The multidimensionality of soil macroecology
The recent past has seen a tremendous surge in soil macroecological studies and new insights into the global drivers of one‐quarter of the biodiversity of the Earth. Building on these important developments, a recent paper in Global Ecology and Biogeography outlined promising methods and approaches...
Saved in:
| Published in: | Global ecology and biogeography Vol. 30; no. 1; pp. 4 - 10 |
|---|---|
| Main Authors: | , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
England
Wiley Subscription Services, Inc
01.01.2021
|
| Subjects: | |
| ISSN: | 1466-822X, 1466-8238 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The recent past has seen a tremendous surge in soil macroecological studies and new insights into the global drivers of one‐quarter of the biodiversity of the Earth. Building on these important developments, a recent paper in Global Ecology and Biogeography outlined promising methods and approaches to advance soil macroecology. Among other recommendations, White and colleagues introduced the concept of a spatial three‐dimensionality in soil macroecology by considering the different spheres of influence and scales, as soil organism size ranges vary from bacteria to macro‐ and megafauna. Here, we extend this concept by discussing three additional dimensions (biological, physical, and societal) that are crucial to steer soil macroecology from pattern description towards better mechanistic understanding. In our view, these are the requirements to establish it as a predictive science that can inform policy about relevant nature and management conservation actions. We highlight the need to explore temporal dynamics of soil biodiversity and functions across multiple temporal scales, integrating different facets of biodiversity (i.e., variability in body size, life‐history traits, species identities, and groups of taxa) and their relationships to multiple ecosystem functions, in addition to the feedback effects between humans and soil biodiversity. We also argue that future research needs to consider effective soil conservation policy and management in combination with higher awareness of the contributions of soil‐based nature's contributions to people. To verify causal relationships, soil macroecology should be paired with local and globally distributed experiments. The present paper expands the multidimensional perspective on soil macroecology to guide future research contents and funding. We recommend considering these multiple dimensions in projected global soil biodiversity monitoring initiatives. |
|---|---|
| AbstractList | The recent past has seen a tremendous surge in soil macroecological studies and new insights into the global drivers of one-quarter of the biodiversity of the Earth. Building on these important developments, a recent paper in Global Ecology and Biogeography outlined promising methods and approaches to advance soil macroecology. Among other recommendations, White and colleagues introduced the concept of a spatial three-dimensionality in soil macroecology by considering the different spheres of influence and scales, as soil organism size ranges vary from bacteria to macro- and megafauna. Here, we extend this concept by discussing three additional dimensions (biological, physical, and societal) that are crucial to steer soil macroecology from pattern description towards better mechanistic understanding. In our view, these are the requirements to establish it as a predictive science that can inform policy about relevant nature and management conservation actions. We highlight the need to explore temporal dynamics of soil biodiversity and functions across multiple temporal scales, integrating different facets of biodiversity (i.e., variability in body size, life-history traits, species identities, and groups of taxa) and their relationships to multiple ecosystem functions, in addition to the feedback effects between humans and soil biodiversity. We also argue that future research needs to consider effective soil conservation policy and management in combination with higher awareness of the contributions of soil-based nature's contributions to people. To verify causal relationships, soil macroecology should be paired with local and globally distributed experiments. The present paper expands the multidimensional perspective on soil macroecology to guide future research contents and funding. We recommend considering these multiple dimensions in projected global soil biodiversity monitoring initiatives.The recent past has seen a tremendous surge in soil macroecological studies and new insights into the global drivers of one-quarter of the biodiversity of the Earth. Building on these important developments, a recent paper in Global Ecology and Biogeography outlined promising methods and approaches to advance soil macroecology. Among other recommendations, White and colleagues introduced the concept of a spatial three-dimensionality in soil macroecology by considering the different spheres of influence and scales, as soil organism size ranges vary from bacteria to macro- and megafauna. Here, we extend this concept by discussing three additional dimensions (biological, physical, and societal) that are crucial to steer soil macroecology from pattern description towards better mechanistic understanding. In our view, these are the requirements to establish it as a predictive science that can inform policy about relevant nature and management conservation actions. We highlight the need to explore temporal dynamics of soil biodiversity and functions across multiple temporal scales, integrating different facets of biodiversity (i.e., variability in body size, life-history traits, species identities, and groups of taxa) and their relationships to multiple ecosystem functions, in addition to the feedback effects between humans and soil biodiversity. We also argue that future research needs to consider effective soil conservation policy and management in combination with higher awareness of the contributions of soil-based nature's contributions to people. To verify causal relationships, soil macroecology should be paired with local and globally distributed experiments. The present paper expands the multidimensional perspective on soil macroecology to guide future research contents and funding. We recommend considering these multiple dimensions in projected global soil biodiversity monitoring initiatives. The recent past has seen a tremendous surge in soil macroecological studies and new insights into the global drivers of one‐quarter of the biodiversity of the Earth. Building on these important developments, a recent paper in Global Ecology and Biogeography outlined promising methods and approaches to advance soil macroecology. Among other recommendations, White and colleagues introduced the concept of a spatial three‐dimensionality in soil macroecology by considering the different spheres of influence and scales, as soil organism size ranges vary from bacteria to macro‐ and megafauna. Here, we extend this concept by discussing three additional dimensions (biological, physical, and societal) that are crucial to steer soil macroecology from pattern description towards better mechanistic understanding. In our view, these are the requirements to establish it as a predictive science that can inform policy about relevant nature and management conservation actions. We highlight the need to explore temporal dynamics of soil biodiversity and functions across multiple temporal scales, integrating different facets of biodiversity (i.e., variability in body size, life‐history traits, species identities, and groups of taxa) and their relationships to multiple ecosystem functions, in addition to the feedback effects between humans and soil biodiversity. We also argue that future research needs to consider effective soil conservation policy and management in combination with higher awareness of the contributions of soil‐based nature's contributions to people. To verify causal relationships, soil macroecology should be paired with local and globally distributed experiments. The present paper expands the multidimensional perspective on soil macroecology to guide future research contents and funding. We recommend considering these multiple dimensions in projected global soil biodiversity monitoring initiatives. The recent past has seen a tremendous surge in soil macroecological studies and new insights into the global drivers of one-quarter of the biodiversity of the Earth. Building on these important developments, a recent paper in outlined promising methods and approaches to advance soil macroecology. Among other recommendations, White and colleagues introduced the concept of a spatial three-dimensionality in soil macroecology by considering the different spheres of influence and scales, as soil organism size ranges vary from bacteria to macro- and megafauna. Here, we extend this concept by discussing three additional dimensions (biological, physical, and societal) that are crucial to steer soil macroecology from pattern description towards better mechanistic understanding. In our view, these are the requirements to establish it as a predictive science that can inform policy about relevant nature and management conservation actions. We highlight the need to explore temporal dynamics of soil biodiversity and functions across multiple temporal scales, integrating different facets of biodiversity (i.e., variability in body size, life-history traits, species identities, and groups of taxa) and their relationships to multiple ecosystem functions, in addition to the feedback effects between humans and soil biodiversity. We also argue that future research needs to consider effective soil conservation policy and management in combination with higher awareness of the contributions of soil-based nature's contributions to people. To verify causal relationships, soil macroecology should be paired with local and globally distributed experiments. The present paper expands the multidimensional perspective on soil macroecology to guide future research contents and funding. We recommend considering these multiple dimensions in projected global soil biodiversity monitoring initiatives. The recent past has seen a tremendous surge in soil macroecological studies and new insights into the global drivers of one‐quarter of the biodiversity of the Earth. Building on these important developments, a recent paper in Global Ecology and Biogeography outlined promising methods and approaches to advance soil macroecology. Among other recommendations, White and colleagues introduced the concept of a spatial three‐dimensionality in soil macroecology by considering the different spheres of influence and scales, as soil organism size ranges vary from bacteria to macro‐ and megafauna. Here, we extend this concept by discussing three additional dimensions (biological, physical, and societal) that are crucial to steer soil macroecology from pattern description towards better mechanistic understanding. In our view, these are the requirements to establish it as a predictive science that can inform policy about relevant nature and management conservation actions. We highlight the need to explore temporal dynamics of soil biodiversity and functions across multiple temporal scales, integrating different facets of biodiversity (i.e., variability in body size, life‐history traits, species identities, and groups of taxa) and their relationships to multiple ecosystem functions, in addition to the feedback effects between humans and soil biodiversity. We also argue that future research needs to consider effective soil conservation policy and management in combination with higher awareness of the contributions of soil‐based nature's contributions to people. To verify causal relationships, soil macroecology should be paired with local and globally distributed experiments. The present paper expands the multidimensional perspective on soil macroecology to guide future research contents and funding. We recommend considering these multiple dimensions in projected global soil biodiversity monitoring initiatives. |
| Author | Jurburg, Stephanie D. Sikorski, Johannes Heintz‐Buschart, Anna Kivlin, Stephanie Vogel, Hans‐Jörg Eisenhauer, Nico Buscot, François Küsel, Kirsten Guerra, Carlos A. |
| AuthorAffiliation | 7 Institute of Biology, Martin Luther University Halle Wittenberg, Halle (Saale), Germany 1 German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany 3 Department of Soil Ecology, Helmholtz Centre for Environmental Research – UFZ, Halle, Germany 4 Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany 5 Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany 6 Department of Soil System Science, Helmholtz Centre for Environmental Research – UFZ, Halle, Germany 2 Institute of Biology, Leipzig University, Leipzig, Germany |
| AuthorAffiliation_xml | – name: 2 Institute of Biology, Leipzig University, Leipzig, Germany – name: 4 Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany – name: 5 Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany – name: 7 Institute of Biology, Martin Luther University Halle Wittenberg, Halle (Saale), Germany – name: 3 Department of Soil Ecology, Helmholtz Centre for Environmental Research – UFZ, Halle, Germany – name: 6 Department of Soil System Science, Helmholtz Centre for Environmental Research – UFZ, Halle, Germany – name: 1 German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany |
| Author_xml | – sequence: 1 givenname: Nico orcidid: 0000-0002-0371-6720 surname: Eisenhauer fullname: Eisenhauer, Nico email: nico.eisenhauer@idiv.de organization: Leipzig University – sequence: 2 givenname: François surname: Buscot fullname: Buscot, François organization: Helmholtz Centre for Environmental Research – UFZ – sequence: 3 givenname: Anna surname: Heintz‐Buschart fullname: Heintz‐Buschart, Anna organization: Helmholtz Centre for Environmental Research – UFZ – sequence: 4 givenname: Stephanie D. surname: Jurburg fullname: Jurburg, Stephanie D. organization: German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig – sequence: 5 givenname: Kirsten surname: Küsel fullname: Küsel, Kirsten organization: Friedrich Schiller University Jena – sequence: 6 givenname: Johannes surname: Sikorski fullname: Sikorski, Johannes organization: Leibniz‐Institut DSMZ‐Deutsche Sammlung von Mikroorganismen und Zellkulturen – sequence: 7 givenname: Hans‐Jörg surname: Vogel fullname: Vogel, Hans‐Jörg organization: Helmholtz Centre for Environmental Research – UFZ – sequence: 8 givenname: Carlos A. orcidid: 0000-0003-4917-2105 surname: Guerra fullname: Guerra, Carlos A. organization: Martin Luther University Halle Wittenberg – sequence: 9 givenname: Stephanie surname: Kivlin fullname: Kivlin, Stephanie |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33692654$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkd1LHDEUxUNRqm770H-gLPhSoau5k8nHvAit-AVCXyz0LWSSO2skM9HJjGX_e7PurlSpmJcE8juHe8_ZI1td7JCQL0APIZ-jOdaHwAqAD2QXSiFmqmBq6_ld_NkheyndUkp5ycVHssOYqArBy13y_foGp-0YBu98i13ysTPBD4tpbKYp-jBtje0j2hjifPGJbDcmJPy8vifk99np9cnF7OrX-eXJj6uZLaWAWQOu4oC8cOCotIXhNTPKWSstINTGKnQgZAV1KRrhVC1MbQohrQKUwnE2Iccr37uxbtFZ7IbeBH3X-9b0Cx2N1y9_On-j5_FBSwChFGSDb2uDPt6PmAbd-mQxBNNhHJMuOKVMykqq99GyymlSwWRG91-ht3Hsc15LStKyYpQvDb_-O_zz1JvMM3C0AnKwKfXYaOsHM-Tk8y4-aKB62arOreqnVrPi4JViY_o_du3-1wdcvA3q89OfK8UjcOKwQg |
| CitedBy_id | crossref_primary_10_1038_s42003_025_07994_0 crossref_primary_10_1111_cobi_14187 crossref_primary_10_3390_polym14245383 crossref_primary_10_1016_j_apsoil_2025_106359 crossref_primary_10_1088_2752_5309_ada790 crossref_primary_10_1016_j_ejsobi_2023_103494 crossref_primary_10_1016_j_ejsobi_2023_103561 crossref_primary_10_48077_scihor11_2023_123 crossref_primary_10_3897_soils4europe_e118853 crossref_primary_10_1002_ece3_10022 crossref_primary_10_1371_journal_pone_0298905 crossref_primary_10_1111_ecog_07118 crossref_primary_10_1002_sae2_12031 crossref_primary_10_1016_j_catena_2023_107014 crossref_primary_10_1016_j_geoderma_2021_115424 crossref_primary_10_1016_j_jip_2025_108313 crossref_primary_10_3897_rio_10_e127123 crossref_primary_10_1016_j_jenvman_2022_116414 crossref_primary_10_1007_s11252_022_01325_5 crossref_primary_10_1038_s41467_022_31833_z crossref_primary_10_3897_soils4europe_e149005 crossref_primary_10_1016_j_soilbio_2023_109282 |
| Cites_doi | 10.3389/fmicb.2018.01583 10.1111/gcb.13379 10.1111/geb.12782 10.1038/nature15744 10.1016/j.soilbio.2017.03.008 10.1007/s00374-017-1248-3 10.1016/j.geoderma.2015.04.027 10.1890/15-1397.1 10.1126/science.aap8826 10.1016/j.pedobi.2017.05.003 10.1111/mec.15299 10.1038/s41467-019-13966-w 10.1038/nature11148 10.1111/brv.12567 10.1098/rstb.2012.0235 10.1038/s41558-017-0032-6 10.1016/j.soilbio.2013.08.024 10.1126/science.aap9516 10.1016/j.foreco.2015.02.020 10.1111/ele.12819 10.1111/cobi.13311 10.3389/feart.2016.00032 10.1038/s41467-020-16881-7 10.1126/science.aax3100 10.1126/science.1256688 10.1038/s41559-017-0103 10.1111/geb.13156 10.3390/su12072662 10.1016/j.cub.2019.08.007 10.1111/jvs.12435 10.1038/s41467-020-18451-3 10.1038/nature19092 10.1186/s40168-017-0340-0 10.1007/s11104-013-1750-9 10.1038/s41467-018-07916-1 10.1111/nph.15088 10.1038/s41467-020-17688-2 10.1007/s10980-020-00984-z 10.1126/sciadv.aax8787 10.1111/2041-210X.12125 10.1038/nmicrobiol.2015.25 10.1111/gcb.14132 10.1038/s41559-019-1084-y 10.1016/j.tree.2018.09.010 10.1038/s41586-018-0328-3 10.1126/science.aav0550 10.1073/pnas.1818400116 10.1016/bs.aecr.2019.02.002 10.1038/s41558-020-0759-3 10.1046/j.1351-0754.2003.0567.x 10.1038/nature13855 10.1111/gcb.12752 10.1038/s41586-019-1418-6 10.1016/j.soilbio.2016.03.017 10.1038/s41559-018-0573-8 10.1007/s00442-011-1909-0 10.1126/science.aax4851 10.7554/eLife.55659 10.1126/science.aax9931 |
| ContentType | Journal Article |
| Copyright | 2020 The Authors. Global Ecology and Biogeography published by John Wiley & Sons Ltd 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2020 The Authors. Global Ecology and Biogeography published by John Wiley & Sons Ltd – notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION NPM 7QG 7SN 7SS 7ST 7U6 C1K 7S9 L.6 7X8 5PM |
| DOI | 10.1111/geb.13211 |
| DatabaseName | Wiley Online Library Open Access CrossRef PubMed Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Sustainability Science Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed Entomology Abstracts Ecology Abstracts Environment Abstracts Sustainability Science Abstracts Animal Behavior Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Entomology Abstracts AGRICOLA PubMed CrossRef |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Ecology Environmental Sciences |
| EISSN | 1466-8238 |
| EndPage | 10 |
| ExternalDocumentID | PMC7116881 33692654 10_1111_geb_13211 GEB13211 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: H2020 European Research Council funderid: 677232 – fundername: Deutsche Forschungsgemeinschaft funderid: FZT 118 – fundername: European Research Council grantid: 677232 |
| GroupedDBID | -~X .3N .GA .Y3 0R~ 10A 1OC 24P 29I 31~ 33P 4.4 50Y 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 5GY 5HH 5LA 5VS 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAEVG AAHBH AAHHS AAHKG AAHQN AAISJ AAKGQ AAMNL AANHP AANLZ AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABEML ABLJU ABPLY ABPPZ ABPVW ABTLG ABXSQ ACAHQ ACBWZ ACCFJ ACCZN ACHIC ACPOU ACPRK ACRPL ACSCC ACSTJ ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADULT ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHXOZ AILXY AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ANHSF AQVQM ASPBG ATUGU AUFTA AVWKF AZFZN BDRZF BFHJK BMNLL BMXJE BRXPI BY8 CAG CBGCD COF CS3 CUYZI D-E D-F DCZOG DEVKO DOOOF DPXWK DR2 DRFUL DRSTM EBS ECGQY EJD EQZMY ESX F00 F01 F04 FEDTE G-S GODZA GTFYD HF~ HGD HGLYW HQ2 HTVGU HVGLF HZI IHE IPSME IX1 JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N9A OIG P2W P4D Q11 QB0 ROL RX1 SA0 SUPJJ TN5 UB1 UPT VQP W99 WIH WIK WQJ WRC WXSBR XG1 ZZTAW ~KM AAMMB AAYXX ABSQW AEFGJ AEYWJ AGHNM AGQPQ AGUYK AGXDD AGYGG AIDQK AIDYY CITATION O8X NPM 7QG 7SN 7SS 7ST 7U6 C1K 7S9 L.6 7X8 5PM |
| ID | FETCH-LOGICAL-c4761-f1d951e52d1d07c2a5b3a8dcc7c1e1bac8ed16791b46f6d8b6aba267c81e76d53 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 21 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000588184800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1466-822X |
| IngestDate | Tue Nov 04 01:56:41 EST 2025 Thu Jul 10 19:30:42 EDT 2025 Fri Jul 11 18:34:27 EDT 2025 Fri Jul 25 07:43:14 EDT 2025 Mon Jul 21 05:35:57 EDT 2025 Sat Nov 29 03:56:14 EST 2025 Tue Nov 18 22:33:16 EST 2025 Wed Jan 22 16:32:59 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | soil biodiversity ecosystem functioning biogeography biodiversity change environmental change |
| Language | English |
| License | Attribution This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4761-f1d951e52d1d07c2a5b3a8dcc7c1e1bac8ed16791b46f6d8b6aba267c81e76d53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-0371-6720 0000-0003-4917-2105 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgeb.13211 |
| PMID | 33692654 |
| PQID | 2470493058 |
| PQPubID | 1066347 |
| PageCount | 6 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7116881 proquest_miscellaneous_2500377978 proquest_miscellaneous_2498230637 proquest_journals_2470493058 pubmed_primary_33692654 crossref_citationtrail_10_1111_geb_13211 crossref_primary_10_1111_geb_13211 wiley_primary_10_1111_geb_13211_GEB13211 |
| PublicationCentury | 2000 |
| PublicationDate | January 2021 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – month: 01 year: 2021 text: January 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Oxford |
| PublicationTitle | Global ecology and biogeography |
| PublicationTitleAlternate | Glob Ecol Biogeogr |
| PublicationYear | 2021 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2017; 5 2017; 1 2012; 486 2015; 345 2013; 67 2019; 10 2020; 368 2019; 366 2013; 367 2020; 12 2020; 11 2017; 110 2020; 10 2012; 367 2019; 365 2003; 54 2020; 6 2018; 9 2018; 8 2014; 5 2020; 4 2019; 60 2018; 2 2015; 257 2020; 95 2020; 92 2020; 9 2019; 116 2019; 29 2018; 33 2011; 165 2014; 515 2017; 20 2017; 63 2018; 220 2019; 33 2017; 23 2016; 97 2015; 528 2020; 35 2018; 27 2018; 24 2016; 4 2016; 1 2018; 359 2018; 559 2016; 536 2015; 21 2019 2016; 27 2018; 54 2016; 26 2014; 346 2020; 29 2019; 572 e_1_2_4_40_1 e_1_2_4_63_1 e_1_2_4_61_1 e_1_2_4_21_1 e_1_2_4_23_1 e_1_2_4_42_1 e_1_2_4_25_1 e_1_2_4_48_1 e_1_2_4_27_1 e_1_2_4_46_1 e_1_2_4_3_1 e_1_2_4_5_1 e_1_2_4_7_1 e_1_2_4_9_1 e_1_2_4_52_1 e_1_2_4_50_1 e_1_2_4_10_1 e_1_2_4_31_1 e_1_2_4_56_1 e_1_2_4_12_1 e_1_2_4_33_1 e_1_2_4_54_1 e_1_2_4_14_1 e_1_2_4_35_1 e_1_2_4_16_1 e_1_2_4_37_1 e_1_2_4_58_1 e_1_2_4_18_1 e_1_2_4_39_1 Phillips H. R. (e_1_2_4_44_1) 2020; 92 IPBES (e_1_2_4_29_1) 2019 e_1_2_4_41_1 e_1_2_4_62_1 e_1_2_4_60_1 e_1_2_4_20_1 e_1_2_4_45_1 e_1_2_4_22_1 e_1_2_4_43_1 e_1_2_4_24_1 e_1_2_4_49_1 e_1_2_4_47_1 e_1_2_4_28_1 Demetrio W. C. (e_1_2_4_26_1) 2019 e_1_2_4_2_1 e_1_2_4_4_1 e_1_2_4_6_1 e_1_2_4_8_1 e_1_2_4_51_1 e_1_2_4_30_1 e_1_2_4_32_1 e_1_2_4_55_1 e_1_2_4_11_1 e_1_2_4_34_1 e_1_2_4_53_1 e_1_2_4_13_1 e_1_2_4_36_1 e_1_2_4_59_1 e_1_2_4_15_1 e_1_2_4_38_1 e_1_2_4_57_1 e_1_2_4_17_1 e_1_2_4_19_1 |
| References_xml | – volume: 559 start-page: 599 issue: 7715 year: 2018 end-page: 602 article-title: Atmosphere–soil carbon transfer as a function of soil depth publication-title: Nature – volume: 367 start-page: 2955 issue: 1605 year: 2012 end-page: 2961 article-title: Trophic cascades, invasive species and body‐size hierarchies interactively modulate climate change responses of ecotonal temperate–boreal forest publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences – volume: 27 start-page: 1155 year: 2018 end-page: 1167 article-title: Soil biodiversity and soil erosion: It is time to get married: Adding an earthworm factor to soil erosion modelling publication-title: Global Ecology and Biogeography – volume: 165 start-page: 553 year: 2011 end-page: 565 article-title: A meta‐analysis of responses of soil biota to global change publication-title: Oecologia – volume: 6 year: 2020 article-title: The global‐scale distributions of soil protists and their contributions to belowground systems publication-title: Science Advances – volume: 54 start-page: 1 year: 2018 end-page: 10 article-title: Microbial indicators for soil quality publication-title: Biology and Fertility of Soils – volume: 11 start-page: 116 year: 2020 article-title: Soil bacterial diversity mediated by microscale aqueous‐phase processes across biomes publication-title: Nature Communications – volume: 63 start-page: 1 year: 2017 end-page: 7 article-title: Priorities for research in soil ecology publication-title: Pedobiologia – volume: 35 start-page: 823 year: 2020 end-page: 842 article-title: Global vulnerability of soil ecosystems to erosion publication-title: Landscape Ecology – volume: 97 start-page: 188 year: 2016 end-page: 198 article-title: Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil publication-title: Soil Biology and Biochemistry – volume: 110 start-page: 116 year: 2017 end-page: 133 article-title: Soil fauna responses to natural disturbances, invasive species, and global climate change: Current state of the science and a call to action publication-title: Soil Biology and Biochemistry – volume: 366 start-page: eaax3100 issue: 6471 year: 2019 article-title: Pervasive human‐driven decline of life on Earth points to the need for transformative change publication-title: Science – volume: 60 start-page: 25 year: 2019 end-page: 58 article-title: Extensive grassland‐use sustains high levels of soil biological activity, but does not alleviate detrimental climate change effects publication-title: Advances in Ecological Research – volume: 5 start-page: 65 year: 2014 end-page: 73 article-title: Finding generality in ecology: A model for globally distributed experiments publication-title: Methods in Ecology and Evolution – volume: 21 start-page: 973 year: 2015 end-page: 985 article-title: Intensive agriculture reduces soil biodiversity across Europe publication-title: Global Change Biology – volume: 9 year: 2020 article-title: Biodiversity mediates the effects of stressors but not nutrients on litter decomposition publication-title: eLife – volume: 359 start-page: 270 issue: 6373 year: 2018 end-page: 272 article-title: Assessing nature's contributions to people publication-title: Science – volume: 536 start-page: 456 issue: 7617 year: 2016 end-page: 459 article-title: Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality publication-title: Nature – volume: 33 start-page: 898 year: 2018 end-page: 901 article-title: The dark side of animal phenology publication-title: Trends in Ecology and Evolution – volume: 257 start-page: 4 year: 2015 end-page: 13 article-title: Soil phosphorus fractionation and nutrient dynamics along the Cooloola coastal dune chronosequence, southern Queensland, Australia publication-title: Geoderma – volume: 95 start-page: 350 year: 2020 end-page: 364 article-title: Towards an integrative understanding of soil biodiversity publication-title: Biological Reviews – volume: 4 start-page: 32 year: 2016 article-title: How deep can surface signals be traced in the critical zone? Merging biodiversity with biogeochemistry research in a central German Muschelkalk landscape publication-title: Frontiers in Earth Science – volume: 359 start-page: 320 issue: 6373 year: 2018 end-page: 325 article-title: A global atlas of the dominant bacteria found in soil publication-title: Science – volume: 1 start-page: 15025 year: 2016 article-title: Altered carbon turnover processes and microbiomes in soils under long‐term extremely high CO exposure publication-title: Nature Microbiology – volume: 29 start-page: 1674 year: 2020 end-page: 1690 article-title: Methods and approaches to advance soil macroecology publication-title: Global Ecology and Biogeography – volume: 365 issue: 6455 year: 2019 article-title: The global soil community and its influence on biogeochemistry publication-title: Science – volume: 29 start-page: 752 year: 2020 end-page: 761 article-title: Climatic vulnerabilities and ecological preferences of soil invertebrates across biomes publication-title: Molecular Ecology – volume: 368 start-page: 417 issue: 6489 year: 2020 end-page: 420 article-title: Meta‐analysis reveals declines in terrestrial but increases in freshwater insect abundances publication-title: Science – volume: 9 start-page: 1583 year: 2018 article-title: Microscale heterogeneity of the spatial distribution of organic matter can promote bacterial biodiversity in soils: Insights from computer simulations publication-title: Frontiers in Microbiology – volume: 23 start-page: 955 year: 2017 end-page: 965 article-title: Land‐use contrasts reveal instability of subsoil organic carbon publication-title: Global Change Biology – volume: 8 start-page: 75 year: 2018 end-page: 78 article-title: Reduced feeding activity of soil detritivores under warmer and drier conditions publication-title: Nature Climate Change – volume: 486 start-page: 59 issue: 7401 year: 2012 end-page: 67 article-title: Biodiversity loss and its impact on humanity publication-title: Nature – volume: 29 start-page: R1036 year: 2019 end-page: R1044 article-title: Challenges and opportunities for soil biodiversity in the Anthropocene publication-title: Current Biology – volume: 367 start-page: 1 year: 2013 end-page: 10 article-title: Pedogenesis, nutrient dynamics, and ecosystem development: the legacy of T.W. Walker and J.K. Syers publication-title: Plant and Soil – volume: 10 start-page: 50 year: 2019 article-title: Recognizing the quiet extinction of invertebrates publication-title: Nature Communications – volume: 366 start-page: 480 issue: 6464 year: 2019 end-page: 485 article-title: Global distribution of earthworm diversity publication-title: Science – volume: 11 start-page: 3072 year: 2020 article-title: Meta‐analysis of the impacts of global change factors on soil microbial diversity and functionality publication-title: Nature Communications – volume: 27 start-page: 1061 year: 2016 end-page: 1070 article-title: Biodiversity–ecosystem function experiments reveal the mechanisms underlying the consequences of biodiversity change in real world ecosystems publication-title: Journal of Vegetation Science – start-page: 56 year: 2019 – volume: 346 start-page: 1256688 issue: 6213 year: 2014 article-title: Global diversity and geography of soil fungi publication-title: Science – volume: 1 year: 2017 article-title: Red list of a black box publication-title: Nature Ecology & Evolution – volume: 33 start-page: 1187 year: 2019 end-page: 1192 article-title: Global mismatches in aboveground and belowground biodiversity publication-title: Conservation Biology – volume: 26 start-page: 1881 year: 2016 end-page: 1895 article-title: Long‐lasting effects of land use history on soil fungal communities in second‐growth tropical rain forests publication-title: Ecological Applications – volume: 10 start-page: 550 year: 2020 end-page: 554 article-title: The proportion of soil‐borne pathogens increases with warming at the global scale publication-title: Nature Climate Change – volume: 345 start-page: 1 year: 2015 end-page: 9 article-title: Soil fungal communities respond compositionally to recurring frequent prescribed burning in a managed southeastern US forest ecosystem publication-title: Forest Ecology and Management – volume: 5 start-page: 122 year: 2017 article-title: Feed in summer, rest in winter: Microbial carbon utilization in forest topsoil publication-title: Microbiome – volume: 12 start-page: 2662 year: 2020 article-title: Soil biodiversity integrates solutions for a sustainable future publication-title: Sustainability – volume: 4 start-page: 210 year: 2020 end-page: 220 article-title: Multiple elements of soil biodiversity drive ecosystem functions across biomes publication-title: Nature Ecology & Evolution – volume: 11 start-page: 4721 year: 2020 article-title: The influence of soil age on ecosystem structure and function across biomes publication-title: Nature Communications – volume: 515 start-page: 505 issue: 7528 year: 2014 end-page: 511 article-title: Belowground biodiversity and ecosystem functioning publication-title: Nature – volume: 24 start-page: 3317 year: 2018 end-page: 3330 article-title: Tree mycorrhizal type predicts within‐site variability in the storage and distribution of soil organic matter publication-title: Global Change Biology – volume: 67 start-page: 192 year: 2013 end-page: 211 article-title: Active microorganisms in soil: Critical review of estimation criteria and approaches publication-title: Soil Biology and Biochemistry – volume: 572 start-page: 194 issue: 7768 year: 2019 end-page: 198 article-title: Soil nematode abundance and functional group composition at a global scale publication-title: Nature – volume: 528 start-page: 69 issue: 7580 year: 2015 end-page: 76 article-title: Soil biodiversity and human health publication-title: Nature – start-page: 552364 year: 2019 article-title: Anthropogenic soils promote biodiversity in Amazonian rainforests publication-title: BioRxiv – volume: 2 start-page: 1042 year: 2018 end-page: 1043 article-title: Global gaps in soil biodiversity data publication-title: Nature Ecology & Evolution – volume: 92 start-page: 121 year: 2020 end-page: 127 article-title: Lessons from the WBF2020: Extrinsic and intrinsic value of soil organisms publication-title: Soil Organisms – volume: 116 start-page: 6891 year: 2019 end-page: 6896 article-title: Changes in belowground biodiversity during ecosystem development publication-title: Proceedings of the National Academy of Sciences USA – volume: 220 start-page: 1248 year: 2018 end-page: 1261 article-title: Multiscale patterns and drivers of arbuscular mycorrhizal fungal communities in the roots and root‐associated soil of a wild perennial herb publication-title: New Phytologist – volume: 20 start-page: 1242 year: 2017 end-page: 1249 article-title: Decoupled responses of soil bacteria and their invertebrate consumer to warming, but not freeze–thaw cycles, in the Antarctic Dry Valleys publication-title: Ecology Letters – volume: 11 start-page: 1 issue: 1 year: 2020 end-page: 13 article-title: Blind spots in global soil biodiversity and ecosystem function research publication-title: Nature Communications – volume: 54 start-page: 779 year: 2003 end-page: 791 article-title: Exchange of greenhouse gases between soil and atmosphere: Interactions of soil physical factors and biological processes publication-title: European Journal of Soil Science – ident: e_1_2_4_47_1 doi: 10.3389/fmicb.2018.01583 – ident: e_1_2_4_38_1 doi: 10.1111/gcb.13379 – ident: e_1_2_4_43_1 doi: 10.1111/geb.12782 – ident: e_1_2_4_60_1 doi: 10.1038/nature15744 – ident: e_1_2_4_18_1 doi: 10.1016/j.soilbio.2017.03.008 – ident: e_1_2_4_49_1 doi: 10.1007/s00374-017-1248-3 – ident: e_1_2_4_17_1 doi: 10.1016/j.geoderma.2015.04.027 – ident: e_1_2_4_3_1 doi: 10.1890/15-1397.1 – ident: e_1_2_4_27_1 doi: 10.1126/science.aap8826 – ident: e_1_2_4_30_1 doi: 10.1016/j.pedobi.2017.05.003 – ident: e_1_2_4_7_1 doi: 10.1111/mec.15299 – start-page: 56 volume-title: IPBES secretariat year: 2019 ident: e_1_2_4_29_1 – ident: e_1_2_4_10_1 doi: 10.1038/s41467-019-13966-w – ident: e_1_2_4_16_1 doi: 10.1038/nature11148 – ident: e_1_2_4_54_1 doi: 10.1111/brv.12567 – start-page: 552364 year: 2019 ident: e_1_2_4_26_1 article-title: Anthropogenic soils promote biodiversity in Amazonian rainforests publication-title: BioRxiv – ident: e_1_2_4_34_1 doi: 10.1098/rstb.2012.0235 – ident: e_1_2_4_55_1 doi: 10.1038/s41558-017-0032-6 – ident: e_1_2_4_11_1 doi: 10.1016/j.soilbio.2013.08.024 – ident: e_1_2_4_23_1 doi: 10.1126/science.aap9516 – ident: e_1_2_4_41_1 doi: 10.1016/j.foreco.2015.02.020 – ident: e_1_2_4_39_1 doi: 10.1111/ele.12819 – ident: e_1_2_4_14_1 doi: 10.1111/cobi.13311 – ident: e_1_2_4_40_1 doi: 10.3389/feart.2016.00032 – ident: e_1_2_4_62_1 doi: 10.1038/s41467-020-16881-7 – ident: e_1_2_4_28_1 doi: 10.1126/science.aax3100 – ident: e_1_2_4_53_1 doi: 10.1126/science.1256688 – ident: e_1_2_4_45_1 doi: 10.1038/s41559-017-0103 – ident: e_1_2_4_61_1 doi: 10.1111/geb.13156 – ident: e_1_2_4_2_1 doi: 10.3390/su12072662 – ident: e_1_2_4_35_1 doi: 10.1016/j.cub.2019.08.007 – ident: e_1_2_4_31_1 doi: 10.1111/jvs.12435 – ident: e_1_2_4_24_1 doi: 10.1038/s41467-020-18451-3 – ident: e_1_2_4_52_1 doi: 10.1038/nature19092 – ident: e_1_2_4_63_1 doi: 10.1186/s40168-017-0340-0 – ident: e_1_2_4_57_1 doi: 10.1007/s11104-013-1750-9 – ident: e_1_2_4_32_1 doi: 10.1038/s41467-018-07916-1 – ident: e_1_2_4_48_1 doi: 10.1111/nph.15088 – ident: e_1_2_4_36_1 doi: 10.1038/s41467-020-17688-2 – ident: e_1_2_4_37_1 doi: 10.1007/s10980-020-00984-z – ident: e_1_2_4_42_1 doi: 10.1126/sciadv.aax8787 – ident: e_1_2_4_13_1 doi: 10.1111/2041-210X.12125 – volume: 92 start-page: 121 year: 2020 ident: e_1_2_4_44_1 article-title: Lessons from the WBF2020: Extrinsic and intrinsic value of soil organisms publication-title: Soil Organisms – ident: e_1_2_4_9_1 doi: 10.1038/nmicrobiol.2015.25 – ident: e_1_2_4_19_1 doi: 10.1111/gcb.14132 – ident: e_1_2_4_25_1 doi: 10.1038/s41559-019-1084-y – ident: e_1_2_4_33_1 doi: 10.1016/j.tree.2018.09.010 – ident: e_1_2_4_4_1 doi: 10.1038/s41586-018-0328-3 – ident: e_1_2_4_20_1 doi: 10.1126/science.aav0550 – ident: e_1_2_4_21_1 doi: 10.1073/pnas.1818400116 – ident: e_1_2_4_50_1 doi: 10.1016/bs.aecr.2019.02.002 – ident: e_1_2_4_22_1 doi: 10.1038/s41558-020-0759-3 – ident: e_1_2_4_51_1 doi: 10.1046/j.1351-0754.2003.0567.x – ident: e_1_2_4_6_1 doi: 10.1038/nature13855 – ident: e_1_2_4_56_1 doi: 10.1111/gcb.12752 – ident: e_1_2_4_58_1 doi: 10.1038/s41586-019-1418-6 – ident: e_1_2_4_5_1 doi: 10.1016/j.soilbio.2016.03.017 – ident: e_1_2_4_15_1 doi: 10.1038/s41559-018-0573-8 – ident: e_1_2_4_12_1 doi: 10.1007/s00442-011-1909-0 – ident: e_1_2_4_46_1 doi: 10.1126/science.aax4851 – ident: e_1_2_4_8_1 doi: 10.7554/eLife.55659 – ident: e_1_2_4_59_1 doi: 10.1126/science.aax9931 |
| SSID | ssj0005456 |
| Score | 2.4362688 |
| Snippet | The recent past has seen a tremendous surge in soil macroecological studies and new insights into the global drivers of one‐quarter of the biodiversity of the... The recent past has seen a tremendous surge in soil macroecological studies and new insights into the global drivers of one-quarter of the biodiversity of the... |
| SourceID | pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 4 |
| SubjectTerms | administrative management bacteria Biodiversity biodiversity change Biogeography Body size dimensions ecological function ecosystem functioning environmental change Environmental monitoring Environmental policy fauna funding humans issues and policy life history Macroecology Megafauna monitoring Nature conservation people soil soil biodiversity soil biota Soil conservation Soil dynamics Soil management steers temporal variation variability |
| Title | The multidimensionality of soil macroecology |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgeb.13211 https://www.ncbi.nlm.nih.gov/pubmed/33692654 https://www.proquest.com/docview/2470493058 https://www.proquest.com/docview/2498230637 https://www.proquest.com/docview/2500377978 https://pubmed.ncbi.nlm.nih.gov/PMC7116881 |
| Volume | 30 |
| WOSCitedRecordID | wos000588184800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1466-8238 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005456 issn: 1466-822X databaseCode: DRFUL dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9UwDLemDSQuGwwGZR8qiMMOFDVpGqfiBOM9OKBpQkx6typfHU8afdO6IfHf46R93Z4GCIlLVSlulKR2Ysf2zwCvmDAF-hDUzg0ZKD4XmebMZdrkqCvneW5sLDaBx8dqNqtO1uDtMhemx4cYL9yCZMT9Ogi4Nt0tIT_z5g2ZUiGvd4OxAgNLc3FyE98hyiG1SGZ0Cs4GWKEQxjN-unoY3dEw7wZK3lZg4wk03fqvsT-EzUHxTN_1nPII1ny7DfcnEbT65zbsTG4y3ohsEPnuMbwmRkpj2KELhQB6EA9S3dNFk3aL-Xn6XdPkfN_PEzidTr4efcqGEguZFShZ1jBHKpYvuWMuR8t1aQqtnLVomWdGW-VdcNQwI2QjnTJSG80lWsU8SlcWO7DeLlr_DFLulGxQ5V44IwSZnZp5S71V6GxZuiaBw-Va13bAHw9lMM7rpR1Cq1LHVUng5Uh60YNu_I5ob_nD6kHuupoLJJOH9jCVwIuxmSQmuEF06xfXgaYK3kVZ4F9oygDMg2RiJ_C054FxJEUhKy5LkQCucMdIEBC7V1va-beI3I2MSaVo6IeRO_48ufrj5H18ef7vpLvwgIeAm3g_tAfrV5fXfh_u2R9X8-7yIAoHPXGmDmDjw5fp6edfuWEU9w |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5VWxC98Ci0BAoExKEHUsWOX5F6acsuRSwrhFppb5FfgZVKFnVbJP49YyebdlVASNwi-YvlODP2jD3zDcBrwkwhfQhqpwYdFJ-zTFPiMm1yqUvnaW5sLDYhJxM1nZaf1mB_mQvT8kP0B25BM-J6HRQ8HEhf0_Iv3uyhLxUSe9cZihEfwPrbz6PT8VWIB-NddpHIcCOcdsxCIZKnf3l1P7phZN6Mlbxuw8ZNaHTv_4Z_H-52xmd60ErLA1jzzSbcHkbi6p-bsDW8ynpDWKf2i4fwBoUpjaGHLhQDaIk80HxP53W6mM_O0m8av863_TyC09Hw5Og468osZJZJQbKaODSzPKeOuFxaqrkptHLWSks8Mdoq78JlDTFM1MIpI7TRVEiriJfC8WILBs288Y8hpU6JWqrcM2cYQ9dTE2-xt1I6y7mrE9hdTnZlOw7yUArjrFr6IjgrVZyVBF710O8t8cbvQDvLP1Z1ureoKJPo9uA6phJ42Tej1oSrEN34-WXAlOGGURTyLxgeyHkkutkJbLdC0I-kKERJBWcJyBXx6AGBtXu1pZl9jezdkhChFA59N4rHnz-uejc8jA9P_h36Au4cn3wcV-P3kw9PYYOGAJx4XrQDg4vzS_8MbtkfF7PF-fNOV34B74sX7A |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9RAEJ8QQMOLCgpWUavxgQdrutv9auKLwp0QzOUeNLm3Zr8ql0CPcEDif-_stle4IMbEtyb762a7ndmd2Z35DcB7wkwhfQhqpwYdFJ-zTFPiMm1yqUvnaW5sLDYhRyM1mZTjFfi0yIVp-SH6A7egGXG9Dgruz119S8t_evMRfamQ2LvGOK6xgdeZjW8CPBjvcotEhtvgpOMVCnE8_avLu9EdE_NupORtCzZuQcPH_zf4J_CoMz3Tz62sbMKKb7bgwSDSVv_agu3BTc4bwjqlnz-FDyhKaQw8dKEUQEvjgcZ7OqvT-Wx6mp5p_Drf9vMMfgwH3_cPs67IQmaZFCSriUMjy3PqiMulpZqbQitnrbTEE6Ot8i5c1RDDRC2cMkIbTYW0ingpHC-2YbWZNf45pNQpUUuVe-YMY-h4auIt9lZKZzl3dQJ7i8mubMdAHgphnFYLTwRnpYqzksC7Hnre0m78CbS7-GNVp3nzijKJTg-uYiqBt30z6ky4CNGNn10FTBnuF0Uh_4LhgZpHopOdwE4rBP1IikKUVHCWgFwSjx4QOLuXW5rpSeTuloQIpXDoe1E87v-46uvgS3x48e_QN_BwfDCsvh2Njl_CBg3RN_GwaBdWLy-u_CtYt9eX0_nF66govwFohRXV |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+multidimensionality+of+soil+macroecology&rft.jtitle=Global+ecology+and+biogeography&rft.au=Eisenhauer%2C+Nico&rft.au=Buscot%2C+Fran%C3%A7ois&rft.au=Heintz-Buschart%2C+Anna&rft.au=Jurburg%2C+Stephanie+D&rft.date=2021-01-01&rft.issn=1466-822X&rft.volume=30&rft.issue=1&rft.spage=4&rft_id=info:doi/10.1111%2Fgeb.13211&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1466-822X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1466-822X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1466-822X&client=summon |