Thermally Activated Delayed Fluorescence Materials: Towards Realization of High Efficiency through Strategic Small Molecular Design

Thermally activated delayed fluorescence (TADF) is one of the most intriguing and promising discoveries towards realization of highly‐efficient organic light emitting diodes (OLED) utilizing small molecules as emitters. It has the capability of manifesting all excitons generated during the electrolu...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Chemistry : a European journal Ročník 25; číslo 22; s. 5623 - 5642
Hlavní autoři: Liang, Xiao, Tu, Zhen‐Long, Zheng, You‐Xuan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Germany Wiley Subscription Services, Inc 17.04.2019
Témata:
ISSN:0947-6539, 1521-3765, 1521-3765
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Thermally activated delayed fluorescence (TADF) is one of the most intriguing and promising discoveries towards realization of highly‐efficient organic light emitting diodes (OLED) utilizing small molecules as emitters. It has the capability of manifesting all excitons generated during the electroluminescent processes, consequently achieving 100 % of internal quantum efficiency. Since the report of the first efficient OLED based on a TADF small molecule in 2012 by Adachi et al., the quest for optimal TADF materials for OLED application has never stopped. Various TADF molecules bearing different design concepts and strategies have been designed and produced, with the aim to boost the overall performances of corresponding OLEDs. In this minireview, the general principles of TADF molecular design based on three basic categories of TADF species: twisted intramolecular charge transfer (TICT), through‐space charge transfer (TSCT) and multi‐resonance induced TADF (MR‐TADF) are discussed in detail. Several key aspects with respect to each category, as well as some effective methods to enhance the efficiency of TADF materials and corresponding OLEDs from the molecular engineering perspectives, are summarized and discussed to exhibit a general landscape of TADF molecular design to a wide variety of scientific researchers within this particular disciplinary area. Let it shine: A comprehensive review of TADF categories based upon frontier molecular orbit distribution and composition is presented with some general design strategies as well as specific with regard to some unique TADF systems to help realize optimal TADF characteristics. Strategic molecular engineering from device perspective is also illustrated in this Minireview to help researchers better understand and design the ultimately efficient TADF materials.
AbstractList Thermally activated delayed fluorescence (TADF) is one of the most intriguing and promising discoveries towards realization of highly-efficient organic light emitting diodes (OLED) utilizing small molecules as emitters. It has the capability of manifesting all excitons generated during the electroluminescent processes, consequently achieving 100 % of internal quantum efficiency. Since the report of the first efficient OLED based on a TADF small molecule in 2012 by Adachi et al., the quest for optimal TADF materials for OLED application has never stopped. Various TADF molecules bearing different design concepts and strategies have been designed and produced, with the aim to boost the overall performances of corresponding OLEDs. In this minireview, the general principles of TADF molecular design based on three basic categories of TADF species: twisted intramolecular charge transfer (TICT), through-space charge transfer (TSCT) and multi-resonance induced TADF (MR-TADF) are discussed in detail. Several key aspects with respect to each category, as well as some effective methods to enhance the efficiency of TADF materials and corresponding OLEDs from the molecular engineering perspectives, are summarized and discussed to exhibit a general landscape of TADF molecular design to a wide variety of scientific researchers within this particular disciplinary area.
Thermally activated delayed fluorescence (TADF) is one of the most intriguing and promising discoveries towards realization of highly-efficient organic light emitting diodes (OLED) utilizing small molecules as emitters. It has the capability of manifesting all excitons generated during the electroluminescent processes, consequently achieving 100 % of internal quantum efficiency. Since the report of the first efficient OLED based on a TADF small molecule in 2012 by Adachi et al., the quest for optimal TADF materials for OLED application has never stopped. Various TADF molecules bearing different design concepts and strategies have been designed and produced, with the aim to boost the overall performances of corresponding OLEDs. In this minireview, the general principles of TADF molecular design based on three basic categories of TADF species: twisted intramolecular charge transfer (TICT), through-space charge transfer (TSCT) and multi-resonance induced TADF (MR-TADF) are discussed in detail. Several key aspects with respect to each category, as well as some effective methods to enhance the efficiency of TADF materials and corresponding OLEDs from the molecular engineering perspectives, are summarized and discussed to exhibit a general landscape of TADF molecular design to a wide variety of scientific researchers within this particular disciplinary area.Thermally activated delayed fluorescence (TADF) is one of the most intriguing and promising discoveries towards realization of highly-efficient organic light emitting diodes (OLED) utilizing small molecules as emitters. It has the capability of manifesting all excitons generated during the electroluminescent processes, consequently achieving 100 % of internal quantum efficiency. Since the report of the first efficient OLED based on a TADF small molecule in 2012 by Adachi et al., the quest for optimal TADF materials for OLED application has never stopped. Various TADF molecules bearing different design concepts and strategies have been designed and produced, with the aim to boost the overall performances of corresponding OLEDs. In this minireview, the general principles of TADF molecular design based on three basic categories of TADF species: twisted intramolecular charge transfer (TICT), through-space charge transfer (TSCT) and multi-resonance induced TADF (MR-TADF) are discussed in detail. Several key aspects with respect to each category, as well as some effective methods to enhance the efficiency of TADF materials and corresponding OLEDs from the molecular engineering perspectives, are summarized and discussed to exhibit a general landscape of TADF molecular design to a wide variety of scientific researchers within this particular disciplinary area.
Thermally activated delayed fluorescence (TADF) is one of the most intriguing and promising discoveries towards realization of highly‐efficient organic light emitting diodes (OLED) utilizing small molecules as emitters. It has the capability of manifesting all excitons generated during the electroluminescent processes, consequently achieving 100 % of internal quantum efficiency. Since the report of the first efficient OLED based on a TADF small molecule in 2012 by Adachi et al., the quest for optimal TADF materials for OLED application has never stopped. Various TADF molecules bearing different design concepts and strategies have been designed and produced, with the aim to boost the overall performances of corresponding OLEDs. In this minireview, the general principles of TADF molecular design based on three basic categories of TADF species: twisted intramolecular charge transfer (TICT), through‐space charge transfer (TSCT) and multi‐resonance induced TADF (MR‐TADF) are discussed in detail. Several key aspects with respect to each category, as well as some effective methods to enhance the efficiency of TADF materials and corresponding OLEDs from the molecular engineering perspectives, are summarized and discussed to exhibit a general landscape of TADF molecular design to a wide variety of scientific researchers within this particular disciplinary area. Let it shine: A comprehensive review of TADF categories based upon frontier molecular orbit distribution and composition is presented with some general design strategies as well as specific with regard to some unique TADF systems to help realize optimal TADF characteristics. Strategic molecular engineering from device perspective is also illustrated in this Minireview to help researchers better understand and design the ultimately efficient TADF materials.
Author Zheng, You‐Xuan
Tu, Zhen‐Long
Liang, Xiao
Author_xml – sequence: 1
  givenname: Xiao
  surname: Liang
  fullname: Liang, Xiao
  organization: Nanjing University
– sequence: 2
  givenname: Zhen‐Long
  surname: Tu
  fullname: Tu, Zhen‐Long
  organization: Nanjing University
– sequence: 3
  givenname: You‐Xuan
  orcidid: 0000-0002-1795-2492
  surname: Zheng
  fullname: Zheng, You‐Xuan
  email: yxzheng@nju.edu.cn
  organization: Nanjing University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30648301$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFv0zAUhy00xLrBlSOyxIVLiu0kdsJtKh2dtGoSK-fIdp5bT0487GRTuPKP465jSJPQTk-yv-89-_dO0FHve0DoPSVzSgj7rHfQzRmhFSnrkr1CM1oymuWCl0doRupCZLzM62N0EuMNIaTmef4GHeeEF1VO6Az93uwgdNK5CZ_pwd7JAVr8FZycUj13ow8QNfQa8DpdBStd_II3_l6GNuLvIJ39JQfre-wNXtntDi-NsdomY8LDLvgxHV0PIblbq_H1fhJeewd6dDKkQdFu-7fotUl94d1jPUU_zpebxSq7vPp2sTi7zHQhOMuUrJRgShCjaGtEoQqlSGlKqFqiad6WoIpKGEN5WwkmuVa6LeuKAa8VoYbnp-jToe9t8D9HiEPT2fQ552QPfowNo6LOK8r4Hv34DL3xY-jT6xrGKEkUFUWiPjxSo-qgbW6D7WSYmr_xJmB-AHTwMQYwTwglzX5_zX5_zdP-klA8E7QdHgJOGVr3f60-aPfWwfTCkGaxWq7_uX8A4EOxIw
CitedBy_id crossref_primary_10_1002_anie_202303262
crossref_primary_10_1063_5_0264797
crossref_primary_10_1002_chem_202101807
crossref_primary_10_3390_nano12142497
crossref_primary_10_1002_ange_202015411
crossref_primary_10_1002_adom_202001981
crossref_primary_10_1016_j_cclet_2022_108124
crossref_primary_10_1016_j_jphotochemrev_2020_100340
crossref_primary_10_1002_adom_202301242
crossref_primary_10_1016_j_cej_2022_138459
crossref_primary_10_1002_chem_201902615
crossref_primary_10_1038_s42004_020_00366_1
crossref_primary_10_1002_adom_202402464
crossref_primary_10_1007_s11426_025_2716_6
crossref_primary_10_3390_app132112020
crossref_primary_10_1002_chem_201904411
crossref_primary_10_1038_s41566_021_00870_3
crossref_primary_10_1002_adom_202502755
crossref_primary_10_3390_mi13122150
crossref_primary_10_1016_j_ccr_2022_214843
crossref_primary_10_1016_j_orgel_2019_06_008
crossref_primary_10_1016_j_saa_2025_126021
crossref_primary_10_1002_adfm_202102739
crossref_primary_10_1002_adom_202000260
crossref_primary_10_1016_j_molliq_2020_113814
crossref_primary_10_1515_znb_2025_0004
crossref_primary_10_1002_anie_201913210
crossref_primary_10_1016_j_cej_2020_126173
crossref_primary_10_1039_D5NJ02578H
crossref_primary_10_1002_ange_202200290
crossref_primary_10_1039_C9PY00701F
crossref_primary_10_1002_chem_201902587
crossref_primary_10_1039_D0QM00851F
crossref_primary_10_1016_j_saa_2025_126856
crossref_primary_10_1039_D2RA07450H
crossref_primary_10_1016_j_synthmet_2023_117285
crossref_primary_10_6023_A21010009
crossref_primary_10_1016_j_dyepig_2021_109192
crossref_primary_10_1002_qua_27454
crossref_primary_10_1002_adom_202201291
crossref_primary_10_1039_D5TC00953G
crossref_primary_10_1016_j_orgel_2019_105550
crossref_primary_10_1021_jacs_4c05043
crossref_primary_10_1016_j_orgel_2024_107154
crossref_primary_10_1039_D1PY01700D
crossref_primary_10_1002_adom_201900727
crossref_primary_10_3389_fchem_2020_541331
crossref_primary_10_1016_j_jphotochem_2025_116749
crossref_primary_10_1002_chem_201904590
crossref_primary_10_1016_j_dyepig_2025_112878
crossref_primary_10_1002_adts_202200056
crossref_primary_10_1002_chem_202202572
crossref_primary_10_1002_adfm_202312622
crossref_primary_10_1002_adom_202101343
crossref_primary_10_1039_D3SC06989C
crossref_primary_10_1016_j_dyepig_2023_111185
crossref_primary_10_1002_adma_202107951
crossref_primary_10_1039_D1SC02042K
crossref_primary_10_1002_adfm_202010281
crossref_primary_10_1016_j_cej_2021_128550
crossref_primary_10_1016_j_ccr_2020_213283
crossref_primary_10_1021_acs_nanolett_4c06632
crossref_primary_10_1002_adma_202511230
crossref_primary_10_1002_adom_201901150
crossref_primary_10_1007_s40843_024_3049_1
crossref_primary_10_1016_j_ccr_2023_215100
crossref_primary_10_1002_smll_202405156
crossref_primary_10_1002_adma_202100677
crossref_primary_10_1016_j_jphotochemrev_2025_100700
crossref_primary_10_1016_j_jlumin_2019_116899
crossref_primary_10_1016_j_molstruc_2024_139126
crossref_primary_10_3389_fchem_2020_00373
crossref_primary_10_1016_j_dyepig_2020_108324
crossref_primary_10_1016_j_cej_2021_133249
crossref_primary_10_1016_j_tet_2022_132692
crossref_primary_10_1039_C9CP05907E
crossref_primary_10_1002_agt2_144
crossref_primary_10_1002_ange_201913210
crossref_primary_10_1016_j_jphotochem_2020_113089
crossref_primary_10_1039_D2CP00777K
crossref_primary_10_1002_adma_202110344
crossref_primary_10_1021_acs_chemrev_3c00755
crossref_primary_10_1002_ange_202303262
crossref_primary_10_1016_j_dyepig_2024_112398
crossref_primary_10_1016_j_orgel_2021_106171
crossref_primary_10_1002_adom_201901283
crossref_primary_10_3390_ma12162646
crossref_primary_10_1002_anie_202015411
crossref_primary_10_1016_j_cej_2023_141416
crossref_primary_10_1002_chem_202301114
crossref_primary_10_1002_adom_202001432
crossref_primary_10_1002_ajoc_202100780
crossref_primary_10_1002_anie_202424694
crossref_primary_10_1016_j_dyepig_2024_111978
crossref_primary_10_1016_j_optmat_2024_116572
crossref_primary_10_1016_j_cclet_2019_08_032
crossref_primary_10_1021_acsami_5c01192
crossref_primary_10_1016_j_orgel_2024_107085
crossref_primary_10_1002_advs_202303504
crossref_primary_10_1039_D2PY00511E
crossref_primary_10_1039_D4SC04429K
crossref_primary_10_1002_slct_202201647
crossref_primary_10_3390_photonics11090864
crossref_primary_10_1002_sdtp_15485
crossref_primary_10_1016_j_molstruc_2022_134213
crossref_primary_10_1016_j_matt_2021_02_017
crossref_primary_10_1002_adts_201900076
crossref_primary_10_1016_j_cej_2020_127418
crossref_primary_10_1002_chem_202301885
crossref_primary_10_1002_aelm_201900843
crossref_primary_10_1002_ange_202424694
crossref_primary_10_1002_adfm_202103875
crossref_primary_10_1002_adma_202509857
crossref_primary_10_1016_j_dyepig_2023_111548
crossref_primary_10_1016_j_dyepig_2022_110268
crossref_primary_10_6023_A21070355
crossref_primary_10_3390_catal10090953
crossref_primary_10_1002_anie_202200290
crossref_primary_10_1039_D5QM00104H
crossref_primary_10_1002_chem_201902998
crossref_primary_10_1002_chem_202404752
crossref_primary_10_1016_j_dyepig_2022_110383
crossref_primary_10_1002_anie_202301896
crossref_primary_10_1039_D1SC00347J
crossref_primary_10_1002_chem_202002916
crossref_primary_10_1016_j_orgel_2025_107236
crossref_primary_10_1016_j_dyepig_2020_108705
crossref_primary_10_1039_D3RA03289B
crossref_primary_10_1002_chem_202201605
crossref_primary_10_1016_j_heliyon_2024_e40750
crossref_primary_10_1002_adma_202300510
crossref_primary_10_1016_j_biomaterials_2022_121691
crossref_primary_10_1016_j_cclet_2022_107934
crossref_primary_10_1016_j_trechm_2023_08_003
crossref_primary_10_1002_adma_202500269
crossref_primary_10_1039_D2SC02480B
crossref_primary_10_1088_1361_6633_ace06a
crossref_primary_10_1039_D5SC01503K
crossref_primary_10_1002_ange_202301896
crossref_primary_10_1093_nsr_nwab222
crossref_primary_10_1039_D5SC03813H
crossref_primary_10_1002_advs_202305745
crossref_primary_10_1002_chem_202103532
crossref_primary_10_1016_j_optmat_2024_115621
crossref_primary_10_1016_j_cplett_2020_137437
crossref_primary_10_1016_j_orgel_2020_106017
crossref_primary_10_1016_j_ijleo_2023_171462
crossref_primary_10_1039_D0QM00190B
crossref_primary_10_1016_j_orgel_2020_106012
Cites_doi 10.1002/asia.201601384
10.1021/acsami.8b00053
10.1002/anie.201506687
10.1016/j.tet.2017.12.022
10.1039/C6CP06308J
10.1038/pj.2016.82
10.1002/adma.201401393
10.1002/chem.201804666
10.1039/C7SC04669C
10.1002/anie.201603232
10.1039/C8TC02849D
10.1039/C6TC04821H
10.1002/adma.201601675
10.1016/j.dyepig.2016.10.029
10.1021/acs.chemmater.6b03979
10.1002/adfm.201802031
10.1038/lsa.2015.5
10.1002/anie.201412107
10.1039/C3TC31936A
10.1002/adma.201804228
10.1021/acs.chemmater.6b05324
10.1039/C8TC01210E
10.1016/j.orgel.2018.03.024
10.1039/C6CC05203G
10.1002/adfm.201502995
10.1021/acs.chemmater.5b02515
10.1021/acs.chemmater.6b01484
10.1002/chem.201803580
10.1016/j.dyepig.2014.06.008
10.1021/cm500802p
10.1038/s41566-018-0112-9
10.1021/acsami.6b14438
10.1021/ja306538w
10.1002/adfm.201802558
10.1002/adom.201701256
10.1021/acsami.8b14070
10.1002/ange.201508270
10.1039/C6TC04994J
10.1021/acsami.8b10595
10.1002/adma.201506391
10.1246/cl.140360
10.1002/adma.201701476
10.1002/ange.201412107
10.1016/j.synthmet.2011.02.007
10.1088/0957-4484/21/15/155202
10.1021/acsami.6b05877
10.1039/C3CC44179B
10.1021/acsami.8b09418
10.1007/s10895-016-1970-5
10.1002/adom.201800565
10.1002/adma.201604265
10.1021/jp511061t
10.1021/acs.chemmater.6b01691
10.1016/j.orgel.2013.06.022
10.1002/adom.201801071
10.1002/anie.201809945
10.1002/adma.201300753
10.1039/C8SC03636E
10.1002/adfm.201400495
10.1039/C7NJ04482H
10.1063/1.98799
10.1002/adom.201701147
10.1002/adma.201605444
10.1002/ange.201603232
10.1002/adfm.201606458
10.1016/j.dyepig.2017.01.036
10.1039/c3cc47130f
10.1021/acs.joc.5b01496
10.1016/j.cplett.2016.10.069
10.1039/C8CC04594A
10.1039/C6RA18374C
10.1021/acsami.8b08083
10.1002/ange.201806323
10.1002/adma.201702464
10.1002/adom.201800020
10.1021/acs.chemmater.7b03490
10.1002/ange.201206289
10.1002/adom.201800568
10.1002/ejoc.201300544
10.1021/acs.jpclett.7b00462
10.1039/C8TC03796E
10.1002/adom.201700051
10.1002/adfm.201602507
10.1002/ange.201809945
10.1246/cl.130907
10.1002/anie.201509231
10.1039/C5CC04126K
10.1038/nature11687
10.1039/C6CC08501F
10.1039/C6CC06729H
10.1002/adma.201705005
10.1021/acsami.5b11895
10.1021/jacs.5b07932
10.1063/1.4749285
10.1021/jacs.7b00873
10.1038/nmat4154
10.1039/C8SC01703D
10.1016/j.orgel.2015.05.013
10.1002/anie.201806323
10.1021/acsami.8b09013
10.1002/adfm.201505106
10.1002/anie.201206289
10.1038/ncomms9476
10.1039/C6RA03281H
10.1021/acsami.5b04090
10.1039/c3cp52255e
10.1016/j.dyepig.2016.09.008
10.1002/ange.201509231
10.1039/C6CS00368K
10.1002/ange.201506687
10.1039/C6CC02856J
10.1039/b105159h
10.1002/adma.201404967
10.1016/j.tsf.2010.12.097
10.1002/ange.201802060
10.1002/adma.201003128
10.1039/C5TC01373A
10.1002/adma.200900983
10.1039/C7TC05392D
10.1039/C5CP02810H
10.1016/j.dyepig.2016.08.023
10.1002/ijch.201800049
10.1016/j.orgel.2015.11.019
10.1021/acsami.6b08546
10.1039/C7TC05709A
10.1039/C5CC07999C
10.1002/anie.201806800
10.1002/anie.201802060
10.1021/ct500957s
10.1016/j.dyepig.2017.12.048
10.1039/C5CC04105H
10.1016/j.orgel.2015.02.022
10.1021/acsami.6b15272
10.1002/adfm.201505602
10.1002/adfm.201701002
10.1002/adma.201401476
10.1039/C8TC04867C
10.1039/C4TC01289E
10.1021/jacs.7b03848
10.1016/j.jlumin.2017.03.038
10.1002/adma.201402532
10.1039/C6CC05076J
10.1021/acsami.6b07107
10.1021/cm402428a
10.1088/0957-4484/27/22/224001
10.1039/c2cc36237f
10.1002/anie.201508270
10.1039/C5CC00307E
10.1002/adfm.201706023
10.1021/jacs.6b00850
10.1039/C6TC02027E
10.1039/C6TC04786F
10.1039/C6TC04377A
10.1039/C5RA09168C
10.1039/C6TC02702D
10.1002/adom.201800437
10.1002/adma.201405474
10.1002/adma.201502053
10.1021/acsami.6b14638
10.1021/jacs.7b10578
10.1016/j.orgel.2015.05.009
10.1039/c2cc31468a
10.1002/adma.201505491
10.1039/C5CC00511F
10.1002/ange.201806800
10.1021/acsami.6b07563
10.1039/C5CC05022G
10.1039/C8TC02628A
10.1021/jp501017f
10.1063/1.4882456
10.1088/0957-4484/21/13/134020
10.1007/s13391-011-0601-1
ContentType Journal Article
Copyright 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/chem.201805952
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Materials Research Database
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3765
EndPage 5642
ExternalDocumentID 30648301
10_1002_chem_201805952
CHEM201805952
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51773088
– fundername: National Natural Science Foundation of China
  grantid: 51773088
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACUHS
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGC
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
TWZ
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YZZ
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
O8X
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
ID FETCH-LOGICAL-c4762-ba8b72b70fb1df74b4bb05f5e8d0c13d5eb487ff16d872a6cbcd5982e69b01f63
IEDL.DBID DRFUL
ISICitedReferencesCount 205
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000467079100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0947-6539
1521-3765
IngestDate Fri Jul 11 07:10:45 EDT 2025
Tue Oct 07 06:43:50 EDT 2025
Wed Feb 19 02:36:11 EST 2025
Sat Nov 29 07:17:01 EST 2025
Tue Nov 18 22:12:06 EST 2025
Wed Jan 22 16:49:33 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords TADF
TICT
OLED
through-space
multi-resonance effect
Language English
License 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4762-ba8b72b70fb1df74b4bb05f5e8d0c13d5eb487ff16d872a6cbcd5982e69b01f63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-1795-2492
PMID 30648301
PQID 2210381174
PQPubID 986340
PageCount 20
ParticipantIDs proquest_miscellaneous_2179381266
proquest_journals_2210381174
pubmed_primary_30648301
crossref_primary_10_1002_chem_201805952
crossref_citationtrail_10_1002_chem_201805952
wiley_primary_10_1002_chem_201805952_CHEM201805952
PublicationCentury 2000
PublicationDate April 17, 2019
PublicationDateYYYYMMDD 2019-04-17
PublicationDate_xml – month: 04
  year: 2019
  text: April 17, 2019
  day: 17
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationSubtitle A European Journal
PublicationTitle Chemistry : a European journal
PublicationTitleAlternate Chemistry
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2017; 8
2013; 25
2011; 519
2019; 10
2017; 49
2017; 46
2014; 26
2014; 24
2016; 666
2015; 80
2018; 42
2017; 9
2012; 492
2018; 6
2018; 9
2010; 21
2013; 15
2013; 14
2012; 134
2014; 2
2015; 137
2001
2018 2018; 57 130
2012 2012; 51 124
2019; 25
2015 2015; 54 127
2018; 30
2018; 74
2011; 23
2011; 161
2014; 118
2019; 7
2018; 28
2015; 14
2015; 6
2015; 17
2015; 5
1987; 51
2009; 21
2015; 4
2012; 101
2018; 140
2015; 3
2013; 49
2015; 51
2017; 27
2015; 11
2016; 52
2017; 29
2016; 18
2014; 111
2015; 7
2017; 136
2017; 137
2011; 7
2017; 139
2014; 43
2018; 24
2016; 4
2015; 24
2015; 23
2017; 53
2016; 6
2015; 25
2015; 27
2016 2016; 55 128
2018; 151
2017; 12
2015; 21
2016; 134
2017
2017; 140
2015; 119
2016; 138
2013
2017; 187
2012; 48
2016; 29
2018; 12
2016; 28
2018; 10
2016; 27
2018; 54
2016; 26
2016; 8
2014; 104
2018; 58
2018; 57
e_1_2_9_71_2
e_1_2_9_33_2
e_1_2_9_56_2
e_1_2_9_10_1
e_1_2_9_94_2
e_1_2_9_107_1
e_1_2_9_122_2
e_1_2_9_145_2
e_1_2_9_168_1
e_1_2_9_18_2
e_1_2_9_79_2
e_1_2_9_183_1
e_1_2_9_160_2
e_1_2_9_60_2
e_1_2_9_45_2
e_1_2_9_83_2
e_1_2_9_22_2
e_1_2_9_6_1
e_1_2_9_119_2
e_1_2_9_111_1
e_1_2_9_134_2
e_1_2_9_157_2
e_1_2_9_45_3
e_1_2_9_172_2
e_1_2_9_68_2
e_1_2_9_72_2
e_1_2_9_11_1
e_1_2_9_34_2
e_1_2_9_95_2
e_1_2_9_129_2
e_1_2_9_106_2
e_1_2_9_121_2
e_1_2_9_167_1
e_1_2_9_144_2
e_1_2_9_57_2
e_1_2_9_182_1
e_1_2_9_19_2
e_1_2_9_61_2
e_1_2_9_23_2
e_1_2_9_84_2
e_1_2_9_5_1
e_1_2_9_118_2
e_1_2_9_133_2
e_1_2_9_179_2
e_1_2_9_133_3
e_1_2_9_156_2
e_1_2_9_46_2
e_1_2_9_69_2
e_1_2_9_110_1
e_1_2_9_171_1
e_1_2_9_92_3
e_1_2_9_77_2
e_1_2_9_31_2
e_1_2_9_54_2
e_1_2_9_109_2
e_1_2_9_109_1
e_1_2_9_92_2
e_1_2_9_101_1
e_1_2_9_147_1
e_1_2_9_124_2
e_1_2_9_185_2
e_1_2_9_16_2
e_1_2_9_185_1
e_1_2_9_39_2
e_1_2_9_89_1
e_1_2_9_20_2
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_81_2
e_1_2_9_136_2
e_1_2_9_159_2
e_1_2_9_113_1
e_1_2_9_8_2
e_1_2_9_136_1
e_1_2_9_174_2
e_1_2_9_151_1
e_1_2_9_28_2
e_1_2_9_78_2
e_1_2_9_93_2
e_1_2_9_55_1
e_1_2_9_32_2
e_1_2_9_108_1
e_1_2_9_70_2
e_1_2_9_100_2
e_1_2_9_123_1
e_1_2_9_146_2
e_1_2_9_169_1
e_1_2_9_161_2
e_1_2_9_184_1
e_1_2_9_17_2
e_1_2_9_21_2
e_1_2_9_44_2
e_1_2_9_67_2
e_1_2_9_7_2
e_1_2_9_82_1
e_1_2_9_135_3
e_1_2_9_158_2
e_1_2_9_112_1
e_1_2_9_135_2
e_1_2_9_173_2
e_1_2_9_29_2
e_1_2_9_150_1
e_1_2_9_98_1
e_1_2_9_52_1
e_1_2_9_75_2
e_1_2_9_90_1
e_1_2_9_149_1
e_1_2_9_126_2
e_1_2_9_103_2
e_1_2_9_14_2
e_1_2_9_37_2
e_1_2_9_187_1
e_1_2_9_141_2
e_1_2_9_164_1
e_1_2_9_41_2
e_1_2_9_87_2
e_1_2_9_64_2
e_1_2_9_2_1
e_1_2_9_138_2
e_1_2_9_115_2
e_1_2_9_49_1
e_1_2_9_130_1
e_1_2_9_176_1
e_1_2_9_153_2
e_1_2_9_26_2
e_1_2_9_153_1
e_1_2_9_30_1
e_1_2_9_99_2
Kim K.-J. (e_1_2_9_162_1) 2017
e_1_2_9_76_2
e_1_2_9_53_2
e_1_2_9_91_1
e_1_2_9_125_2
e_1_2_9_102_1
e_1_2_9_148_1
e_1_2_9_38_1
e_1_2_9_140_1
e_1_2_9_163_1
e_1_2_9_186_1
e_1_2_9_186_2
e_1_2_9_15_2
e_1_2_9_88_2
e_1_2_9_42_2
e_1_2_9_65_2
e_1_2_9_80_2
e_1_2_9_1_1
e_1_2_9_114_1
e_1_2_9_137_1
e_1_2_9_9_2
e_1_2_9_152_1
e_1_2_9_175_2
e_1_2_9_27_1
e_1_2_9_73_2
e_1_2_9_50_2
e_1_2_9_35_1
e_1_2_9_12_1
e_1_2_9_96_2
e_1_2_9_128_2
e_1_2_9_105_2
e_1_2_9_166_1
e_1_2_9_189_1
e_1_2_9_58_2
e_1_2_9_120_2
e_1_2_9_143_1
e_1_2_9_181_1
e_1_2_9_62_2
e_1_2_9_85_2
e_1_2_9_4_1
e_1_2_9_117_2
e_1_2_9_132_2
e_1_2_9_155_2
e_1_2_9_178_2
e_1_2_9_24_2
e_1_2_9_47_2
e_1_2_9_170_1
e_1_2_9_51_2
e_1_2_9_74_2
e_1_2_9_97_2
e_1_2_9_13_1
e_1_2_9_127_1
e_1_2_9_165_2
e_1_2_9_104_2
e_1_2_9_188_1
e_1_2_9_59_1
e_1_2_9_165_1
e_1_2_9_36_2
e_1_2_9_142_2
e_1_2_9_180_1
e_1_2_9_40_2
e_1_2_9_63_2
e_1_2_9_86_2
e_1_2_9_3_1
e_1_2_9_139_2
e_1_2_9_116_2
e_1_2_9_177_1
e_1_2_9_25_2
e_1_2_9_48_2
e_1_2_9_131_1
e_1_2_9_154_1
References_xml – volume: 10
  start-page: 29840
  year: 2018
  end-page: 29847
  publication-title: ACS Appl. Mater. Interfaces
– volume: 666
  start-page: 7
  year: 2016
  end-page: 12
  publication-title: Chem. Phys. Lett.
– volume: 5
  start-page: 1699
  year: 2017
  end-page: 1705
  publication-title: J. Mater. Chem. C
– volume: 74
  start-page: 497
  year: 2018
  end-page: 505
  publication-title: Tetrahedron
– volume: 6
  start-page: 8476
  year: 2015
  publication-title: Nat. Commun.
– volume: 25
  start-page: 6786
  year: 2015
  end-page: 6792
  publication-title: Adv. Funct. Mater.
– volume: 54 127
  start-page: 13068 13260
  year: 2015 2015
  end-page: 13072 13264
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 6
  start-page: 1801071
  year: 2018
  publication-title: Adv. Opt. Mater.
– volume: 11
  start-page: 168
  year: 2015
  end-page: 177
  publication-title: J. Chem. Theory Comput.
– volume: 6
  start-page: 11615
  year: 2018
  end-page: 11621
  publication-title: J. Mater. Chem. C
– volume: 6
  start-page: 1701147
  year: 2018
  publication-title: Adv. Opt. Mater.
– volume: 4
  start-page: 11355
  year: 2016
  end-page: 11381
  publication-title: J. Mater. Chem. C
– volume: 137
  start-page: 11908
  year: 2015
  end-page: 11911
  publication-title: J. Am. Chem. Soc.
– volume: 55 128
  start-page: 3017 3069
  year: 2016 2016
  end-page: 3021 3073
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 57 130
  start-page: 16407 16645
  year: 2018 2018
  end-page: 16411 16649
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 9
  start-page: 4769
  year: 2017
  end-page: 4777
  publication-title: ACS Appl. Mater. Interfaces
– volume: 53
  start-page: 807
  year: 2017
  end-page: 826
  publication-title: Chem. Commun.
– volume: 29
  start-page: 1946
  year: 2017
  end-page: 1963
  publication-title: Chem. Mater.
– volume: 8
  start-page: 4811
  year: 2016
  end-page: 4818
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 10276
  year: 2018
  end-page: 10283
  publication-title: J. Mater. Chem. C
– volume: 27
  start-page: 5861
  year: 2015
  end-page: 5867
  publication-title: Adv. Mater.
– volume: 29
  start-page: 1527
  year: 2017
  end-page: 1537
  publication-title: Chem. Mater.
– volume: 28
  start-page: 4626
  year: 2016
  end-page: 4631
  publication-title: Adv. Mater.
– volume: 12
  start-page: 216
  year: 2017
  end-page: 223
  publication-title: Chem. Asian J.
– volume: 30
  start-page: 1462
  year: 2018
  end-page: 1466
  publication-title: Chem. Mater.
– volume: 51 124
  start-page: 11311 11473
  year: 2012 2012
  end-page: 11315 11477
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 134
  start-page: 14706
  year: 2012
  end-page: 14709
  publication-title: J. Am. Chem. Soc.
– volume: 139
  start-page: 4894
  year: 2017
  end-page: 4900
  publication-title: J. Am. Chem. Soc.
– start-page: 1
  year: 2017
  end-page: 3
  publication-title: J. Mater. Chem. C
– volume: 6
  start-page: 1701256
  year: 2018
  publication-title: Adv. Opt. Mater.
– volume: 6
  start-page: 1800020
  year: 2018
  publication-title: Adv. Opt. Mater.
– volume: 28
  start-page: 1706023
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 187
  start-page: 414
  year: 2017
  end-page: 420
  publication-title: J. Lumin.
– volume: 28
  start-page: 2777
  year: 2016
  end-page: 2781
  publication-title: Adv. Mater.
– volume: 46
  start-page: 915
  year: 2017
  end-page: 1016
  publication-title: Chem. Soc. Rev.
– volume: 5
  start-page: 1452
  year: 2017
  end-page: 1462
  publication-title: J. Mater. Chem. C
– volume: 2
  start-page: 8191
  year: 2014
  end-page: 8197
  publication-title: J. Mater. Chem. C
– volume: 28
  start-page: 1802031
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 594
  year: 2019
  end-page: 605
  publication-title: Chem. Sci.
– volume: 26
  start-page: 5050
  year: 2014
  end-page: 5055
  publication-title: Adv. Mater.
– volume: 10
  start-page: 30022
  year: 2018
  end-page: 30028
  publication-title: ACS Appl. Mater. Interfaces
– volume: 25
  start-page: 3766
  year: 2013
  end-page: 3771
  publication-title: Chem. Mater.
– volume: 23
  start-page: 926
  year: 2011
  end-page: 952
  publication-title: Adv. Mater.
– volume: 52
  start-page: 8149
  year: 2016
  end-page: 8151
  publication-title: Chem. Commun.
– volume: 57 130
  start-page: 9290 9434
  year: 2018 2018
  end-page: 9294 9438
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 6
  start-page: 1800437
  year: 2018
  publication-title: Adv. Opt. Mater.
– volume: 48
  start-page: 11392
  year: 2012
  end-page: 11394
  publication-title: Chem. Commun.
– volume: 6
  start-page: 81631
  year: 2016
  end-page: 81635
  publication-title: RSC Adv.
– volume: 24
  start-page: 1
  year: 2015
  end-page: 6
  publication-title: Org. Electron.
– volume: 54 127
  start-page: 15231 15446
  year: 2015 2015
  end-page: 15235 15450
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 10
  start-page: 35420
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 30
  start-page: 1705005
  year: 2018
  publication-title: Adv. Mater.
– volume: 9
  start-page: 3277
  year: 2017
  end-page: 3281
  publication-title: ACS Appl. Mater. Interfaces
– volume: 21
  start-page: 4802
  year: 2009
  end-page: 4806
  publication-title: Adv. Mater.
– volume: 28
  start-page: 1802558
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 43
  start-page: 1017
  year: 2014
  end-page: 1019
  publication-title: Chem. Lett.
– volume: 52
  start-page: 339
  year: 2016
  end-page: 342
  publication-title: Chem. Commun.
– volume: 9
  start-page: 7331
  year: 2017
  end-page: 7338
  publication-title: ACS Appl. Mater. Interfaces
– volume: 29
  start-page: 1604265
  year: 2017
  publication-title: Adv. Mater.
– volume: 24
  start-page: 5232
  year: 2014
  end-page: 5239
  publication-title: Adv. Funct. Mater.
– volume: 138
  start-page: 3990
  year: 2016
  end-page: 3993
  publication-title: J. Am. Chem. Soc.
– volume: 119
  start-page: 1291
  year: 2015
  end-page: 1297
  publication-title: J. Phys. Chem. C
– start-page: 1740
  year: 2001
  end-page: 1741
  publication-title: Chem. Commun.
– volume: 29
  start-page: 22
  year: 2016
  end-page: 26
  publication-title: Org. Electron.
– volume: 54
  start-page: 9278
  year: 2018
  end-page: 9281
  publication-title: Chem. Commun.
– volume: 27
  start-page: 2019
  year: 2015
  end-page: 2023
  publication-title: Adv. Mater.
– volume: 27
  start-page: 451
  year: 2017
  end-page: 461
  publication-title: J. Fluoresc.
– volume: 118
  start-page: 15985
  year: 2014
  end-page: 15994
  publication-title: J. Phys. Chem. C
– volume: 51
  start-page: 13662
  year: 2015
  end-page: 13665
  publication-title: Chem. Commun.
– volume: 8
  start-page: 20955
  year: 2016
  end-page: 20961
  publication-title: ACS Appl. Mater. Interfaces
– volume: 42
  start-page: 4317
  year: 2018
  end-page: 4323
  publication-title: New J. Chem.
– volume: 140
  start-page: 79
  year: 2017
  end-page: 86
  publication-title: Dyes Pigm.
– volume: 28
  start-page: 5667
  year: 2016
  end-page: 5679
  publication-title: Chem. Mater.
– volume: 8
  start-page: 32984
  year: 2016
  end-page: 32991
  publication-title: ACS Appl. Mater. Interfaces
– volume: 25
  start-page: 3707
  year: 2013
  end-page: 3714
  publication-title: Adv. Mater.
– volume: 4
  start-page: 9998
  year: 2016
  end-page: 10004
  publication-title: J. Mater. Chem. C
– volume: 21
  start-page: 134020
  year: 2010
  publication-title: Nanotechnology
– volume: 28
  start-page: 5400
  year: 2016
  end-page: 5405
  publication-title: Chem. Mater.
– volume: 101
  start-page: 093306
  year: 2012
  publication-title: Appl. Phys. Lett.
– volume: 8
  start-page: 1253
  year: 2017
  end-page: 1258
  publication-title: J. Phys. Chem. Lett.
– volume: 492
  start-page: 234
  year: 2012
  end-page: 238
  publication-title: Nature
– volume: 28
  start-page: 6976
  year: 2016
  end-page: 6983
  publication-title: Adv. Mater.
– volume: 136
  start-page: 543
  year: 2017
  end-page: 552
  publication-title: Dyes Pigm.
– volume: 6
  start-page: 13179
  year: 2018
  end-page: 13189
  publication-title: J. Mater. Chem. C
– volume: 5
  start-page: 59137
  year: 2015
  end-page: 59141
  publication-title: RSC Adv.
– volume: 49
  start-page: 10385
  year: 2013
  end-page: 10387
  publication-title: Chem. Commun.
– volume: 30
  start-page: 1804228
  year: 2018
  publication-title: Adv. Mater.
– volume: 6
  start-page: 1543
  year: 2018
  end-page: 1550
  publication-title: J. Mater. Chem. C
– volume: 25
  start-page: 642
  year: 2019
  end-page: 648
  publication-title: Chem. Eur. J.
– volume: 24
  start-page: 16603
  year: 2018
  end-page: 16608
  publication-title: Chem. Eur. J.
– volume: 21
  start-page: 155202
  year: 2010
  publication-title: Nanotechnology
– volume: 27
  start-page: 2096
  year: 2015
  end-page: 2100
  publication-title: Adv. Mater.
– volume: 27
  start-page: 224001
  year: 2016
  publication-title: Nanotechnology
– volume: 57
  start-page: 327
  year: 2018
  end-page: 334
  publication-title: Org. Electron.
– volume: 8
  start-page: 23190
  year: 2016
  end-page: 23196
  publication-title: ACS Appl. Mater. Interfaces
– volume: 51
  start-page: 5028
  year: 2015
  end-page: 5031
  publication-title: Chem. Commun.
– volume: 3
  start-page: 6986
  year: 2015
  end-page: 6996
  publication-title: J. Mater. Chem. C
– volume: 48
  start-page: 9580
  year: 2012
  end-page: 9582
  publication-title: Chem. Commun.
– volume: 27
  start-page: 1606458
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 1800565
  year: 2019
  publication-title: Adv. Opt. Mater.
– volume: 43
  start-page: 319
  year: 2014
  end-page: 321
  publication-title: Chem. Lett.
– volume: 49
  start-page: 11302
  year: 2013
  end-page: 11304
  publication-title: Chem. Commun.
– volume: 6
  start-page: 4257
  year: 2018
  end-page: 4264
  publication-title: J. Mater. Chem. C
– volume: 6
  start-page: 22137
  year: 2016
  end-page: 22143
  publication-title: RSC Adv.
– volume: 15
  start-page: 15850
  year: 2013
  end-page: 15855
  publication-title: Phys. Chem. Chem. Phys.
– volume: 57 130
  start-page: 11316 11486
  year: 2018 2018
  end-page: 11320 11490
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 52
  start-page: 10956
  year: 2016
  end-page: 10959
  publication-title: Chem. Commun.
– volume: 4
  start-page: 232
  year: 2015
  end-page: 232
  publication-title: Light: Sci. Appl.
– volume: 26
  start-page: 6904
  year: 2016
  end-page: 6912
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 34435
  year: 2018
  end-page: 34442
  publication-title: ACS Appl. Mater. Interfaces
– volume: 26
  start-page: 5198
  year: 2014
  end-page: 5204
  publication-title: Adv. Mater.
– volume: 51
  start-page: 913
  year: 1987
  end-page: 915
  publication-title: Appl. Phys. Lett.
– volume: 8
  start-page: 23197
  year: 2016
  end-page: 23203
  publication-title: ACS Appl. Mater. Interfaces
– volume: 111
  start-page: 135
  year: 2014
  end-page: 144
  publication-title: Dyes Pigm.
– volume: 519
  start-page: 3352
  year: 2011
  end-page: 3357
  publication-title: Thin Solid Films
– volume: 2
  start-page: 421
  year: 2014
  end-page: 424
  publication-title: J. Mater. Chem. C
– volume: 7
  start-page: 77
  year: 2011
  end-page: 91
  publication-title: Elect. Mater. Lett.
– volume: 137
  start-page: 480
  year: 2017
  end-page: 489
  publication-title: Dyes Pigm.
– volume: 9
  start-page: 5787
  year: 2018
  end-page: 5794
  publication-title: Chem. Sci.
– volume: 151
  start-page: 75
  year: 2018
  end-page: 80
  publication-title: Dyes Pigm.
– volume: 104
  start-page: 233304
  year: 2014
  publication-title: Appl. Phys. Lett.
– volume: 4
  start-page: 7911
  year: 2016
  end-page: 7916
  publication-title: J. Mater. Chem. C
– volume: 26
  start-page: 7931
  year: 2014
  end-page: 7958
  publication-title: Adv. Mater.
– volume: 27
  start-page: 1701002
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 140
  start-page: 1195
  year: 2018
  end-page: 1198
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 31515
  year: 2018
  end-page: 31525
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 1385
  year: 2018
  end-page: 1391
  publication-title: Chem. Sci.
– volume: 5
  start-page: 1216
  year: 2017
  end-page: 1223
  publication-title: J. Mater. Chem. C
– volume: 21
  start-page: 100
  year: 2015
  end-page: 105
  publication-title: Org. Electron.
– volume: 29
  start-page: 1702464
  year: 2017
  publication-title: Adv. Mater.
– volume: 52
  start-page: 11012
  year: 2016
  end-page: 11015
  publication-title: Chem. Commun.
– volume: 49
  start-page: 197
  year: 2017
  end-page: 202
  publication-title: Polym. J.
– volume: 5
  start-page: 1700051
  year: 2017
  publication-title: Adv. Opt. Mater.
– volume: 57 130
  start-page: 12473 12653
  year: 2018 2018
  end-page: 12477 12657
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 161
  start-page: 823
  year: 2011
  end-page: 827
  publication-title: Synth. Met.
– volume: 14
  start-page: 2497
  year: 2013
  end-page: 2504
  publication-title: Org. Electron.
– volume: 12
  start-page: 235
  year: 2018
  publication-title: Nat. Photonics
– volume: 6
  start-page: 3578
  year: 2018
  end-page: 3583
  publication-title: J. Mater. Chem. C
– volume: 55 128
  start-page: 7171 7287
  year: 2016 2016
  end-page: 7175 7291
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 23
  start-page: 208
  year: 2015
  end-page: 212
  publication-title: Org. Electron.
– start-page: 7653
  year: 2013
  end-page: 7663
  publication-title: Eur. J. Org. Chem.
– volume: 51
  start-page: 13268
  year: 2015
  end-page: 13271
  publication-title: Chem. Commun.
– volume: 134
  start-page: 562
  year: 2016
  end-page: 568
  publication-title: Dyes Pigm.
– volume: 6
  start-page: 1800568
  year: 2018
  publication-title: Adv. Opt. Mater.
– volume: 80
  start-page: 9126
  year: 2015
  end-page: 9131
  publication-title: J. Org. Chem.
– volume: 52
  start-page: 14454
  year: 2016
  end-page: 14457
  publication-title: Chem. Commun.
– volume: 26
  start-page: 3306
  year: 2016
  end-page: 3313
  publication-title: Adv. Funct. Mater.
– volume: 18
  start-page: 31330
  year: 2016
  publication-title: Phys. Chem. Chem. Phys.
– volume: 6
  start-page: 9510
  year: 2018
  end-page: 9516
  publication-title: J. Mater. Chem. C
– volume: 29
  start-page: 1605444
  year: 2017
  publication-title: Adv. Mater.
– volume: 27
  start-page: 6675
  year: 2015
  end-page: 6681
  publication-title: Chem. Mater.
– volume: 10
  start-page: 12886
  year: 2018
  end-page: 12896
  publication-title: ACS Appl. Mater. Interfaces
– volume: 26
  start-page: 3665
  year: 2014
  end-page: 3671
  publication-title: Chem. Mater.
– volume: 58
  start-page: 874
  year: 2018
  end-page: 888
  publication-title: Isr. J. Chem.
– volume: 51
  start-page: 9443
  year: 2015
  end-page: 9446
  publication-title: Chem. Commun.
– volume: 17
  start-page: 20014
  year: 2015
  end-page: 20020
  publication-title: Phys. Chem. Chem. Phys.
– volume: 51
  start-page: 13024
  year: 2015
  end-page: 13027
  publication-title: Chem. Commun.
– volume: 139
  start-page: 10948
  year: 2017
  end-page: 10951
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 15154
  year: 2015
  end-page: 15159
  publication-title: ACS Appl. Mater. Interfaces
– volume: 14
  start-page: 330
  year: 2015
  end-page: 336
  publication-title: Nat. Mater.
– volume: 54 127
  start-page: 5201 5290
  year: 2015 2015
  end-page: 5204 5293
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 29
  start-page: 1701476
  year: 2017
  publication-title: Adv. Mater.
– volume: 26
  start-page: 1813
  year: 2016
  end-page: 1821
  publication-title: Adv. Funct. Mater.
– ident: e_1_2_9_42_2
  doi: 10.1002/asia.201601384
– ident: e_1_2_9_99_2
  doi: 10.1021/acsami.8b00053
– ident: e_1_2_9_136_1
  doi: 10.1002/anie.201506687
– ident: e_1_2_9_182_1
  doi: 10.1016/j.tet.2017.12.022
– ident: e_1_2_9_112_1
  doi: 10.1039/C6CP06308J
– ident: e_1_2_9_44_2
  doi: 10.1038/pj.2016.82
– ident: e_1_2_9_141_2
  doi: 10.1002/adma.201401393
– ident: e_1_2_9_156_2
  doi: 10.1002/chem.201804666
– ident: e_1_2_9_155_2
  doi: 10.1039/C7SC04669C
– ident: e_1_2_9_45_2
  doi: 10.1002/anie.201603232
– ident: e_1_2_9_167_1
  doi: 10.1039/C8TC02849D
– ident: e_1_2_9_18_2
  doi: 10.1039/C6TC04821H
– ident: e_1_2_9_28_2
  doi: 10.1002/adma.201601675
– ident: e_1_2_9_179_2
  doi: 10.1016/j.dyepig.2016.10.029
– ident: e_1_2_9_157_2
  doi: 10.1021/acs.chemmater.6b03979
– ident: e_1_2_9_168_1
  doi: 10.1002/adfm.201802031
– ident: e_1_2_9_76_2
  doi: 10.1038/lsa.2015.5
– ident: e_1_2_9_66_1
– ident: e_1_2_9_35_1
– ident: e_1_2_9_165_1
  doi: 10.1002/anie.201412107
– ident: e_1_2_9_25_2
  doi: 10.1039/C3TC31936A
– ident: e_1_2_9_52_1
– ident: e_1_2_9_37_2
  doi: 10.1002/adma.201804228
– ident: e_1_2_9_158_2
  doi: 10.1021/acs.chemmater.6b05324
– ident: e_1_2_9_49_1
– ident: e_1_2_9_67_2
  doi: 10.1039/C8TC01210E
– ident: e_1_2_9_163_1
  doi: 10.1016/j.orgel.2018.03.024
– ident: e_1_2_9_89_1
  doi: 10.1039/C6CC05203G
– ident: e_1_2_9_32_2
  doi: 10.1002/adfm.201502995
– ident: e_1_2_9_93_2
  doi: 10.1021/acs.chemmater.5b02515
– ident: e_1_2_9_160_2
  doi: 10.1021/acs.chemmater.6b01484
– ident: e_1_2_9_59_1
– ident: e_1_2_9_184_1
  doi: 10.1002/chem.201803580
– ident: e_1_2_9_130_1
  doi: 10.1016/j.dyepig.2014.06.008
– ident: e_1_2_9_188_1
  doi: 10.1021/cm500802p
– ident: e_1_2_9_106_2
  doi: 10.1038/s41566-018-0112-9
– ident: e_1_2_9_61_2
  doi: 10.1021/acsami.6b14438
– ident: e_1_2_9_111_1
  doi: 10.1021/ja306538w
– ident: e_1_2_9_86_2
  doi: 10.1002/adfm.201802558
– ident: e_1_2_9_113_1
  doi: 10.1002/adom.201701256
– ident: e_1_2_9_60_2
  doi: 10.1021/acsami.8b14070
– ident: e_1_2_9_91_1
– ident: e_1_2_9_135_3
  doi: 10.1002/ange.201508270
– ident: e_1_2_9_132_2
  doi: 10.1039/C6TC04994J
– ident: e_1_2_9_101_1
  doi: 10.1021/acsami.8b10595
– ident: e_1_2_9_126_2
  doi: 10.1002/adma.201506391
– ident: e_1_2_9_144_2
  doi: 10.1246/cl.140360
– ident: e_1_2_9_100_2
  doi: 10.1002/adma.201701476
– ident: e_1_2_9_165_2
  doi: 10.1002/ange.201412107
– ident: e_1_2_9_173_2
  doi: 10.1016/j.synthmet.2011.02.007
– ident: e_1_2_9_174_2
  doi: 10.1088/0957-4484/21/15/155202
– ident: e_1_2_9_159_2
  doi: 10.1021/acsami.6b05877
– ident: e_1_2_9_145_2
  doi: 10.1039/C3CC44179B
– ident: e_1_2_9_69_2
  doi: 10.1021/acsami.8b09418
– ident: e_1_2_9_72_2
  doi: 10.1007/s10895-016-1970-5
– ident: e_1_2_9_102_1
– ident: e_1_2_9_85_2
  doi: 10.1002/adom.201800565
– ident: e_1_2_9_56_2
  doi: 10.1002/adma.201604265
– ident: e_1_2_9_90_1
  doi: 10.1021/jp511061t
– ident: e_1_2_9_43_1
– ident: e_1_2_9_125_2
  doi: 10.1021/acs.chemmater.6b01691
– ident: e_1_2_9_26_2
  doi: 10.1016/j.orgel.2013.06.022
– ident: e_1_2_9_50_2
  doi: 10.1002/adom.201801071
– ident: e_1_2_9_92_2
  doi: 10.1002/anie.201809945
– ident: e_1_2_9_97_2
  doi: 10.1002/adma.201300753
– ident: e_1_2_9_14_2
  doi: 10.1039/C8SC03636E
– ident: e_1_2_9_38_1
– ident: e_1_2_9_187_1
  doi: 10.1002/adfm.201400495
– ident: e_1_2_9_129_2
  doi: 10.1039/C7NJ04482H
– ident: e_1_2_9_1_1
  doi: 10.1063/1.98799
– ident: e_1_2_9_183_1
  doi: 10.1002/adom.201701147
– ident: e_1_2_9_88_2
  doi: 10.1002/adma.201605444
– ident: e_1_2_9_45_3
  doi: 10.1002/ange.201603232
– ident: e_1_2_9_131_1
– ident: e_1_2_9_178_2
  doi: 10.1002/adfm.201606458
– ident: e_1_2_9_19_2
  doi: 10.1016/j.dyepig.2017.01.036
– ident: e_1_2_9_176_1
  doi: 10.1039/c3cc47130f
– ident: e_1_2_9_169_1
  doi: 10.1021/acs.joc.5b01496
– ident: e_1_2_9_138_2
  doi: 10.1016/j.cplett.2016.10.069
– ident: e_1_2_9_127_1
– ident: e_1_2_9_149_1
  doi: 10.1039/C8CC04594A
– ident: e_1_2_9_13_1
– ident: e_1_2_9_134_2
  doi: 10.1039/C6RA18374C
– ident: e_1_2_9_103_2
  doi: 10.1021/acsami.8b08083
– ident: e_1_2_9_153_2
  doi: 10.1002/ange.201806323
– ident: e_1_2_9_9_2
  doi: 10.1002/adma.201702464
– ident: e_1_2_9_142_2
  doi: 10.1002/adom.201800020
– ident: e_1_2_9_16_2
  doi: 10.1021/acs.chemmater.7b03490
– ident: e_1_2_9_109_2
  doi: 10.1002/ange.201206289
– ident: e_1_2_9_83_2
  doi: 10.1002/adom.201800568
– ident: e_1_2_9_5_1
  doi: 10.1002/ejoc.201300544
– ident: e_1_2_9_116_2
  doi: 10.1021/acs.jpclett.7b00462
– ident: e_1_2_9_147_1
  doi: 10.1039/C8TC03796E
– ident: e_1_2_9_151_1
  doi: 10.1002/adom.201700051
– ident: e_1_2_9_33_2
  doi: 10.1002/adfm.201602507
– ident: e_1_2_9_92_3
  doi: 10.1002/ange.201809945
– ident: e_1_2_9_107_1
  doi: 10.1246/cl.130907
– ident: e_1_2_9_133_2
  doi: 10.1002/anie.201509231
– ident: e_1_2_9_128_2
  doi: 10.1039/C5CC04126K
– ident: e_1_2_9_171_1
– ident: e_1_2_9_11_1
  doi: 10.1038/nature11687
– ident: e_1_2_9_21_2
  doi: 10.1039/C6CC08501F
– ident: e_1_2_9_154_1
– ident: e_1_2_9_3_1
  doi: 10.1039/C6CC06729H
– ident: e_1_2_9_7_2
  doi: 10.1002/adma.201705005
– ident: e_1_2_9_118_2
  doi: 10.1021/acsami.5b11895
– ident: e_1_2_9_140_1
– ident: e_1_2_9_139_2
  doi: 10.1021/jacs.5b07932
– ident: e_1_2_9_82_1
– ident: e_1_2_9_121_2
  doi: 10.1063/1.4749285
– ident: e_1_2_9_148_1
  doi: 10.1021/jacs.7b00873
– ident: e_1_2_9_105_2
  doi: 10.1038/nmat4154
– ident: e_1_2_9_51_2
  doi: 10.1039/C8SC01703D
– ident: e_1_2_9_65_2
  doi: 10.1016/j.orgel.2015.05.013
– ident: e_1_2_9_123_1
– ident: e_1_2_9_153_1
  doi: 10.1002/anie.201806323
– ident: e_1_2_9_98_1
– ident: e_1_2_9_137_1
– ident: e_1_2_9_15_2
  doi: 10.1021/acsami.8b09013
– ident: e_1_2_9_110_1
  doi: 10.1002/adfm.201505106
– ident: e_1_2_9_109_1
  doi: 10.1002/anie.201206289
– ident: e_1_2_9_29_2
  doi: 10.1038/ncomms9476
– ident: e_1_2_9_47_2
  doi: 10.1039/C6RA03281H
– ident: e_1_2_9_57_2
  doi: 10.1021/acsami.5b04090
– ident: e_1_2_9_120_2
  doi: 10.1039/c3cp52255e
– ident: e_1_2_9_62_2
  doi: 10.1016/j.dyepig.2016.09.008
– ident: e_1_2_9_133_3
  doi: 10.1002/ange.201509231
– ident: e_1_2_9_87_2
  doi: 10.1039/C6CS00368K
– ident: e_1_2_9_136_2
  doi: 10.1002/ange.201506687
– ident: e_1_2_9_63_2
  doi: 10.1039/C6CC02856J
– ident: e_1_2_9_181_1
  doi: 10.1039/b105159h
– ident: e_1_2_9_79_2
  doi: 10.1002/adma.201404967
– ident: e_1_2_9_172_2
  doi: 10.1016/j.tsf.2010.12.097
– ident: e_1_2_9_185_2
  doi: 10.1002/ange.201802060
– ident: e_1_2_9_4_1
  doi: 10.1002/adma.201003128
– ident: e_1_2_9_24_2
  doi: 10.1039/C5TC01373A
– ident: e_1_2_9_10_1
  doi: 10.1002/adma.200900983
– ident: e_1_2_9_70_2
  doi: 10.1039/C7TC05392D
– ident: e_1_2_9_161_2
  doi: 10.1039/C5CP02810H
– ident: e_1_2_9_119_2
  doi: 10.1016/j.dyepig.2016.08.023
– ident: e_1_2_9_84_2
  doi: 10.1002/ijch.201800049
– ident: e_1_2_9_46_2
  doi: 10.1016/j.orgel.2015.11.019
– ident: e_1_2_9_75_2
  doi: 10.1021/acsami.6b08546
– ident: e_1_2_9_177_1
– ident: e_1_2_9_124_2
  doi: 10.1039/C7TC05709A
– ident: e_1_2_9_166_1
  doi: 10.1039/C5CC07999C
– ident: e_1_2_9_186_1
  doi: 10.1002/anie.201806800
– ident: e_1_2_9_185_1
  doi: 10.1002/anie.201802060
– ident: e_1_2_9_94_2
  doi: 10.1021/ct500957s
– ident: e_1_2_9_115_2
  doi: 10.1016/j.dyepig.2017.12.048
– ident: e_1_2_9_54_2
  doi: 10.1039/C5CC04105H
– ident: e_1_2_9_78_2
  doi: 10.1016/j.orgel.2015.02.022
– ident: e_1_2_9_164_1
  doi: 10.1021/acsami.6b15272
– ident: e_1_2_9_27_1
– ident: e_1_2_9_74_2
  doi: 10.1002/adfm.201505602
– ident: e_1_2_9_55_1
– start-page: 1
  year: 2017
  ident: e_1_2_9_162_1
  publication-title: J. Mater. Chem. C
– ident: e_1_2_9_8_2
  doi: 10.1002/adfm.201701002
– ident: e_1_2_9_58_2
  doi: 10.1002/adma.201401476
– ident: e_1_2_9_180_1
  doi: 10.1039/C8TC04867C
– ident: e_1_2_9_30_1
– ident: e_1_2_9_80_2
  doi: 10.1039/C4TC01289E
– ident: e_1_2_9_36_2
  doi: 10.1021/jacs.7b03848
– ident: e_1_2_9_48_2
  doi: 10.1016/j.jlumin.2017.03.038
– ident: e_1_2_9_2_1
  doi: 10.1002/adma.201402532
– ident: e_1_2_9_22_2
  doi: 10.1039/C6CC05076J
– ident: e_1_2_9_73_2
  doi: 10.1021/acsami.6b07107
– ident: e_1_2_9_96_2
  doi: 10.1021/cm402428a
– ident: e_1_2_9_104_2
  doi: 10.1088/0957-4484/27/22/224001
– ident: e_1_2_9_122_2
  doi: 10.1039/c2cc36237f
– ident: e_1_2_9_143_1
– ident: e_1_2_9_135_2
  doi: 10.1002/anie.201508270
– ident: e_1_2_9_6_1
– ident: e_1_2_9_23_2
  doi: 10.1039/C5CC00307E
– ident: e_1_2_9_17_2
  doi: 10.1002/adfm.201706023
– ident: e_1_2_9_53_2
  doi: 10.1021/jacs.6b00850
– ident: e_1_2_9_34_2
  doi: 10.1039/C6TC02027E
– ident: e_1_2_9_189_1
  doi: 10.1039/C6TC04786F
– ident: e_1_2_9_12_1
  doi: 10.1039/C6TC04377A
– ident: e_1_2_9_77_2
  doi: 10.1039/C5RA09168C
– ident: e_1_2_9_117_2
  doi: 10.1039/C6TC02702D
– ident: e_1_2_9_71_2
  doi: 10.1002/adom.201800437
– ident: e_1_2_9_40_2
  doi: 10.1002/adma.201405474
– ident: e_1_2_9_31_2
  doi: 10.1002/adma.201502053
– ident: e_1_2_9_20_2
  doi: 10.1021/acsami.6b14638
– ident: e_1_2_9_114_1
– ident: e_1_2_9_152_1
  doi: 10.1021/jacs.7b10578
– ident: e_1_2_9_64_2
  doi: 10.1016/j.orgel.2015.05.009
– ident: e_1_2_9_146_2
  doi: 10.1039/c2cc31468a
– ident: e_1_2_9_150_1
  doi: 10.1002/adma.201505491
– ident: e_1_2_9_108_1
  doi: 10.1039/C5CC00511F
– ident: e_1_2_9_186_2
  doi: 10.1002/ange.201806800
– ident: e_1_2_9_41_2
  doi: 10.1021/acsami.6b07563
– ident: e_1_2_9_39_2
  doi: 10.1039/C5CC05022G
– ident: e_1_2_9_68_2
  doi: 10.1039/C8TC02628A
– ident: e_1_2_9_95_2
  doi: 10.1021/jp501017f
– ident: e_1_2_9_81_2
  doi: 10.1063/1.4882456
– ident: e_1_2_9_175_2
  doi: 10.1088/0957-4484/21/13/134020
– ident: e_1_2_9_170_1
  doi: 10.1007/s13391-011-0601-1
SSID ssj0009633
Score 2.648176
SecondaryResourceType review_article
Snippet Thermally activated delayed fluorescence (TADF) is one of the most intriguing and promising discoveries towards realization of highly‐efficient organic light...
Thermally activated delayed fluorescence (TADF) is one of the most intriguing and promising discoveries towards realization of highly-efficient organic light...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5623
SubjectTerms Charge transfer
Chemistry
Design
Efficiency
Electroluminescence
Emitters
Excitons
Fluorescence
multi-resonance effect
OLED
Organic light emitting diodes
Quantum efficiency
Space charge
TADF
through-space
TICT
Title Thermally Activated Delayed Fluorescence Materials: Towards Realization of High Efficiency through Strategic Small Molecular Design
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.201805952
https://www.ncbi.nlm.nih.gov/pubmed/30648301
https://www.proquest.com/docview/2210381174
https://www.proquest.com/docview/2179381266
Volume 25
WOSCitedRecordID wos000467079100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1521-3765
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009633
  issn: 0947-6539
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7RpVJ7aaEtbSggV6rUU0RsHDvbGwJWHAAhCtXeItuxJaRoF-2jEuf-8c44D1hVCKk9JVEmseMZjz_Hnm8AvhqdSSt5QO8XTCqrbJgOERWkUhXCmDwoGcOjf57pi4tiPB5ePorib_gh-h9u1DOiv6YObux8_4E0FL-JIsl5gQAhRye8LtB45QDWj69GN2cPxLuqTScvdUo0rB1xYyb2V9-wOjD9hTZXwWscfUZv_7_eG_CmRZ7ssDGVTVjzk3fw6qhL-PYefqPJoJuu63t26GLWM1-xY1-bezyO6uV0FqmfnGfnZtEY7nd2HbfdztkVAs42pJNNA6PtI-wk0lNQbCdr0wGxjgzXsR9UEjvvsvNiQbSV5APcjE6uj07TNkdD6iT60dSawmphdRYsr4JGvVub5SH3RZU5flDl3uKUKASuqkILo5x1FXEGejW0GQ_qYAsGk-nEfwJGtDYaBRBBWhm8NELia5Wy3BuLKCOBtFNQ6VoCc8qjUZcN9bIoqWnLvmkT-NbL3zXUHU9K7nT6LtsuPC-FIO54jjO2BL70t1EltKJiJn66RBlybwiRlErgY2MnfVE0tSvQfSYgojk8U4eSKDD6q-1_eegzvMbzuNbF9Q4MFrOl34WX7tfidj7bgxd6XOy13eMPuKIP1g
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB7KppBemr7rNmlVKPRkYiuy5M0tJFlSuruUdFNyM5IsQcDsln0Ucu4f74wsOyylFEpOxvZYkqXR6NNjvgH4qFUmjMg9Wj-vU1Fnw3SIqCAVsuRaF16K4B79faym0_L6evg1niYkX5iWH6JfcKOeEew1dXBakD68Yw3FnyJX8rxEhFCgFd4RqEvFAHbOLkdX4zvmXRnjyQuVEg9rx9yY8cPtFLZHpj_g5jZ6DcPPaO8eCv4EHkfsyU5aZXkKD9z8GeyediHfnsMvVBo01E1zy05siHvmanbmGn2L11GzWSwD-ZN1bKLXreoes1k4eLtilwg5o1MnW3hGB0jYeSCoIO9OFgMCsY4O17JvlBObdPF5MSM6TPICrkbns9OLNEZpSK1AS5oaXRrFjcq8yWuvsOWNyQpfuLLObH5UF87gpMj7XNal4lpaY2tiDXRyaLLcy6OXMJgv5u41MCK2USiAGNII74TmApOV0uROG8QZCaRdC1U2UphTJI2masmXeUVVW_VVm8CnXv5HS97xV8n9rsGr2IlXFefEHp_jnC2BD_1rbBLaU9Fzt9igDBk4BElSJvCqVZQ-K5rclWhAE-BBH_5RhopIMPq7N__z0XvYvZhNxtX48_TLW3iEz8POV672YbBebtwBPLQ_1zer5bvYS34DlqoS3g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9UwFD_IJuqL3x_VqREEn8qaLE1a38buiuLdZcxN9laSNAGh3Dvuh7Bn_3HPadOOi4ggPpW2p02anHPyS5PzOwDvjc6klTyg9wsmlU1WpiWiglSqQhiTByW78OhvUz2bFZeX5WncTUixMD0_xPjDjSyj89dk4P6qCfs3rKH4URRKzgtECDl64V2Zlwptc3dyVl1Mb5h3VcwnL3VKPKwDc2Mm9rffsD0y_QY3t9FrN_xUD_5DxR_C_Yg92WGvLI_glp8_hrtHQ8q3J_ATlQYdddtes0PX5T3zDZv41lzjsWo3i2VH_uQ8OzHrXnU_svNu4-2KnSHkjEGdbBEYbSBhxx1BBUV3spgQiA10uI59pZLYyZCfFwuizSRP4aI6Pj_6lMYsDamT6ElTawqrhdVZsLwJGnve2iwPuS-azPGDJvcWJ0UhcNUUWhjlrGuINdCr0mY8qINnsDNfzP0LYERso1EAMaSVwUsjJL5WKcu9sYgzEkiHHqpdpDCnTBpt3ZMvi5qath6bNoEPo_xVT97xR8m9ocPraMSrWghij-c4Z0vg3Xgbu4TWVMzcLzYoQw4OQZJSCTzvFWUsiiZ3BTrQBESnD3-pQ00kGOPZy3956C3cOZ1U9fTz7MsruIeXu4UvrvdgZ73c-Ndw2_1Yf18t30Qj-QUFThJZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermally+Activated+Delayed+Fluorescence+Materials%3A+Towards+Realization+of+High+Efficiency+through+Strategic+Small+Molecular+Design&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Liang%2C+Xiao&rft.au=Zhen%E2%80%90Long+Tu&rft.au=You%E2%80%90Xuan+Zheng&rft.date=2019-04-17&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=25&rft.issue=22&rft.spage=5623&rft.epage=5642&rft_id=info:doi/10.1002%2Fchem.201805952&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon