Intrinsic Facet‐Dependent Reactivity of Well‐Defined BiOBr Nanosheets on Photocatalytic Water Splitting

Surface atomic arrangement and coordination of photocatalysts highly exposed to different crystal facets significantly affect the photoreactivity. However, controversies on the true photoreactivity of a specific facet in heterogeneous photocatalysis still exits. Herein, we exemplified well‐defined B...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition Jg. 59; H. 16; S. 6590 - 6595
Hauptverfasser: Shi, Ming, Li, Guanna, Li, Jianming, Jin, Xu, Tao, Xiaoping, Zeng, Bin, Pidko, Evgeny A., Li, Rengui, Li, Can
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Germany Wiley Subscription Services, Inc 16.04.2020
Ausgabe:International ed. in English
Schlagworte:
ISSN:1433-7851, 1521-3773, 1521-3773
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Surface atomic arrangement and coordination of photocatalysts highly exposed to different crystal facets significantly affect the photoreactivity. However, controversies on the true photoreactivity of a specific facet in heterogeneous photocatalysis still exits. Herein, we exemplified well‐defined BiOBr nanosheets dominating with respective facets, (001) and (010), to track the reactivity of crystal facets for photocatalytic water splitting. The real photoreactivity of BiOBr‐(001) were evidenced to be significantly higher than BiOBr‐(010) for both hydrogen production and oxygen evolution reactions. Further in situ photochemical probing studies verified the distinct reactivity is not only owing to the highly exposed facets, but dominated by the co‐exposing facets, leading to an efficient spatial separation of photogenerated charges and further making the oxidation and reduction reactions separately occur with different reaction rates, which ordains the fate of the true photoreactivity. Intrinsic facet‐dependent photoreactivity: It is demonstrated that the spatial separation of photogenerated charges between top and lateral facets of BiOBr nanosheets dominates the intrinsic facet‐dependent photoreactivity, and not the commonly recognized highly exposed active facets.
AbstractList Surface atomic arrangement and coordination of photocatalysts highly exposed to different crystal facets significantly affect the photoreactivity. However, controversies on the true photoreactivity of a specific facet in heterogeneous photocatalysis still exits. Herein, we exemplified well‐defined BiOBr nanosheets dominating with respective facets, (001) and (010), to track the reactivity of crystal facets for photocatalytic water splitting. The real photoreactivity of BiOBr‐(001) were evidenced to be significantly higher than BiOBr‐(010) for both hydrogen production and oxygen evolution reactions. Further in situ photochemical probing studies verified the distinct reactivity is not only owing to the highly exposed facets, but dominated by the co‐exposing facets, leading to an efficient spatial separation of photogenerated charges and further making the oxidation and reduction reactions separately occur with different reaction rates, which ordains the fate of the true photoreactivity.
Surface atomic arrangement and coordination of photocatalysts highly exposed to different crystal facets significantly affect the photoreactivity. However, controversies on the true photoreactivity of a specific facet in heterogeneous photocatalysis still exits. Herein, we exemplified well‐defined BiOBr nanosheets dominating with respective facets, (001) and (010), to track the reactivity of crystal facets for photocatalytic water splitting. The real photoreactivity of BiOBr‐(001) were evidenced to be significantly higher than BiOBr‐(010) for both hydrogen production and oxygen evolution reactions. Further in situ photochemical probing studies verified the distinct reactivity is not only owing to the highly exposed facets, but dominated by the co‐exposing facets, leading to an efficient spatial separation of photogenerated charges and further making the oxidation and reduction reactions separately occur with different reaction rates, which ordains the fate of the true photoreactivity. Intrinsic facet‐dependent photoreactivity: It is demonstrated that the spatial separation of photogenerated charges between top and lateral facets of BiOBr nanosheets dominates the intrinsic facet‐dependent photoreactivity, and not the commonly recognized highly exposed active facets.
Surface atomic arrangement and coordination of photocatalysts highly exposed to different crystal facets significantly affect the photoreactivity. However, controversies on the true photoreactivity of a specific facet in heterogeneous photocatalysis still exits. Herein, we exemplified well-defined BiOBr nanosheets dominating with respective facets, (001) and (010), to track the reactivity of crystal facets for photocatalytic water splitting. The real photoreactivity of BiOBr-(001) were evidenced to be significantly higher than BiOBr-(010) for both hydrogen production and oxygen evolution reactions. Further in situ photochemical probing studies verified the distinct reactivity is not only owing to the highly exposed facets, but dominated by the co-exposing facets, leading to an efficient spatial separation of photogenerated charges and further making the oxidation and reduction reactions separately occur with different reaction rates, which ordains the fate of the true photoreactivity.Surface atomic arrangement and coordination of photocatalysts highly exposed to different crystal facets significantly affect the photoreactivity. However, controversies on the true photoreactivity of a specific facet in heterogeneous photocatalysis still exits. Herein, we exemplified well-defined BiOBr nanosheets dominating with respective facets, (001) and (010), to track the reactivity of crystal facets for photocatalytic water splitting. The real photoreactivity of BiOBr-(001) were evidenced to be significantly higher than BiOBr-(010) for both hydrogen production and oxygen evolution reactions. Further in situ photochemical probing studies verified the distinct reactivity is not only owing to the highly exposed facets, but dominated by the co-exposing facets, leading to an efficient spatial separation of photogenerated charges and further making the oxidation and reduction reactions separately occur with different reaction rates, which ordains the fate of the true photoreactivity.
Author Li, Jianming
Tao, Xiaoping
Shi, Ming
Pidko, Evgeny A.
Li, Rengui
Jin, Xu
Li, Can
Zeng, Bin
Li, Guanna
Author_xml – sequence: 1
  givenname: Ming
  surname: Shi
  fullname: Shi, Ming
  organization: University of Chinese Academy of Sciences
– sequence: 2
  givenname: Guanna
  surname: Li
  fullname: Li, Guanna
  organization: Delft University of Technology
– sequence: 3
  givenname: Jianming
  surname: Li
  fullname: Li, Jianming
  organization: PetroChina
– sequence: 4
  givenname: Xu
  surname: Jin
  fullname: Jin, Xu
  organization: PetroChina
– sequence: 5
  givenname: Xiaoping
  surname: Tao
  fullname: Tao, Xiaoping
  organization: The Collaborative Innovation Center of Chemistry for Energy Materials (iChem-2011)
– sequence: 6
  givenname: Bin
  surname: Zeng
  fullname: Zeng, Bin
  organization: University of Chinese Academy of Sciences
– sequence: 7
  givenname: Evgeny A.
  surname: Pidko
  fullname: Pidko, Evgeny A.
  organization: Delft University of Technology
– sequence: 8
  givenname: Rengui
  orcidid: 0000-0002-8099-0934
  surname: Li
  fullname: Li, Rengui
  email: rgli@dicp.ac.cn
  organization: The Collaborative Innovation Center of Chemistry for Energy Materials (iChem-2011)
– sequence: 9
  givenname: Can
  surname: Li
  fullname: Li, Can
  email: canli@dicp.ac.cn
  organization: The Collaborative Innovation Center of Chemistry for Energy Materials (iChem-2011)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31994300$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1uFDEQhC0URJKFK0dkiQuXWdzjmfH4mIQEVooSxI9ytDx2D3GYtRfbC9obj8Az8iR42QSkSIhTt9RflVpVh2TPB4-EPAU2B8bql9o7nNcMJHQtsAfkANoaKi4E3yt7w3kl-hb2yWFKN4Xve9Y9IvscpGw4Ywfk88Ln6Hxyhp5pg_nn9x-vcIXeos_0HWqT3VeXNzSM9Aqn6fd5dB4tPXaXx5FeaB_SNWJONHj69jrkYHTW0yYXxyudMdL3q8nl7Pynx-ThqKeET27njHw8O_1w8qY6v3y9ODk6r0wjOlZx3RnWA0jL0Gpd24EPCJK1XIy6EaIGKViBYLAoZTvUVjbdYLcBjHwwgs_Ii53vKoYva0xZLV0y5XvtMayTqnnT1xzaFgr6_B56E9bRl-8K1Xei7fsS1Iw8u6XWwxKtWkW31HGj7mIsQLMDTAwpRRyVcVlnF0q42k0KmNq2pbZtqT9tFdn8nuzO-Z8CuRN8cxNu_kOro4vF6V_tL8zAqOk
CitedBy_id crossref_primary_10_1016_j_seppur_2021_120023
crossref_primary_10_1016_j_jcis_2022_01_147
crossref_primary_10_1016_j_colsurfa_2023_132685
crossref_primary_10_1039_D5TA03093E
crossref_primary_10_1016_j_cej_2021_134492
crossref_primary_10_1016_j_enchem_2022_100084
crossref_primary_10_1016_j_jmst_2023_06_041
crossref_primary_10_1016_j_materresbull_2021_111448
crossref_primary_10_1021_acscatal_5c01486
crossref_primary_10_1016_j_seppur_2023_126124
crossref_primary_10_1002_ange_202209794
crossref_primary_10_1016_j_jcis_2023_09_106
crossref_primary_10_1016_j_apcata_2023_119084
crossref_primary_10_1002_ange_202011068
crossref_primary_10_1021_jacs_2c07313
crossref_primary_10_1038_s41929_023_01069_1
crossref_primary_10_1016_j_chemosphere_2021_133228
crossref_primary_10_1016_j_jece_2025_115694
crossref_primary_10_1002_chem_202402629
crossref_primary_10_1016_j_ijhydene_2023_07_051
crossref_primary_10_1016_j_apsusc_2021_149116
crossref_primary_10_1038_s41467_021_26219_6
crossref_primary_10_1002_adfm_202412775
crossref_primary_10_1016_j_apsusc_2024_160670
crossref_primary_10_1016_j_jechem_2021_01_047
crossref_primary_10_1002_chem_202200334
crossref_primary_10_1016_j_cej_2020_127334
crossref_primary_10_1021_acsanm_4c06675
crossref_primary_10_1002_ange_202407481
crossref_primary_10_1016_j_enchem_2025_100143
crossref_primary_10_1016_j_ijhydene_2022_09_071
crossref_primary_10_1016_j_scitotenv_2022_153790
crossref_primary_10_1002_adma_202202751
crossref_primary_10_1016_S1872_5813_21_60174_3
crossref_primary_10_1016_j_rser_2025_116249
crossref_primary_10_1016_j_surfin_2024_103947
crossref_primary_10_1039_D2BM01182D
crossref_primary_10_1039_D4NR01798F
crossref_primary_10_1016_j_cej_2021_133622
crossref_primary_10_1016_j_envres_2024_120297
crossref_primary_10_1016_j_seppur_2021_120005
crossref_primary_10_1016_j_cej_2025_163353
crossref_primary_10_1016_j_seppur_2022_122744
crossref_primary_10_1016_j_cej_2023_144395
crossref_primary_10_1016_j_ijhydene_2022_08_158
crossref_primary_10_1016_j_cej_2023_141798
crossref_primary_10_1016_j_jmst_2023_02_041
crossref_primary_10_1016_j_jallcom_2022_168199
crossref_primary_10_1016_j_jmst_2024_03_029
crossref_primary_10_1002_solr_202200869
crossref_primary_10_1016_j_mattod_2024_12_019
crossref_primary_10_1002_smll_202104448
crossref_primary_10_1016_j_apcatb_2021_120436
crossref_primary_10_1016_j_jcis_2021_07_021
crossref_primary_10_1016_j_cej_2021_129484
crossref_primary_10_1016_j_jcis_2024_11_233
crossref_primary_10_1007_s11356_023_30484_x
crossref_primary_10_1002_smll_202303491
crossref_primary_10_1016_j_apcatb_2021_120679
crossref_primary_10_1016_j_jcis_2021_06_049
crossref_primary_10_1016_j_mssp_2023_107547
crossref_primary_10_1002_anie_202011068
crossref_primary_10_1016_j_apsusc_2025_163963
crossref_primary_10_1016_j_cej_2023_143604
crossref_primary_10_1016_j_ijhydene_2022_02_026
crossref_primary_10_1016_j_colsurfa_2022_129919
crossref_primary_10_1016_j_jcis_2020_10_027
crossref_primary_10_1016_j_seppur_2023_125082
crossref_primary_10_1002_solr_202300406
crossref_primary_10_1007_s10854_023_09893_8
crossref_primary_10_1002_ange_202105496
crossref_primary_10_1039_D1RA02739E
crossref_primary_10_1016_j_jiec_2025_04_006
crossref_primary_10_1016_j_ijhydene_2024_06_043
crossref_primary_10_1002_smll_202506133
crossref_primary_10_1002_solr_202100223
crossref_primary_10_1016_j_jmst_2025_02_061
crossref_primary_10_1016_j_apsusc_2023_156402
crossref_primary_10_1016_j_mssp_2024_108802
crossref_primary_10_1016_j_jcis_2025_138723
crossref_primary_10_1007_s12209_022_00344_9
crossref_primary_10_1038_s41467_022_29825_0
crossref_primary_10_1002_smll_202305308
crossref_primary_10_1016_j_apcatb_2025_125988
crossref_primary_10_1016_j_ica_2023_121659
crossref_primary_10_1016_j_cplett_2022_139790
crossref_primary_10_1016_j_trac_2024_117862
crossref_primary_10_1039_D1CY00371B
crossref_primary_10_1016_j_colsurfa_2022_128965
crossref_primary_10_1038_s41467_022_29671_0
crossref_primary_10_1016_j_seppur_2025_133089
crossref_primary_10_1016_j_cej_2021_131235
crossref_primary_10_1016_j_jece_2023_109981
crossref_primary_10_1016_j_solener_2025_113863
crossref_primary_10_1016_j_cej_2022_137980
crossref_primary_10_1016_j_mtener_2023_101483
crossref_primary_10_1016_j_pmatsci_2022_101047
crossref_primary_10_1002_anie_202302986
crossref_primary_10_1016_j_seppur_2022_122654
crossref_primary_10_1002_eom2_12204
crossref_primary_10_1016_j_jece_2023_110862
crossref_primary_10_1039_D2EN00596D
crossref_primary_10_1002_ange_202302986
crossref_primary_10_1016_j_apsusc_2020_147016
crossref_primary_10_1080_01614940_2022_2041836
crossref_primary_10_1002_anie_202105496
crossref_primary_10_1016_j_apcatb_2022_121502
crossref_primary_10_3390_ijms24076041
crossref_primary_10_1016_j_cej_2025_167243
crossref_primary_10_1016_j_jhazmat_2024_136816
crossref_primary_10_1016_S1872_2067_23_64542_5
crossref_primary_10_1016_j_jwpe_2023_104032
crossref_primary_10_1016_j_apsusc_2023_158216
crossref_primary_10_1039_D5TA05486A
crossref_primary_10_1039_D2NR00316C
crossref_primary_10_1016_j_apsusc_2023_156393
crossref_primary_10_1039_D3EN00216K
crossref_primary_10_1016_j_cej_2021_131011
crossref_primary_10_1016_j_jallcom_2025_183365
crossref_primary_10_1021_acsomega_4c10658
crossref_primary_10_1016_j_chemosphere_2022_135663
crossref_primary_10_1016_j_cej_2022_140933
crossref_primary_10_1016_j_apcatb_2024_123913
crossref_primary_10_1002_adma_202007377
crossref_primary_10_1002_smll_202105228
crossref_primary_10_1016_j_jallcom_2023_172470
crossref_primary_10_1016_j_apcatb_2021_120369
crossref_primary_10_1016_j_jhazmat_2023_132008
crossref_primary_10_1039_D4SC05065G
crossref_primary_10_1016_j_jallcom_2024_174493
crossref_primary_10_1002_ejic_202000874
crossref_primary_10_1016_j_seppur_2022_122555
crossref_primary_10_1016_j_cclet_2021_03_083
crossref_primary_10_1016_j_jwpe_2023_104140
crossref_primary_10_3390_molecules28114400
crossref_primary_10_1016_j_jallcom_2022_167962
crossref_primary_10_1016_j_jmst_2023_04_053
crossref_primary_10_1016_j_mattod_2023_12_014
crossref_primary_10_1007_s12274_021_3695_2
crossref_primary_10_1016_j_matlet_2022_132416
crossref_primary_10_1016_j_inoche_2020_108333
crossref_primary_10_1002_admi_202200260
crossref_primary_10_1002_adfm_202315911
crossref_primary_10_1016_j_jallcom_2023_172920
crossref_primary_10_1021_acsnano_4c18256
crossref_primary_10_6023_A22080362
crossref_primary_10_1039_D4QI01835D
crossref_primary_10_1016_j_cej_2021_132806
crossref_primary_10_1016_j_aca_2024_342920
crossref_primary_10_1007_s10570_021_04153_6
crossref_primary_10_1016_j_jallcom_2024_174828
crossref_primary_10_1016_j_cclet_2022_107962
crossref_primary_10_1002_adma_202203320
crossref_primary_10_1038_s41557_024_01599_6
crossref_primary_10_1002_smm2_1095
crossref_primary_10_1002_adma_202502098
crossref_primary_10_1002_nano_202000127
crossref_primary_10_1016_j_cej_2021_132018
crossref_primary_10_1016_j_apsusc_2023_157338
crossref_primary_10_1002_smll_202007576
crossref_primary_10_1016_j_cej_2024_157919
crossref_primary_10_1016_j_seppur_2021_118693
crossref_primary_10_1002_anie_202407481
crossref_primary_10_1016_j_jhazmat_2021_126207
crossref_primary_10_1016_j_apcatb_2021_120824
crossref_primary_10_1002_smll_202103245
crossref_primary_10_1007_s10854_022_07849_y
crossref_primary_10_1016_j_jmst_2021_12_067
crossref_primary_10_1002_adfm_202513731
crossref_primary_10_1016_j_jcis_2023_12_029
crossref_primary_10_1016_j_mtphys_2021_100551
crossref_primary_10_1002_adfm_202513976
crossref_primary_10_1016_S1872_2067_20_63646_4
crossref_primary_10_1021_jacs_1c02377
crossref_primary_10_1002_adma_202200180
crossref_primary_10_1016_j_jallcom_2024_174022
crossref_primary_10_1016_j_apsusc_2021_151848
crossref_primary_10_1016_j_apsusc_2022_153800
crossref_primary_10_1016_j_jes_2023_05_003
crossref_primary_10_1016_j_cej_2023_148456
crossref_primary_10_1016_j_cej_2021_129537
crossref_primary_10_1016_j_cej_2023_145507
crossref_primary_10_1007_s12274_023_5828_2
crossref_primary_10_1016_j_apsusc_2025_163572
crossref_primary_10_1016_j_apcatb_2022_122341
crossref_primary_10_1016_j_jece_2022_107226
crossref_primary_10_1016_j_cclet_2025_111207
crossref_primary_10_1016_j_jcis_2021_07_018
crossref_primary_10_1021_acsanm_5c02073
crossref_primary_10_1039_D1NR02592A
crossref_primary_10_1016_j_apcatb_2022_122349
crossref_primary_10_1016_j_jpowsour_2022_231227
crossref_primary_10_1039_D4CP04044A
crossref_primary_10_1002_adma_202002556
crossref_primary_10_1016_j_apt_2023_104157
crossref_primary_10_1016_j_cej_2021_129305
crossref_primary_10_1016_j_surfin_2022_102402
crossref_primary_10_1088_2053_1591_ac9117
crossref_primary_10_1016_j_envres_2025_121572
crossref_primary_10_1016_j_jcat_2024_115300
crossref_primary_10_1016_j_apcatb_2023_123165
crossref_primary_10_1016_j_cej_2025_163187
crossref_primary_10_1002_smll_202308088
crossref_primary_10_1016_j_cej_2023_144199
crossref_primary_10_1002_slct_202401038
crossref_primary_10_1002_adfm_202106982
crossref_primary_10_1016_j_rser_2023_113659
crossref_primary_10_1016_j_cclet_2025_110819
crossref_primary_10_1016_j_jssc_2022_123833
crossref_primary_10_1016_j_mseb_2022_116031
crossref_primary_10_1016_j_jechem_2023_08_038
crossref_primary_10_1016_j_nanoen_2021_106671
crossref_primary_10_1021_jacs_2c03489
crossref_primary_10_1002_aenm_202301047
crossref_primary_10_1016_j_chemosphere_2022_135320
crossref_primary_10_1016_j_cplett_2020_138010
crossref_primary_10_1002_smll_202206003
crossref_primary_10_1016_j_cej_2023_143898
crossref_primary_10_1016_j_cej_2023_147338
crossref_primary_10_1007_s10311_021_01385_7
crossref_primary_10_1016_j_jallcom_2023_170635
crossref_primary_10_1016_S1872_2067_23_64610_8
crossref_primary_10_1002_eom2_12047
crossref_primary_10_1016_j_apsusc_2025_164669
crossref_primary_10_1002_adom_202302029
crossref_primary_10_1002_anie_202209794
crossref_primary_10_1016_j_envres_2021_110742
crossref_primary_10_1016_j_cej_2021_128590
crossref_primary_10_1016_S1872_2067_25_64719_X
crossref_primary_10_1016_j_jallcom_2025_178844
crossref_primary_10_1016_j_chemosphere_2023_139678
crossref_primary_10_3390_nano15110844
crossref_primary_10_1016_j_jpowsour_2023_233956
Cites_doi 10.1021/ja210484t
10.1039/C5TA02757H
10.1039/C3EE43304H
10.1016/j.apcatb.2016.02.018
10.1016/j.apcatb.2016.01.053
10.1038/srep24918
10.1021/jp5035079
10.1002/ange.201904921
10.1038/nature06964
10.1002/chem.201502562
10.1039/C6EE00526H
10.1002/adfm.201404178
10.1021/ja2002132
10.1039/c3ta11390f
10.1039/C5CP06711A
10.1038/ncomms2401
10.1039/C4CP02972K
10.1039/C5NR07380D
10.1039/C6TA10964K
10.1021/cr1001645
10.1021/ja402956f
10.1039/c1cc10665a
10.1021/cr950234e
10.1002/anie.201904921
10.1021/ja4092903
ContentType Journal Article
Copyright 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.201916510
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef

ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 6595
ExternalDocumentID 31994300
10_1002_anie_201916510
ANIE201916510
Genre shortCommunication
Journal Article
GrantInformation_xml – fundername: Dutch Organization for Scientific Research
  funderid: 016.Veni.172.034
– fundername: Key Research Program of Frontier Sciences of Chinese Academy of Sciences
  funderid: QYZDY-SSW-JSC023
– fundername: Strategic Priority Research Program of Chinese Academy of Science
  funderid: XDA21010000
– fundername: National Natural Science Foundation of China
  funderid: 21633010, 21673230, 21761142018
– fundername: Liaoning Revitalization Talents Program
  funderid: XLYC1907078
– fundername: Liaoning Revitalization Talents Program
  grantid: XLYC1907078
– fundername: Dutch Organization for Scientific Research
  grantid: 016.Veni.172.034
– fundername: Key Research Program of Frontier Sciences of Chinese Academy of Sciences
  grantid: QYZDY-SSW-JSC023
– fundername: National Natural Science Foundation of China
  grantid: 21633010, 21673230, 21761142018
– fundername: Strategic Priority Research Program of Chinese Academy of Science
  grantid: XDA21010000
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
ABUFD
AEYWJ
AGHNM
AGYGG
CITATION
O8X
NPM
YIN
7TM
K9.
7X8
ID FETCH-LOGICAL-c4760-3a6c08119d0edaa2db3be190537fa477219703a61bde995b2d946bd1651f3bc73
IEDL.DBID DRFUL
ISICitedReferencesCount 342
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000516813900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 11:52:20 EDT 2025
Tue Oct 07 07:10:07 EDT 2025
Wed Feb 19 02:31:10 EST 2025
Tue Nov 18 20:55:38 EST 2025
Sat Nov 29 03:45:04 EST 2025
Wed Jan 22 16:36:12 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords facet-dependency
BiOBr
water splitting
photocatalysis
intrinsic reactivity
Language English
License 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4760-3a6c08119d0edaa2db3be190537fa477219703a61bde995b2d946bd1651f3bc73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8099-0934
PMID 31994300
PQID 2386758894
PQPubID 946352
PageCount 6
ParticipantIDs proquest_miscellaneous_2348231551
proquest_journals_2386758894
pubmed_primary_31994300
crossref_citationtrail_10_1002_anie_201916510
crossref_primary_10_1002_anie_201916510
wiley_primary_10_1002_anie_201916510_ANIE201916510
PublicationCentury 2000
PublicationDate April 16, 2020
PublicationDateYYYYMMDD 2020-04-16
PublicationDate_xml – month: 04
  year: 2020
  text: April 16, 2020
  day: 16
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2014; 118
2016; 6
2015; 25
2013; 4
2012; 134
2013; 1
2015; 3
2015; 21
2010; 110
2014; 16
2016; 188
1996; 96
2013; 135
2016; 187
2013; 130
2011; 47
2008; 453
2016; 18
2014; 7
2016; 8
2011; 133
2019 2019; 58 131
2016; 9
e_1_2_2_4_1
Ye L. (e_1_2_2_20_2) 2013; 130
e_1_2_2_25_1
e_1_2_2_5_1
e_1_2_2_24_1
e_1_2_2_6_1
e_1_2_2_23_1
e_1_2_2_22_1
e_1_2_2_21_1
e_1_2_2_1_1
e_1_2_2_2_1
e_1_2_2_3_1
e_1_2_2_7_2
e_1_2_2_8_2
e_1_2_2_9_1
e_1_2_2_28_2
e_1_2_2_27_2
e_1_2_2_26_2
e_1_2_2_8_3
e_1_2_2_13_2
e_1_2_2_12_2
e_1_2_2_11_2
e_1_2_2_10_2
e_1_2_2_19_2
e_1_2_2_18_2
e_1_2_2_17_2
e_1_2_2_16_2
e_1_2_2_15_2
e_1_2_2_14_2
References_xml – volume: 135
  start-page: 10411
  year: 2013
  end-page: 10417
  publication-title: J. Am. Chem. Soc.
– volume: 187
  start-page: 342
  year: 2016
  end-page: 349
  publication-title: Appl. Catal. B
– volume: 133
  start-page: 6490
  year: 2011
  end-page: 6492
  publication-title: J. Am. Chem. Soc.
– volume: 47
  start-page: 6763
  year: 2011
  end-page: 6783
  publication-title: Chem. Commun.
– volume: 453
  start-page: 638
  year: 2008
  end-page: 641
  publication-title: Nature
– volume: 25
  start-page: 2189
  year: 2015
  end-page: 2201
  publication-title: Adv. Funct. Mater.
– volume: 18
  start-page: 6113
  year: 2016
  end-page: 6121
  publication-title: Phys. Chem. Chem. Phys.
– volume: 58 131
  start-page: 9517 9617
  year: 2019 2019
  end-page: 9521 9621
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 7
  start-page: 1369
  year: 2014
  end-page: 1376
  publication-title: Energy Environ. Sci.
– volume: 1
  start-page: 8622
  year: 2013
  end-page: 8629
  publication-title: J. Mater. Chem. A
– volume: 3
  start-page: 15148
  year: 2015
  end-page: 15155
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 8117
  year: 2017
  end-page: 8124
  publication-title: J. Mater. Chem. A
– volume: 135
  start-page: 15750
  year: 2013
  end-page: 15753
  publication-title: J. Am. Chem. Soc.
– volume: 118
  start-page: 14662
  year: 2014
  end-page: 14669
  publication-title: J. Phys. Chem. C
– volume: 110
  start-page: 6503
  year: 2010
  end-page: 6570
  publication-title: Chem. Rev.
– volume: 96
  start-page: 1223
  year: 1996
  end-page: 1236
  publication-title: Chem. Rev.
– volume: 8
  start-page: 1986
  year: 2016
  end-page: 1993
  publication-title: Nanoscale
– volume: 130
  start-page: 1
  year: 2013
  end-page: 7
  publication-title: Appl. Catal. B
– volume: 134
  start-page: 4473
  year: 2012
  end-page: 4476
  publication-title: J. Am. Chem. Soc.
– volume: 16
  start-page: 20909
  year: 2014
  end-page: 20914
  publication-title: Phys. Chem. Chem. Phys.
– volume: 4
  start-page: 1432
  year: 2013
  publication-title: Nat. Commun.
– volume: 9
  start-page: 2463
  year: 2016
  end-page: 2469
  publication-title: Energy Environ. Sci.
– volume: 21
  start-page: 14337
  year: 2015
  end-page: 14341
  publication-title: Chemistry (Easton)
– volume: 188
  start-page: 283
  year: 2016
  end-page: 291
  publication-title: Appl. Catal. B
– volume: 6
  start-page: 24918
  year: 2016
  publication-title: Sci. Rep.
– ident: e_1_2_2_7_2
  doi: 10.1021/ja210484t
– ident: e_1_2_2_22_1
  doi: 10.1039/C5TA02757H
– ident: e_1_2_2_26_2
  doi: 10.1039/C3EE43304H
– ident: e_1_2_2_17_2
  doi: 10.1016/j.apcatb.2016.02.018
– ident: e_1_2_2_21_1
  doi: 10.1016/j.apcatb.2016.01.053
– ident: e_1_2_2_14_2
  doi: 10.1038/srep24918
– volume: 130
  start-page: 1
  year: 2013
  ident: e_1_2_2_20_2
  publication-title: Appl. Catal. B
– ident: e_1_2_2_23_1
  doi: 10.1021/jp5035079
– ident: e_1_2_2_8_3
  doi: 10.1002/ange.201904921
– ident: e_1_2_2_3_1
  doi: 10.1038/nature06964
– ident: e_1_2_2_27_2
  doi: 10.1002/chem.201502562
– ident: e_1_2_2_28_2
  doi: 10.1039/C6EE00526H
– ident: e_1_2_2_10_2
  doi: 10.1002/adfm.201404178
– ident: e_1_2_2_5_1
  doi: 10.1021/ja2002132
– ident: e_1_2_2_25_1
– ident: e_1_2_2_15_2
  doi: 10.1039/c3ta11390f
– ident: e_1_2_2_19_2
  doi: 10.1039/C5CP06711A
– ident: e_1_2_2_4_1
  doi: 10.1038/ncomms2401
– ident: e_1_2_2_18_2
  doi: 10.1039/C4CP02972K
– ident: e_1_2_2_12_2
  doi: 10.1039/C5NR07380D
– ident: e_1_2_2_16_2
  doi: 10.1039/C6TA10964K
– ident: e_1_2_2_1_1
  doi: 10.1021/cr1001645
– ident: e_1_2_2_13_2
  doi: 10.1021/ja402956f
– ident: e_1_2_2_2_1
  doi: 10.1039/c1cc10665a
– ident: e_1_2_2_6_1
– ident: e_1_2_2_24_1
  doi: 10.1021/cr950234e
– ident: e_1_2_2_8_2
  doi: 10.1002/anie.201904921
– ident: e_1_2_2_9_1
– ident: e_1_2_2_11_2
  doi: 10.1021/ja4092903
SSID ssj0028806
Score 2.696016
Snippet Surface atomic arrangement and coordination of photocatalysts highly exposed to different crystal facets significantly affect the photoreactivity. However,...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6590
SubjectTerms BiOBr
Chemical reduction
Exposure
facet-dependency
Hydrogen production
intrinsic reactivity
Nanosheets
Oxidation
Oxygen evolution reactions
Photocatalysis
Photochemicals
Reactivity
Splitting
Water splitting
Title Intrinsic Facet‐Dependent Reactivity of Well‐Defined BiOBr Nanosheets on Photocatalytic Water Splitting
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201916510
https://www.ncbi.nlm.nih.gov/pubmed/31994300
https://www.proquest.com/docview/2386758894
https://www.proquest.com/docview/2348231551
Volume 59
WOSCitedRecordID wos000516813900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1521-3773
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0028806
  issn: 1433-7851
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7STaG59J10kzSoUOjJxCvL9uqY19JA2YY8yN6MnmTJYgfbKfTWn9Df2F_SGdvrdiml0ByNZEmel7-RNDMA70OhVWi0CbhUEh0UadAOGh4o6ZwXPrTG2qbYRDqdjmczefZbFH-bH6LfcCPNaOw1KbjS1f6vpKEUgU1XsxDfxBRjtc5ReOMBrB-fT64-9U4XymcbYRRFARWiXyZuDPn-6girP6Y_0OYqeG3-PpNnD1_3c3jaIU920IrKC1hz-Ut4crQs-PYKbk_zupznyDY2UcbVP759P-5K5Nbs3FEEBBWaYIVn126xaJo9Lseyw_nnw5KhoS6qG-fqihU5O7sp6qLZHPqKE7JrxLQlu0DI21y0fg1Xk5PLo49BV4shMCJN0FSrxCB6GEkbOqsUtzrSDsFEHKVeCYToI4nkV8lIWydlrLmVItGWvtFH2qTRJgzyIndvgKXKe-GMNTiYSJRRI-OUT2OfGOXFOB5CsGREZrpE5VQvY5G1KZZ5RiTMehIO4UPf_65N0fHXnrtLvmadqlYZYhZymsZSDOFd34ykp5MTlbvinvoIOi5FdDmErVYe-qkiyq4chTg4b9j-jzVkB9PTk_5p-39e2oENTl4_ZZxMdmFQl_fuLTw2X-p5Ve7Bo3Q23uvU4CefiQpm
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5VLBJc2vLsAi1GQuIUkU2cZH1cHitWLAviIbhFjh9i1VVSZQNSb_0J_Y38ks4k2VQrVCFVHCM7tuMZTz6PPd8A7Ls8ka5KlOMJKXCDIhTaQeU5UhhjuXW10rpMNhGNRt2HB3FV3yakWJiKH6JxuNHKKO01LXBySB_-ZQ2lEGy6m4UAJ6AgqxZHXUIlb51c9--Gza4LFbQKMfJ9hzLRz5gbXe9wvoX5P9MruDmPXsvfT__TOwz8M3yssSfrVcqyAh9MugpLx7OUb2vwfZAW-ThFwbG-VKZ4-fX7pE6SW7BrQzEQlGqCZZbdm8mkLLY4Hs2OxpdHOUNTnU0fjSmmLEvZ1WNWZKV76Cd2yO4R1ebsBkFvedV6He76p7fHZ06djcFRPArRWMtQIX7oCO0aLaWnEz8xCCcCP7KSI0jvCLQeMuwk2ggRJJ4WPEw0faP1ExX5G7CQZqn5AiyS1nKjtMLGeCiV7CgjbRTYUEnLu0EbnJkkYlVTlVPGjElckSx7MU1h3ExhGw6a-j8qko5_1tyZCTauF-s0RtRC26au4G3Ya4px6unsRKYme6I6nA5MEV-2YbNSiKYrn_iVfRcb90q5vzGGuDcanDZPW__z0i4snd1eDOPhYHS-Dcse-QCIfzLcgYUifzJfYVE9F-Np_q1eDX8AR4gNbg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2hLQIuUD4KCy0YCYlT1GziJOtj223EimpZFar2Fjn2WF2xSqpsisSNn8Bv5Jcwk2RTrVCFhDhGdmzHY0-eP-Y9gHe-zLVvcuMFSitaoChDftAEnlaITjrfGmsbsYlkNhtfXKh5d5uQY2Fafoh-w41nRuOveYLjlXX7N6yhHILNd7MI4EQcZLUlWUlmAFuT0_TspF910QBtQ4zC0GMl-jVzox_sb5aw-Wf6A25uotfm95M--g8N34aHHfYUB-1geQx3sHgC94_Wkm9P4eu0qKtFQYYTqTZY__rxc9KJ5NbiFDkGgqUmROnEOS6XTbKj9lhxuPh0WAly1eXqErFeibIQ88uyLpvtoe9UoTgnVFuJzwR6m6vWz-AsPf5y9MHr1Bg8I5OYnLWODeGHkbI-Wq0Dm4c5EpyIwsRpSSB9pMh76HiUW1QqygOrZJxb_kYX5iYJd2BQlAW-AJFo5yQaa6gwGWujRwa1SyIXG-3kOBqCt7ZEZjqqclbMWGYtyXKQcRdmfRcO4X2f_6ol6bg15-7asFk3WVcZoRZeNo2VHMLbPpm6ns9OdIHlNeeRfGBK-HIIz9sB0VcVMr9y6FPhQWP3v7QhO5hNj_unl__y0hu4N5-k2cl09vEVPAh4C4DpJ-NdGNTVNe7BXfOtXqyq191k-A2_XAzp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intrinsic+Facet-Dependent+Reactivity+of+Well-Defined+BiOBr+Nanosheets+on+Photocatalytic+Water+Splitting&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Shi%2C+Ming&rft.au=Li%2C+Guanna&rft.au=Li%2C+Jianming&rft.au=Jin%2C+Xu&rft.date=2020-04-16&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=59&rft.issue=16&rft.spage=6590&rft_id=info:doi/10.1002%2Fanie.201916510&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon