Ammonium‐Ion Storage Using Electrodeposited Manganese Oxides
NH4+ ions as charge carriers show potential for aqueous rechargeable batteries. Studied here for the first time is the NH4+‐storage chemistry using electrodeposited manganese oxide (MnOx). MnOx experiences morphology and phase transformations during charge/discharge in dilute ammonium acetate (NH4Ac...
Uložené v:
| Vydané v: | Angewandte Chemie International Edition Ročník 60; číslo 11; s. 5718 - 5722 |
|---|---|
| Hlavní autori: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Germany
Wiley Subscription Services, Inc
08.03.2021
|
| Vydanie: | International ed. in English |
| Predmet: | |
| ISSN: | 1433-7851, 1521-3773, 1521-3773 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | NH4+ ions as charge carriers show potential for aqueous rechargeable batteries. Studied here for the first time is the NH4+‐storage chemistry using electrodeposited manganese oxide (MnOx). MnOx experiences morphology and phase transformations during charge/discharge in dilute ammonium acetate (NH4Ac) electrolyte. The NH4Ac concentration plays an important role in NH4+ storage for MnOx. The transformed MnOx with a layered structure delivers a high specific capacity (176 mAh g−1) at a current density of 0.5 A g−1, and exhibits good cycling stability over 10 000 cycles in 0.5 M NH4Ac, outperforming the state‐of‐the‐art NH4+ hosting materials. Experimental results suggest a solid‐solution behavior associated with NH4+ migration in layered MnOx. Spectroscopy studies and theoretical calculations show that the reversible NH4+ insertion/deinsertion is accompanied by hydrogen‐bond formation/breaking between NH4+ and the MnOx layers. These findings provide a new prototype (i.e., layered MnOx) for NH4+‐based energy storage and contributes to the fundamental understanding of the NH4+‐storage mechanism for metal oxides.
NH4+ storage using electrodeposited manganese oxides (MnOx) is studied for the first time. MnOx exhibits structural transformation during charge/discharge in dilute ammonium acetate (NH4Ac) electrolyte. Experimental and theoretical results suggest that the reversible NH4+ insertion/deinsertion in layered MnOx is associated with hydrogen‐bond formation/breaking between NH4+ and the MnOx layers. |
|---|---|
| AbstractList | NH
4
+
ions as charge carriers show potential for aqueous rechargeable batteries. Studied here for the first time is the NH
4
+
‐storage chemistry using electrodeposited manganese oxide (MnO
x
). MnO
x
experiences morphology and phase transformations during charge/discharge in dilute ammonium acetate (NH
4
Ac) electrolyte. The NH
4
Ac concentration plays an important role in NH
4
+
storage for MnO
x
. The transformed MnO
x
with a layered structure delivers a high specific capacity (176 mAh g
−1
) at a current density of 0.5 A g
−1
, and exhibits good cycling stability over 10 000 cycles in 0.5 M NH
4
Ac, outperforming the state‐of‐the‐art NH
4
+
hosting materials. Experimental results suggest a solid‐solution behavior associated with NH
4
+
migration in layered MnO
x
. Spectroscopy studies and theoretical calculations show that the reversible NH
4
+
insertion/deinsertion is accompanied by hydrogen‐bond formation/breaking between NH
4
+
and the MnO
x
layers. These findings provide a new prototype (i.e., layered MnO
x
) for NH
4
+
‐based energy storage and contributes to the fundamental understanding of the NH
4
+
‐storage mechanism for metal oxides. NH4+ ions as charge carriers show potential for aqueous rechargeable batteries. Studied here for the first time is the NH4+‐storage chemistry using electrodeposited manganese oxide (MnOx). MnOx experiences morphology and phase transformations during charge/discharge in dilute ammonium acetate (NH4Ac) electrolyte. The NH4Ac concentration plays an important role in NH4+ storage for MnOx. The transformed MnOx with a layered structure delivers a high specific capacity (176 mAh g−1) at a current density of 0.5 A g−1, and exhibits good cycling stability over 10 000 cycles in 0.5 M NH4Ac, outperforming the state‐of‐the‐art NH4+ hosting materials. Experimental results suggest a solid‐solution behavior associated with NH4+ migration in layered MnOx. Spectroscopy studies and theoretical calculations show that the reversible NH4+ insertion/deinsertion is accompanied by hydrogen‐bond formation/breaking between NH4+ and the MnOx layers. These findings provide a new prototype (i.e., layered MnOx) for NH4+‐based energy storage and contributes to the fundamental understanding of the NH4+‐storage mechanism for metal oxides. NH4+ storage using electrodeposited manganese oxides (MnOx) is studied for the first time. MnOx exhibits structural transformation during charge/discharge in dilute ammonium acetate (NH4Ac) electrolyte. Experimental and theoretical results suggest that the reversible NH4+ insertion/deinsertion in layered MnOx is associated with hydrogen‐bond formation/breaking between NH4+ and the MnOx layers. NH4 + ions as charge carriers show potential for aqueous rechargeable batteries. Studied here for the first time is the NH4 + -storage chemistry using electrodeposited manganese oxide (MnOx ). MnOx experiences morphology and phase transformations during charge/discharge in dilute ammonium acetate (NH4 Ac) electrolyte. The NH4 Ac concentration plays an important role in NH4 + storage for MnOx . The transformed MnOx with a layered structure delivers a high specific capacity (176 mAh g-1 ) at a current density of 0.5 A g-1 , and exhibits good cycling stability over 10 000 cycles in 0.5 M NH4 Ac, outperforming the state-of-the-art NH4 + hosting materials. Experimental results suggest a solid-solution behavior associated with NH4 + migration in layered MnOx . Spectroscopy studies and theoretical calculations show that the reversible NH4 + insertion/deinsertion is accompanied by hydrogen-bond formation/breaking between NH4 + and the MnOx layers. These findings provide a new prototype (i.e., layered MnOx ) for NH4 + -based energy storage and contributes to the fundamental understanding of the NH4 + -storage mechanism for metal oxides.NH4 + ions as charge carriers show potential for aqueous rechargeable batteries. Studied here for the first time is the NH4 + -storage chemistry using electrodeposited manganese oxide (MnOx ). MnOx experiences morphology and phase transformations during charge/discharge in dilute ammonium acetate (NH4 Ac) electrolyte. The NH4 Ac concentration plays an important role in NH4 + storage for MnOx . The transformed MnOx with a layered structure delivers a high specific capacity (176 mAh g-1 ) at a current density of 0.5 A g-1 , and exhibits good cycling stability over 10 000 cycles in 0.5 M NH4 Ac, outperforming the state-of-the-art NH4 + hosting materials. Experimental results suggest a solid-solution behavior associated with NH4 + migration in layered MnOx . Spectroscopy studies and theoretical calculations show that the reversible NH4 + insertion/deinsertion is accompanied by hydrogen-bond formation/breaking between NH4 + and the MnOx layers. These findings provide a new prototype (i.e., layered MnOx ) for NH4 + -based energy storage and contributes to the fundamental understanding of the NH4 + -storage mechanism for metal oxides. NH ions as charge carriers show potential for aqueous rechargeable batteries. Studied here for the first time is the NH -storage chemistry using electrodeposited manganese oxide (MnO ). MnO experiences morphology and phase transformations during charge/discharge in dilute ammonium acetate (NH Ac) electrolyte. The NH Ac concentration plays an important role in NH storage for MnO . The transformed MnO with a layered structure delivers a high specific capacity (176 mAh g ) at a current density of 0.5 A g , and exhibits good cycling stability over 10 000 cycles in 0.5 M NH Ac, outperforming the state-of-the-art NH hosting materials. Experimental results suggest a solid-solution behavior associated with NH migration in layered MnO . Spectroscopy studies and theoretical calculations show that the reversible NH insertion/deinsertion is accompanied by hydrogen-bond formation/breaking between NH and the MnO layers. These findings provide a new prototype (i.e., layered MnO ) for NH -based energy storage and contributes to the fundamental understanding of the NH -storage mechanism for metal oxides. NH4+ ions as charge carriers show potential for aqueous rechargeable batteries. Studied here for the first time is the NH4+‐storage chemistry using electrodeposited manganese oxide (MnOx). MnOx experiences morphology and phase transformations during charge/discharge in dilute ammonium acetate (NH4Ac) electrolyte. The NH4Ac concentration plays an important role in NH4+ storage for MnOx. The transformed MnOx with a layered structure delivers a high specific capacity (176 mAh g−1) at a current density of 0.5 A g−1, and exhibits good cycling stability over 10 000 cycles in 0.5 M NH4Ac, outperforming the state‐of‐the‐art NH4+ hosting materials. Experimental results suggest a solid‐solution behavior associated with NH4+ migration in layered MnOx. Spectroscopy studies and theoretical calculations show that the reversible NH4+ insertion/deinsertion is accompanied by hydrogen‐bond formation/breaking between NH4+ and the MnOx layers. These findings provide a new prototype (i.e., layered MnOx) for NH4+‐based energy storage and contributes to the fundamental understanding of the NH4+‐storage mechanism for metal oxides. |
| Author | Yang, Duo Pan, Qing Lv, Huizhen Qin, Zengming Zhang, Ming‐Yue Liu, Xiao‐Xia Sun, Xiaoqi Song, Yu |
| Author_xml | – sequence: 1 givenname: Yu orcidid: 0000-0003-1444-5492 surname: Song fullname: Song, Yu email: songyu@mail.neu.edu.cn organization: Northeastern University – sequence: 2 givenname: Qing surname: Pan fullname: Pan, Qing organization: Northeastern University – sequence: 3 givenname: Huizhen surname: Lv fullname: Lv, Huizhen organization: Northeastern University – sequence: 4 givenname: Duo surname: Yang fullname: Yang, Duo organization: Northeastern University – sequence: 5 givenname: Zengming surname: Qin fullname: Qin, Zengming organization: Northeastern University – sequence: 6 givenname: Ming‐Yue surname: Zhang fullname: Zhang, Ming‐Yue organization: Northeastern University – sequence: 7 givenname: Xiaoqi orcidid: 0000-0003-2324-7631 surname: Sun fullname: Sun, Xiaoqi organization: Northeastern University – sequence: 8 givenname: Xiao‐Xia orcidid: 0000-0002-0172-5826 surname: Liu fullname: Liu, Xiao‐Xia email: xxliu@mail.neu.edu.cn organization: Northeastern University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33320989$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkctKxDAUhoMo3rcupeDGTcfcmqYbYRhGHfCyUNchpqdDpE3GpEXd-Qg-o09iZLyAIK7OWXzf4ef8W2jVeQcI7RE8IhjTI-0sjCimmDBC8AraJAUlOStLtpp2zlheyoJsoK0Y7xMvJRbraIMxRnElq010PO467-zQvb28zrzLrnsf9Byy22jdPJu2YPrga1j4aHuoswvt5tpBhOzqydYQd9Bao9sIu59zG92eTG8mZ_n51elsMj7PDS8FzpkgjIIQhFSm4qzkFAtpMGmKWoiGCQ41ZZXEZSOxwXcpmtFV2TBegNSGc7aNDpd3F8E_DBB71dlooG1TGD9ERXmJBS2KgiX04Bd674fgUrpEVZyIQhKaqP1ParjroFaLYDsdntXXZxLAl4AJPsYAjTK21731rg_atopg9VGA-ihAfReQtNEv7evyn0K1FB5tC8__0Gp8OZv-uO9cbpXp |
| CitedBy_id | crossref_primary_10_1016_j_isci_2025_113406 crossref_primary_10_1016_j_jpowsour_2025_237775 crossref_primary_10_1002_aenm_202404732 crossref_primary_10_1002_anie_202503435 crossref_primary_10_1002_adfm_202203819 crossref_primary_10_1002_batt_202400426 crossref_primary_10_1016_j_jpowsour_2023_232994 crossref_primary_10_1016_j_cej_2025_162849 crossref_primary_10_1016_j_jpowsour_2024_235986 crossref_primary_10_1016_j_jpowsour_2025_236315 crossref_primary_10_1016_j_ensm_2025_104539 crossref_primary_10_1016_j_jcis_2024_05_152 crossref_primary_10_1016_j_cej_2021_131548 crossref_primary_10_1016_j_gee_2024_06_004 crossref_primary_10_1039_D4RA06005A crossref_primary_10_1016_j_cej_2022_140308 crossref_primary_10_1002_ange_202212941 crossref_primary_10_1016_j_cej_2023_143197 crossref_primary_10_1016_j_jechem_2025_08_040 crossref_primary_10_1016_j_surfin_2025_106456 crossref_primary_10_1002_sus2_124 crossref_primary_10_1073_pnas_2414112122 crossref_primary_10_1002_anie_202207711 crossref_primary_10_1021_jacs_1c09290 crossref_primary_10_1039_D3QI02424E crossref_primary_10_1002_cssc_202300207 crossref_primary_10_3390_en15228650 crossref_primary_10_1016_j_cej_2021_133064 crossref_primary_10_1002_aenm_202400702 crossref_primary_10_1039_D5CC03820K crossref_primary_10_1002_anie_202316082 crossref_primary_10_1016_j_cej_2025_166064 crossref_primary_10_1002_batt_202200432 crossref_primary_10_1016_j_est_2023_108357 crossref_primary_10_1002_adfm_202310294 crossref_primary_10_1016_j_ccr_2024_215833 crossref_primary_10_1002_cssc_202400526 crossref_primary_10_1016_j_cej_2022_139574 crossref_primary_10_1016_j_cej_2022_139575 crossref_primary_10_1002_ange_202216290 crossref_primary_10_1016_j_est_2025_116677 crossref_primary_10_1007_s12274_023_5468_6 crossref_primary_10_1016_j_cclet_2023_108449 crossref_primary_10_1016_j_cej_2022_136747 crossref_primary_10_1016_j_jcis_2024_04_210 crossref_primary_10_1002_smll_202207771 crossref_primary_10_1002_tcr_202200092 crossref_primary_10_1002_adfm_202405659 crossref_primary_10_1002_er_7719 crossref_primary_10_1002_ange_202301629 crossref_primary_10_1016_j_chemphys_2025_112861 crossref_primary_10_1002_bte2_20220065 crossref_primary_10_1016_j_ensm_2025_104584 crossref_primary_10_1002_aenm_202404254 crossref_primary_10_1002_adfm_202204026 crossref_primary_10_1002_smtd_202200560 crossref_primary_10_1002_adma_202305575 crossref_primary_10_1016_j_cej_2023_144486 crossref_primary_10_1002_ange_202503435 crossref_primary_10_1016_j_electacta_2022_141097 crossref_primary_10_1002_aenm_202202908 crossref_primary_10_1002_aenm_202402863 crossref_primary_10_1002_adfm_202100477 crossref_primary_10_1002_ange_202310577 crossref_primary_10_1093_nsr_nwae433 crossref_primary_10_1002_adma_202211603 crossref_primary_10_1016_j_joule_2023_10_010 crossref_primary_10_1021_acs_est_5c03717 crossref_primary_10_1002_adma_202308628 crossref_primary_10_1002_anie_202310577 crossref_primary_10_1039_D3EE02030D crossref_primary_10_1002_ange_202115046 crossref_primary_10_1016_j_cej_2025_165853 crossref_primary_10_1016_j_est_2025_118001 crossref_primary_10_1002_adma_202303732 crossref_primary_10_1088_1361_6528_ad690b crossref_primary_10_1002_adma_202408396 crossref_primary_10_1002_ange_202315257 crossref_primary_10_1002_adfm_202411430 crossref_primary_10_1016_j_jcis_2024_07_158 crossref_primary_10_1016_j_cclet_2022_07_052 crossref_primary_10_1039_D3RA00284E crossref_primary_10_1002_anie_202213757 crossref_primary_10_1016_j_jmst_2023_02_018 crossref_primary_10_1002_adfm_202506723 crossref_primary_10_1039_D5CS00785B crossref_primary_10_1002_anie_202115046 crossref_primary_10_1016_j_est_2023_106923 crossref_primary_10_1007_s10854_021_07096_7 crossref_primary_10_1002_adfm_202212440 crossref_primary_10_1016_j_jechem_2022_11_050 crossref_primary_10_1007_s12274_022_5021_z crossref_primary_10_1016_j_est_2025_117965 crossref_primary_10_1016_j_cclet_2024_109920 crossref_primary_10_1016_j_matlet_2022_132756 crossref_primary_10_1016_j_ceramint_2022_05_304 crossref_primary_10_1002_adma_202311914 crossref_primary_10_1039_D5QI00083A crossref_primary_10_1002_admi_202200641 crossref_primary_10_1016_j_cej_2023_147169 crossref_primary_10_1002_smll_202308741 crossref_primary_10_1016_j_jtice_2023_104845 crossref_primary_10_3390_ma14092325 crossref_primary_10_1016_j_jcis_2025_01_267 crossref_primary_10_1002_aenm_202201840 crossref_primary_10_1002_anie_202216290 crossref_primary_10_1039_D2QI00265E crossref_primary_10_1002_adfm_202501894 crossref_primary_10_1016_j_jpowsour_2021_230853 crossref_primary_10_1016_j_nanoen_2025_110764 crossref_primary_10_1002_adma_202409354 crossref_primary_10_1002_smll_202304130 crossref_primary_10_1016_j_cej_2023_144204 crossref_primary_10_1002_smll_202402811 crossref_primary_10_1039_D2RA06796J crossref_primary_10_1002_anie_202315257 crossref_primary_10_1002_smll_202408467 crossref_primary_10_1039_D5SC01210D crossref_primary_10_1007_s12598_024_02818_2 crossref_primary_10_1016_j_gee_2023_02_001 crossref_primary_10_1002_ange_202316082 crossref_primary_10_1002_anie_202301629 crossref_primary_10_1002_aenm_202203122 crossref_primary_10_1002_ange_202213757 crossref_primary_10_1002_adma_202415476 crossref_primary_10_1016_j_electacta_2025_146928 crossref_primary_10_1016_j_cej_2024_157804 crossref_primary_10_1016_j_seppur_2023_125204 crossref_primary_10_1016_j_mattod_2023_12_010 crossref_primary_10_1002_aenm_202300224 crossref_primary_10_3390_polym14194149 crossref_primary_10_1002_anie_202303480 crossref_primary_10_1016_j_apsusc_2024_160918 crossref_primary_10_1007_s11705_022_2198_3 crossref_primary_10_1016_j_ceramint_2022_06_084 crossref_primary_10_1002_advs_202206836 crossref_primary_10_1007_s12274_021_3777_1 crossref_primary_10_1016_j_est_2024_115209 crossref_primary_10_1016_j_cej_2024_149160 crossref_primary_10_1016_j_rser_2025_116093 crossref_primary_10_1002_adma_202419124 crossref_primary_10_1016_j_colsurfa_2024_135496 crossref_primary_10_1039_D1QM01403J crossref_primary_10_1039_D5MH00582E crossref_primary_10_1021_acsanm_5c00271 crossref_primary_10_1016_j_watres_2024_121789 crossref_primary_10_1002_batt_202300546 crossref_primary_10_1002_ange_202303480 crossref_primary_10_1002_eom2_12249 crossref_primary_10_1002_smll_202206727 crossref_primary_10_1016_j_jcis_2025_01_173 crossref_primary_10_1016_j_seppur_2024_128077 crossref_primary_10_1016_j_est_2024_114246 crossref_primary_10_1021_acsenergylett_5c01804 crossref_primary_10_1002_er_7680 crossref_primary_10_1002_adfm_202301734 crossref_primary_10_1002_adma_202415545 crossref_primary_10_1016_j_jallcom_2022_163833 crossref_primary_10_1016_j_cej_2022_137681 crossref_primary_10_1039_D5TA03752B crossref_primary_10_1002_anie_202410848 crossref_primary_10_1016_j_apenergy_2023_122067 crossref_primary_10_1002_adfm_202310437 crossref_primary_10_1016_j_jcis_2022_11_115 crossref_primary_10_1002_adfm_202214920 crossref_primary_10_1002_sstr_202300329 crossref_primary_10_1016_j_asems_2022_100013 crossref_primary_10_1016_j_cej_2024_151119 crossref_primary_10_1002_adma_202415676 crossref_primary_10_1016_j_cej_2024_150027 crossref_primary_10_1016_j_est_2024_110623 crossref_primary_10_1016_S1003_6326_23_66346_0 crossref_primary_10_1002_ange_202207711 crossref_primary_10_1002_adfm_202112179 crossref_primary_10_1002_er_7544 crossref_primary_10_1039_D4NR02149E crossref_primary_10_1016_j_jcis_2021_08_036 crossref_primary_10_1016_j_ceramint_2022_03_315 crossref_primary_10_1063_5_0221284 crossref_primary_10_1002_ange_202410848 crossref_primary_10_1002_aenm_202201074 crossref_primary_10_1002_sstr_202300201 crossref_primary_10_1039_D4EE03303E crossref_primary_10_3390_ma17081858 crossref_primary_10_1002_anie_202212941 crossref_primary_10_1002_adma_202107992 crossref_primary_10_1016_j_cej_2025_166435 crossref_primary_10_1016_j_cej_2022_139090 crossref_primary_10_1002_smll_202310835 crossref_primary_10_1016_j_ccr_2022_214867 crossref_primary_10_1016_j_jmst_2022_03_028 crossref_primary_10_1002_admt_202300321 crossref_primary_10_1016_j_cej_2022_138681 crossref_primary_10_1039_D4QI01910E crossref_primary_10_1016_j_est_2024_112023 crossref_primary_10_1002_smll_202107115 crossref_primary_10_1002_smll_202410005 crossref_primary_10_1016_j_electacta_2022_141717 crossref_primary_10_1007_s11581_023_04920_4 crossref_primary_10_1073_pnas_2214545119 |
| Cites_doi | 10.1149/2.060202jes 10.1016/j.apsusc.2015.12.159 10.1002/ange.201808886 10.1016/j.chempr.2019.03.009 10.1021/acsenergylett.7b00405 10.1021/acsaem.9b01469 10.1002/adma.201907802 10.1021/jp9717554 10.1021/acs.chemrev.0c00170 10.1016/j.ssi.2006.09.006 10.1002/cssc.201901622 10.2138/am-1997-9-1012 10.1016/j.surfcoat.2009.01.038 10.1002/anie.201808886 10.1039/C3TA14203E 10.1126/sciadv.aba4098 10.1021/acsaem.8b00789 10.1002/ange.201707473 10.1039/C8CC04713H 10.1126/science.1241488 10.1002/anie.201707473 10.1021/ic101103g 10.1016/j.nanoen.2019.104369 |
| ContentType | Journal Article |
| Copyright | 2020 Wiley‐VCH GmbH 2020 Wiley-VCH GmbH. 2021 Wiley‐VCH GmbH |
| Copyright_xml | – notice: 2020 Wiley‐VCH GmbH – notice: 2020 Wiley-VCH GmbH. – notice: 2021 Wiley‐VCH GmbH |
| DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
| DOI | 10.1002/anie.202013110 |
| DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic PubMed ProQuest Health & Medical Complete (Alumni) |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1521-3773 |
| Edition | International ed. in English |
| EndPage | 5722 |
| ExternalDocumentID | 33320989 10_1002_anie_202013110 ANIE202013110 |
| Genre | shortCommunication Journal Article |
| GrantInformation_xml | – fundername: China Postdoctoral Science Foundation funderid: 2019T120214 – fundername: LiaoNing Revitalization Talents Program funderid: XLYC1907069 – fundername: the 111 Project funderid: B16009 – fundername: National Natural Science Foundation of China funderid: 51804066; 21673035; 51974070 – fundername: LiaoNing Revitalization Talents Program grantid: XLYC1907069 – fundername: National Natural Science Foundation of China grantid: 21673035 – fundername: the 111 Project grantid: B16009 – fundername: National Natural Science Foundation of China grantid: 51804066 – fundername: National Natural Science Foundation of China grantid: 51974070 – fundername: China Postdoctoral Science Foundation grantid: 2019T120214 |
| GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI ABUFD AEYWJ AGHNM AGYGG CITATION O8X NPM 7TM K9. 7X8 |
| ID | FETCH-LOGICAL-c4760-36132e66119c943742068c01f5d66f364ed239807f80c0b098ca97f345e8ac443 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 263 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000612496200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1433-7851 1521-3773 |
| IngestDate | Fri Jul 11 16:55:54 EDT 2025 Sat Nov 29 14:55:58 EST 2025 Thu Apr 03 07:08:20 EDT 2025 Sat Nov 29 02:36:10 EST 2025 Tue Nov 18 22:33:00 EST 2025 Wed Jan 22 16:30:01 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | hydrogen bonding phase transformations batteries energy storage manganese |
| Language | English |
| License | 2020 Wiley-VCH GmbH. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4760-36132e66119c943742068c01f5d66f364ed239807f80c0b098ca97f345e8ac443 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-0172-5826 0000-0003-1444-5492 0000-0003-2324-7631 |
| PMID | 33320989 |
| PQID | 2494165812 |
| PQPubID | 946352 |
| PageCount | 5 |
| ParticipantIDs | proquest_miscellaneous_2470625553 proquest_journals_2494165812 pubmed_primary_33320989 crossref_citationtrail_10_1002_anie_202013110 crossref_primary_10_1002_anie_202013110 wiley_primary_10_1002_anie_202013110_ANIE202013110 |
| PublicationCentury | 2000 |
| PublicationDate | March 8, 2021 |
| PublicationDateYYYYMMDD | 2021-03-08 |
| PublicationDate_xml | – month: 03 year: 2021 text: March 8, 2021 day: 08 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim |
| PublicationTitle | Angewandte Chemie International Edition |
| PublicationTitleAlternate | Angew Chem Int Ed Engl |
| PublicationYear | 2021 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2011; 159 2020; 6 2010; 49 2017; 2 1997; 82 2019; 5 2014; 2 2019; 2 2018; 1 2020; 120 2018 2018; 57 130 2019; 12 1997; 101 2016; 366 2020; 68 2013; 341 2017 2017; 56 129 2020; 32 2018; 54 2009; 203 2006; 177 e_1_2_2_3_2 e_1_2_2_4_1 e_1_2_2_24_2 e_1_2_2_3_3 e_1_2_2_4_2 e_1_2_2_5_1 e_1_2_2_23_2 e_1_2_2_6_1 e_1_2_2_7_1 e_1_2_2_21_2 e_1_2_2_22_1 e_1_2_2_20_2 e_1_2_2_1_1 e_1_2_2_2_2 e_1_2_2_9_1 e_1_2_2_8_1 e_1_2_2_14_1 e_1_2_2_13_1 e_1_2_2_12_1 e_1_2_2_11_1 e_1_2_2_10_1 e_1_2_2_19_1 e_1_2_2_18_1 e_1_2_2_17_1 e_1_2_2_16_1 e_1_2_2_15_1 |
| References_xml | – volume: 49 start-page: 9400 year: 2010 end-page: 9408 publication-title: Inorg. Chem. – volume: 57 130 start-page: 16359 16597 year: 2018 2018 end-page: 16363 16601 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 159 start-page: A98 year: 2011 end-page: A103 publication-title: J. Electrochem. Soc. – volume: 56 129 start-page: 13026 13206 year: 2017 2017 end-page: 13030 13210 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 177 start-page: 3223 year: 2006 end-page: 3231 publication-title: Solid State Ionics – volume: 68 year: 2020 publication-title: Nano Energy – volume: 2 start-page: 1752 year: 2017 end-page: 1759 publication-title: ACS Energy Lett. – volume: 2 start-page: 4843 year: 2014 end-page: 4851 publication-title: J. Mater. Chem. A – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 6 year: 2020 publication-title: Sci. Adv. – volume: 12 start-page: 3732 year: 2019 end-page: 3736 publication-title: ChemSusChem – volume: 101 start-page: 10128 year: 1997 end-page: 10135 publication-title: J. Phys. Chem. B – volume: 2 start-page: 6984 year: 2019 end-page: 6989 publication-title: ACS Appl. Energy Mater. – volume: 366 start-page: 475 year: 2016 end-page: 485 publication-title: Appl. Surf. Sci. – volume: 54 start-page: 9805 year: 2018 end-page: 9808 publication-title: Chem. Commun. – volume: 120 start-page: 6738 year: 2020 end-page: 6782 publication-title: Chem. Rev. – volume: 341 start-page: 1502 year: 2013 end-page: 1505 publication-title: Science – volume: 82 start-page: 946 year: 1997 end-page: 961 publication-title: Am. Mineral. – volume: 203 start-page: 2013 year: 2009 end-page: 2016 publication-title: Surf. Coat. Technol. – volume: 1 start-page: 3077 year: 2018 end-page: 3083 publication-title: ACS Appl. Energy Mater. – volume: 5 start-page: 1537 year: 2019 end-page: 1551 publication-title: Chem – ident: e_1_2_2_5_1 doi: 10.1149/2.060202jes – ident: e_1_2_2_14_1 doi: 10.1016/j.apsusc.2015.12.159 – ident: e_1_2_2_1_1 – ident: e_1_2_2_3_3 doi: 10.1002/ange.201808886 – ident: e_1_2_2_12_1 doi: 10.1016/j.chempr.2019.03.009 – ident: e_1_2_2_15_1 doi: 10.1021/acsenergylett.7b00405 – ident: e_1_2_2_8_1 doi: 10.1021/acsaem.9b01469 – ident: e_1_2_2_13_1 doi: 10.1002/adma.201907802 – ident: e_1_2_2_21_2 doi: 10.1021/jp9717554 – ident: e_1_2_2_18_1 doi: 10.1021/acs.chemrev.0c00170 – ident: e_1_2_2_24_2 doi: 10.1016/j.ssi.2006.09.006 – ident: e_1_2_2_7_1 doi: 10.1002/cssc.201901622 – ident: e_1_2_2_16_1 doi: 10.2138/am-1997-9-1012 – ident: e_1_2_2_20_2 doi: 10.1016/j.surfcoat.2009.01.038 – ident: e_1_2_2_3_2 doi: 10.1002/anie.201808886 – ident: e_1_2_2_17_1 doi: 10.1039/C3TA14203E – ident: e_1_2_2_2_2 doi: 10.1126/sciadv.aba4098 – ident: e_1_2_2_9_1 doi: 10.1021/acsaem.8b00789 – ident: e_1_2_2_4_2 doi: 10.1002/ange.201707473 – ident: e_1_2_2_11_1 doi: 10.1039/C8CC04713H – ident: e_1_2_2_22_1 – ident: e_1_2_2_6_1 doi: 10.1126/science.1241488 – ident: e_1_2_2_4_1 doi: 10.1002/anie.201707473 – ident: e_1_2_2_19_1 – ident: e_1_2_2_23_2 doi: 10.1021/ic101103g – ident: e_1_2_2_10_1 doi: 10.1016/j.nanoen.2019.104369 |
| SSID | ssj0028806 |
| Score | 2.6949542 |
| Snippet | NH4+ ions as charge carriers show potential for aqueous rechargeable batteries. Studied here for the first time is the NH4+‐storage chemistry using... NH 4 + ions as charge carriers show potential for aqueous rechargeable batteries. Studied here for the first time is the NH 4 + ‐storage chemistry using... NH ions as charge carriers show potential for aqueous rechargeable batteries. Studied here for the first time is the NH -storage chemistry using... NH4 + ions as charge carriers show potential for aqueous rechargeable batteries. Studied here for the first time is the NH4 + -storage chemistry using... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 5718 |
| SubjectTerms | Acetic acid Ammonium Ammonium acetate Batteries Current carriers Energy storage hydrogen bonding Ion storage Manganese Manganese oxides Metal oxides Morphology phase transformations Phase transitions Rechargeable batteries Specific capacity Spectroscopy Storage batteries |
| Title | Ammonium‐Ion Storage Using Electrodeposited Manganese Oxides |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202013110 https://www.ncbi.nlm.nih.gov/pubmed/33320989 https://www.proquest.com/docview/2494165812 https://www.proquest.com/docview/2470625553 |
| Volume | 60 |
| WOSCitedRecordID | wos000612496200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1521-3773 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0028806 issn: 1433-7851 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60FfTi-1GtJYLgKXSb3SSbi1BqiwWtohZ6C8k-pKCpWCse_Qn-Rn-Js0kaLSKCHkM2yWbek8x8A3AYm7DYl7EthJQ2iyjqnGDa1roh0Zs4MScyHTbh93p8MAguv3TxZ_gQxQc3oxmpvTYKHsXj-idoqOnAxvzOSQFjMGkvm84qTL_KJ1ed_lmRdKF8Zh1GlNpmEP0UuJE49dk7zDqmb9HmbPCaep_Oyv_3vQrLeeRpNTNRWYM5lazDYms68G0DjptGJoeT-_fXt-4osa4xHUdrY6VVBVY7m5cjVVrmpaR1HiW3kZlfaV28DKUab0K_075pndr5eAVbMN9D64ue3FHonxuBCBjFHJl4XJCGdqXnaeoxJQ04IPE1J4IgU7mIAl9T5ioeCcboFpSSUaJ2wIopCdBQetzw19VuzBqBkpHwuOYKY8wK2FPahiLHHjcjMO7CDDXZCQ1VwoIqFTgq1j9kqBs_rqxOWRXm2jcOMaXEONPF2KUCB8VppKb5GYKUGU3MGp9g7ue6tALbGYuLR1FKHXxd3LaTcvKXPYTNXrddHO3-5aI9WHJMsYwpbuNVKD09TtQ-LIjnp-H4sQbz_oDXcsn-ALdb9Z4 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9tAEB6CXXAvTfp2k7YKFHoSXmlX0upSMI6NTR03tDb4JqR9FEMiBz9Cj_kJ-Y35JZ2RZAVTSqHkKLSSduc9q9lvAD5lFBZHOnOV0toVKUedU8K61noavYmfSaaLZhPRZCLn8_iiqiakszAlPkS94UaaUdhrUnDakO48oIbSEWxM8PwCMQaz9qYIeSQb0Dz7PpiN66wLBbQ8YsS5S53od8iNzO_sv2HfM_0Rbu5Hr4X7GRw-wsSP4FkVezrdUliew4HJX0Crt2v59hK-dEkqF9ur-9u70TJ3fmBCjvbGKeoKnH7ZMUebotDLaOc8zX-m1MHS-fZroc36FcwG_Wlv6FYNFlwlohDtL_py36CH9mIVC45ZMgulYp4NdBhaHgqjCR6QRVYyxZCtUqVxZLkIjEyVEPw1NPJlbt6Ck3EWo6kMJXE4sEEmvNjoVIXSSoNRZhvcHXETVaGPUxOMy6TETfYTokpSU6UNn-vx1yXuxl9Hnux4lVT6t04wqcRIM8DopQ2n9W2kJv0OQcostzQmYpj9BQFvw5uSx_WnOOc-Lhen7Res_Mccku5k1K-v3v3PQx-hNZyej5PxaPL1GJ76VDpDpW7yBBqb1da8hyfqZrNYrz5UAv4btAL4pg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ZS8NAEB6kivrifdQzguBTcJvdTTYvQumBRa3iAb6FZA8paCrWio_-BH-jv8TZJI0UEUF8DNkkm7knmfkGYD-xYXGgEldKpVwWU9Q5yYxrTE2hN_ESQVQ2bCLodsXtbXhRVBPaXpgcH6L84GY1I7PXVsH1ozKHX6ihtgUbEzwvQ4zBrH2S8ZCzCkw2L9s3p2XWhQKatxhR6tpJ9CPkRuIdjt9h3DN9CzfHo9fM_bTn_2HjCzBXxJ5OPReWRZjQ6RLMNEYj35bhqG6lsjd8-Hh77_RT5woTcrQ3TlZX4LTyiTlKZ4VeWjlncXoX2wmWzvlrT-nBCty0W9eNY7cYsOBKFvhof9GXexo9dC2UIaOYJRNfSFIzXPm-oT7TysIDksAIIgmyVcg4DAxlXItYMkZXoZL2U70OTkJJiKbSF5bD3PCE1UKtYukLIzRGmVVwR8SNZIE-bodg3Ec5brIXWapEJVWqcFCuf8xxN35cuTXiVVTo3yDCpBIjTY7RSxX2ytNITfs7BCnTH9o1AcHsj3NahbWcx-WjKKUevi5u28tY-cseonq30yqPNv5y0S5MXzTb0Wmne7IJs56tnLGVbmILKs9PQ70NU_LluTd42ink-xNH1Pgh |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ammonium%E2%80%90Ion+Storage+Using+Electrodeposited+Manganese+Oxides&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Song%2C+Yu&rft.au=Pan%2C+Qing&rft.au=Lv%2C+Huizhen&rft.au=Yang%2C+Duo&rft.date=2021-03-08&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=60&rft.issue=11&rft.spage=5718&rft.epage=5722&rft_id=info:doi/10.1002%2Fanie.202013110&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_202013110 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |