Optimizing cancer classification: a hybrid RDO-XGBoost approach for feature selection and predictive insights
The identification of relevant biomarkers from high-dimensional cancer data remains a significant challenge due to the complexity and heterogeneity inherent in various cancer types. Conventional feature selection methods often struggle to effectively navigate the vast solution space while maintainin...
Saved in:
| Published in: | Cancer Immunology, Immunotherapy : CII Vol. 73; no. 12; p. 261 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
09.10.2024
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1432-0851, 0340-7004, 1432-0851 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The identification of relevant biomarkers from high-dimensional cancer data remains a significant challenge due to the complexity and heterogeneity inherent in various cancer types. Conventional feature selection methods often struggle to effectively navigate the vast solution space while maintaining high predictive accuracy. In response to these challenges, we introduce a novel feature selection approach that integrates Random Drift Optimization (RDO) with XGBoost, specifically designed to enhance the performance of cancer classification tasks. Our proposed framework not only improves classification accuracy but also offers valuable insights into the underlying biological mechanisms driving cancer progression. Through comprehensive experiments conducted on real-world cancer datasets, including Central Nervous System (CNS), Leukemia, Breast, and Ovarian cancers, we demonstrate the efficacy of our method in identifying a smaller subset of unique and relevant genes. This selection results in significantly improved classification efficiency and accuracy. When compared with popular classifiers such as Support Vector Machine, K-Nearest Neighbor, and Naive Bayes, our approach consistently outperforms these models in terms of both accuracy and F-measure metrics. For instance, our framework achieved an accuracy of 97.24% in the CNS dataset, 99.14% in Leukemia, 95.21% in Ovarian, and 87.62% in Breast cancer, showcasing its robustness and effectiveness across different types of cancer data. These results underline the potential of our RDO-XGBoost framework as a promising solution for feature selection in cancer data analysis, offering enhanced predictive performance and valuable biological insights. |
|---|---|
| AbstractList | The identification of relevant biomarkers from high-dimensional cancer data remains a significant challenge due to the complexity and heterogeneity inherent in various cancer types. Conventional feature selection methods often struggle to effectively navigate the vast solution space while maintaining high predictive accuracy. In response to these challenges, we introduce a novel feature selection approach that integrates Random Drift Optimization (RDO) with XGBoost, specifically designed to enhance the performance of cancer classification tasks. Our proposed framework not only improves classification accuracy but also offers valuable insights into the underlying biological mechanisms driving cancer progression. Through comprehensive experiments conducted on real-world cancer datasets, including Central Nervous System (CNS), Leukemia, Breast, and Ovarian cancers, we demonstrate the efficacy of our method in identifying a smaller subset of unique and relevant genes. This selection results in significantly improved classification efficiency and accuracy. When compared with popular classifiers such as Support Vector Machine, K-Nearest Neighbor, and Naive Bayes, our approach consistently outperforms these models in terms of both accuracy and F-measure metrics. For instance, our framework achieved an accuracy of 97.24% in the CNS dataset, 99.14% in Leukemia, 95.21% in Ovarian, and 87.62% in Breast cancer, showcasing its robustness and effectiveness across different types of cancer data. These results underline the potential of our RDO-XGBoost framework as a promising solution for feature selection in cancer data analysis, offering enhanced predictive performance and valuable biological insights. The identification of relevant biomarkers from high-dimensional cancer data remains a significant challenge due to the complexity and heterogeneity inherent in various cancer types. Conventional feature selection methods often struggle to effectively navigate the vast solution space while maintaining high predictive accuracy. In response to these challenges, we introduce a novel feature selection approach that integrates Random Drift Optimization (RDO) with XGBoost, specifically designed to enhance the performance of cancer classification tasks. Our proposed framework not only improves classification accuracy but also offers valuable insights into the underlying biological mechanisms driving cancer progression. Through comprehensive experiments conducted on real-world cancer datasets, including Central Nervous System (CNS), Leukemia, Breast, and Ovarian cancers, we demonstrate the efficacy of our method in identifying a smaller subset of unique and relevant genes. This selection results in significantly improved classification efficiency and accuracy. When compared with popular classifiers such as Support Vector Machine, K-Nearest Neighbor, and Naive Bayes, our approach consistently outperforms these models in terms of both accuracy and F-measure metrics. For instance, our framework achieved an accuracy of 97.24% in the CNS dataset, 99.14% in Leukemia, 95.21% in Ovarian, and 87.62% in Breast cancer, showcasing its robustness and effectiveness across different types of cancer data. These results underline the potential of our RDO-XGBoost framework as a promising solution for feature selection in cancer data analysis, offering enhanced predictive performance and valuable biological insights.The identification of relevant biomarkers from high-dimensional cancer data remains a significant challenge due to the complexity and heterogeneity inherent in various cancer types. Conventional feature selection methods often struggle to effectively navigate the vast solution space while maintaining high predictive accuracy. In response to these challenges, we introduce a novel feature selection approach that integrates Random Drift Optimization (RDO) with XGBoost, specifically designed to enhance the performance of cancer classification tasks. Our proposed framework not only improves classification accuracy but also offers valuable insights into the underlying biological mechanisms driving cancer progression. Through comprehensive experiments conducted on real-world cancer datasets, including Central Nervous System (CNS), Leukemia, Breast, and Ovarian cancers, we demonstrate the efficacy of our method in identifying a smaller subset of unique and relevant genes. This selection results in significantly improved classification efficiency and accuracy. When compared with popular classifiers such as Support Vector Machine, K-Nearest Neighbor, and Naive Bayes, our approach consistently outperforms these models in terms of both accuracy and F-measure metrics. For instance, our framework achieved an accuracy of 97.24% in the CNS dataset, 99.14% in Leukemia, 95.21% in Ovarian, and 87.62% in Breast cancer, showcasing its robustness and effectiveness across different types of cancer data. These results underline the potential of our RDO-XGBoost framework as a promising solution for feature selection in cancer data analysis, offering enhanced predictive performance and valuable biological insights. |
| ArticleNumber | 261 |
| Author | Shah, Mohd Asif Aziz, Rabia Musheer Yaqoob, Abrar Verma, Navneet Kumar |
| Author_xml | – sequence: 1 givenname: Abrar surname: Yaqoob fullname: Yaqoob, Abrar email: abraryaqoob77@gmail.com organization: VIT Bhopal University’s School of Advanced Science and Language, Located at Kothrikalan – sequence: 2 givenname: Navneet Kumar surname: Verma fullname: Verma, Navneet Kumar organization: VIT Bhopal University’s School of Advanced Science and Language, Located at Kothrikalan – sequence: 3 givenname: Rabia Musheer surname: Aziz fullname: Aziz, Rabia Musheer organization: Planning Department, State Planning Institute (New Division) – sequence: 4 givenname: Mohd Asif surname: Shah fullname: Shah, Mohd Asif email: m.asif@kardan.edu.af organization: Department of Economics, Kardan University, Division of Research and Development, Lovely Professional University, Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39382649$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU1rFTEYhYNU7If-ARcScNPNaL7uzMSNaNUqFC4UBXch805yb8pMMiaZ0vbXm3ZabbsoWSRv8pzDCWcf7fjgDUKvKXlHCWneJ0JYzSrCREV4K3h18QztUcHLVbuiO_fOu2g_pTNCBCNSvkC7XPKW1ULuoXE9ZTe6K-c3GLQHEzEMOiVnHejsgv-ANd5edtH1-PTLuvp9_DmElLGephg0bLENEVuj8xwNTmYwcC3C2vd4iqZ3ZTw32PnkNtucXqLnVg_JvLrdD9Cvb19_Hn2vTtbHP44-nVQgmlWuLLXAKbTa2tqCaKEVknc1A6Jp3UlLWS27poEeOmgaYakxlNG-1S0FQXvgB-jj4jvN3Wh6MD5HPagpulHHSxW0Uw9fvNuqTThXlIq6LFkcDm8dYvgzm5TV6BKYYdDehDkpXsgVYZKJgr59hJ6FOfryv4WSdEVZod7cj_Qvy10VBWgXAGJIKRqrwOWbCkpCNyhK1HXramldldbVTevqokjZI-md-5MivohSgf3GxP-xn1D9BelWwiI |
| CitedBy_id | crossref_primary_10_1038_s41598_025_87285_0 crossref_primary_10_1080_03091902_2025_2471332 crossref_primary_10_1016_j_eswa_2025_126737 crossref_primary_10_1016_j_sciaf_2025_e02564 crossref_primary_10_3390_diagnostics14232632 crossref_primary_10_1016_j_rineng_2025_104956 crossref_primary_10_1186_s12911_025_02956_2 crossref_primary_10_1016_j_wneu_2025_123771 crossref_primary_10_1007_s12672_025_02111_3 crossref_primary_10_33393_grhta_2025_3568 crossref_primary_10_1007_s10916_025_02171_6 crossref_primary_10_1007_s00704_025_05422_1 crossref_primary_10_1016_j_compbiolchem_2025_108368 crossref_primary_10_1038_s41598_025_15656_8 crossref_primary_10_1038_s41598_025_95786_1 crossref_primary_10_1007_s00607_025_01425_y crossref_primary_10_1016_j_eswa_2025_128231 crossref_primary_10_1016_j_mex_2025_103239 crossref_primary_10_1038_s41598_025_89125_7 crossref_primary_10_1007_s13042_025_02648_3 |
| Cites_doi | 10.1016/j.jksuci.2020.12.014 10.1007/s00521-022-07916-9 10.1016/j.compbiomed.2022.105349 10.1007/s44230-023-00041-3 10.11591/ijece.v14i1.pp944-959 10.1016/j.jksus.2023.102754 10.22266/IJIES2019.0430.12 10.2307/1939922 10.11591/ijeecs.v18.i1.pp343-350 10.1038/s41598-022-19313-2 10.1016/j.neucom.2016.07.080 10.1007/s10994-015-5522-z 10.1155/2022/4092404 10.1007/s11227-023-05643-z 10.1007/s13042-021-01345-1 10.1016/j.asoc.2020.106092 10.1007/s11042-024-20146-6 10.1109/JSTSP.2008.923858 10.3390/jcm12030844 10.1109/ACCESS.2022.3196905 10.1186/s40537-024-00902-z 10.1371/journal.pone.0295951 10.1007/s10916-023-02031-1 10.1016/j.patcog.2012.11.025 10.1007/s10462-023-10675-1 10.3390/math11051081 10.1145/2939672.2939785 10.1002/9781394233953.ch1 10.1002/9781394233953.ch4 10.1007/s41870-024-01849-3 10.1155/2022/3112170 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 2024. The Author(s). Copyright Springer Nature B.V. Dec 2024 The Author(s) 2024 2024 |
| Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: Copyright Springer Nature B.V. Dec 2024 – notice: The Author(s) 2024 2024 |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7T5 7X7 7XB 88E 8AO 8C1 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
| DOI | 10.1007/s00262-024-03843-x |
| DatabaseName | Springer Nature OA Free Journals (WRLC) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Immunology Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central (subscription) Natural Science Collection ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Proquest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection AIDS and Cancer Research Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Public Health ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Immunology Abstracts ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | ProQuest Central Student MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1432-0851 |
| ExternalDocumentID | PMC11464649 39382649 10_1007_s00262_024_03843_x |
| Genre | Journal Article |
| GroupedDBID | --- -53 -56 -5G -BR -EM -~C .86 .VR 06C 06D 0R~ 0VY 199 1N0 203 29B 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 36B 4.4 406 408 409 40D 40E 5GY 5RE 5VS 67Z 6J9 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AAHNG AAIAL AAJKR AAJSJ AAKKN AANZL AARTL AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABEEZ ABFTV ABHLI ABHQN ABIPD ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABSXP ABTEG ABTKH ABTMW ABUWZ ABWNU ABXPI ACACY ACGFS ACHSB ACHVE ACHXU ACIHN ACKNC ACMDZ ACMLO ACOKC ACOMO ACPRK ACREN ACULB ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADJJI ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEFQL AEGAL AEGNC AEJHL AEJRE AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGXO AFJLC AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AIAKS AIIXL AILAN AITGF AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BGNMA BHPHI C24 C6C CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EMB EMOBN ESBYG F5P FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GROUPED_DOAJ GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IH2 IHE IJ- IKXTQ IMOTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KPH LAS LLZTM M4Y M7P MA- N9A NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P2P P9S PF0 PT5 QOK QOR QOS R89 R9I RHV ROL RPM RPX RSV S16 S27 S37 S3B SAP SBL SDH SDM SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN T13 TSG TSK TSV TT1 TUC U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 YLTOR Z45 Z7U Z82 Z84 Z87 Z8O Z8V Z8Y Z91 ZMTXR ZOVNA ~EX ~KM 7X7 8C1 8FE 8FH AASML AAYXX ABDBE ABFSG ABUWG ACSTC AEZWR AFHIU AHPBZ AHWEU AIXLP AYFIA BBNVY BENPR BPHCQ BVXVI CITATION EBD FYUFA HCIFZ LK8 PQQKQ PROAC Q2X UKHRP CGR CUY CVF ECM EIF NPM 3V. 7T5 7XB 88E 8AO 8FI 8FJ 8FK AFKRA AZQEC CCPQU DWQXO GNUQQ H94 K9. M1P PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 5PM |
| ID | FETCH-LOGICAL-c475t-f1fc31c8aff6fc48c8493b62c0a16b9f1269b77cdcbc774f1ee121d8a81c41dc3 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 23 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001337142900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1432-0851 0340-7004 |
| IngestDate | Tue Nov 04 02:05:56 EST 2025 Sun Nov 09 12:36:08 EST 2025 Tue Oct 07 14:12:12 EDT 2025 Mon Jul 21 05:59:30 EDT 2025 Tue Nov 18 22:41:10 EST 2025 Sat Nov 29 01:50:48 EST 2025 Fri Feb 21 02:40:13 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Keywords | Microarray data analysis Feature selection Random drift optimization Cancer classification XGBoost |
| Language | English |
| License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c475t-f1fc31c8aff6fc48c8493b62c0a16b9f1269b77cdcbc774f1ee121d8a81c41dc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://link.springer.com/10.1007/s00262-024-03843-x |
| PMID | 39382649 |
| PQID | 3114591512 |
| PQPubID | 48449 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11464649 proquest_miscellaneous_3114502924 proquest_journals_3114591512 pubmed_primary_39382649 crossref_citationtrail_10_1007_s00262_024_03843_x crossref_primary_10_1007_s00262_024_03843_x springer_journals_10_1007_s00262_024_03843_x |
| PublicationCentury | 2000 |
| PublicationDate | 2024-10-09 |
| PublicationDateYYYYMMDD | 2024-10-09 |
| PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-09 day: 09 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
| PublicationTitle | Cancer Immunology, Immunotherapy : CII |
| PublicationTitleAbbrev | Cancer Immunol Immunother |
| PublicationTitleAlternate | Cancer Immunol Immunother |
| PublicationYear | 2024 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Yaqoob, Bhat, Khan (CR12) 2023; 1 El-Mageed, Elkhouli, Abohany, Gafar (CR15) 2024 Dabba, Tari, Meftali (CR18) 2024; 80 Ahmed, Ali, Selim (CR32) 2019; 12 CR17 CR14 CR10 Meyer, Schretter, Bontempi (CR21) 2008; 2 Kundu, Chattopadhyay, Cuevas, Sarkar (CR22) 2022; 144 Li, Sun, Palade, Li (CR26) 2021; 12 Bilal (CR16) 2024; 19 Nssibi, Manita, Chhabra, Mirjalili, Korbaa (CR19) 2024 Ghatasheh, Altaharwa, Aldebei (CR29) 2022; 10 Trojovská, Dehghani (CR33) 2022; 12 Zhang (CR34) 2023 Çakir, Yilmaz, Oral, Kazanci, Oral (CR30) 2023 Yaqoob, Verma, Aziz (CR2) 2024 Yaqoob, Kumar, Rabia, Aziz (CR6) 2024 CR8 CR7 Benghazouani, Nouh, Zakrani, Haloum, Jebbar (CR20) 2024; 14 CR28 CR27 Sun, Wu, Palade, Fang, Shi (CR11) 2015; 101 CR24 Wang, Wu, Kong, Li, Zhang (CR25) 2013; 46 Sree Devi, Karthikeyan, Moorthy, Deeba, Maheshwari, Allayear (CR13) 2022 Houssein, Hosney, Mohamed, Ali, Younis (CR5) 2023; 35 Yaqoob, Musheer Aziz, Verma (CR9) 2023 Agrawal, Kaur, Sharma (CR4) 2020; 89 Machap, Abdullah, Shah (CR1) 2020; 18 Debata, Mohapatra (CR23) 2021 Shaw, Mitchell-Olds (CR31) 1993; 74 Lu, Chen, Yan, Jin, Xue, Gao (CR3) 2017; 256 3843_CR10 M Çakir (3843_CR30) 2023 L Machap (3843_CR1) 2020; 18 A Yaqoob (3843_CR9) 2023 N Ghatasheh (3843_CR29) 2022; 10 3843_CR14 PP Debata (3843_CR23) 2021 A Yaqoob (3843_CR2) 2024 A Yaqoob (3843_CR12) 2023; 1 J Sun (3843_CR11) 2015; 101 M Nssibi (3843_CR19) 2024 RK Agrawal (3843_CR4) 2020; 89 J Wang (3843_CR25) 2013; 46 R Kundu (3843_CR22) 2022; 144 A Yaqoob (3843_CR6) 2024 T Zhang (3843_CR34) 2023 A Bilal (3843_CR16) 2024; 19 3843_CR17 3843_CR8 RG Shaw (3843_CR31) 1993; 74 3843_CR7 EH Houssein (3843_CR5) 2023; 35 3843_CR24 3843_CR27 H Lu (3843_CR3) 2017; 256 A Dabba (3843_CR18) 2024; 80 E Trojovská (3843_CR33) 2022; 12 C Li (3843_CR26) 2021; 12 S Benghazouani (3843_CR20) 2024; 14 AA Ahmed (3843_CR32) 2019; 12 3843_CR28 PE Meyer (3843_CR21) 2008; 2 AAA El-Mageed (3843_CR15) 2024 KD Sree Devi (3843_CR13) 2022 |
| References_xml | – year: 2021 ident: CR23 article-title: Identification of significant bio-markers from high-dimensional cancerous data employing a modified multi-objective meta-heuristic algorithm publication-title: J King Saud Univ Comput Inf Sci doi: 10.1016/j.jksuci.2020.12.014 – volume: 35 start-page: 5251 issue: 7 year: 2023 end-page: 5275 ident: CR5 article-title: Fuzzy-based hunger games search algorithm for global optimization and feature selection using medical data publication-title: Neural Comput Appl doi: 10.1007/s00521-022-07916-9 – ident: CR14 – volume: 1 start-page: 34 issue: 2 year: 2023 end-page: 45 ident: CR12 article-title: Dimensionality reduction techniques and their applications in cancer classification: a comprehensive review publication-title: Int J Genet Modif Recomb – volume: 144 start-page: 105349 year: 2022 ident: CR22 article-title: AltWOA : Altruistic Whale Optimization Algorithm for feature selection on microarray datasets publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2022.105349 – year: 2023 ident: CR9 article-title: Applications and techniques of machine learning in cancer classification: a systematic review publication-title: Human-Centric Intell Syst doi: 10.1007/s44230-023-00041-3 – ident: CR10 – volume: 14 start-page: 944 issue: 1 year: 2024 end-page: 959 ident: CR20 article-title: Enhancing feature selection with a novel hybrid approach incorporating genetic algorithms and swarm intelligence techniques publication-title: Int J Electr Comput Eng doi: 10.11591/ijece.v14i1.pp944-959 – year: 2023 ident: CR30 article-title: Accuracy assessment of RFerns, NB, SVM, and kNN machine learning classifiers in aquaculture publication-title: J King Saud Univ Sci doi: 10.1016/j.jksus.2023.102754 – volume: 12 start-page: 114 issue: 2 year: 2019 end-page: 124 ident: CR32 article-title: Bio-inspired based techniques for thermogram breast cancer classification publication-title: Int J Intell Eng Syst doi: 10.22266/IJIES2019.0430.12 – volume: 74 start-page: 1638 issue: 6 year: 1993 end-page: 1645 ident: CR31 article-title: ANOVA for unbalanced data: an overview publication-title: Ecology doi: 10.2307/1939922 – ident: CR8 – volume: 18 start-page: 343 issue: 1 year: 2020 end-page: 350 ident: CR1 article-title: Functional analysis of cancer gene subtype from co-clustering and classification publication-title: Indones J Electr Eng Comput Sci doi: 10.11591/ijeecs.v18.i1.pp343-350 – volume: 12 start-page: 1 issue: 1 year: 2022 end-page: 24 ident: CR33 article-title: A new human-based metahurestic optimization method based on mimicking cooking training publication-title: Sci Rep doi: 10.1038/s41598-022-19313-2 – volume: 256 start-page: 56 issue: 2017 year: 2017 end-page: 62 ident: CR3 article-title: A hybrid feature selection algorithm for gene expression data classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.07.080 – ident: CR27 – volume: 101 start-page: 345 issue: 1–3 year: 2015 end-page: 376 ident: CR11 article-title: Random drift particle swarm optimization algorithm: convergence analysis and parameter selection publication-title: Mach Learn doi: 10.1007/s10994-015-5522-z – year: 2022 ident: CR13 article-title: Tumor detection on microarray data using grey wolf optimization with gain information publication-title: Math Probl Eng doi: 10.1155/2022/4092404 – volume: 80 start-page: 4808 issue: 4 year: 2024 end-page: 4840 ident: CR18 article-title: A novel grey wolf optimization algorithm based on geometric transformations for gene selection and cancer classification publication-title: J Supercomput doi: 10.1007/s11227-023-05643-z – volume: 12 start-page: 2617 issue: 9 year: 2021 end-page: 2638 ident: CR26 article-title: Diversity collaboratively guided random drift particle swarm optimization publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-021-01345-1 – volume: 89 year: 2020 ident: CR4 article-title: Quantum based Whale Optimization Algorithm for wrapper feature selection publication-title: Appl Soft Comput J doi: 10.1016/j.asoc.2020.106092 – ident: CR17 – year: 2024 ident: CR2 article-title: Improving breast cancer classification with mRMR + SS0 + WSVM: a hybrid approach publication-title: Multimed Tools Appl doi: 10.1007/s11042-024-20146-6 – volume: 2 start-page: 261 issue: 3 year: 2008 end-page: 274 ident: CR21 article-title: Information-theoretic feature selection in microarray data using variable complementarity publication-title: IEEE J Sel Top Signal Process doi: 10.1109/JSTSP.2008.923858 – year: 2023 ident: CR34 article-title: Application of nonlinear models combined with conventional laboratory indicators for the diagnosis and differential diagnosis of ovarian cancer publication-title: J Clin Med doi: 10.3390/jcm12030844 – volume: 10 start-page: 84365 issue: August year: 2022 end-page: 84383 ident: CR29 article-title: Modified genetic algorithm for feature selection and hyper parameter optimization: case of XGBoost in spam prediction publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3196905 – ident: CR7 – year: 2024 ident: CR15 publication-title: Gene selection via improved nuclear reaction optimization algorithm for cancer classification in high-dimensional data doi: 10.1186/s40537-024-00902-z – volume: 19 start-page: e0295951 issue: 1 year: 2024 ident: CR16 article-title: Improved Support Vector Machine based on CNN-SVD for vision-threatening diabetic retinopathy detection and classification publication-title: PLoS ONE doi: 10.1371/journal.pone.0295951 – ident: CR28 – year: 2024 ident: CR6 article-title: Optimizing gene selection and cancer classification with hybrid sine cosine and cuckoo search algorithm publication-title: J Med Syst doi: 10.1007/s10916-023-02031-1 – ident: CR24 – volume: 46 start-page: 1616 issue: 6 year: 2013 end-page: 1627 ident: CR25 article-title: Maximum weight and minimum redundancy : a novel framework for feature subset selection publication-title: Pattern Recognit doi: 10.1016/j.patcog.2012.11.025 – year: 2024 ident: CR19 publication-title: Gene selection for high dimensional biological datasets using hybrid island binary artificial bee colony with chaos game optimization doi: 10.1007/s10462-023-10675-1 – year: 2024 ident: 3843_CR2 publication-title: Multimed Tools Appl doi: 10.1007/s11042-024-20146-6 – ident: 3843_CR8 doi: 10.3390/math11051081 – volume: 1 start-page: 34 issue: 2 year: 2023 ident: 3843_CR12 publication-title: Int J Genet Modif Recomb – ident: 3843_CR10 – year: 2023 ident: 3843_CR34 publication-title: J Clin Med doi: 10.3390/jcm12030844 – volume: 89 year: 2020 ident: 3843_CR4 publication-title: Appl Soft Comput J doi: 10.1016/j.asoc.2020.106092 – volume: 101 start-page: 345 issue: 1–3 year: 2015 ident: 3843_CR11 publication-title: Mach Learn doi: 10.1007/s10994-015-5522-z – year: 2022 ident: 3843_CR13 publication-title: Math Probl Eng doi: 10.1155/2022/4092404 – volume: 35 start-page: 5251 issue: 7 year: 2023 ident: 3843_CR5 publication-title: Neural Comput Appl doi: 10.1007/s00521-022-07916-9 – ident: 3843_CR27 doi: 10.1145/2939672.2939785 – year: 2023 ident: 3843_CR30 publication-title: J King Saud Univ Sci doi: 10.1016/j.jksus.2023.102754 – volume: 18 start-page: 343 issue: 1 year: 2020 ident: 3843_CR1 publication-title: Indones J Electr Eng Comput Sci doi: 10.11591/ijeecs.v18.i1.pp343-350 – volume: 14 start-page: 944 issue: 1 year: 2024 ident: 3843_CR20 publication-title: Int J Electr Comput Eng doi: 10.11591/ijece.v14i1.pp944-959 – volume-title: Gene selection for high dimensional biological datasets using hybrid island binary artificial bee colony with chaos game optimization year: 2024 ident: 3843_CR19 doi: 10.1007/s10462-023-10675-1 – ident: 3843_CR28 – year: 2023 ident: 3843_CR9 publication-title: Human-Centric Intell Syst doi: 10.1007/s44230-023-00041-3 – volume: 2 start-page: 261 issue: 3 year: 2008 ident: 3843_CR21 publication-title: IEEE J Sel Top Signal Process doi: 10.1109/JSTSP.2008.923858 – ident: 3843_CR17 doi: 10.1002/9781394233953.ch1 – volume: 80 start-page: 4808 issue: 4 year: 2024 ident: 3843_CR18 publication-title: J Supercomput doi: 10.1007/s11227-023-05643-z – volume: 12 start-page: 1 issue: 1 year: 2022 ident: 3843_CR33 publication-title: Sci Rep doi: 10.1038/s41598-022-19313-2 – volume: 19 start-page: e0295951 issue: 1 year: 2024 ident: 3843_CR16 publication-title: PLoS ONE doi: 10.1371/journal.pone.0295951 – volume: 12 start-page: 114 issue: 2 year: 2019 ident: 3843_CR32 publication-title: Int J Intell Eng Syst doi: 10.22266/IJIES2019.0430.12 – volume: 46 start-page: 1616 issue: 6 year: 2013 ident: 3843_CR25 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2012.11.025 – volume: 10 start-page: 84365 issue: August year: 2022 ident: 3843_CR29 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3196905 – volume: 74 start-page: 1638 issue: 6 year: 1993 ident: 3843_CR31 publication-title: Ecology doi: 10.2307/1939922 – ident: 3843_CR7 doi: 10.1002/9781394233953.ch4 – ident: 3843_CR14 doi: 10.1007/s41870-024-01849-3 – volume: 256 start-page: 56 issue: 2017 year: 2017 ident: 3843_CR3 publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.07.080 – year: 2024 ident: 3843_CR6 publication-title: J Med Syst doi: 10.1007/s10916-023-02031-1 – volume-title: Gene selection via improved nuclear reaction optimization algorithm for cancer classification in high-dimensional data year: 2024 ident: 3843_CR15 doi: 10.1186/s40537-024-00902-z – volume: 144 start-page: 105349 year: 2022 ident: 3843_CR22 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2022.105349 – volume: 12 start-page: 2617 issue: 9 year: 2021 ident: 3843_CR26 publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-021-01345-1 – year: 2021 ident: 3843_CR23 publication-title: J King Saud Univ Comput Inf Sci doi: 10.1016/j.jksuci.2020.12.014 – ident: 3843_CR24 doi: 10.1155/2022/3112170 |
| SSID | ssj0042099 ssj0001254 |
| Score | 2.5366561 |
| Snippet | The identification of relevant biomarkers from high-dimensional cancer data remains a significant challenge due to the complexity and heterogeneity inherent in... |
| SourceID | pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 261 |
| SubjectTerms | Accuracy Algorithms Bayes Theorem Biomarkers, Tumor - genetics Breast cancer Cancer Cancer Research Central nervous system Classification Computational Biology - methods Feature selection Female Humans Immunology Leukemia Medicine Medicine & Public Health Neoplasms - classification Oncology Ovarian cancer Ovaries Support Vector Machine |
| SummonAdditionalLinks | – databaseName: SpringerOpen dbid: C24 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQixCX8mppoCAjcQNLcexNbG5QKBygRQjQ3iJnbKsr0Wy12SLor2fGmwQthUrl7PEjnrHnm8zDjD21OVSlU1H4PCihEWAIh4pbNDKS38uYSfrf8fV9dXhoplP7sU8K64Zo98ElmW7qMdmNzIVCoE4ROIZWApHj5kQaS4F8-5TjsLp_NSWD9ukxf--3roIu4MqL4ZF_-EiT6jm49X-Lvs22eqjJX65k4w67Ftq77MaH3pl-j50c4XVxMjvH8TgQ8xccCEtT8FDi1wvu-PFPSunin14fienbV_N5t-RDGXKOeJfHkCqD8i69p4OduGs9P13QLHST8lnbkf3fbbMvB28-778T_esLAnQ1WYooIygJxsVYRtAGjLaqKQvInSwbG2VR2qaqwEMDyOIoQ5CF9MYZCVp6UDtso523YZdxixowNr6oIsIdX8QGIA8IVb0Dq7SHjMmBITX0pcnphYxv9VhUOe1jjftYp32sf2Ts2djndFWY41LqvYHPdX9Iu1qhLTixBHky9mRsxuNFPhPXhvlZT5MXaKVm7P5KLMbplFVonGmbMbMmMCMBle5eb2lnx6mEN-WC69T1-SA3v9f17894cDXyh-xmQaJH8Q52j20sF2fhEbsO35ezbvE4nZpfNgkVog priority: 102 providerName: Springer Nature |
| Title | Optimizing cancer classification: a hybrid RDO-XGBoost approach for feature selection and predictive insights |
| URI | https://link.springer.com/article/10.1007/s00262-024-03843-x https://www.ncbi.nlm.nih.gov/pubmed/39382649 https://www.proquest.com/docview/3114591512 https://www.proquest.com/docview/3114502924 https://pubmed.ncbi.nlm.nih.gov/PMC11464649 |
| Volume | 73 |
| WOSCitedRecordID | wos001337142900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1432-0851 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0042099 issn: 1432-0851 databaseCode: DOA dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVAVX databaseName: SpringerLink Contemporary customDbUrl: eissn: 1432-0851 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0042099 issn: 1432-0851 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerOpen customDbUrl: eissn: 1432-0851 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0042099 issn: 1432-0851 databaseCode: C24 dateStart: 20240101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1db9Mw0GIbQrzwDQuMyki8gUU-3MTmBbGywQN0VYGpb1FyjrVKLOmaDg1-PXeuk6lM7IUXS5Zt2dad7873ydhLHUKWFokVJqwSIVHAEAUyblFGluxeSg2dvuP4czYeq9lMT7zCrfVulR1NdITaNEA68jcJCu5DTfzp3eJMUNUosq76EhpbbIeyJMTOdW_SUWJJYaHOikBec9j3QTMudI4-H7FADiXwRDIRF5uM6Yq0edVp8i_LqWNIh3f_9yr32B0vivL3a9y5z25U9QN264s3tj9kp0dITk7nv3F3DoQcSw4ka5NzkYPnW17wk18U8sWnH47E7ON-07Qr3qUp5ygPc1u5zKG8dfV2cBEvasMXS9qFKC2f1y3pB9pH7PvhwbfRJ-GrMwiQ2XAlbGQhiUAV1qYWpAIldVKmMYRFlJbaRnGqyywDAyUgCtioqhBGRhUqAhkZSB6z7bqpq13GNXJIW5o4sygOmdiWAGGFoqwpQCfSQMCiDjQ5-NTlVEHjR94nXXbgzBGcuQNnfhGwV_2axTpxx7Wz9zpQ5f4Rt_klnAL2oh_G50c2laKumnM_J4zxFxuwJ2sE6bdLdIKfN6kDpjZQp59Aqb03R-r5iUvxTbHi0i193WHZ5bn-fY2n11_jGbsdE8aT_4PeY9ur5Xn1nN2En6t5uxywrWyWuVZhq0bRgO3sH4wnU-yNYjlw6oqBe2HYTr8e_wHEeihM |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgoAL78dCASPBCSziJJvYSAhBS2nV7RahFu0tJJNYXYkmy2YLLT-K38iMN0m1VPTWA8fIdhw7n-fheQE8Mx7GURpYmXtFIEMSMGRKjFtmyrLdS-u-u-_4MoiHQz0amU9L8LuNhWG3ypYmOkKdV8h35K8CEtz7hvnT28l3yVWj2LraltCYw2KrOP5JKlv9ZnON_u9z31__sLu6IZuqAhLDuD-TVlkMFOrU2shiqFGHJsgiH71URZmxyo9MFseYY4b06VYVhfJVrlOtMFQ5BvTeC3CRM9nxidKrnUtJyGGozmrBXnr03ATpuFA9VnZ8SRxR0g6EgTxaZISnpNvTTpp_WWodA1y__r9t3Q241oja4t38bNyEpaK8BZe3G2eC23CwQ-TyYPyLViuQwT8VyLoEO085vL4Wqdg_5pA28XltR44-vq-qeibaNOyC5H1hC5cZVdSunhANEmmZi8mUZ2FOIsZlzfcf9R3YO5fF3oXlsiqL-yAMSQA2y_3YkriX-zZD9AoS1fMUTRDm2APVQiHBJjU7Vwj5lnRJpR18EoJP4uCTHPXgRTdmMk9McmbvlRYaSUOk6uQEFz142jUTeWGbUVoW1WHTx_NJS-_BvTkgu-kCE5ByGpoe6AWodh04dfliSznedynMORY-dENftqg--a5_L-PB2ct4Alc2drcHyWBzuPUQrvp82tjXw6zA8mx6WDyCS_hjNq6nj925FfD1vNH-B_MPgGg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFFVceD8MBRYJTrBq1t7EXiSEKGmgakmjiqLcjD32qpGoE-IUWn4av46Zje0qVPTWA0fLu7Zn_e08dl4Az00bw24SWJm180BqUjBkQoJbpsqy3yuKOu6848tuOBhEo5EZrsDvOheGwyprnugYdTZBPiPfCEhx7xiWTxu2CosY9vpvp98ld5BiT2vdTmMBkZ389CeZb-Wb7R796xe-39_6_P6jrDoMSNRhZy6tshgojBJruxZ1hJE2Qdr1sZ2obmqs8rsmDUPMMEUiw6o8V77KoiRSqFWGAT33CqyGpGToFqxubg2G-7Uc0JyU6nwYHLNH11XKjkvcY9PHlyQfJa2HDuTJslg8p-ueD9n8y2_rxGH_xv-8kDfheqWEi3eLXXMLVvLiNqx9qsIM7sDRHjHSo_Evolwgb4uZQLYyOKzKIfm1SMThKSe7if3enhx92JxMyrmoC7QLsgSEzV3NVFG6TkM0SSRFJqYzfgvLGDEuSj4ZKe_CwaUQew9axaTIH4AwpBvYNPNDS4pg5tsUsZ2TEp8laAKdoQeqhkWMVdF27h3yLW7KTTsoxQSl2EEpPvHgZTNnuihZcuHo9RomccW-yvgMIx48a24T42FvUlLkk-NqTNsn5HtwfwHO5nWBCchs1caDaAm2zQAuar58pxgfuuLmnCWv3dRXNcLPvuvfZDy8mIynsEYgj3e3BzuP4JrPG4-DQMw6tOaz4_wxXMUf83E5e1JtYgFfLxvufwCLc4rG |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+cancer+classification%3A+a+hybrid+RDO-XGBoost+approach+for+feature+selection+and+predictive+insights&rft.jtitle=Cancer+immunology%2C+immunotherapy&rft.date=2024-10-09&rft.pub=Springer+Nature+B.V&rft.issn=0340-7004&rft.eissn=1432-0851&rft.volume=73&rft.issue=12&rft.spage=261&rft_id=info:doi/10.1007%2Fs00262-024-03843-x&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-0851&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-0851&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-0851&client=summon |