Intrinsic Facet‐Dependent Reactivity of Well‐Defined BiOBr Nanosheets on Photocatalytic Water Splitting
Surface atomic arrangement and coordination of photocatalysts highly exposed to different crystal facets significantly affect the photoreactivity. However, controversies on the true photoreactivity of a specific facet in heterogeneous photocatalysis still exits. Herein, we exemplified well‐defined B...
Gespeichert in:
| Veröffentlicht in: | Angewandte Chemie International Edition Jg. 59; H. 16; S. 6590 - 6595 |
|---|---|
| Hauptverfasser: | , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Germany
Wiley Subscription Services, Inc
16.04.2020
|
| Ausgabe: | International ed. in English |
| Schlagworte: | |
| ISSN: | 1433-7851, 1521-3773, 1521-3773 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Surface atomic arrangement and coordination of photocatalysts highly exposed to different crystal facets significantly affect the photoreactivity. However, controversies on the true photoreactivity of a specific facet in heterogeneous photocatalysis still exits. Herein, we exemplified well‐defined BiOBr nanosheets dominating with respective facets, (001) and (010), to track the reactivity of crystal facets for photocatalytic water splitting. The real photoreactivity of BiOBr‐(001) were evidenced to be significantly higher than BiOBr‐(010) for both hydrogen production and oxygen evolution reactions. Further in situ photochemical probing studies verified the distinct reactivity is not only owing to the highly exposed facets, but dominated by the co‐exposing facets, leading to an efficient spatial separation of photogenerated charges and further making the oxidation and reduction reactions separately occur with different reaction rates, which ordains the fate of the true photoreactivity.
Intrinsic facet‐dependent photoreactivity: It is demonstrated that the spatial separation of photogenerated charges between top and lateral facets of BiOBr nanosheets dominates the intrinsic facet‐dependent photoreactivity, and not the commonly recognized highly exposed active facets. |
|---|---|
| AbstractList | Surface atomic arrangement and coordination of photocatalysts highly exposed to different crystal facets significantly affect the photoreactivity. However, controversies on the true photoreactivity of a specific facet in heterogeneous photocatalysis still exits. Herein, we exemplified well‐defined BiOBr nanosheets dominating with respective facets, (001) and (010), to track the reactivity of crystal facets for photocatalytic water splitting. The real photoreactivity of BiOBr‐(001) were evidenced to be significantly higher than BiOBr‐(010) for both hydrogen production and oxygen evolution reactions. Further in situ photochemical probing studies verified the distinct reactivity is not only owing to the highly exposed facets, but dominated by the co‐exposing facets, leading to an efficient spatial separation of photogenerated charges and further making the oxidation and reduction reactions separately occur with different reaction rates, which ordains the fate of the true photoreactivity. Surface atomic arrangement and coordination of photocatalysts highly exposed to different crystal facets significantly affect the photoreactivity. However, controversies on the true photoreactivity of a specific facet in heterogeneous photocatalysis still exits. Herein, we exemplified well‐defined BiOBr nanosheets dominating with respective facets, (001) and (010), to track the reactivity of crystal facets for photocatalytic water splitting. The real photoreactivity of BiOBr‐(001) were evidenced to be significantly higher than BiOBr‐(010) for both hydrogen production and oxygen evolution reactions. Further in situ photochemical probing studies verified the distinct reactivity is not only owing to the highly exposed facets, but dominated by the co‐exposing facets, leading to an efficient spatial separation of photogenerated charges and further making the oxidation and reduction reactions separately occur with different reaction rates, which ordains the fate of the true photoreactivity. Intrinsic facet‐dependent photoreactivity: It is demonstrated that the spatial separation of photogenerated charges between top and lateral facets of BiOBr nanosheets dominates the intrinsic facet‐dependent photoreactivity, and not the commonly recognized highly exposed active facets. Surface atomic arrangement and coordination of photocatalysts highly exposed to different crystal facets significantly affect the photoreactivity. However, controversies on the true photoreactivity of a specific facet in heterogeneous photocatalysis still exits. Herein, we exemplified well-defined BiOBr nanosheets dominating with respective facets, (001) and (010), to track the reactivity of crystal facets for photocatalytic water splitting. The real photoreactivity of BiOBr-(001) were evidenced to be significantly higher than BiOBr-(010) for both hydrogen production and oxygen evolution reactions. Further in situ photochemical probing studies verified the distinct reactivity is not only owing to the highly exposed facets, but dominated by the co-exposing facets, leading to an efficient spatial separation of photogenerated charges and further making the oxidation and reduction reactions separately occur with different reaction rates, which ordains the fate of the true photoreactivity.Surface atomic arrangement and coordination of photocatalysts highly exposed to different crystal facets significantly affect the photoreactivity. However, controversies on the true photoreactivity of a specific facet in heterogeneous photocatalysis still exits. Herein, we exemplified well-defined BiOBr nanosheets dominating with respective facets, (001) and (010), to track the reactivity of crystal facets for photocatalytic water splitting. The real photoreactivity of BiOBr-(001) were evidenced to be significantly higher than BiOBr-(010) for both hydrogen production and oxygen evolution reactions. Further in situ photochemical probing studies verified the distinct reactivity is not only owing to the highly exposed facets, but dominated by the co-exposing facets, leading to an efficient spatial separation of photogenerated charges and further making the oxidation and reduction reactions separately occur with different reaction rates, which ordains the fate of the true photoreactivity. |
| Author | Li, Jianming Tao, Xiaoping Shi, Ming Pidko, Evgeny A. Li, Rengui Jin, Xu Li, Can Zeng, Bin Li, Guanna |
| Author_xml | – sequence: 1 givenname: Ming surname: Shi fullname: Shi, Ming organization: University of Chinese Academy of Sciences – sequence: 2 givenname: Guanna surname: Li fullname: Li, Guanna organization: Delft University of Technology – sequence: 3 givenname: Jianming surname: Li fullname: Li, Jianming organization: PetroChina – sequence: 4 givenname: Xu surname: Jin fullname: Jin, Xu organization: PetroChina – sequence: 5 givenname: Xiaoping surname: Tao fullname: Tao, Xiaoping organization: The Collaborative Innovation Center of Chemistry for Energy Materials (iChem-2011) – sequence: 6 givenname: Bin surname: Zeng fullname: Zeng, Bin organization: University of Chinese Academy of Sciences – sequence: 7 givenname: Evgeny A. surname: Pidko fullname: Pidko, Evgeny A. organization: Delft University of Technology – sequence: 8 givenname: Rengui orcidid: 0000-0002-8099-0934 surname: Li fullname: Li, Rengui email: rgli@dicp.ac.cn organization: The Collaborative Innovation Center of Chemistry for Energy Materials (iChem-2011) – sequence: 9 givenname: Can surname: Li fullname: Li, Can email: canli@dicp.ac.cn organization: The Collaborative Innovation Center of Chemistry for Energy Materials (iChem-2011) |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31994300$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkc1uFDEQhC0URJKFK0dkiQuXWdzjmfH4mIQEVooSxI9ytDx2D3GYtRfbC9obj8Az8iR42QSkSIhTt9RflVpVh2TPB4-EPAU2B8bql9o7nNcMJHQtsAfkANoaKi4E3yt7w3kl-hb2yWFKN4Xve9Y9IvscpGw4Ywfk88Ln6Hxyhp5pg_nn9x-vcIXeos_0HWqT3VeXNzSM9Aqn6fd5dB4tPXaXx5FeaB_SNWJONHj69jrkYHTW0yYXxyudMdL3q8nl7Pynx-ThqKeET27njHw8O_1w8qY6v3y9ODk6r0wjOlZx3RnWA0jL0Gpd24EPCJK1XIy6EaIGKViBYLAoZTvUVjbdYLcBjHwwgs_Ii53vKoYva0xZLV0y5XvtMayTqnnT1xzaFgr6_B56E9bRl-8K1Xei7fsS1Iw8u6XWwxKtWkW31HGj7mIsQLMDTAwpRRyVcVlnF0q42k0KmNq2pbZtqT9tFdn8nuzO-Z8CuRN8cxNu_kOro4vF6V_tL8zAqOk |
| CitedBy_id | crossref_primary_10_1016_j_seppur_2021_120023 crossref_primary_10_1016_j_jcis_2022_01_147 crossref_primary_10_1016_j_colsurfa_2023_132685 crossref_primary_10_1039_D5TA03093E crossref_primary_10_1016_j_cej_2021_134492 crossref_primary_10_1016_j_enchem_2022_100084 crossref_primary_10_1016_j_jmst_2023_06_041 crossref_primary_10_1016_j_materresbull_2021_111448 crossref_primary_10_1021_acscatal_5c01486 crossref_primary_10_1016_j_seppur_2023_126124 crossref_primary_10_1002_ange_202209794 crossref_primary_10_1016_j_jcis_2023_09_106 crossref_primary_10_1016_j_apcata_2023_119084 crossref_primary_10_1002_ange_202011068 crossref_primary_10_1021_jacs_2c07313 crossref_primary_10_1038_s41929_023_01069_1 crossref_primary_10_1016_j_chemosphere_2021_133228 crossref_primary_10_1016_j_jece_2025_115694 crossref_primary_10_1002_chem_202402629 crossref_primary_10_1016_j_ijhydene_2023_07_051 crossref_primary_10_1016_j_apsusc_2021_149116 crossref_primary_10_1038_s41467_021_26219_6 crossref_primary_10_1002_adfm_202412775 crossref_primary_10_1016_j_apsusc_2024_160670 crossref_primary_10_1016_j_jechem_2021_01_047 crossref_primary_10_1002_chem_202200334 crossref_primary_10_1016_j_cej_2020_127334 crossref_primary_10_1021_acsanm_4c06675 crossref_primary_10_1002_ange_202407481 crossref_primary_10_1016_j_enchem_2025_100143 crossref_primary_10_1016_j_ijhydene_2022_09_071 crossref_primary_10_1016_j_scitotenv_2022_153790 crossref_primary_10_1002_adma_202202751 crossref_primary_10_1016_S1872_5813_21_60174_3 crossref_primary_10_1016_j_rser_2025_116249 crossref_primary_10_1016_j_surfin_2024_103947 crossref_primary_10_1039_D2BM01182D crossref_primary_10_1039_D4NR01798F crossref_primary_10_1016_j_cej_2021_133622 crossref_primary_10_1016_j_envres_2024_120297 crossref_primary_10_1016_j_seppur_2021_120005 crossref_primary_10_1016_j_cej_2025_163353 crossref_primary_10_1016_j_seppur_2022_122744 crossref_primary_10_1016_j_cej_2023_144395 crossref_primary_10_1016_j_ijhydene_2022_08_158 crossref_primary_10_1016_j_cej_2023_141798 crossref_primary_10_1016_j_jmst_2023_02_041 crossref_primary_10_1016_j_jallcom_2022_168199 crossref_primary_10_1016_j_jmst_2024_03_029 crossref_primary_10_1002_solr_202200869 crossref_primary_10_1016_j_mattod_2024_12_019 crossref_primary_10_1002_smll_202104448 crossref_primary_10_1016_j_apcatb_2021_120436 crossref_primary_10_1016_j_jcis_2021_07_021 crossref_primary_10_1016_j_cej_2021_129484 crossref_primary_10_1016_j_jcis_2024_11_233 crossref_primary_10_1007_s11356_023_30484_x crossref_primary_10_1002_smll_202303491 crossref_primary_10_1016_j_apcatb_2021_120679 crossref_primary_10_1016_j_jcis_2021_06_049 crossref_primary_10_1016_j_mssp_2023_107547 crossref_primary_10_1002_anie_202011068 crossref_primary_10_1016_j_apsusc_2025_163963 crossref_primary_10_1016_j_cej_2023_143604 crossref_primary_10_1016_j_ijhydene_2022_02_026 crossref_primary_10_1016_j_colsurfa_2022_129919 crossref_primary_10_1016_j_jcis_2020_10_027 crossref_primary_10_1016_j_seppur_2023_125082 crossref_primary_10_1002_solr_202300406 crossref_primary_10_1007_s10854_023_09893_8 crossref_primary_10_1002_ange_202105496 crossref_primary_10_1039_D1RA02739E crossref_primary_10_1016_j_jiec_2025_04_006 crossref_primary_10_1016_j_ijhydene_2024_06_043 crossref_primary_10_1002_smll_202506133 crossref_primary_10_1002_solr_202100223 crossref_primary_10_1016_j_jmst_2025_02_061 crossref_primary_10_1016_j_apsusc_2023_156402 crossref_primary_10_1016_j_mssp_2024_108802 crossref_primary_10_1016_j_jcis_2025_138723 crossref_primary_10_1007_s12209_022_00344_9 crossref_primary_10_1038_s41467_022_29825_0 crossref_primary_10_1002_smll_202305308 crossref_primary_10_1016_j_apcatb_2025_125988 crossref_primary_10_1016_j_ica_2023_121659 crossref_primary_10_1016_j_cplett_2022_139790 crossref_primary_10_1016_j_trac_2024_117862 crossref_primary_10_1039_D1CY00371B crossref_primary_10_1016_j_colsurfa_2022_128965 crossref_primary_10_1038_s41467_022_29671_0 crossref_primary_10_1016_j_seppur_2025_133089 crossref_primary_10_1016_j_cej_2021_131235 crossref_primary_10_1016_j_jece_2023_109981 crossref_primary_10_1016_j_solener_2025_113863 crossref_primary_10_1016_j_cej_2022_137980 crossref_primary_10_1016_j_mtener_2023_101483 crossref_primary_10_1016_j_pmatsci_2022_101047 crossref_primary_10_1002_anie_202302986 crossref_primary_10_1016_j_seppur_2022_122654 crossref_primary_10_1002_eom2_12204 crossref_primary_10_1016_j_jece_2023_110862 crossref_primary_10_1039_D2EN00596D crossref_primary_10_1002_ange_202302986 crossref_primary_10_1016_j_apsusc_2020_147016 crossref_primary_10_1080_01614940_2022_2041836 crossref_primary_10_1002_anie_202105496 crossref_primary_10_1016_j_apcatb_2022_121502 crossref_primary_10_3390_ijms24076041 crossref_primary_10_1016_j_cej_2025_167243 crossref_primary_10_1016_j_jhazmat_2024_136816 crossref_primary_10_1016_S1872_2067_23_64542_5 crossref_primary_10_1016_j_jwpe_2023_104032 crossref_primary_10_1016_j_apsusc_2023_158216 crossref_primary_10_1039_D5TA05486A crossref_primary_10_1039_D2NR00316C crossref_primary_10_1016_j_apsusc_2023_156393 crossref_primary_10_1039_D3EN00216K crossref_primary_10_1016_j_cej_2021_131011 crossref_primary_10_1016_j_jallcom_2025_183365 crossref_primary_10_1021_acsomega_4c10658 crossref_primary_10_1016_j_chemosphere_2022_135663 crossref_primary_10_1016_j_cej_2022_140933 crossref_primary_10_1016_j_apcatb_2024_123913 crossref_primary_10_1002_adma_202007377 crossref_primary_10_1002_smll_202105228 crossref_primary_10_1016_j_jallcom_2023_172470 crossref_primary_10_1016_j_apcatb_2021_120369 crossref_primary_10_1016_j_jhazmat_2023_132008 crossref_primary_10_1039_D4SC05065G crossref_primary_10_1016_j_jallcom_2024_174493 crossref_primary_10_1002_ejic_202000874 crossref_primary_10_1016_j_seppur_2022_122555 crossref_primary_10_1016_j_cclet_2021_03_083 crossref_primary_10_1016_j_jwpe_2023_104140 crossref_primary_10_3390_molecules28114400 crossref_primary_10_1016_j_jallcom_2022_167962 crossref_primary_10_1016_j_jmst_2023_04_053 crossref_primary_10_1016_j_mattod_2023_12_014 crossref_primary_10_1007_s12274_021_3695_2 crossref_primary_10_1016_j_matlet_2022_132416 crossref_primary_10_1016_j_inoche_2020_108333 crossref_primary_10_1002_admi_202200260 crossref_primary_10_1002_adfm_202315911 crossref_primary_10_1016_j_jallcom_2023_172920 crossref_primary_10_1021_acsnano_4c18256 crossref_primary_10_6023_A22080362 crossref_primary_10_1039_D4QI01835D crossref_primary_10_1016_j_cej_2021_132806 crossref_primary_10_1016_j_aca_2024_342920 crossref_primary_10_1007_s10570_021_04153_6 crossref_primary_10_1016_j_jallcom_2024_174828 crossref_primary_10_1016_j_cclet_2022_107962 crossref_primary_10_1002_adma_202203320 crossref_primary_10_1038_s41557_024_01599_6 crossref_primary_10_1002_smm2_1095 crossref_primary_10_1002_adma_202502098 crossref_primary_10_1002_nano_202000127 crossref_primary_10_1016_j_cej_2021_132018 crossref_primary_10_1016_j_apsusc_2023_157338 crossref_primary_10_1002_smll_202007576 crossref_primary_10_1016_j_cej_2024_157919 crossref_primary_10_1016_j_seppur_2021_118693 crossref_primary_10_1002_anie_202407481 crossref_primary_10_1016_j_jhazmat_2021_126207 crossref_primary_10_1016_j_apcatb_2021_120824 crossref_primary_10_1002_smll_202103245 crossref_primary_10_1007_s10854_022_07849_y crossref_primary_10_1016_j_jmst_2021_12_067 crossref_primary_10_1002_adfm_202513731 crossref_primary_10_1016_j_jcis_2023_12_029 crossref_primary_10_1016_j_mtphys_2021_100551 crossref_primary_10_1002_adfm_202513976 crossref_primary_10_1016_S1872_2067_20_63646_4 crossref_primary_10_1021_jacs_1c02377 crossref_primary_10_1002_adma_202200180 crossref_primary_10_1016_j_jallcom_2024_174022 crossref_primary_10_1016_j_apsusc_2021_151848 crossref_primary_10_1016_j_apsusc_2022_153800 crossref_primary_10_1016_j_jes_2023_05_003 crossref_primary_10_1016_j_cej_2023_148456 crossref_primary_10_1016_j_cej_2021_129537 crossref_primary_10_1016_j_cej_2023_145507 crossref_primary_10_1007_s12274_023_5828_2 crossref_primary_10_1016_j_apsusc_2025_163572 crossref_primary_10_1016_j_apcatb_2022_122341 crossref_primary_10_1016_j_jece_2022_107226 crossref_primary_10_1016_j_cclet_2025_111207 crossref_primary_10_1016_j_jcis_2021_07_018 crossref_primary_10_1021_acsanm_5c02073 crossref_primary_10_1039_D1NR02592A crossref_primary_10_1016_j_apcatb_2022_122349 crossref_primary_10_1016_j_jpowsour_2022_231227 crossref_primary_10_1039_D4CP04044A crossref_primary_10_1002_adma_202002556 crossref_primary_10_1016_j_apt_2023_104157 crossref_primary_10_1016_j_cej_2021_129305 crossref_primary_10_1016_j_surfin_2022_102402 crossref_primary_10_1088_2053_1591_ac9117 crossref_primary_10_1016_j_envres_2025_121572 crossref_primary_10_1016_j_jcat_2024_115300 crossref_primary_10_1016_j_apcatb_2023_123165 crossref_primary_10_1016_j_cej_2025_163187 crossref_primary_10_1002_smll_202308088 crossref_primary_10_1016_j_cej_2023_144199 crossref_primary_10_1002_slct_202401038 crossref_primary_10_1002_adfm_202106982 crossref_primary_10_1016_j_rser_2023_113659 crossref_primary_10_1016_j_cclet_2025_110819 crossref_primary_10_1016_j_jssc_2022_123833 crossref_primary_10_1016_j_mseb_2022_116031 crossref_primary_10_1016_j_jechem_2023_08_038 crossref_primary_10_1016_j_nanoen_2021_106671 crossref_primary_10_1021_jacs_2c03489 crossref_primary_10_1002_aenm_202301047 crossref_primary_10_1016_j_chemosphere_2022_135320 crossref_primary_10_1016_j_cplett_2020_138010 crossref_primary_10_1002_smll_202206003 crossref_primary_10_1016_j_cej_2023_143898 crossref_primary_10_1016_j_cej_2023_147338 crossref_primary_10_1007_s10311_021_01385_7 crossref_primary_10_1016_j_jallcom_2023_170635 crossref_primary_10_1016_S1872_2067_23_64610_8 crossref_primary_10_1002_eom2_12047 crossref_primary_10_1016_j_apsusc_2025_164669 crossref_primary_10_1002_adom_202302029 crossref_primary_10_1002_anie_202209794 crossref_primary_10_1016_j_envres_2021_110742 crossref_primary_10_1016_j_cej_2021_128590 crossref_primary_10_1016_S1872_2067_25_64719_X crossref_primary_10_1016_j_jallcom_2025_178844 crossref_primary_10_1016_j_chemosphere_2023_139678 crossref_primary_10_3390_nano15110844 crossref_primary_10_1016_j_jpowsour_2023_233956 |
| Cites_doi | 10.1021/ja210484t 10.1039/C5TA02757H 10.1039/C3EE43304H 10.1016/j.apcatb.2016.02.018 10.1016/j.apcatb.2016.01.053 10.1038/srep24918 10.1021/jp5035079 10.1002/ange.201904921 10.1038/nature06964 10.1002/chem.201502562 10.1039/C6EE00526H 10.1002/adfm.201404178 10.1021/ja2002132 10.1039/c3ta11390f 10.1039/C5CP06711A 10.1038/ncomms2401 10.1039/C4CP02972K 10.1039/C5NR07380D 10.1039/C6TA10964K 10.1021/cr1001645 10.1021/ja402956f 10.1039/c1cc10665a 10.1021/cr950234e 10.1002/anie.201904921 10.1021/ja4092903 |
| ContentType | Journal Article |
| Copyright | 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| Copyright_xml | – notice: 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
| DOI | 10.1002/anie.201916510 |
| DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
| DatabaseTitleList | CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1521-3773 |
| Edition | International ed. in English |
| EndPage | 6595 |
| ExternalDocumentID | 31994300 10_1002_anie_201916510 ANIE201916510 |
| Genre | shortCommunication Journal Article |
| GrantInformation_xml | – fundername: Dutch Organization for Scientific Research funderid: 016.Veni.172.034 – fundername: Key Research Program of Frontier Sciences of Chinese Academy of Sciences funderid: QYZDY-SSW-JSC023 – fundername: Strategic Priority Research Program of Chinese Academy of Science funderid: XDA21010000 – fundername: National Natural Science Foundation of China funderid: 21633010, 21673230, 21761142018 – fundername: Liaoning Revitalization Talents Program funderid: XLYC1907078 – fundername: Liaoning Revitalization Talents Program grantid: XLYC1907078 – fundername: Dutch Organization for Scientific Research grantid: 016.Veni.172.034 – fundername: Key Research Program of Frontier Sciences of Chinese Academy of Sciences grantid: QYZDY-SSW-JSC023 – fundername: National Natural Science Foundation of China grantid: 21633010, 21673230, 21761142018 – fundername: Strategic Priority Research Program of Chinese Academy of Science grantid: XDA21010000 |
| GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI ABUFD AEYWJ AGHNM AGYGG CITATION O8X NPM YIN 7TM K9. 7X8 |
| ID | FETCH-LOGICAL-c4760-3a6c08119d0edaa2db3be190537fa477219703a61bde995b2d946bd1651f3bc73 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 342 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000516813900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1433-7851 1521-3773 |
| IngestDate | Fri Jul 11 11:52:20 EDT 2025 Tue Oct 07 07:10:07 EDT 2025 Wed Feb 19 02:31:10 EST 2025 Tue Nov 18 20:55:38 EST 2025 Sat Nov 29 03:45:04 EST 2025 Wed Jan 22 16:36:12 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 16 |
| Keywords | facet-dependency BiOBr water splitting photocatalysis intrinsic reactivity |
| Language | English |
| License | 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4760-3a6c08119d0edaa2db3be190537fa477219703a61bde995b2d946bd1651f3bc73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-8099-0934 |
| PMID | 31994300 |
| PQID | 2386758894 |
| PQPubID | 946352 |
| PageCount | 6 |
| ParticipantIDs | proquest_miscellaneous_2348231551 proquest_journals_2386758894 pubmed_primary_31994300 crossref_citationtrail_10_1002_anie_201916510 crossref_primary_10_1002_anie_201916510 wiley_primary_10_1002_anie_201916510_ANIE201916510 |
| PublicationCentury | 2000 |
| PublicationDate | April 16, 2020 |
| PublicationDateYYYYMMDD | 2020-04-16 |
| PublicationDate_xml | – month: 04 year: 2020 text: April 16, 2020 day: 16 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim |
| PublicationTitle | Angewandte Chemie International Edition |
| PublicationTitleAlternate | Angew Chem Int Ed Engl |
| PublicationYear | 2020 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2017; 5 2014; 118 2016; 6 2015; 25 2013; 4 2012; 134 2013; 1 2015; 3 2015; 21 2010; 110 2014; 16 2016; 188 1996; 96 2013; 135 2016; 187 2013; 130 2011; 47 2008; 453 2016; 18 2014; 7 2016; 8 2011; 133 2019 2019; 58 131 2016; 9 e_1_2_2_4_1 Ye L. (e_1_2_2_20_2) 2013; 130 e_1_2_2_25_1 e_1_2_2_5_1 e_1_2_2_24_1 e_1_2_2_6_1 e_1_2_2_23_1 e_1_2_2_22_1 e_1_2_2_21_1 e_1_2_2_1_1 e_1_2_2_2_1 e_1_2_2_3_1 e_1_2_2_7_2 e_1_2_2_8_2 e_1_2_2_9_1 e_1_2_2_28_2 e_1_2_2_27_2 e_1_2_2_26_2 e_1_2_2_8_3 e_1_2_2_13_2 e_1_2_2_12_2 e_1_2_2_11_2 e_1_2_2_10_2 e_1_2_2_19_2 e_1_2_2_18_2 e_1_2_2_17_2 e_1_2_2_16_2 e_1_2_2_15_2 e_1_2_2_14_2 |
| References_xml | – volume: 135 start-page: 10411 year: 2013 end-page: 10417 publication-title: J. Am. Chem. Soc. – volume: 187 start-page: 342 year: 2016 end-page: 349 publication-title: Appl. Catal. B – volume: 133 start-page: 6490 year: 2011 end-page: 6492 publication-title: J. Am. Chem. Soc. – volume: 47 start-page: 6763 year: 2011 end-page: 6783 publication-title: Chem. Commun. – volume: 453 start-page: 638 year: 2008 end-page: 641 publication-title: Nature – volume: 25 start-page: 2189 year: 2015 end-page: 2201 publication-title: Adv. Funct. Mater. – volume: 18 start-page: 6113 year: 2016 end-page: 6121 publication-title: Phys. Chem. Chem. Phys. – volume: 58 131 start-page: 9517 9617 year: 2019 2019 end-page: 9521 9621 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 7 start-page: 1369 year: 2014 end-page: 1376 publication-title: Energy Environ. Sci. – volume: 1 start-page: 8622 year: 2013 end-page: 8629 publication-title: J. Mater. Chem. A – volume: 3 start-page: 15148 year: 2015 end-page: 15155 publication-title: J. Mater. Chem. A – volume: 5 start-page: 8117 year: 2017 end-page: 8124 publication-title: J. Mater. Chem. A – volume: 135 start-page: 15750 year: 2013 end-page: 15753 publication-title: J. Am. Chem. Soc. – volume: 118 start-page: 14662 year: 2014 end-page: 14669 publication-title: J. Phys. Chem. C – volume: 110 start-page: 6503 year: 2010 end-page: 6570 publication-title: Chem. Rev. – volume: 96 start-page: 1223 year: 1996 end-page: 1236 publication-title: Chem. Rev. – volume: 8 start-page: 1986 year: 2016 end-page: 1993 publication-title: Nanoscale – volume: 130 start-page: 1 year: 2013 end-page: 7 publication-title: Appl. Catal. B – volume: 134 start-page: 4473 year: 2012 end-page: 4476 publication-title: J. Am. Chem. Soc. – volume: 16 start-page: 20909 year: 2014 end-page: 20914 publication-title: Phys. Chem. Chem. Phys. – volume: 4 start-page: 1432 year: 2013 publication-title: Nat. Commun. – volume: 9 start-page: 2463 year: 2016 end-page: 2469 publication-title: Energy Environ. Sci. – volume: 21 start-page: 14337 year: 2015 end-page: 14341 publication-title: Chemistry (Easton) – volume: 188 start-page: 283 year: 2016 end-page: 291 publication-title: Appl. Catal. B – volume: 6 start-page: 24918 year: 2016 publication-title: Sci. Rep. – ident: e_1_2_2_7_2 doi: 10.1021/ja210484t – ident: e_1_2_2_22_1 doi: 10.1039/C5TA02757H – ident: e_1_2_2_26_2 doi: 10.1039/C3EE43304H – ident: e_1_2_2_17_2 doi: 10.1016/j.apcatb.2016.02.018 – ident: e_1_2_2_21_1 doi: 10.1016/j.apcatb.2016.01.053 – ident: e_1_2_2_14_2 doi: 10.1038/srep24918 – volume: 130 start-page: 1 year: 2013 ident: e_1_2_2_20_2 publication-title: Appl. Catal. B – ident: e_1_2_2_23_1 doi: 10.1021/jp5035079 – ident: e_1_2_2_8_3 doi: 10.1002/ange.201904921 – ident: e_1_2_2_3_1 doi: 10.1038/nature06964 – ident: e_1_2_2_27_2 doi: 10.1002/chem.201502562 – ident: e_1_2_2_28_2 doi: 10.1039/C6EE00526H – ident: e_1_2_2_10_2 doi: 10.1002/adfm.201404178 – ident: e_1_2_2_5_1 doi: 10.1021/ja2002132 – ident: e_1_2_2_25_1 – ident: e_1_2_2_15_2 doi: 10.1039/c3ta11390f – ident: e_1_2_2_19_2 doi: 10.1039/C5CP06711A – ident: e_1_2_2_4_1 doi: 10.1038/ncomms2401 – ident: e_1_2_2_18_2 doi: 10.1039/C4CP02972K – ident: e_1_2_2_12_2 doi: 10.1039/C5NR07380D – ident: e_1_2_2_16_2 doi: 10.1039/C6TA10964K – ident: e_1_2_2_1_1 doi: 10.1021/cr1001645 – ident: e_1_2_2_13_2 doi: 10.1021/ja402956f – ident: e_1_2_2_2_1 doi: 10.1039/c1cc10665a – ident: e_1_2_2_6_1 – ident: e_1_2_2_24_1 doi: 10.1021/cr950234e – ident: e_1_2_2_8_2 doi: 10.1002/anie.201904921 – ident: e_1_2_2_9_1 – ident: e_1_2_2_11_2 doi: 10.1021/ja4092903 |
| SSID | ssj0028806 |
| Score | 2.696016 |
| Snippet | Surface atomic arrangement and coordination of photocatalysts highly exposed to different crystal facets significantly affect the photoreactivity. However,... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 6590 |
| SubjectTerms | BiOBr Chemical reduction Exposure facet-dependency Hydrogen production intrinsic reactivity Nanosheets Oxidation Oxygen evolution reactions Photocatalysis Photochemicals Reactivity Splitting Water splitting |
| Title | Intrinsic Facet‐Dependent Reactivity of Well‐Defined BiOBr Nanosheets on Photocatalytic Water Splitting |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201916510 https://www.ncbi.nlm.nih.gov/pubmed/31994300 https://www.proquest.com/docview/2386758894 https://www.proquest.com/docview/2348231551 |
| Volume | 59 |
| WOSCitedRecordID | wos000516813900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1521-3773 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0028806 issn: 1433-7851 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7STaG59J10kzSoUOjJxCvL9uqY19JA2YY8yN6MnmTJYgfbKfTWn9Df2F_SGdvrdiml0ByNZEmel7-RNDMA70OhVWi0CbhUEh0UadAOGh4o6ZwXPrTG2qbYRDqdjmczefZbFH-bH6LfcCPNaOw1KbjS1f6vpKEUgU1XsxDfxBRjtc5ReOMBrB-fT64-9U4XymcbYRRFARWiXyZuDPn-6girP6Y_0OYqeG3-PpNnD1_3c3jaIU920IrKC1hz-Ut4crQs-PYKbk_zupznyDY2UcbVP759P-5K5Nbs3FEEBBWaYIVn126xaJo9Lseyw_nnw5KhoS6qG-fqihU5O7sp6qLZHPqKE7JrxLQlu0DI21y0fg1Xk5PLo49BV4shMCJN0FSrxCB6GEkbOqsUtzrSDsFEHKVeCYToI4nkV8lIWydlrLmVItGWvtFH2qTRJgzyIndvgKXKe-GMNTiYSJRRI-OUT2OfGOXFOB5CsGREZrpE5VQvY5G1KZZ5RiTMehIO4UPf_65N0fHXnrtLvmadqlYZYhZymsZSDOFd34ykp5MTlbvinvoIOi5FdDmErVYe-qkiyq4chTg4b9j-jzVkB9PTk_5p-39e2oENTl4_ZZxMdmFQl_fuLTw2X-p5Ve7Bo3Q23uvU4CefiQpm |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5VLBJc2vLsAi1GQuIUkU2cZH1cHitWLAviIbhFjh9i1VVSZQNSb_0J_Y38ks4k2VQrVCFVHCM7tuMZTz6PPd8A7Ls8ka5KlOMJKXCDIhTaQeU5UhhjuXW10rpMNhGNRt2HB3FV3yakWJiKH6JxuNHKKO01LXBySB_-ZQ2lEGy6m4UAJ6AgqxZHXUIlb51c9--Gza4LFbQKMfJ9hzLRz5gbXe9wvoX5P9MruDmPXsvfT__TOwz8M3yssSfrVcqyAh9MugpLx7OUb2vwfZAW-ThFwbG-VKZ4-fX7pE6SW7BrQzEQlGqCZZbdm8mkLLY4Hs2OxpdHOUNTnU0fjSmmLEvZ1WNWZKV76Cd2yO4R1ebsBkFvedV6He76p7fHZ06djcFRPArRWMtQIX7oCO0aLaWnEz8xCCcCP7KSI0jvCLQeMuwk2ggRJJ4WPEw0faP1ExX5G7CQZqn5AiyS1nKjtMLGeCiV7CgjbRTYUEnLu0EbnJkkYlVTlVPGjElckSx7MU1h3ExhGw6a-j8qko5_1tyZCTauF-s0RtRC26au4G3Ya4px6unsRKYme6I6nA5MEV-2YbNSiKYrn_iVfRcb90q5vzGGuDcanDZPW__z0i4snd1eDOPhYHS-Dcse-QCIfzLcgYUifzJfYVE9F-Np_q1eDX8AR4gNbg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2hLQIuUD4KCy0YCYlT1GziJOtj223EimpZFar2Fjn2WF2xSqpsisSNn8Bv5Jcwk2RTrVCFhDhGdmzHY0-eP-Y9gHe-zLVvcuMFSitaoChDftAEnlaITjrfGmsbsYlkNhtfXKh5d5uQY2Fafoh-w41nRuOveYLjlXX7N6yhHILNd7MI4EQcZLUlWUlmAFuT0_TspF910QBtQ4zC0GMl-jVzox_sb5aw-Wf6A25uotfm95M--g8N34aHHfYUB-1geQx3sHgC94_Wkm9P4eu0qKtFQYYTqTZY__rxc9KJ5NbiFDkGgqUmROnEOS6XTbKj9lhxuPh0WAly1eXqErFeibIQ88uyLpvtoe9UoTgnVFuJzwR6m6vWz-AsPf5y9MHr1Bg8I5OYnLWODeGHkbI-Wq0Dm4c5EpyIwsRpSSB9pMh76HiUW1QqygOrZJxb_kYX5iYJd2BQlAW-AJFo5yQaa6gwGWujRwa1SyIXG-3kOBqCt7ZEZjqqclbMWGYtyXKQcRdmfRcO4X2f_6ol6bg15-7asFk3WVcZoRZeNo2VHMLbPpm6ns9OdIHlNeeRfGBK-HIIz9sB0VcVMr9y6FPhQWP3v7QhO5hNj_unl__y0hu4N5-k2cl09vEVPAh4C4DpJ-NdGNTVNe7BXfOtXqyq191k-A2_XAzp |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intrinsic+Facet-Dependent+Reactivity+of+Well-Defined+BiOBr+Nanosheets+on+Photocatalytic+Water+Splitting&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Shi%2C+Ming&rft.au=Li%2C+Guanna&rft.au=Li%2C+Jianming&rft.au=Jin%2C+Xu&rft.date=2020-04-16&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=59&rft.issue=16&rft.spage=6590&rft_id=info:doi/10.1002%2Fanie.201916510&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |