Design of Perchlorotriphenylmethyl (PTM) Radical‐Based Compounds for Optoelectronic Applications: The Role of Orbital Delocalization

Perchlorotriphenylmethyl (PTM) radical‐based compounds are widely exploited as molecular switching units. However, their application in optoelectronics is limited by the fact that they exhibit intense absorption bands only in a narrow range of the UV region around 385 nm. Recent experimental works h...

Full description

Saved in:
Bibliographic Details
Published in:Chemphyschem Vol. 19; no. 19; pp. 2572 - 2578
Main Authors: Diez‐Cabanes, Valentín, Seber, Gonca, Franco, Carlos, Bejarano, Francesc, Crivillers, Nuria, Mas‐Torrent, Marta, Veciana, Jaume, Rovira, Concepció, Cornil, Jérôme
Format: Journal Article
Language:English
Published: Germany Wiley Subscription Services, Inc 05.10.2018
Subjects:
ISSN:1439-4235, 1439-7641, 1439-7641
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Perchlorotriphenylmethyl (PTM) radical‐based compounds are widely exploited as molecular switching units. However, their application in optoelectronics is limited by the fact that they exhibit intense absorption bands only in a narrow range of the UV region around 385 nm. Recent experimental works have reported new PTM based compounds which present a broad absorption in the visible region although the origin of this behavior is not fully explained. In this context, Time‐Dependent Density Functional Theory (TD‐DFT) calculations have been performed to rationalize the optical properties of these compounds. Moreover, a new compound based on PTM disubstituted with bistriazene units has been synthetized and characterized to complete the set of available experimental data on related compounds. The results point to the delocalization of the Highest Occupied Molecular Orbital (HOMO) of the substituents along the PTM core as the origin of the new high absorption bands in the visible region. As a consequence, the absorption of the PTM‐based compounds can be tuned via the choice of the nature of the donor substituent, type of connection, and number of substituents. Organic radicals for optoelectronics: Time‐dependent density functional theory (TD‐DFT) calculations are combined with experimental data to shed light on the complex mechanism that drives the absorption properties of perchlorotriphenylmethyl (PTM) radical‐based compounds, where the radical PTMs act as electron acceptors (A) and the substituents as electron donors (D). The results point to the relevance of the nature, type of connections, and number of donor substituents for controlling the absorption of these D–A organic radical compounds in the visible region (see picture).
AbstractList Perchlorotriphenylmethyl (PTM) radical-based compounds are widely exploited as molecular switching units. However, their application in optoelectronics is limited by the fact that they exhibit intense absorption bands only in a narrow range of the UV region around 385 nm. Recent experimental works have reported new PTM based compounds which present a broad absorption in the visible region although the origin of this behavior is not fully explained. In this context, Time-Dependent Density Functional Theory (TD-DFT) calculations have been performed to rationalize the optical properties of these compounds. Moreover, a new compound based on PTM disubstituted with bistriazene units has been synthetized and characterized to complete the set of available experimental data on related compounds. The results point to the delocalization of the Highest Occupied Molecular Orbital (HOMO) of the substituents along the PTM core as the origin of the new high absorption bands in the visible region. As a consequence, the absorption of the PTM-based compounds can be tuned via the choice of the nature of the donor substituent, type of connection, and number of substituents.
Perchlorotriphenylmethyl (PTM) radical-based compounds are widely exploited as molecular switching units. However, their application in optoelectronics is limited by the fact that they exhibit intense absorption bands only in a narrow range of the UV region around 385 nm. Recent experimental works have reported new PTM based compounds which present a broad absorption in the visible region although the origin of this behavior is not fully explained. In this context, Time-Dependent Density Functional Theory (TD-DFT) calculations have been performed to rationalize the optical properties of these compounds. Moreover, a new compound based on PTM disubstituted with bistriazene units has been synthetized and characterized to complete the set of available experimental data on related compounds. The results point to the delocalization of the Highest Occupied Molecular Orbital (HOMO) of the substituents along the PTM core as the origin of the new high absorption bands in the visible region. As a consequence, the absorption of the PTM-based compounds can be tuned via the choice of the nature of the donor substituent, type of connection, and number of substituents.Perchlorotriphenylmethyl (PTM) radical-based compounds are widely exploited as molecular switching units. However, their application in optoelectronics is limited by the fact that they exhibit intense absorption bands only in a narrow range of the UV region around 385 nm. Recent experimental works have reported new PTM based compounds which present a broad absorption in the visible region although the origin of this behavior is not fully explained. In this context, Time-Dependent Density Functional Theory (TD-DFT) calculations have been performed to rationalize the optical properties of these compounds. Moreover, a new compound based on PTM disubstituted with bistriazene units has been synthetized and characterized to complete the set of available experimental data on related compounds. The results point to the delocalization of the Highest Occupied Molecular Orbital (HOMO) of the substituents along the PTM core as the origin of the new high absorption bands in the visible region. As a consequence, the absorption of the PTM-based compounds can be tuned via the choice of the nature of the donor substituent, type of connection, and number of substituents.
Perchlorotriphenylmethyl (PTM) radical‐based compounds are widely exploited as molecular switching units. However, their application in optoelectronics is limited by the fact that they exhibit intense absorption bands only in a narrow range of the UV region around 385 nm. Recent experimental works have reported new PTM based compounds which present a broad absorption in the visible region although the origin of this behavior is not fully explained. In this context, Time‐Dependent Density Functional Theory (TD‐DFT) calculations have been performed to rationalize the optical properties of these compounds. Moreover, a new compound based on PTM disubstituted with bistriazene units has been synthetized and characterized to complete the set of available experimental data on related compounds. The results point to the delocalization of the Highest Occupied Molecular Orbital (HOMO) of the substituents along the PTM core as the origin of the new high absorption bands in the visible region. As a consequence, the absorption of the PTM‐based compounds can be tuned via the choice of the nature of the donor substituent, type of connection, and number of substituents. Organic radicals for optoelectronics: Time‐dependent density functional theory (TD‐DFT) calculations are combined with experimental data to shed light on the complex mechanism that drives the absorption properties of perchlorotriphenylmethyl (PTM) radical‐based compounds, where the radical PTMs act as electron acceptors (A) and the substituents as electron donors (D). The results point to the relevance of the nature, type of connections, and number of donor substituents for controlling the absorption of these D–A organic radical compounds in the visible region (see picture).
Author Crivillers, Nuria
Seber, Gonca
Bejarano, Francesc
Franco, Carlos
Mas‐Torrent, Marta
Diez‐Cabanes, Valentín
Rovira, Concepció
Veciana, Jaume
Cornil, Jérôme
Author_xml – sequence: 1
  givenname: Valentín
  surname: Diez‐Cabanes
  fullname: Diez‐Cabanes, Valentín
  organization: University of Mons
– sequence: 2
  givenname: Gonca
  surname: Seber
  fullname: Seber, Gonca
  organization: Campus Universitari de UAB
– sequence: 3
  givenname: Carlos
  surname: Franco
  fullname: Franco, Carlos
  organization: Current affiliation: ETH Zurich
– sequence: 4
  givenname: Francesc
  surname: Bejarano
  fullname: Bejarano, Francesc
  organization: Campus Universitari de UAB
– sequence: 5
  givenname: Nuria
  surname: Crivillers
  fullname: Crivillers, Nuria
  organization: Campus Universitari de UAB
– sequence: 6
  givenname: Marta
  surname: Mas‐Torrent
  fullname: Mas‐Torrent, Marta
  organization: Campus Universitari de UAB
– sequence: 7
  givenname: Jaume
  surname: Veciana
  fullname: Veciana, Jaume
  organization: Campus Universitari de UAB
– sequence: 8
  givenname: Concepció
  surname: Rovira
  fullname: Rovira, Concepció
  email: cun@icmab.es
  organization: Campus Universitari de UAB
– sequence: 9
  givenname: Jérôme
  orcidid: 0000-0002-5479-4227
  surname: Cornil
  fullname: Cornil, Jérôme
  email: jerome.cornil@umons.ac.be
  organization: University of Mons
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29877600$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAUhS1URH9gyxJZYlMWM_gvTsKupECRimZUDevIcW6IK8cOdiI0rFix5hl5EjzMUKRKiIVlL77vXuucU3TkvAOEnlKypISwl3rs9ZIRWhDCGX2ATqjg5SKXgh4d3oLx7BidxnhLCClITh-hY1YWeS4JOUHfLyGaTw77Dq8h6N764Kdgxh7c1g4w9VuLz9ebDy_wjWqNVvbntx-vVYQWV34Y_ezaiDsf8GqcPFjQU_DOaHwxjjbRk_EuvsKbHvCNt7DbsgqNmZTFl2B9Gme-_oYeo4edshGeHO4z9PHtm011tbhevXtfXVwvtMglXXSFEKxtWVfwhjVE63SAUsqlbDnNpS61aJoGQEqulQKispxJBirvNDBa8jN0vp87Bv95hjjVg4karFUO_BxrRjIqZca5SOjze-itn4NLv6sZpZILmWV5op4dqLkZoK3HYAYVtvWfhBOw3AM6-BgDdHcIJfWuwnpXYX1XYRLEPUGnwHYhTUEZ-2-t3GtfjIXtf5bU1fqq-uv-AlRHsq4
CitedBy_id crossref_primary_10_1002_ange_201909398
crossref_primary_10_1002_anie_202201965
crossref_primary_10_1002_adfm_202002916
crossref_primary_10_1039_D5CP02651B
crossref_primary_10_1002_ange_202201965
crossref_primary_10_1002_ange_202312185
crossref_primary_10_1021_acs_jpcc_4c04362
crossref_primary_10_1002_anie_201909398
crossref_primary_10_1016_j_molstruc_2024_140580
crossref_primary_10_1063_5_0047636
crossref_primary_10_1016_j_jlumin_2019_116611
crossref_primary_10_1002_anie_202312185
crossref_primary_10_1002_anie_202512411
crossref_primary_10_1002_ange_202512411
crossref_primary_10_1002_ange_202412483
crossref_primary_10_1002_anie_202418762
crossref_primary_10_1002_ange_202418762
crossref_primary_10_1002_anie_202412483
crossref_primary_10_1038_s41563_020_0705_9
Cites_doi 10.1039/C7QM00273D
10.1039/c1cp21246j
10.1103/RevModPhys.71.1253
10.1021/jp8094853
10.1021/ja710845v
10.1021/jacs.6b02888
10.1021/ja038988v
10.1002/chem.201604700
10.1021/jacs.6b12601
10.1002/anie.200460495
10.1039/C4CP05929H
10.1038/nchem.1013
10.1021/acs.chemmater.7b01521
10.1002/chem.201701875
10.1021/ja803049g
10.1002/adma.200801707
10.1002/ange.201411572
10.1021/cm400147p
10.1021/jp803064k
10.1021/ja066351g
10.1080/00268977900102871
10.1063/1.4871895
10.1002/jcc.1058
10.1021/jacs.6b08649
10.1016/j.cplett.2004.06.011
10.1021/ja068235j
10.1039/C5RA14268G
10.1021/ja039556n
10.1063/1.1558471
10.1016/0009-2614(91)90478-R
10.1038/ncomms12066
10.1002/chem.201500497
10.1016/j.theochem.2009.07.036
10.1021/acs.nanolett.5b00155
10.1063/1.464913
10.1002/ange.200460495
10.1002/chem.201701623
10.1002/chem.201405993
10.1002/anie.201411572
10.1039/C2CS35394F
10.1039/C3CP55336A
10.1002/poc.3296
10.1021/acs.jpca.7b00752
10.1021/acs.jpclett.6b00912
10.1002/qua.560140504
10.1103/PhysRev.46.618
ContentType Journal Article
Copyright 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
K9.
7X8
DOI 10.1002/cphc.201800321
DatabaseName CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1439-7641
EndPage 2578
ExternalDocumentID 29877600
10_1002_cphc_201800321
CPHC201800321
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: MOTHER
  funderid: MAT2016-80826-R
– fundername: DGI
– fundername: Severo Ochoa Program
  funderid: SEV-2015-0496
– fundername: Belgian National Fund for Scientific Research (F.R.S.-FNRS)
  funderid: 2.5020.11
– fundername: DGR
– fundername: Marie Curie project ITN iSwitch
  funderid: 642196
– fundername: Belgian National Fund for Scientific Research (FNRS)
– fundername: GenCat
  funderid: 2017-SGR-918
– fundername: FANCY
  funderid: CTQ2016-80030-R
– fundername: MOTHER
  grantid: MAT2016-80826-R
– fundername: Marie Curie project ITN iSwitch
  grantid: 642196
– fundername: FANCY
  grantid: CTQ2016-80030-R
– fundername: Severo Ochoa Program
  grantid: SEV-2015-0496
– fundername: GenCat
  grantid: 2017-SGR-918
– fundername: Belgian National Fund for Scientific Research (F.R.S.-FNRS)
  grantid: 2.5020.11
GroupedDBID ---
-DZ
-~X
05W
0R~
1L6
1OC
29B
33P
3WU
4.4
4ZD
50Y
5GY
5VS
66C
6J9
77Q
8-0
8-1
8UM
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IH2
IX1
JPC
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MXFUL
MXSTM
MY~
NNB
O9-
OIG
P2P
P2W
PQQKQ
QRW
R.K
RNS
ROL
RX1
SUPJJ
SV3
UPT
V2E
W99
WBKPD
WH7
WJL
WOHZO
WXSBR
XPP
XV2
Y6R
YZZ
ZZTAW
~S-
AAMMB
AAYXX
AEFGJ
AEYWJ
AGXDD
AIDQK
AIDYY
CITATION
LH4
NPM
K9.
7X8
ID FETCH-LOGICAL-c4761-f8442dd2f83b2b0ccb0ce111366d3176c9c4bbbee663caae0a57262ea7fce2193
IEDL.DBID DRFUL
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000446430700020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1439-4235
1439-7641
IngestDate Sun Nov 09 11:04:49 EST 2025
Sat Nov 29 14:52:49 EST 2025
Mon Jul 21 05:58:43 EDT 2025
Sat Nov 29 07:14:42 EST 2025
Tue Nov 18 22:31:17 EST 2025
Fri Apr 25 07:47:26 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 19
Keywords Polychlorotriphenylmethyl PTM radical
Opto-electronics
Donor-Acceptor
TD-DFT calculations
absorption spectra
Language English
License 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4761-f8442dd2f83b2b0ccb0ce111366d3176c9c4bbbee663caae0a57262ea7fce2193
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5479-4227
PMID 29877600
PQID 2116346557
PQPubID 986334
PageCount 7
ParticipantIDs proquest_miscellaneous_2051665334
proquest_journals_2116346557
pubmed_primary_29877600
crossref_primary_10_1002_cphc_201800321
crossref_citationtrail_10_1002_cphc_201800321
wiley_primary_10_1002_cphc_201800321_CPHC201800321
PublicationCentury 2000
PublicationDate October 5, 2018
PublicationDateYYYYMMDD 2018-10-05
PublicationDate_xml – month: 10
  year: 2018
  text: October 5, 2018
  day: 05
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Chemphyschem
PublicationTitleAlternate Chemphyschem
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1979; 38
2015; 15
2007; 129
2004 2004; 43 116
2015; 17
2017; 1
2009; 914
2004; 126
2013; 25
2015; 5
2003; 118
2009; 21
1934; 46
2013; 42
2017; 23
2014; 27
2009; 113
2011; 13
2017; 29
1978; 14
2001; 22
2011; 3
2018; 21
2017; 139
1991; 187
2016; 7
1993; 98
2004; 393
2015; 21
2014; 16
2015 2015; 54 127
2016; 138
2014; 140
2017; 121
2008; 112
1999; 71
2008; 130
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_3_2
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_2
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Bejarano F. (e_1_2_7_37_1) 2018; 21
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 129
  start-page: 6117
  year: 2007
  end-page: 6129
  publication-title: J. Am. Chem. Soc.
– volume: 23
  start-page: 1415
  year: 2017
  end-page: 1421
  publication-title: Chem. A Eur. J.
– volume: 130
  start-page: 12064
  year: 2008
  end-page: 12072
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 2234
  year: 2016
  end-page: 2239
  publication-title: J. Phys. Chem. Lett.
– volume: 113
  start-page: 3009
  year: 2009
  end-page: 3020
  publication-title: J. Phys. Chem. A
– volume: 42
  start-page: 845
  year: 2013
  end-page: 856
  publication-title: Chem. Soc. Rev.
– volume: 138
  start-page: 11517
  year: 2016
  end-page: 11525
  publication-title: J. Am. Chem. Soc.
– volume: 23
  start-page: 11067
  year: 2017
  end-page: 11075
  publication-title: Chem. A Eur. J.
– volume: 21
  start-page: 5504
  year: 2015
  end-page: 5509
  publication-title: Chem. A Eur. J.
– volume: 914
  start-page: 60
  year: 2009
  end-page: 73
  publication-title: J. Mol. Struct.: THEOCHEM
– volume: 38
  start-page: 1795
  year: 1979
  end-page: 1812
  publication-title: Mol. Phys.
– volume: 393
  start-page: 51
  year: 2004
  end-page: 57
  publication-title: Chem. Phys. Lett.
– volume: 112
  start-page: 13225
  year: 2008
  end-page: 13230
  publication-title: J. Phys. Chem. A
– volume: 3
  start-page: 359
  year: 2011
  end-page: 364
  publication-title: Nat. Chem.
– volume: 129
  start-page: 5515
  year: 2007
  end-page: 5527
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 2132
  year: 2017
  end-page: 2135
  publication-title: Mater. Chem. Front.
– volume: 139
  start-page: 4262
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 71
  start-page: 1253
  year: 1999
  end-page: 1266
  publication-title: Rev. Mod. Phys.
– volume: 21
  start-page: 8816
  year: 2015
  end-page: 8825
  publication-title: Chem. A Eur. J.
– volume: 25
  start-page: 808
  year: 2013
  end-page: 815
  publication-title: Chem. Mater.
– volume: 21
  start-page: 8816
  year: 2018
  end-page: 8825
  publication-title: J. Am. Chem. Soc.
– volume: 126
  start-page: 4007
  year: 2004
  end-page: 4016
  publication-title: J. Am. Chem. Soc.
– volume: 14
  start-page: 561
  year: 1978
  end-page: 581
  publication-title: Int. J. Quantum Chem.
– volume: 5
  start-page: 64802
  year: 2015
  end-page: 64805
  publication-title: RSC Adv.
– volume: 23
  start-page: 7698
  year: 2017
  end-page: 7702
  publication-title: Chem. Eur. J.
– volume: 139
  start-page: 686
  year: 2017
  end-page: 692
  publication-title: J. Am. Chem. Soc.
– volume: 121
  start-page: 3929
  year: 2017
  end-page: 3942
  publication-title: J. Phys. Chem. A
– volume: 21
  start-page: 1177
  year: 2009
  end-page: 1181
  publication-title: Adv. Mater.
– volume: 130
  start-page: 5499
  year: 2008
  end-page: 5506
  publication-title: , J. Am. Chem. Soc.
– volume: 46
  start-page: 618
  year: 1934
  end-page: 622
  publication-title: Phys. Rev.
– volume: 126
  start-page: 730
  year: 2004
  end-page: 731
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 18615
  year: 2011
  end-page: 18625
  publication-title: Phys. Chem. Chem. Phys.
– volume: 22
  start-page: 976
  year: 2001
  end-page: 984
  publication-title: Comput. Chem.
– volume: 140
  start-page: 164903
  year: 2014
  publication-title: J. Chem. Phys.
– volume: 29
  start-page: 6733
  year: 2017
  publication-title: Chem. Mater.
– volume: 17
  start-page: 11848
  year: 2015
  end-page: 11867
  publication-title: Phys. Chem. Chem. Phys.
– volume: 27
  start-page: 465
  year: 2014
  end-page: 469
  publication-title: J. Phys. Org. Chem.
– volume: 98
  start-page: 5648
  year: 1993
  end-page: 5652
  publication-title: J. Chem. Phys.
– volume: 16
  start-page: 14334
  year: 2014
  end-page: 14356
  publication-title: Phys. Chem. Chem. Phys.
– volume: 54 127
  start-page: 3731 3802
  year: 2015 2015
  end-page: 3734 3805
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 187
  start-page: 21
  year: 1991
  end-page: 28
  publication-title: Chem. Phys. Lett.
– volume: 43 116
  start-page: 5851 5976
  year: 2004 2004
  end-page: 5856 5981
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 118
  start-page: 4775
  year: 2003
  end-page: 77
  publication-title: J. Chem. Phys.
– volume: 15
  start-page: 3109
  year: 2015
  end-page: 3114
  publication-title: Nano Lett.
– volume: 7
  start-page: 12066
  year: 2016
  publication-title: Nat. Commun.
– ident: e_1_2_7_32_1
  doi: 10.1039/C7QM00273D
– ident: e_1_2_7_35_1
  doi: 10.1039/c1cp21246j
– ident: e_1_2_7_42_1
  doi: 10.1103/RevModPhys.71.1253
– ident: e_1_2_7_45_1
  doi: 10.1021/jp8094853
– ident: e_1_2_7_7_1
  doi: 10.1021/ja710845v
– ident: e_1_2_7_6_1
  doi: 10.1021/jacs.6b02888
– ident: e_1_2_7_4_1
  doi: 10.1021/ja038988v
– ident: e_1_2_7_38_1
  doi: 10.1002/chem.201604700
– ident: e_1_2_7_12_1
  doi: 10.1021/jacs.6b12601
– ident: e_1_2_7_13_1
  doi: 10.1002/anie.200460495
– ident: e_1_2_7_17_1
  doi: 10.1039/C4CP05929H
– ident: e_1_2_7_9_1
  doi: 10.1038/nchem.1013
– ident: e_1_2_7_31_1
  doi: 10.1021/acs.chemmater.7b01521
– ident: e_1_2_7_16_1
  doi: 10.1002/chem.201701875
– ident: e_1_2_7_5_1
  doi: 10.1021/ja803049g
– volume: 21
  start-page: 8816
  year: 2018
  ident: e_1_2_7_37_1
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_7_8_1
  doi: 10.1002/adma.200801707
– ident: e_1_2_7_3_2
  doi: 10.1002/ange.201411572
– ident: e_1_2_7_15_1
  doi: 10.1021/cm400147p
– ident: e_1_2_7_39_1
  doi: 10.1021/jp803064k
– ident: e_1_2_7_1_1
  doi: 10.1021/ja066351g
– ident: e_1_2_7_25_1
  doi: 10.1080/00268977900102871
– ident: e_1_2_7_33_1
  doi: 10.1063/1.4871895
– ident: e_1_2_7_44_1
  doi: 10.1002/jcc.1058
– ident: e_1_2_7_18_1
  doi: 10.1021/jacs.6b08649
– ident: e_1_2_7_36_1
  doi: 10.1016/j.cplett.2004.06.011
– ident: e_1_2_7_14_1
  doi: 10.1021/ja068235j
– ident: e_1_2_7_29_1
  doi: 10.1039/C5RA14268G
– ident: e_1_2_7_34_1
  doi: 10.1021/ja039556n
– ident: e_1_2_7_46_1
  doi: 10.1063/1.1558471
– ident: e_1_2_7_27_1
  doi: 10.1016/0009-2614(91)90478-R
– ident: e_1_2_7_11_1
  doi: 10.1038/ncomms12066
– ident: e_1_2_7_21_1
  doi: 10.1002/chem.201500497
– ident: e_1_2_7_41_1
  doi: 10.1016/j.theochem.2009.07.036
– ident: e_1_2_7_43_1
– ident: e_1_2_7_10_1
  doi: 10.1021/acs.nanolett.5b00155
– ident: e_1_2_7_28_1
  doi: 10.1063/1.464913
– ident: e_1_2_7_13_2
  doi: 10.1002/ange.200460495
– ident: e_1_2_7_23_1
  doi: 10.1002/chem.201701623
– ident: e_1_2_7_30_1
  doi: 10.1002/chem.201405993
– ident: e_1_2_7_3_1
  doi: 10.1002/anie.201411572
– ident: e_1_2_7_19_1
  doi: 10.1039/C2CS35394F
– ident: e_1_2_7_20_1
  doi: 10.1039/C3CP55336A
– ident: e_1_2_7_2_1
  doi: 10.1002/poc.3296
– ident: e_1_2_7_40_1
  doi: 10.1021/acs.jpca.7b00752
– ident: e_1_2_7_22_1
  doi: 10.1021/acs.jpclett.6b00912
– ident: e_1_2_7_24_1
  doi: 10.1002/qua.560140504
– ident: e_1_2_7_26_1
  doi: 10.1103/PhysRev.46.618
SSID ssj0008071
Score 2.356638
Snippet Perchlorotriphenylmethyl (PTM) radical‐based compounds are widely exploited as molecular switching units. However, their application in optoelectronics is...
Perchlorotriphenylmethyl (PTM) radical-based compounds are widely exploited as molecular switching units. However, their application in optoelectronics is...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2572
SubjectTerms Absorption spectra
Density functional theory
Donor-Acceptor
Molecular orbitals
Optical properties
Opto-electronics
Optoelectronics
Polychlorotriphenylmethyl PTM radical
TD-DFT calculations
Time dependence
Title Design of Perchlorotriphenylmethyl (PTM) Radical‐Based Compounds for Optoelectronic Applications: The Role of Orbital Delocalization
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcphc.201800321
https://www.ncbi.nlm.nih.gov/pubmed/29877600
https://www.proquest.com/docview/2116346557
https://www.proquest.com/docview/2051665334
Volume 19
WOSCitedRecordID wos000446430700020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1439-7641
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008071
  issn: 1439-4235
  databaseCode: DRFUL
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFH6CDgkujN-EjclISMAhWuo4trPbaKl2GFtVbai3yHYcDalKqrZD2o0TZ_5G_pK9l6TZKoSQ4BApUZw4st97_pxnfx_AW1vYgmiqQtV3OkQErtCljAmlFZG2MhW-Fu37cqxOTvR0mo5v7eJv-CG6H27kGXW8Jgc3drl_Qxrq5hdEQdhHxBPTTvItjsab9GBrOBmdH3fRWEfNpEtQxpPHyZq4MeL7m2_YHJh-Q5ub4LUefUbb___dj-BhizzZYWMqj-GOL5_A_cFa8O0p_BjWqzlYVbCxR_PHmXy1wphy4curGSlNX83Y-_HZ5w9sYurszq_vPz_iIJgzCiokz7RkCIHZ6XxV3ajrsMNbKfIDhmbJJtXMUy2nC0uSJWzo6xG13RH6DM5Hn84GR2Er0xA6oWQ_LLQQPM95oWPLbeQcHp4U7KXMEZ1IlzphrfUewY0zxkcmUVxyb1ThPAbM-Dn0yqr0L4E5hFux00bz2IqU44n1JhGGe2dyxJIBhOs-ylzLYU5SGrOsYV_mGbVu1rVuAO-68vOGveOPJXfXXZ61XrzMcHIsYyKYUwG86W5jr1BSxZS-usQyGNWkpA3NAbxoTKWriqdaUeIzAF5bxF--IRuMjwbd1at_eWgHHtB5vdow2YXeanHpX8M99231dbnYg7tqqvdaD7kGEMERmQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9swFD6UttC9rOuubrtOg8G2B1NHVmR5b13SkLE0DSEdfTOSLNNBsEOSDvq2pz7vN-6X7BzbcRfGKIw9GHyRL1jnHH3Skb4P4I3JTEY0VX7UsspHBB6hS2ntSyMCZWQsXCna92UQDYfq8jIe1bMJaS1MxQ_RDLiRZ5TxmhycBqSP71hD7eyKOAhbCHlCWkq-JdCW0Mi3uuPexaAJxyqoel2CUp48bK-YGwN-vP6E9ZbpD7i5jl7L5qe3-x8-_BE8rLEnO6mMZQ82XP4YdjorybcncNst53OwImMjhw6AffliiVHlyuU3U9Kavpmyd6PJ2Xs21mV-5-f3Hx-xGUwZhRUSaFowBMHsfLYs7vR12MlvSfIPDA2TjYupo7eczw2JlrCuK9vUek3oU7jonU46fb8WavCtiGTLz5QQPE15pkLDTWAtbo407KVMEZ9IG1thjHEO4Y3V2gW6HXHJnY4y6zBkhs9gMy9y9wKYRcAVWqUVD42IOe4Yp9tCc2d1imjSA39VSYmtWcxJTGOaVPzLPKG_mzR_14O3TflZxd_x15KHqzpPaj9eJNg9liFRzEUevG4uY61QWkXnrrjGMhjXpKQlzR48r2yleRWPVUSpTw94aRL3fEPSGfU7zdH-v9z0Cnb6k7NBMvg0_HwAD-h8OfewfQiby_m1ewnb9tvy62J-VDvKL_zqFKE
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwEB2hLgIufC8EFjASEnCINnVcJ-G2tFSLKN2o2kV7i2xnokWqkqrtIu2NE2d-I7-EmSTNUiGEhDhEyocTW7Zn_Jyx3wN4YQtbME2VH_Vd7BMCj8ikjPG1VUFsdaKwFu37NImm0_j0NEnb1YS8F6bhh-h-uLFl1P6aDRwXebF_yRrqFmfMQdgnyBPyVvIdxUoyPdgZzcYnk84dx0Ez61Ic8pThYMPcGMj97S9sj0y_wc1t9FoPP-Nb_6Hgt-Fmiz3FQdNZ7sAVLO_C9eFG8u0efBvV6zlEVYgUyQBoLl-tyaucYXkxZ63pi7l4lR5_fC1mpo7v_Pj6_S0Ng7lgt8ICTStBIFgcLdbVpb6OOPglSP5GUMcUs2qOnMvR0rJoiRhhPaa2e0Lvw8n43fHw0G-FGnynIt33i1gpmeeyiEMrbeAcHcga9lrnhE-0S5yy1iISvHHGYGAGkdQSTVQ4JJcZ7kKvrEp8CMIR4ApdbGIZWpVIOrFoBspIdCYnNOmBv2mkzLUs5iymMc8a_mWZce1mXe168LJLv2j4O_6Ycm_T5llrx6uMpsc6ZIq5yIPn3WNqFQ6rmBKrc0pDfk1r3tLswYOmr3RZySSOOPTpgay7xF_KkA3Tw2F39ehfXnoG19LROJu8n354DDf4dr30cLAHvfXyHJ_AVfdl_Xm1fNrayU9pSRQc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+of+Perchlorotriphenylmethyl+%28PTM%29+Radical%E2%80%90Based+Compounds+for+Optoelectronic+Applications%3A+The+Role+of+Orbital+Delocalization&rft.jtitle=Chemphyschem&rft.au=Diez%E2%80%90Cabanes%2C+Valent%C3%ADn&rft.au=Seber%2C+Gonca&rft.au=Franco%2C+Carlos&rft.au=Bejarano%2C+Francesc&rft.date=2018-10-05&rft.issn=1439-4235&rft.eissn=1439-7641&rft.volume=19&rft.issue=19&rft.spage=2572&rft.epage=2578&rft_id=info:doi/10.1002%2Fcphc.201800321&rft.externalDBID=10.1002%252Fcphc.201800321&rft.externalDocID=CPHC201800321
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1439-4235&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1439-4235&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1439-4235&client=summon