNRlC70sSxJtOYg2gc9D-x8tdMcfWx708112JrwspSTseIEZWwIfh8s4JbSiUs3CfI1tyL1hiKRUAm9aPRm6otTOoPtMQDbq8JcxlASBMZy9-5eb3sMzkh-tdQl9AKPVYh0-wFN3t7pdLg5hS0_NYWcePwGk0Q-s |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB7KppBe0nfrNm1VKPRkYim2JPcWkiwp3V1KuoHcjPWCgtkt-wjk3D_eGVt2WEoplJ6MsWzJ0sxoRtJ8H8AHQejV2vFUmdyluXY61dpnKS8spTI6471tySbUbKavr8uv8TQh5cJ0-BDDghtpRmuvScFpQfroDjUUf4pSyblGD6FAK7yXoywVI9g7uxxfTe6Qd2Xkk89VSjisPXJjJo52v7A7M_3mbu56r-30M374Hxr-CA6i78lOOmF5DPf84gnsn_aUb0_hJwoNGuqmuWUntuU9846d-aa-xeu42S5XLfiT9WxabzrR_cTm7cHbNbtElzMmdbJlYHSAhJ23ABWU3ckiIRDr4XAt-0Y1sWnPz4sV0WGSZ3A1Pp-fXqSRpSG1OVrS1NTaKGFUFgx3QeUmNyYrQuG1yyw_doU3GBSFwKXTStTSGusINdDL0mQ8yOPnMFosF_4lsNLVEvulNDWGeUSNVpbKZiGgn1JKJfIE0n6EKhshzIlJo6k68GVRUddWQ9cm8HEo_6MD7_hjycN-wKuoxOtKCEKP5xizJfB-eIxDQnsq9cIvt1iGDBw6SVIm8KITlKEqCu40GtAERCsPf2lDRSAYw92rf3npHexfzKeTavJ59uU1PKC-pJ0vrg5htFlt_Ru4b28239ert1FLfgGC6xK0 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5KUtpe-n64TVsVCj2ZWIotyb2FbExLkyWkCeRmrBcEzG7YRyDn_PHO2LLDUkqh9GSMZUsezYxnLM33AXwWhF6tHU-VyV2aa6dTrX2W8sJSKaMz3tuObEJNp_riojyJuwmpFqbHhxh_uJFldP6aDNxfubB7hxqKL0Wl5FxjhFCgF97Oi1KibW5PTqvzozvkXRn55HOVEg7rgNyYid3NJ2x-mX4LNzej1-7zUz35DwN_Co9j7Mn2e2V5Bvf87Dk8PBgo317ALSoNOuq2vWH7tuM9845NfNvc4LFq1_NFB_5kPTtuVr3qfmVn3cbbJTvFkDMWdbJ5YLSBhB12ABVU3ckiIRAb4HAt-0k9seOBnxc7os0kL-G8Ojw7-JZGlobU5uhJU9Noo4RRWTDcBZWb3JisCIXXLrN8zxXeYFIUApdOK9FIa6wj1EAvS5PxIPdewdZsPvNvgJWukSiX0jSY5hE1Wlkqm4WAcUoplcgTSIcZqm2EMCcmjbbuwZdFTaKtR9Em8GVsf9WDd_yx5c4w4XU04mUtBKHHc8zZEvg0XsYpoTWVZubna2xDDg6DJCkTeN0rytgVJXcaHWgCotOHv4yhJhCM8eztv9z0ER6cTKr66Pv0xzt4RKKkhS-udmBrtVj793DfXq8ul4sP0Uh-AfGqEi8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermally+Activated+Delayed+Fluorescence+Materials%3A+Towards+Realization+of+High+Efficiency+through+Strategic+Small+Molecular+Design&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Liang%2C+Xiao&rft.au=Tu%2C+Zhen%E2%80%90Long&rft.au=Zheng%2C+You%E2%80%90Xuan&rft.date=2019-04-17&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=25&rft.issue=22&rft.spage=5623&rft.epage=5642&rft_id=info:doi/10.1002%2Fchem.201805952&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_chem_201805952 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon |