Phenotype Control techniques for Boolean gene regulatory networks

Modeling cell signal transduction pathways via Boolean networks (BNs) has become an established method for analyzing intracellular communications over the last few decades. What’s more, BNs provide a course-grained approach, not only to understanding molecular communications, but also for targeting...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Bulletin of mathematical biology Ročník 85; číslo 10; s. 89
Hlavní autoři: Plaugher, Daniel, Murrugarra, David
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.10.2023
Springer Nature B.V
Témata:
ISSN:0092-8240, 1522-9602, 1522-9602
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Modeling cell signal transduction pathways via Boolean networks (BNs) has become an established method for analyzing intracellular communications over the last few decades. What’s more, BNs provide a course-grained approach, not only to understanding molecular communications, but also for targeting pathway components that alter the long-term outcomes of the system. This has come to be known as phenotype control theory . In this review we study the interplay of various approaches for controlling gene regulatory networks such as: algebraic methods, control kernel, feedback vertex set, and stable motifs. The study will also include comparative discussion between the methods, using an established cancer model of T-Cell Large Granular Lymphocyte Leukemia. Further, we explore possible options for making the control search more efficient using reduction and modularity. Finally, we will include challenges presented such as the complexity and the availability of software for implementing each of these control techniques.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ISSN:0092-8240
1522-9602
1522-9602
DOI:10.1007/s11538-023-01197-6