Ammonium‐Ion Storage Using Electrodeposited Manganese Oxides

NH4+ ions as charge carriers show potential for aqueous rechargeable batteries. Studied here for the first time is the NH4+‐storage chemistry using electrodeposited manganese oxide (MnOx). MnOx experiences morphology and phase transformations during charge/discharge in dilute ammonium acetate (NH4Ac...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Angewandte Chemie International Edition Ročník 60; číslo 11; s. 5718 - 5722
Hlavní autori: Song, Yu, Pan, Qing, Lv, Huizhen, Yang, Duo, Qin, Zengming, Zhang, Ming‐Yue, Sun, Xiaoqi, Liu, Xiao‐Xia
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Germany Wiley Subscription Services, Inc 08.03.2021
Vydanie:International ed. in English
Predmet:
ISSN:1433-7851, 1521-3773, 1521-3773
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract NH4+ ions as charge carriers show potential for aqueous rechargeable batteries. Studied here for the first time is the NH4+‐storage chemistry using electrodeposited manganese oxide (MnOx). MnOx experiences morphology and phase transformations during charge/discharge in dilute ammonium acetate (NH4Ac) electrolyte. The NH4Ac concentration plays an important role in NH4+ storage for MnOx. The transformed MnOx with a layered structure delivers a high specific capacity (176 mAh g−1) at a current density of 0.5 A g−1, and exhibits good cycling stability over 10 000 cycles in 0.5 M NH4Ac, outperforming the state‐of‐the‐art NH4+ hosting materials. Experimental results suggest a solid‐solution behavior associated with NH4+ migration in layered MnOx. Spectroscopy studies and theoretical calculations show that the reversible NH4+ insertion/deinsertion is accompanied by hydrogen‐bond formation/breaking between NH4+ and the MnOx layers. These findings provide a new prototype (i.e., layered MnOx) for NH4+‐based energy storage and contributes to the fundamental understanding of the NH4+‐storage mechanism for metal oxides. NH4+ storage using electrodeposited manganese oxides (MnOx) is studied for the first time. MnOx exhibits structural transformation during charge/discharge in dilute ammonium acetate (NH4Ac) electrolyte. Experimental and theoretical results suggest that the reversible NH4+ insertion/deinsertion in layered MnOx is associated with hydrogen‐bond formation/breaking between NH4+ and the MnOx layers.
AbstractList NH 4 + ions as charge carriers show potential for aqueous rechargeable batteries. Studied here for the first time is the NH 4 + ‐storage chemistry using electrodeposited manganese oxide (MnO x ). MnO x experiences morphology and phase transformations during charge/discharge in dilute ammonium acetate (NH 4 Ac) electrolyte. The NH 4 Ac concentration plays an important role in NH 4 + storage for MnO x . The transformed MnO x with a layered structure delivers a high specific capacity (176 mAh g −1 ) at a current density of 0.5 A g −1 , and exhibits good cycling stability over 10 000 cycles in 0.5 M NH 4 Ac, outperforming the state‐of‐the‐art NH 4 + hosting materials. Experimental results suggest a solid‐solution behavior associated with NH 4 + migration in layered MnO x . Spectroscopy studies and theoretical calculations show that the reversible NH 4 + insertion/deinsertion is accompanied by hydrogen‐bond formation/breaking between NH 4 + and the MnO x layers. These findings provide a new prototype (i.e., layered MnO x ) for NH 4 + ‐based energy storage and contributes to the fundamental understanding of the NH 4 + ‐storage mechanism for metal oxides.
NH4+ ions as charge carriers show potential for aqueous rechargeable batteries. Studied here for the first time is the NH4+‐storage chemistry using electrodeposited manganese oxide (MnOx). MnOx experiences morphology and phase transformations during charge/discharge in dilute ammonium acetate (NH4Ac) electrolyte. The NH4Ac concentration plays an important role in NH4+ storage for MnOx. The transformed MnOx with a layered structure delivers a high specific capacity (176 mAh g−1) at a current density of 0.5 A g−1, and exhibits good cycling stability over 10 000 cycles in 0.5 M NH4Ac, outperforming the state‐of‐the‐art NH4+ hosting materials. Experimental results suggest a solid‐solution behavior associated with NH4+ migration in layered MnOx. Spectroscopy studies and theoretical calculations show that the reversible NH4+ insertion/deinsertion is accompanied by hydrogen‐bond formation/breaking between NH4+ and the MnOx layers. These findings provide a new prototype (i.e., layered MnOx) for NH4+‐based energy storage and contributes to the fundamental understanding of the NH4+‐storage mechanism for metal oxides. NH4+ storage using electrodeposited manganese oxides (MnOx) is studied for the first time. MnOx exhibits structural transformation during charge/discharge in dilute ammonium acetate (NH4Ac) electrolyte. Experimental and theoretical results suggest that the reversible NH4+ insertion/deinsertion in layered MnOx is associated with hydrogen‐bond formation/breaking between NH4+ and the MnOx layers.
NH4 + ions as charge carriers show potential for aqueous rechargeable batteries. Studied here for the first time is the NH4 + -storage chemistry using electrodeposited manganese oxide (MnOx ). MnOx experiences morphology and phase transformations during charge/discharge in dilute ammonium acetate (NH4 Ac) electrolyte. The NH4 Ac concentration plays an important role in NH4 + storage for MnOx . The transformed MnOx with a layered structure delivers a high specific capacity (176 mAh g-1 ) at a current density of 0.5 A g-1 , and exhibits good cycling stability over 10 000 cycles in 0.5 M NH4 Ac, outperforming the state-of-the-art NH4 + hosting materials. Experimental results suggest a solid-solution behavior associated with NH4 + migration in layered MnOx . Spectroscopy studies and theoretical calculations show that the reversible NH4 + insertion/deinsertion is accompanied by hydrogen-bond formation/breaking between NH4 + and the MnOx layers. These findings provide a new prototype (i.e., layered MnOx ) for NH4 + -based energy storage and contributes to the fundamental understanding of the NH4 + -storage mechanism for metal oxides.NH4 + ions as charge carriers show potential for aqueous rechargeable batteries. Studied here for the first time is the NH4 + -storage chemistry using electrodeposited manganese oxide (MnOx ). MnOx experiences morphology and phase transformations during charge/discharge in dilute ammonium acetate (NH4 Ac) electrolyte. The NH4 Ac concentration plays an important role in NH4 + storage for MnOx . The transformed MnOx with a layered structure delivers a high specific capacity (176 mAh g-1 ) at a current density of 0.5 A g-1 , and exhibits good cycling stability over 10 000 cycles in 0.5 M NH4 Ac, outperforming the state-of-the-art NH4 + hosting materials. Experimental results suggest a solid-solution behavior associated with NH4 + migration in layered MnOx . Spectroscopy studies and theoretical calculations show that the reversible NH4 + insertion/deinsertion is accompanied by hydrogen-bond formation/breaking between NH4 + and the MnOx layers. These findings provide a new prototype (i.e., layered MnOx ) for NH4 + -based energy storage and contributes to the fundamental understanding of the NH4 + -storage mechanism for metal oxides.
NH ions as charge carriers show potential for aqueous rechargeable batteries. Studied here for the first time is the NH -storage chemistry using electrodeposited manganese oxide (MnO ). MnO experiences morphology and phase transformations during charge/discharge in dilute ammonium acetate (NH Ac) electrolyte. The NH Ac concentration plays an important role in NH storage for MnO . The transformed MnO with a layered structure delivers a high specific capacity (176 mAh g ) at a current density of 0.5 A g , and exhibits good cycling stability over 10 000 cycles in 0.5 M NH Ac, outperforming the state-of-the-art NH hosting materials. Experimental results suggest a solid-solution behavior associated with NH migration in layered MnO . Spectroscopy studies and theoretical calculations show that the reversible NH insertion/deinsertion is accompanied by hydrogen-bond formation/breaking between NH and the MnO layers. These findings provide a new prototype (i.e., layered MnO ) for NH -based energy storage and contributes to the fundamental understanding of the NH -storage mechanism for metal oxides.
NH4+ ions as charge carriers show potential for aqueous rechargeable batteries. Studied here for the first time is the NH4+‐storage chemistry using electrodeposited manganese oxide (MnOx). MnOx experiences morphology and phase transformations during charge/discharge in dilute ammonium acetate (NH4Ac) electrolyte. The NH4Ac concentration plays an important role in NH4+ storage for MnOx. The transformed MnOx with a layered structure delivers a high specific capacity (176 mAh g−1) at a current density of 0.5 A g−1, and exhibits good cycling stability over 10 000 cycles in 0.5 M NH4Ac, outperforming the state‐of‐the‐art NH4+ hosting materials. Experimental results suggest a solid‐solution behavior associated with NH4+ migration in layered MnOx. Spectroscopy studies and theoretical calculations show that the reversible NH4+ insertion/deinsertion is accompanied by hydrogen‐bond formation/breaking between NH4+ and the MnOx layers. These findings provide a new prototype (i.e., layered MnOx) for NH4+‐based energy storage and contributes to the fundamental understanding of the NH4+‐storage mechanism for metal oxides.
Author Yang, Duo
Pan, Qing
Lv, Huizhen
Qin, Zengming
Zhang, Ming‐Yue
Liu, Xiao‐Xia
Sun, Xiaoqi
Song, Yu
Author_xml – sequence: 1
  givenname: Yu
  orcidid: 0000-0003-1444-5492
  surname: Song
  fullname: Song, Yu
  email: songyu@mail.neu.edu.cn
  organization: Northeastern University
– sequence: 2
  givenname: Qing
  surname: Pan
  fullname: Pan, Qing
  organization: Northeastern University
– sequence: 3
  givenname: Huizhen
  surname: Lv
  fullname: Lv, Huizhen
  organization: Northeastern University
– sequence: 4
  givenname: Duo
  surname: Yang
  fullname: Yang, Duo
  organization: Northeastern University
– sequence: 5
  givenname: Zengming
  surname: Qin
  fullname: Qin, Zengming
  organization: Northeastern University
– sequence: 6
  givenname: Ming‐Yue
  surname: Zhang
  fullname: Zhang, Ming‐Yue
  organization: Northeastern University
– sequence: 7
  givenname: Xiaoqi
  orcidid: 0000-0003-2324-7631
  surname: Sun
  fullname: Sun, Xiaoqi
  organization: Northeastern University
– sequence: 8
  givenname: Xiao‐Xia
  orcidid: 0000-0002-0172-5826
  surname: Liu
  fullname: Liu, Xiao‐Xia
  email: xxliu@mail.neu.edu.cn
  organization: Northeastern University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33320989$$D View this record in MEDLINE/PubMed
BookMark eNqFkctKxDAUhoMo3rcupeDGTcfcmqYbYRhGHfCyUNchpqdDpE3GpEXd-Qg-o09iZLyAIK7OWXzf4ef8W2jVeQcI7RE8IhjTI-0sjCimmDBC8AraJAUlOStLtpp2zlheyoJsoK0Y7xMvJRbraIMxRnElq010PO467-zQvb28zrzLrnsf9Byy22jdPJu2YPrga1j4aHuoswvt5tpBhOzqydYQd9Bao9sIu59zG92eTG8mZ_n51elsMj7PDS8FzpkgjIIQhFSm4qzkFAtpMGmKWoiGCQ41ZZXEZSOxwXcpmtFV2TBegNSGc7aNDpd3F8E_DBB71dlooG1TGD9ERXmJBS2KgiX04Bd674fgUrpEVZyIQhKaqP1ParjroFaLYDsdntXXZxLAl4AJPsYAjTK21731rg_atopg9VGA-ihAfReQtNEv7evyn0K1FB5tC8__0Gp8OZv-uO9cbpXp
CitedBy_id crossref_primary_10_1016_j_isci_2025_113406
crossref_primary_10_1016_j_jpowsour_2025_237775
crossref_primary_10_1002_aenm_202404732
crossref_primary_10_1002_anie_202503435
crossref_primary_10_1002_adfm_202203819
crossref_primary_10_1002_batt_202400426
crossref_primary_10_1016_j_jpowsour_2023_232994
crossref_primary_10_1016_j_cej_2025_162849
crossref_primary_10_1016_j_jpowsour_2024_235986
crossref_primary_10_1016_j_jpowsour_2025_236315
crossref_primary_10_1016_j_ensm_2025_104539
crossref_primary_10_1016_j_jcis_2024_05_152
crossref_primary_10_1016_j_cej_2021_131548
crossref_primary_10_1016_j_gee_2024_06_004
crossref_primary_10_1039_D4RA06005A
crossref_primary_10_1016_j_cej_2022_140308
crossref_primary_10_1002_ange_202212941
crossref_primary_10_1016_j_cej_2023_143197
crossref_primary_10_1016_j_jechem_2025_08_040
crossref_primary_10_1016_j_surfin_2025_106456
crossref_primary_10_1002_sus2_124
crossref_primary_10_1073_pnas_2414112122
crossref_primary_10_1002_anie_202207711
crossref_primary_10_1021_jacs_1c09290
crossref_primary_10_1039_D3QI02424E
crossref_primary_10_1002_cssc_202300207
crossref_primary_10_3390_en15228650
crossref_primary_10_1016_j_cej_2021_133064
crossref_primary_10_1002_aenm_202400702
crossref_primary_10_1039_D5CC03820K
crossref_primary_10_1002_anie_202316082
crossref_primary_10_1016_j_cej_2025_166064
crossref_primary_10_1002_batt_202200432
crossref_primary_10_1016_j_est_2023_108357
crossref_primary_10_1002_adfm_202310294
crossref_primary_10_1016_j_ccr_2024_215833
crossref_primary_10_1002_cssc_202400526
crossref_primary_10_1016_j_cej_2022_139574
crossref_primary_10_1016_j_cej_2022_139575
crossref_primary_10_1002_ange_202216290
crossref_primary_10_1016_j_est_2025_116677
crossref_primary_10_1007_s12274_023_5468_6
crossref_primary_10_1016_j_cclet_2023_108449
crossref_primary_10_1016_j_cej_2022_136747
crossref_primary_10_1016_j_jcis_2024_04_210
crossref_primary_10_1002_smll_202207771
crossref_primary_10_1002_tcr_202200092
crossref_primary_10_1002_adfm_202405659
crossref_primary_10_1002_er_7719
crossref_primary_10_1002_ange_202301629
crossref_primary_10_1016_j_chemphys_2025_112861
crossref_primary_10_1002_bte2_20220065
crossref_primary_10_1016_j_ensm_2025_104584
crossref_primary_10_1002_aenm_202404254
crossref_primary_10_1002_adfm_202204026
crossref_primary_10_1002_smtd_202200560
crossref_primary_10_1002_adma_202305575
crossref_primary_10_1016_j_cej_2023_144486
crossref_primary_10_1002_ange_202503435
crossref_primary_10_1016_j_electacta_2022_141097
crossref_primary_10_1002_aenm_202202908
crossref_primary_10_1002_aenm_202402863
crossref_primary_10_1002_adfm_202100477
crossref_primary_10_1002_ange_202310577
crossref_primary_10_1093_nsr_nwae433
crossref_primary_10_1002_adma_202211603
crossref_primary_10_1016_j_joule_2023_10_010
crossref_primary_10_1021_acs_est_5c03717
crossref_primary_10_1002_adma_202308628
crossref_primary_10_1002_anie_202310577
crossref_primary_10_1039_D3EE02030D
crossref_primary_10_1002_ange_202115046
crossref_primary_10_1016_j_cej_2025_165853
crossref_primary_10_1016_j_est_2025_118001
crossref_primary_10_1002_adma_202303732
crossref_primary_10_1088_1361_6528_ad690b
crossref_primary_10_1002_adma_202408396
crossref_primary_10_1002_ange_202315257
crossref_primary_10_1002_adfm_202411430
crossref_primary_10_1016_j_jcis_2024_07_158
crossref_primary_10_1016_j_cclet_2022_07_052
crossref_primary_10_1039_D3RA00284E
crossref_primary_10_1002_anie_202213757
crossref_primary_10_1016_j_jmst_2023_02_018
crossref_primary_10_1002_adfm_202506723
crossref_primary_10_1039_D5CS00785B
crossref_primary_10_1002_anie_202115046
crossref_primary_10_1016_j_est_2023_106923
crossref_primary_10_1007_s10854_021_07096_7
crossref_primary_10_1002_adfm_202212440
crossref_primary_10_1016_j_jechem_2022_11_050
crossref_primary_10_1007_s12274_022_5021_z
crossref_primary_10_1016_j_est_2025_117965
crossref_primary_10_1016_j_cclet_2024_109920
crossref_primary_10_1016_j_matlet_2022_132756
crossref_primary_10_1016_j_ceramint_2022_05_304
crossref_primary_10_1002_adma_202311914
crossref_primary_10_1039_D5QI00083A
crossref_primary_10_1002_admi_202200641
crossref_primary_10_1016_j_cej_2023_147169
crossref_primary_10_1002_smll_202308741
crossref_primary_10_1016_j_jtice_2023_104845
crossref_primary_10_3390_ma14092325
crossref_primary_10_1016_j_jcis_2025_01_267
crossref_primary_10_1002_aenm_202201840
crossref_primary_10_1002_anie_202216290
crossref_primary_10_1039_D2QI00265E
crossref_primary_10_1002_adfm_202501894
crossref_primary_10_1016_j_jpowsour_2021_230853
crossref_primary_10_1016_j_nanoen_2025_110764
crossref_primary_10_1002_adma_202409354
crossref_primary_10_1002_smll_202304130
crossref_primary_10_1016_j_cej_2023_144204
crossref_primary_10_1002_smll_202402811
crossref_primary_10_1039_D2RA06796J
crossref_primary_10_1002_anie_202315257
crossref_primary_10_1002_smll_202408467
crossref_primary_10_1039_D5SC01210D
crossref_primary_10_1007_s12598_024_02818_2
crossref_primary_10_1016_j_gee_2023_02_001
crossref_primary_10_1002_ange_202316082
crossref_primary_10_1002_anie_202301629
crossref_primary_10_1002_aenm_202203122
crossref_primary_10_1002_ange_202213757
crossref_primary_10_1002_adma_202415476
crossref_primary_10_1016_j_electacta_2025_146928
crossref_primary_10_1016_j_cej_2024_157804
crossref_primary_10_1016_j_seppur_2023_125204
crossref_primary_10_1016_j_mattod_2023_12_010
crossref_primary_10_1002_aenm_202300224
crossref_primary_10_3390_polym14194149
crossref_primary_10_1002_anie_202303480
crossref_primary_10_1016_j_apsusc_2024_160918
crossref_primary_10_1007_s11705_022_2198_3
crossref_primary_10_1016_j_ceramint_2022_06_084
crossref_primary_10_1002_advs_202206836
crossref_primary_10_1007_s12274_021_3777_1
crossref_primary_10_1016_j_est_2024_115209
crossref_primary_10_1016_j_cej_2024_149160
crossref_primary_10_1016_j_rser_2025_116093
crossref_primary_10_1002_adma_202419124
crossref_primary_10_1016_j_colsurfa_2024_135496
crossref_primary_10_1039_D1QM01403J
crossref_primary_10_1039_D5MH00582E
crossref_primary_10_1021_acsanm_5c00271
crossref_primary_10_1016_j_watres_2024_121789
crossref_primary_10_1002_batt_202300546
crossref_primary_10_1002_ange_202303480
crossref_primary_10_1002_eom2_12249
crossref_primary_10_1002_smll_202206727
crossref_primary_10_1016_j_jcis_2025_01_173
crossref_primary_10_1016_j_seppur_2024_128077
crossref_primary_10_1016_j_est_2024_114246
crossref_primary_10_1021_acsenergylett_5c01804
crossref_primary_10_1002_er_7680
crossref_primary_10_1002_adfm_202301734
crossref_primary_10_1002_adma_202415545
crossref_primary_10_1016_j_jallcom_2022_163833
crossref_primary_10_1016_j_cej_2022_137681
crossref_primary_10_1039_D5TA03752B
crossref_primary_10_1002_anie_202410848
crossref_primary_10_1016_j_apenergy_2023_122067
crossref_primary_10_1002_adfm_202310437
crossref_primary_10_1016_j_jcis_2022_11_115
crossref_primary_10_1002_adfm_202214920
crossref_primary_10_1002_sstr_202300329
crossref_primary_10_1016_j_asems_2022_100013
crossref_primary_10_1016_j_cej_2024_151119
crossref_primary_10_1002_adma_202415676
crossref_primary_10_1016_j_cej_2024_150027
crossref_primary_10_1016_j_est_2024_110623
crossref_primary_10_1016_S1003_6326_23_66346_0
crossref_primary_10_1002_ange_202207711
crossref_primary_10_1002_adfm_202112179
crossref_primary_10_1002_er_7544
crossref_primary_10_1039_D4NR02149E
crossref_primary_10_1016_j_jcis_2021_08_036
crossref_primary_10_1016_j_ceramint_2022_03_315
crossref_primary_10_1063_5_0221284
crossref_primary_10_1002_ange_202410848
crossref_primary_10_1002_aenm_202201074
crossref_primary_10_1002_sstr_202300201
crossref_primary_10_1039_D4EE03303E
crossref_primary_10_3390_ma17081858
crossref_primary_10_1002_anie_202212941
crossref_primary_10_1002_adma_202107992
crossref_primary_10_1016_j_cej_2025_166435
crossref_primary_10_1016_j_cej_2022_139090
crossref_primary_10_1002_smll_202310835
crossref_primary_10_1016_j_ccr_2022_214867
crossref_primary_10_1016_j_jmst_2022_03_028
crossref_primary_10_1002_admt_202300321
crossref_primary_10_1016_j_cej_2022_138681
crossref_primary_10_1039_D4QI01910E
crossref_primary_10_1016_j_est_2024_112023
crossref_primary_10_1002_smll_202107115
crossref_primary_10_1002_smll_202410005
crossref_primary_10_1016_j_electacta_2022_141717
crossref_primary_10_1007_s11581_023_04920_4
crossref_primary_10_1073_pnas_2214545119
Cites_doi 10.1149/2.060202jes
10.1016/j.apsusc.2015.12.159
10.1002/ange.201808886
10.1016/j.chempr.2019.03.009
10.1021/acsenergylett.7b00405
10.1021/acsaem.9b01469
10.1002/adma.201907802
10.1021/jp9717554
10.1021/acs.chemrev.0c00170
10.1016/j.ssi.2006.09.006
10.1002/cssc.201901622
10.2138/am-1997-9-1012
10.1016/j.surfcoat.2009.01.038
10.1002/anie.201808886
10.1039/C3TA14203E
10.1126/sciadv.aba4098
10.1021/acsaem.8b00789
10.1002/ange.201707473
10.1039/C8CC04713H
10.1126/science.1241488
10.1002/anie.201707473
10.1021/ic101103g
10.1016/j.nanoen.2019.104369
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
2020 Wiley-VCH GmbH.
2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
– notice: 2020 Wiley-VCH GmbH.
– notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202013110
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic
PubMed
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 5722
ExternalDocumentID 33320989
10_1002_anie_202013110
ANIE202013110
Genre shortCommunication
Journal Article
GrantInformation_xml – fundername: China Postdoctoral Science Foundation
  funderid: 2019T120214
– fundername: LiaoNing Revitalization Talents Program
  funderid: XLYC1907069
– fundername: the 111 Project
  funderid: B16009
– fundername: National Natural Science Foundation of China
  funderid: 51804066; 21673035; 51974070
– fundername: LiaoNing Revitalization Talents Program
  grantid: XLYC1907069
– fundername: National Natural Science Foundation of China
  grantid: 21673035
– fundername: the 111 Project
  grantid: B16009
– fundername: National Natural Science Foundation of China
  grantid: 51804066
– fundername: National Natural Science Foundation of China
  grantid: 51974070
– fundername: China Postdoctoral Science Foundation
  grantid: 2019T120214
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
ABUFD
AEYWJ
AGHNM
AGYGG
CITATION
O8X
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c4760-36132e66119c943742068c01f5d66f364ed239807f80c0b098ca97f345e8ac443
IEDL.DBID DRFUL
ISICitedReferencesCount 263
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000612496200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 16:55:54 EDT 2025
Sat Nov 29 14:55:58 EST 2025
Thu Apr 03 07:08:20 EDT 2025
Sat Nov 29 02:36:10 EST 2025
Tue Nov 18 22:33:00 EST 2025
Wed Jan 22 16:30:01 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords hydrogen bonding
phase transformations
batteries
energy storage
manganese
Language English
License 2020 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4760-36132e66119c943742068c01f5d66f364ed239807f80c0b098ca97f345e8ac443
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0172-5826
0000-0003-1444-5492
0000-0003-2324-7631
PMID 33320989
PQID 2494165812
PQPubID 946352
PageCount 5
ParticipantIDs proquest_miscellaneous_2470625553
proquest_journals_2494165812
pubmed_primary_33320989
crossref_citationtrail_10_1002_anie_202013110
crossref_primary_10_1002_anie_202013110
wiley_primary_10_1002_anie_202013110_ANIE202013110
PublicationCentury 2000
PublicationDate March 8, 2021
PublicationDateYYYYMMDD 2021-03-08
PublicationDate_xml – month: 03
  year: 2021
  text: March 8, 2021
  day: 08
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2011; 159
2020; 6
2010; 49
2017; 2
1997; 82
2019; 5
2014; 2
2019; 2
2018; 1
2020; 120
2018 2018; 57 130
2019; 12
1997; 101
2016; 366
2020; 68
2013; 341
2017 2017; 56 129
2020; 32
2018; 54
2009; 203
2006; 177
e_1_2_2_3_2
e_1_2_2_4_1
e_1_2_2_24_2
e_1_2_2_3_3
e_1_2_2_4_2
e_1_2_2_5_1
e_1_2_2_23_2
e_1_2_2_6_1
e_1_2_2_7_1
e_1_2_2_21_2
e_1_2_2_22_1
e_1_2_2_20_2
e_1_2_2_1_1
e_1_2_2_2_2
e_1_2_2_9_1
e_1_2_2_8_1
e_1_2_2_14_1
e_1_2_2_13_1
e_1_2_2_12_1
e_1_2_2_11_1
e_1_2_2_10_1
e_1_2_2_19_1
e_1_2_2_18_1
e_1_2_2_17_1
e_1_2_2_16_1
e_1_2_2_15_1
References_xml – volume: 49
  start-page: 9400
  year: 2010
  end-page: 9408
  publication-title: Inorg. Chem.
– volume: 57 130
  start-page: 16359 16597
  year: 2018 2018
  end-page: 16363 16601
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 159
  start-page: A98
  year: 2011
  end-page: A103
  publication-title: J. Electrochem. Soc.
– volume: 56 129
  start-page: 13026 13206
  year: 2017 2017
  end-page: 13030 13210
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 177
  start-page: 3223
  year: 2006
  end-page: 3231
  publication-title: Solid State Ionics
– volume: 68
  year: 2020
  publication-title: Nano Energy
– volume: 2
  start-page: 1752
  year: 2017
  end-page: 1759
  publication-title: ACS Energy Lett.
– volume: 2
  start-page: 4843
  year: 2014
  end-page: 4851
  publication-title: J. Mater. Chem. A
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 12
  start-page: 3732
  year: 2019
  end-page: 3736
  publication-title: ChemSusChem
– volume: 101
  start-page: 10128
  year: 1997
  end-page: 10135
  publication-title: J. Phys. Chem. B
– volume: 2
  start-page: 6984
  year: 2019
  end-page: 6989
  publication-title: ACS Appl. Energy Mater.
– volume: 366
  start-page: 475
  year: 2016
  end-page: 485
  publication-title: Appl. Surf. Sci.
– volume: 54
  start-page: 9805
  year: 2018
  end-page: 9808
  publication-title: Chem. Commun.
– volume: 120
  start-page: 6738
  year: 2020
  end-page: 6782
  publication-title: Chem. Rev.
– volume: 341
  start-page: 1502
  year: 2013
  end-page: 1505
  publication-title: Science
– volume: 82
  start-page: 946
  year: 1997
  end-page: 961
  publication-title: Am. Mineral.
– volume: 203
  start-page: 2013
  year: 2009
  end-page: 2016
  publication-title: Surf. Coat. Technol.
– volume: 1
  start-page: 3077
  year: 2018
  end-page: 3083
  publication-title: ACS Appl. Energy Mater.
– volume: 5
  start-page: 1537
  year: 2019
  end-page: 1551
  publication-title: Chem
– ident: e_1_2_2_5_1
  doi: 10.1149/2.060202jes
– ident: e_1_2_2_14_1
  doi: 10.1016/j.apsusc.2015.12.159
– ident: e_1_2_2_1_1
– ident: e_1_2_2_3_3
  doi: 10.1002/ange.201808886
– ident: e_1_2_2_12_1
  doi: 10.1016/j.chempr.2019.03.009
– ident: e_1_2_2_15_1
  doi: 10.1021/acsenergylett.7b00405
– ident: e_1_2_2_8_1
  doi: 10.1021/acsaem.9b01469
– ident: e_1_2_2_13_1
  doi: 10.1002/adma.201907802
– ident: e_1_2_2_21_2
  doi: 10.1021/jp9717554
– ident: e_1_2_2_18_1
  doi: 10.1021/acs.chemrev.0c00170
– ident: e_1_2_2_24_2
  doi: 10.1016/j.ssi.2006.09.006
– ident: e_1_2_2_7_1
  doi: 10.1002/cssc.201901622
– ident: e_1_2_2_16_1
  doi: 10.2138/am-1997-9-1012
– ident: e_1_2_2_20_2
  doi: 10.1016/j.surfcoat.2009.01.038
– ident: e_1_2_2_3_2
  doi: 10.1002/anie.201808886
– ident: e_1_2_2_17_1
  doi: 10.1039/C3TA14203E
– ident: e_1_2_2_2_2
  doi: 10.1126/sciadv.aba4098
– ident: e_1_2_2_9_1
  doi: 10.1021/acsaem.8b00789
– ident: e_1_2_2_4_2
  doi: 10.1002/ange.201707473
– ident: e_1_2_2_11_1
  doi: 10.1039/C8CC04713H
– ident: e_1_2_2_22_1
– ident: e_1_2_2_6_1
  doi: 10.1126/science.1241488
– ident: e_1_2_2_4_1
  doi: 10.1002/anie.201707473
– ident: e_1_2_2_19_1
– ident: e_1_2_2_23_2
  doi: 10.1021/ic101103g
– ident: e_1_2_2_10_1
  doi: 10.1016/j.nanoen.2019.104369
SSID ssj0028806
Score 2.6949542
Snippet NH4+ ions as charge carriers show potential for aqueous rechargeable batteries. Studied here for the first time is the NH4+‐storage chemistry using...
NH 4 + ions as charge carriers show potential for aqueous rechargeable batteries. Studied here for the first time is the NH 4 + ‐storage chemistry using...
NH ions as charge carriers show potential for aqueous rechargeable batteries. Studied here for the first time is the NH -storage chemistry using...
NH4 + ions as charge carriers show potential for aqueous rechargeable batteries. Studied here for the first time is the NH4 + -storage chemistry using...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5718
SubjectTerms Acetic acid
Ammonium
Ammonium acetate
Batteries
Current carriers
Energy storage
hydrogen bonding
Ion storage
Manganese
Manganese oxides
Metal oxides
Morphology
phase transformations
Phase transitions
Rechargeable batteries
Specific capacity
Spectroscopy
Storage batteries
Title Ammonium‐Ion Storage Using Electrodeposited Manganese Oxides
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202013110
https://www.ncbi.nlm.nih.gov/pubmed/33320989
https://www.proquest.com/docview/2494165812
https://www.proquest.com/docview/2470625553
Volume 60
WOSCitedRecordID wos000612496200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1521-3773
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0028806
  issn: 1433-7851
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60FfTi-1GtJYLgKXSb3SSbi1BqiwWtohZ6C8k-pKCpWCse_Qn-Rn-Js0kaLSKCHkM2yWbek8x8A3AYm7DYl7EthJQ2iyjqnGDa1roh0Zs4MScyHTbh93p8MAguv3TxZ_gQxQc3oxmpvTYKHsXj-idoqOnAxvzOSQFjMGkvm84qTL_KJ1ed_lmRdKF8Zh1GlNpmEP0UuJE49dk7zDqmb9HmbPCaep_Oyv_3vQrLeeRpNTNRWYM5lazDYms68G0DjptGJoeT-_fXt-4osa4xHUdrY6VVBVY7m5cjVVrmpaR1HiW3kZlfaV28DKUab0K_075pndr5eAVbMN9D64ue3FHonxuBCBjFHJl4XJCGdqXnaeoxJQ04IPE1J4IgU7mIAl9T5ioeCcboFpSSUaJ2wIopCdBQetzw19VuzBqBkpHwuOYKY8wK2FPahiLHHjcjMO7CDDXZCQ1VwoIqFTgq1j9kqBs_rqxOWRXm2jcOMaXEONPF2KUCB8VppKb5GYKUGU3MGp9g7ue6tALbGYuLR1FKHXxd3LaTcvKXPYTNXrddHO3-5aI9WHJMsYwpbuNVKD09TtQ-LIjnp-H4sQbz_oDXcsn-ALdb9Z4
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9tAEB6CXXAvTfp2k7YKFHoSXmlX0upSMI6NTR03tDb4JqR9FEMiBz9Cj_kJ-Y35JZ2RZAVTSqHkKLSSduc9q9lvAD5lFBZHOnOV0toVKUedU8K61noavYmfSaaLZhPRZCLn8_iiqiakszAlPkS94UaaUdhrUnDakO48oIbSEWxM8PwCMQaz9qYIeSQb0Dz7PpiN66wLBbQ8YsS5S53od8iNzO_sv2HfM_0Rbu5Hr4X7GRw-wsSP4FkVezrdUliew4HJX0Crt2v59hK-dEkqF9ur-9u70TJ3fmBCjvbGKeoKnH7ZMUebotDLaOc8zX-m1MHS-fZroc36FcwG_Wlv6FYNFlwlohDtL_py36CH9mIVC45ZMgulYp4NdBhaHgqjCR6QRVYyxZCtUqVxZLkIjEyVEPw1NPJlbt6Ck3EWo6kMJXE4sEEmvNjoVIXSSoNRZhvcHXETVaGPUxOMy6TETfYTokpSU6UNn-vx1yXuxl9Hnux4lVT6t04wqcRIM8DopQ2n9W2kJv0OQcostzQmYpj9BQFvw5uSx_WnOOc-Lhen7Res_Mccku5k1K-v3v3PQx-hNZyej5PxaPL1GJ76VDpDpW7yBBqb1da8hyfqZrNYrz5UAv4btAL4pg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ZS8NAEB6kivrifdQzguBTcJvdTTYvQumBRa3iAb6FZA8paCrWio_-BH-jv8TZJI0UEUF8DNkkm7knmfkGYD-xYXGgEldKpVwWU9Q5yYxrTE2hN_ESQVQ2bCLodsXtbXhRVBPaXpgcH6L84GY1I7PXVsH1ozKHX6ihtgUbEzwvQ4zBrH2S8ZCzCkw2L9s3p2XWhQKatxhR6tpJ9CPkRuIdjt9h3DN9CzfHo9fM_bTn_2HjCzBXxJ5OPReWRZjQ6RLMNEYj35bhqG6lsjd8-Hh77_RT5woTcrQ3TlZX4LTyiTlKZ4VeWjlncXoX2wmWzvlrT-nBCty0W9eNY7cYsOBKFvhof9GXexo9dC2UIaOYJRNfSFIzXPm-oT7TysIDksAIIgmyVcg4DAxlXItYMkZXoZL2U70OTkJJiKbSF5bD3PCE1UKtYukLIzRGmVVwR8SNZIE-bodg3Ec5brIXWapEJVWqcFCuf8xxN35cuTXiVVTo3yDCpBIjTY7RSxX2ytNITfs7BCnTH9o1AcHsj3NahbWcx-WjKKUevi5u28tY-cseonq30yqPNv5y0S5MXzTb0Wmne7IJs56tnLGVbmILKs9PQ70NU_LluTd42ink-xNH1Pgh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ammonium%E2%80%90Ion+Storage+Using+Electrodeposited+Manganese+Oxides&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Song%2C+Yu&rft.au=Pan%2C+Qing&rft.au=Lv%2C+Huizhen&rft.au=Yang%2C+Duo&rft.date=2021-03-08&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=60&rft.issue=11&rft.spage=5718&rft.epage=5722&rft_id=info:doi/10.1002%2Fanie.202013110&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_202013110
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon