Optimizing cancer classification: a hybrid RDO-XGBoost approach for feature selection and predictive insights

The identification of relevant biomarkers from high-dimensional cancer data remains a significant challenge due to the complexity and heterogeneity inherent in various cancer types. Conventional feature selection methods often struggle to effectively navigate the vast solution space while maintainin...

Full description

Saved in:
Bibliographic Details
Published in:Cancer Immunology, Immunotherapy : CII Vol. 73; no. 12; p. 261
Main Authors: Yaqoob, Abrar, Verma, Navneet Kumar, Aziz, Rabia Musheer, Shah, Mohd Asif
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 09.10.2024
Springer Nature B.V
Subjects:
ISSN:1432-0851, 0340-7004, 1432-0851
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The identification of relevant biomarkers from high-dimensional cancer data remains a significant challenge due to the complexity and heterogeneity inherent in various cancer types. Conventional feature selection methods often struggle to effectively navigate the vast solution space while maintaining high predictive accuracy. In response to these challenges, we introduce a novel feature selection approach that integrates Random Drift Optimization (RDO) with XGBoost, specifically designed to enhance the performance of cancer classification tasks. Our proposed framework not only improves classification accuracy but also offers valuable insights into the underlying biological mechanisms driving cancer progression. Through comprehensive experiments conducted on real-world cancer datasets, including Central Nervous System (CNS), Leukemia, Breast, and Ovarian cancers, we demonstrate the efficacy of our method in identifying a smaller subset of unique and relevant genes. This selection results in significantly improved classification efficiency and accuracy. When compared with popular classifiers such as Support Vector Machine, K-Nearest Neighbor, and Naive Bayes, our approach consistently outperforms these models in terms of both accuracy and F-measure metrics. For instance, our framework achieved an accuracy of 97.24% in the CNS dataset, 99.14% in Leukemia, 95.21% in Ovarian, and 87.62% in Breast cancer, showcasing its robustness and effectiveness across different types of cancer data. These results underline the potential of our RDO-XGBoost framework as a promising solution for feature selection in cancer data analysis, offering enhanced predictive performance and valuable biological insights.
AbstractList The identification of relevant biomarkers from high-dimensional cancer data remains a significant challenge due to the complexity and heterogeneity inherent in various cancer types. Conventional feature selection methods often struggle to effectively navigate the vast solution space while maintaining high predictive accuracy. In response to these challenges, we introduce a novel feature selection approach that integrates Random Drift Optimization (RDO) with XGBoost, specifically designed to enhance the performance of cancer classification tasks. Our proposed framework not only improves classification accuracy but also offers valuable insights into the underlying biological mechanisms driving cancer progression. Through comprehensive experiments conducted on real-world cancer datasets, including Central Nervous System (CNS), Leukemia, Breast, and Ovarian cancers, we demonstrate the efficacy of our method in identifying a smaller subset of unique and relevant genes. This selection results in significantly improved classification efficiency and accuracy. When compared with popular classifiers such as Support Vector Machine, K-Nearest Neighbor, and Naive Bayes, our approach consistently outperforms these models in terms of both accuracy and F-measure metrics. For instance, our framework achieved an accuracy of 97.24% in the CNS dataset, 99.14% in Leukemia, 95.21% in Ovarian, and 87.62% in Breast cancer, showcasing its robustness and effectiveness across different types of cancer data. These results underline the potential of our RDO-XGBoost framework as a promising solution for feature selection in cancer data analysis, offering enhanced predictive performance and valuable biological insights.
The identification of relevant biomarkers from high-dimensional cancer data remains a significant challenge due to the complexity and heterogeneity inherent in various cancer types. Conventional feature selection methods often struggle to effectively navigate the vast solution space while maintaining high predictive accuracy. In response to these challenges, we introduce a novel feature selection approach that integrates Random Drift Optimization (RDO) with XGBoost, specifically designed to enhance the performance of cancer classification tasks. Our proposed framework not only improves classification accuracy but also offers valuable insights into the underlying biological mechanisms driving cancer progression. Through comprehensive experiments conducted on real-world cancer datasets, including Central Nervous System (CNS), Leukemia, Breast, and Ovarian cancers, we demonstrate the efficacy of our method in identifying a smaller subset of unique and relevant genes. This selection results in significantly improved classification efficiency and accuracy. When compared with popular classifiers such as Support Vector Machine, K-Nearest Neighbor, and Naive Bayes, our approach consistently outperforms these models in terms of both accuracy and F-measure metrics. For instance, our framework achieved an accuracy of 97.24% in the CNS dataset, 99.14% in Leukemia, 95.21% in Ovarian, and 87.62% in Breast cancer, showcasing its robustness and effectiveness across different types of cancer data. These results underline the potential of our RDO-XGBoost framework as a promising solution for feature selection in cancer data analysis, offering enhanced predictive performance and valuable biological insights.The identification of relevant biomarkers from high-dimensional cancer data remains a significant challenge due to the complexity and heterogeneity inherent in various cancer types. Conventional feature selection methods often struggle to effectively navigate the vast solution space while maintaining high predictive accuracy. In response to these challenges, we introduce a novel feature selection approach that integrates Random Drift Optimization (RDO) with XGBoost, specifically designed to enhance the performance of cancer classification tasks. Our proposed framework not only improves classification accuracy but also offers valuable insights into the underlying biological mechanisms driving cancer progression. Through comprehensive experiments conducted on real-world cancer datasets, including Central Nervous System (CNS), Leukemia, Breast, and Ovarian cancers, we demonstrate the efficacy of our method in identifying a smaller subset of unique and relevant genes. This selection results in significantly improved classification efficiency and accuracy. When compared with popular classifiers such as Support Vector Machine, K-Nearest Neighbor, and Naive Bayes, our approach consistently outperforms these models in terms of both accuracy and F-measure metrics. For instance, our framework achieved an accuracy of 97.24% in the CNS dataset, 99.14% in Leukemia, 95.21% in Ovarian, and 87.62% in Breast cancer, showcasing its robustness and effectiveness across different types of cancer data. These results underline the potential of our RDO-XGBoost framework as a promising solution for feature selection in cancer data analysis, offering enhanced predictive performance and valuable biological insights.
ArticleNumber 261
Author Shah, Mohd Asif
Aziz, Rabia Musheer
Yaqoob, Abrar
Verma, Navneet Kumar
Author_xml – sequence: 1
  givenname: Abrar
  surname: Yaqoob
  fullname: Yaqoob, Abrar
  email: abraryaqoob77@gmail.com
  organization: VIT Bhopal University’s School of Advanced Science and Language, Located at Kothrikalan
– sequence: 2
  givenname: Navneet Kumar
  surname: Verma
  fullname: Verma, Navneet Kumar
  organization: VIT Bhopal University’s School of Advanced Science and Language, Located at Kothrikalan
– sequence: 3
  givenname: Rabia Musheer
  surname: Aziz
  fullname: Aziz, Rabia Musheer
  organization: Planning Department, State Planning Institute (New Division)
– sequence: 4
  givenname: Mohd Asif
  surname: Shah
  fullname: Shah, Mohd Asif
  email: m.asif@kardan.edu.af
  organization: Department of Economics, Kardan University, Division of Research and Development, Lovely Professional University, Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39382649$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1rFTEYhYNU7If-ARcScNPNaL7uzMSNaNUqFC4UBXch805yb8pMMiaZ0vbXm3ZabbsoWSRv8pzDCWcf7fjgDUKvKXlHCWneJ0JYzSrCREV4K3h18QztUcHLVbuiO_fOu2g_pTNCBCNSvkC7XPKW1ULuoXE9ZTe6K-c3GLQHEzEMOiVnHejsgv-ANd5edtH1-PTLuvp9_DmElLGephg0bLENEVuj8xwNTmYwcC3C2vd4iqZ3ZTw32PnkNtucXqLnVg_JvLrdD9Cvb19_Hn2vTtbHP44-nVQgmlWuLLXAKbTa2tqCaKEVknc1A6Jp3UlLWS27poEeOmgaYakxlNG-1S0FQXvgB-jj4jvN3Wh6MD5HPagpulHHSxW0Uw9fvNuqTThXlIq6LFkcDm8dYvgzm5TV6BKYYdDehDkpXsgVYZKJgr59hJ6FOfryv4WSdEVZod7cj_Qvy10VBWgXAGJIKRqrwOWbCkpCNyhK1HXramldldbVTevqokjZI-md-5MivohSgf3GxP-xn1D9BelWwiI
CitedBy_id crossref_primary_10_1038_s41598_025_87285_0
crossref_primary_10_1080_03091902_2025_2471332
crossref_primary_10_1016_j_eswa_2025_126737
crossref_primary_10_1016_j_sciaf_2025_e02564
crossref_primary_10_3390_diagnostics14232632
crossref_primary_10_1016_j_rineng_2025_104956
crossref_primary_10_1186_s12911_025_02956_2
crossref_primary_10_1016_j_wneu_2025_123771
crossref_primary_10_1007_s12672_025_02111_3
crossref_primary_10_33393_grhta_2025_3568
crossref_primary_10_1007_s10916_025_02171_6
crossref_primary_10_1007_s00704_025_05422_1
crossref_primary_10_1016_j_compbiolchem_2025_108368
crossref_primary_10_1038_s41598_025_15656_8
crossref_primary_10_1038_s41598_025_95786_1
crossref_primary_10_1007_s00607_025_01425_y
crossref_primary_10_1016_j_eswa_2025_128231
crossref_primary_10_1016_j_mex_2025_103239
crossref_primary_10_1038_s41598_025_89125_7
crossref_primary_10_1007_s13042_025_02648_3
Cites_doi 10.1016/j.jksuci.2020.12.014
10.1007/s00521-022-07916-9
10.1016/j.compbiomed.2022.105349
10.1007/s44230-023-00041-3
10.11591/ijece.v14i1.pp944-959
10.1016/j.jksus.2023.102754
10.22266/IJIES2019.0430.12
10.2307/1939922
10.11591/ijeecs.v18.i1.pp343-350
10.1038/s41598-022-19313-2
10.1016/j.neucom.2016.07.080
10.1007/s10994-015-5522-z
10.1155/2022/4092404
10.1007/s11227-023-05643-z
10.1007/s13042-021-01345-1
10.1016/j.asoc.2020.106092
10.1007/s11042-024-20146-6
10.1109/JSTSP.2008.923858
10.3390/jcm12030844
10.1109/ACCESS.2022.3196905
10.1186/s40537-024-00902-z
10.1371/journal.pone.0295951
10.1007/s10916-023-02031-1
10.1016/j.patcog.2012.11.025
10.1007/s10462-023-10675-1
10.3390/math11051081
10.1145/2939672.2939785
10.1002/9781394233953.ch1
10.1002/9781394233953.ch4
10.1007/s41870-024-01849-3
10.1155/2022/3112170
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
Copyright Springer Nature B.V. Dec 2024
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: Copyright Springer Nature B.V. Dec 2024
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7T5
7X7
7XB
88E
8AO
8C1
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1007/s00262-024-03843-x
DatabaseName Springer Nature OA Free Journals (WRLC)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Immunology Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central (subscription)
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Proquest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Public Health
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Immunology Abstracts
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest Central Student


MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1432-0851
ExternalDocumentID PMC11464649
39382649
10_1007_s00262_024_03843_x
Genre Journal Article
GroupedDBID ---
-53
-56
-5G
-BR
-EM
-~C
.86
.VR
06C
06D
0R~
0VY
199
1N0
203
29B
29~
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
36B
4.4
406
408
409
40D
40E
5GY
5RE
5VS
67Z
6J9
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAHNG
AAIAL
AAJKR
AAJSJ
AAKKN
AANZL
AARTL
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABEEZ
ABFTV
ABHLI
ABHQN
ABIPD
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABSXP
ABTEG
ABTKH
ABTMW
ABUWZ
ABWNU
ABXPI
ACACY
ACGFS
ACHSB
ACHVE
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPRK
ACREN
ACULB
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGXO
AFJLC
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BGNMA
BHPHI
C24
C6C
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EMB
EMOBN
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GROUPED_DOAJ
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IH2
IHE
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KPH
LAS
LLZTM
M4Y
M7P
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P2P
P9S
PF0
PT5
QOK
QOR
QOS
R89
R9I
RHV
ROL
RPM
RPX
RSV
S16
S27
S37
S3B
SAP
SBL
SDH
SDM
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
YLTOR
Z45
Z7U
Z82
Z84
Z87
Z8O
Z8V
Z8Y
Z91
ZMTXR
ZOVNA
~EX
~KM
7X7
8C1
8FE
8FH
AASML
AAYXX
ABDBE
ABFSG
ABUWG
ACSTC
AEZWR
AFHIU
AHPBZ
AHWEU
AIXLP
AYFIA
BBNVY
BENPR
BPHCQ
BVXVI
CITATION
EBD
FYUFA
HCIFZ
LK8
PQQKQ
PROAC
Q2X
UKHRP
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7T5
7XB
88E
8AO
8FI
8FJ
8FK
AFKRA
AZQEC
CCPQU
DWQXO
GNUQQ
H94
K9.
M1P
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c475t-f1fc31c8aff6fc48c8493b62c0a16b9f1269b77cdcbc774f1ee121d8a81c41dc3
IEDL.DBID M7P
ISICitedReferencesCount 23
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001337142900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1432-0851
0340-7004
IngestDate Tue Nov 04 02:05:56 EST 2025
Sun Nov 09 12:36:08 EST 2025
Tue Oct 07 14:12:12 EDT 2025
Mon Jul 21 05:59:30 EDT 2025
Tue Nov 18 22:41:10 EST 2025
Sat Nov 29 01:50:48 EST 2025
Fri Feb 21 02:40:13 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Microarray data analysis
Feature selection
Random drift optimization
Cancer classification
XGBoost
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c475t-f1fc31c8aff6fc48c8493b62c0a16b9f1269b77cdcbc774f1ee121d8a81c41dc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://link.springer.com/10.1007/s00262-024-03843-x
PMID 39382649
PQID 3114591512
PQPubID 48449
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11464649
proquest_miscellaneous_3114502924
proquest_journals_3114591512
pubmed_primary_39382649
crossref_citationtrail_10_1007_s00262_024_03843_x
crossref_primary_10_1007_s00262_024_03843_x
springer_journals_10_1007_s00262_024_03843_x
PublicationCentury 2000
PublicationDate 2024-10-09
PublicationDateYYYYMMDD 2024-10-09
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-09
  day: 09
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle Cancer Immunology, Immunotherapy : CII
PublicationTitleAbbrev Cancer Immunol Immunother
PublicationTitleAlternate Cancer Immunol Immunother
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Yaqoob, Bhat, Khan (CR12) 2023; 1
El-Mageed, Elkhouli, Abohany, Gafar (CR15) 2024
Dabba, Tari, Meftali (CR18) 2024; 80
Ahmed, Ali, Selim (CR32) 2019; 12
CR17
CR14
CR10
Meyer, Schretter, Bontempi (CR21) 2008; 2
Kundu, Chattopadhyay, Cuevas, Sarkar (CR22) 2022; 144
Li, Sun, Palade, Li (CR26) 2021; 12
Bilal (CR16) 2024; 19
Nssibi, Manita, Chhabra, Mirjalili, Korbaa (CR19) 2024
Ghatasheh, Altaharwa, Aldebei (CR29) 2022; 10
Trojovská, Dehghani (CR33) 2022; 12
Zhang (CR34) 2023
Çakir, Yilmaz, Oral, Kazanci, Oral (CR30) 2023
Yaqoob, Verma, Aziz (CR2) 2024
Yaqoob, Kumar, Rabia, Aziz (CR6) 2024
CR8
CR7
Benghazouani, Nouh, Zakrani, Haloum, Jebbar (CR20) 2024; 14
CR28
CR27
Sun, Wu, Palade, Fang, Shi (CR11) 2015; 101
CR24
Wang, Wu, Kong, Li, Zhang (CR25) 2013; 46
Sree Devi, Karthikeyan, Moorthy, Deeba, Maheshwari, Allayear (CR13) 2022
Houssein, Hosney, Mohamed, Ali, Younis (CR5) 2023; 35
Yaqoob, Musheer Aziz, Verma (CR9) 2023
Agrawal, Kaur, Sharma (CR4) 2020; 89
Machap, Abdullah, Shah (CR1) 2020; 18
Debata, Mohapatra (CR23) 2021
Shaw, Mitchell-Olds (CR31) 1993; 74
Lu, Chen, Yan, Jin, Xue, Gao (CR3) 2017; 256
3843_CR10
M Çakir (3843_CR30) 2023
L Machap (3843_CR1) 2020; 18
A Yaqoob (3843_CR9) 2023
N Ghatasheh (3843_CR29) 2022; 10
3843_CR14
PP Debata (3843_CR23) 2021
A Yaqoob (3843_CR2) 2024
A Yaqoob (3843_CR12) 2023; 1
J Sun (3843_CR11) 2015; 101
M Nssibi (3843_CR19) 2024
RK Agrawal (3843_CR4) 2020; 89
J Wang (3843_CR25) 2013; 46
R Kundu (3843_CR22) 2022; 144
A Yaqoob (3843_CR6) 2024
T Zhang (3843_CR34) 2023
A Bilal (3843_CR16) 2024; 19
3843_CR17
3843_CR8
RG Shaw (3843_CR31) 1993; 74
3843_CR7
EH Houssein (3843_CR5) 2023; 35
3843_CR24
3843_CR27
H Lu (3843_CR3) 2017; 256
A Dabba (3843_CR18) 2024; 80
E Trojovská (3843_CR33) 2022; 12
C Li (3843_CR26) 2021; 12
S Benghazouani (3843_CR20) 2024; 14
AA Ahmed (3843_CR32) 2019; 12
3843_CR28
PE Meyer (3843_CR21) 2008; 2
AAA El-Mageed (3843_CR15) 2024
KD Sree Devi (3843_CR13) 2022
References_xml – year: 2021
  ident: CR23
  article-title: Identification of significant bio-markers from high-dimensional cancerous data employing a modified multi-objective meta-heuristic algorithm
  publication-title: J King Saud Univ Comput Inf Sci
  doi: 10.1016/j.jksuci.2020.12.014
– volume: 35
  start-page: 5251
  issue: 7
  year: 2023
  end-page: 5275
  ident: CR5
  article-title: Fuzzy-based hunger games search algorithm for global optimization and feature selection using medical data
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-022-07916-9
– ident: CR14
– volume: 1
  start-page: 34
  issue: 2
  year: 2023
  end-page: 45
  ident: CR12
  article-title: Dimensionality reduction techniques and their applications in cancer classification: a comprehensive review
  publication-title: Int J Genet Modif Recomb
– volume: 144
  start-page: 105349
  year: 2022
  ident: CR22
  article-title: AltWOA : Altruistic Whale Optimization Algorithm for feature selection on microarray datasets
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2022.105349
– year: 2023
  ident: CR9
  article-title: Applications and techniques of machine learning in cancer classification: a systematic review
  publication-title: Human-Centric Intell Syst
  doi: 10.1007/s44230-023-00041-3
– ident: CR10
– volume: 14
  start-page: 944
  issue: 1
  year: 2024
  end-page: 959
  ident: CR20
  article-title: Enhancing feature selection with a novel hybrid approach incorporating genetic algorithms and swarm intelligence techniques
  publication-title: Int J Electr Comput Eng
  doi: 10.11591/ijece.v14i1.pp944-959
– year: 2023
  ident: CR30
  article-title: Accuracy assessment of RFerns, NB, SVM, and kNN machine learning classifiers in aquaculture
  publication-title: J King Saud Univ Sci
  doi: 10.1016/j.jksus.2023.102754
– volume: 12
  start-page: 114
  issue: 2
  year: 2019
  end-page: 124
  ident: CR32
  article-title: Bio-inspired based techniques for thermogram breast cancer classification
  publication-title: Int J Intell Eng Syst
  doi: 10.22266/IJIES2019.0430.12
– volume: 74
  start-page: 1638
  issue: 6
  year: 1993
  end-page: 1645
  ident: CR31
  article-title: ANOVA for unbalanced data: an overview
  publication-title: Ecology
  doi: 10.2307/1939922
– ident: CR8
– volume: 18
  start-page: 343
  issue: 1
  year: 2020
  end-page: 350
  ident: CR1
  article-title: Functional analysis of cancer gene subtype from co-clustering and classification
  publication-title: Indones J Electr Eng Comput Sci
  doi: 10.11591/ijeecs.v18.i1.pp343-350
– volume: 12
  start-page: 1
  issue: 1
  year: 2022
  end-page: 24
  ident: CR33
  article-title: A new human-based metahurestic optimization method based on mimicking cooking training
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-19313-2
– volume: 256
  start-page: 56
  issue: 2017
  year: 2017
  end-page: 62
  ident: CR3
  article-title: A hybrid feature selection algorithm for gene expression data classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.07.080
– ident: CR27
– volume: 101
  start-page: 345
  issue: 1–3
  year: 2015
  end-page: 376
  ident: CR11
  article-title: Random drift particle swarm optimization algorithm: convergence analysis and parameter selection
  publication-title: Mach Learn
  doi: 10.1007/s10994-015-5522-z
– year: 2022
  ident: CR13
  article-title: Tumor detection on microarray data using grey wolf optimization with gain information
  publication-title: Math Probl Eng
  doi: 10.1155/2022/4092404
– volume: 80
  start-page: 4808
  issue: 4
  year: 2024
  end-page: 4840
  ident: CR18
  article-title: A novel grey wolf optimization algorithm based on geometric transformations for gene selection and cancer classification
  publication-title: J Supercomput
  doi: 10.1007/s11227-023-05643-z
– volume: 12
  start-page: 2617
  issue: 9
  year: 2021
  end-page: 2638
  ident: CR26
  article-title: Diversity collaboratively guided random drift particle swarm optimization
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-021-01345-1
– volume: 89
  year: 2020
  ident: CR4
  article-title: Quantum based Whale Optimization Algorithm for wrapper feature selection
  publication-title: Appl Soft Comput J
  doi: 10.1016/j.asoc.2020.106092
– ident: CR17
– year: 2024
  ident: CR2
  article-title: Improving breast cancer classification with mRMR + SS0 + WSVM: a hybrid approach
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-024-20146-6
– volume: 2
  start-page: 261
  issue: 3
  year: 2008
  end-page: 274
  ident: CR21
  article-title: Information-theoretic feature selection in microarray data using variable complementarity
  publication-title: IEEE J Sel Top Signal Process
  doi: 10.1109/JSTSP.2008.923858
– year: 2023
  ident: CR34
  article-title: Application of nonlinear models combined with conventional laboratory indicators for the diagnosis and differential diagnosis of ovarian cancer
  publication-title: J Clin Med
  doi: 10.3390/jcm12030844
– volume: 10
  start-page: 84365
  issue: August
  year: 2022
  end-page: 84383
  ident: CR29
  article-title: Modified genetic algorithm for feature selection and hyper parameter optimization: case of XGBoost in spam prediction
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3196905
– ident: CR7
– year: 2024
  ident: CR15
  publication-title: Gene selection via improved nuclear reaction optimization algorithm for cancer classification in high-dimensional data
  doi: 10.1186/s40537-024-00902-z
– volume: 19
  start-page: e0295951
  issue: 1
  year: 2024
  ident: CR16
  article-title: Improved Support Vector Machine based on CNN-SVD for vision-threatening diabetic retinopathy detection and classification
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0295951
– ident: CR28
– year: 2024
  ident: CR6
  article-title: Optimizing gene selection and cancer classification with hybrid sine cosine and cuckoo search algorithm
  publication-title: J Med Syst
  doi: 10.1007/s10916-023-02031-1
– ident: CR24
– volume: 46
  start-page: 1616
  issue: 6
  year: 2013
  end-page: 1627
  ident: CR25
  article-title: Maximum weight and minimum redundancy : a novel framework for feature subset selection
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2012.11.025
– year: 2024
  ident: CR19
  publication-title: Gene selection for high dimensional biological datasets using hybrid island binary artificial bee colony with chaos game optimization
  doi: 10.1007/s10462-023-10675-1
– year: 2024
  ident: 3843_CR2
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-024-20146-6
– ident: 3843_CR8
  doi: 10.3390/math11051081
– volume: 1
  start-page: 34
  issue: 2
  year: 2023
  ident: 3843_CR12
  publication-title: Int J Genet Modif Recomb
– ident: 3843_CR10
– year: 2023
  ident: 3843_CR34
  publication-title: J Clin Med
  doi: 10.3390/jcm12030844
– volume: 89
  year: 2020
  ident: 3843_CR4
  publication-title: Appl Soft Comput J
  doi: 10.1016/j.asoc.2020.106092
– volume: 101
  start-page: 345
  issue: 1–3
  year: 2015
  ident: 3843_CR11
  publication-title: Mach Learn
  doi: 10.1007/s10994-015-5522-z
– year: 2022
  ident: 3843_CR13
  publication-title: Math Probl Eng
  doi: 10.1155/2022/4092404
– volume: 35
  start-page: 5251
  issue: 7
  year: 2023
  ident: 3843_CR5
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-022-07916-9
– ident: 3843_CR27
  doi: 10.1145/2939672.2939785
– year: 2023
  ident: 3843_CR30
  publication-title: J King Saud Univ Sci
  doi: 10.1016/j.jksus.2023.102754
– volume: 18
  start-page: 343
  issue: 1
  year: 2020
  ident: 3843_CR1
  publication-title: Indones J Electr Eng Comput Sci
  doi: 10.11591/ijeecs.v18.i1.pp343-350
– volume: 14
  start-page: 944
  issue: 1
  year: 2024
  ident: 3843_CR20
  publication-title: Int J Electr Comput Eng
  doi: 10.11591/ijece.v14i1.pp944-959
– volume-title: Gene selection for high dimensional biological datasets using hybrid island binary artificial bee colony with chaos game optimization
  year: 2024
  ident: 3843_CR19
  doi: 10.1007/s10462-023-10675-1
– ident: 3843_CR28
– year: 2023
  ident: 3843_CR9
  publication-title: Human-Centric Intell Syst
  doi: 10.1007/s44230-023-00041-3
– volume: 2
  start-page: 261
  issue: 3
  year: 2008
  ident: 3843_CR21
  publication-title: IEEE J Sel Top Signal Process
  doi: 10.1109/JSTSP.2008.923858
– ident: 3843_CR17
  doi: 10.1002/9781394233953.ch1
– volume: 80
  start-page: 4808
  issue: 4
  year: 2024
  ident: 3843_CR18
  publication-title: J Supercomput
  doi: 10.1007/s11227-023-05643-z
– volume: 12
  start-page: 1
  issue: 1
  year: 2022
  ident: 3843_CR33
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-19313-2
– volume: 19
  start-page: e0295951
  issue: 1
  year: 2024
  ident: 3843_CR16
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0295951
– volume: 12
  start-page: 114
  issue: 2
  year: 2019
  ident: 3843_CR32
  publication-title: Int J Intell Eng Syst
  doi: 10.22266/IJIES2019.0430.12
– volume: 46
  start-page: 1616
  issue: 6
  year: 2013
  ident: 3843_CR25
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2012.11.025
– volume: 10
  start-page: 84365
  issue: August
  year: 2022
  ident: 3843_CR29
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3196905
– volume: 74
  start-page: 1638
  issue: 6
  year: 1993
  ident: 3843_CR31
  publication-title: Ecology
  doi: 10.2307/1939922
– ident: 3843_CR7
  doi: 10.1002/9781394233953.ch4
– ident: 3843_CR14
  doi: 10.1007/s41870-024-01849-3
– volume: 256
  start-page: 56
  issue: 2017
  year: 2017
  ident: 3843_CR3
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.07.080
– year: 2024
  ident: 3843_CR6
  publication-title: J Med Syst
  doi: 10.1007/s10916-023-02031-1
– volume-title: Gene selection via improved nuclear reaction optimization algorithm for cancer classification in high-dimensional data
  year: 2024
  ident: 3843_CR15
  doi: 10.1186/s40537-024-00902-z
– volume: 144
  start-page: 105349
  year: 2022
  ident: 3843_CR22
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2022.105349
– volume: 12
  start-page: 2617
  issue: 9
  year: 2021
  ident: 3843_CR26
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-021-01345-1
– year: 2021
  ident: 3843_CR23
  publication-title: J King Saud Univ Comput Inf Sci
  doi: 10.1016/j.jksuci.2020.12.014
– ident: 3843_CR24
  doi: 10.1155/2022/3112170
SSID ssj0042099
ssj0001254
Score 2.5366561
Snippet The identification of relevant biomarkers from high-dimensional cancer data remains a significant challenge due to the complexity and heterogeneity inherent in...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 261
SubjectTerms Accuracy
Algorithms
Bayes Theorem
Biomarkers, Tumor - genetics
Breast cancer
Cancer
Cancer Research
Central nervous system
Classification
Computational Biology - methods
Feature selection
Female
Humans
Immunology
Leukemia
Medicine
Medicine & Public Health
Neoplasms - classification
Oncology
Ovarian cancer
Ovaries
Support Vector Machine
SummonAdditionalLinks – databaseName: SpringerOpen
  dbid: C24
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQixCX8mppoCAjcQNLcexNbG5QKBygRQjQ3iJnbKsr0Wy12SLor2fGmwQthUrl7PEjnrHnm8zDjD21OVSlU1H4PCihEWAIh4pbNDKS38uYSfrf8fV9dXhoplP7sU8K64Zo98ElmW7qMdmNzIVCoE4ROIZWApHj5kQaS4F8-5TjsLp_NSWD9ukxf--3roIu4MqL4ZF_-EiT6jm49X-Lvs22eqjJX65k4w67Ftq77MaH3pl-j50c4XVxMjvH8TgQ8xccCEtT8FDi1wvu-PFPSunin14fienbV_N5t-RDGXKOeJfHkCqD8i69p4OduGs9P13QLHST8lnbkf3fbbMvB28-778T_esLAnQ1WYooIygJxsVYRtAGjLaqKQvInSwbG2VR2qaqwEMDyOIoQ5CF9MYZCVp6UDtso523YZdxixowNr6oIsIdX8QGIA8IVb0Dq7SHjMmBITX0pcnphYxv9VhUOe1jjftYp32sf2Ts2djndFWY41LqvYHPdX9Iu1qhLTixBHky9mRsxuNFPhPXhvlZT5MXaKVm7P5KLMbplFVonGmbMbMmMCMBle5eb2lnx6mEN-WC69T1-SA3v9f17894cDXyh-xmQaJH8Q52j20sF2fhEbsO35ezbvE4nZpfNgkVog
  priority: 102
  providerName: Springer Nature
Title Optimizing cancer classification: a hybrid RDO-XGBoost approach for feature selection and predictive insights
URI https://link.springer.com/article/10.1007/s00262-024-03843-x
https://www.ncbi.nlm.nih.gov/pubmed/39382649
https://www.proquest.com/docview/3114591512
https://www.proquest.com/docview/3114502924
https://pubmed.ncbi.nlm.nih.gov/PMC11464649
Volume 73
WOSCitedRecordID wos001337142900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1432-0851
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0042099
  issn: 1432-0851
  databaseCode: DOA
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVAVX
  databaseName: SpringerLink Contemporary
  customDbUrl:
  eissn: 1432-0851
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0042099
  issn: 1432-0851
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerOpen
  customDbUrl:
  eissn: 1432-0851
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0042099
  issn: 1432-0851
  databaseCode: C24
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1db9Mw0GIbQrzwDQuMyki8gUU-3MTmBbGywQN0VYGpb1FyjrVKLOmaDg1-PXeuk6lM7IUXS5Zt2dad7873ydhLHUKWFokVJqwSIVHAEAUyblFGluxeSg2dvuP4czYeq9lMT7zCrfVulR1NdITaNEA68jcJCu5DTfzp3eJMUNUosq76EhpbbIeyJMTOdW_SUWJJYaHOikBec9j3QTMudI4-H7FADiXwRDIRF5uM6Yq0edVp8i_LqWNIh3f_9yr32B0vivL3a9y5z25U9QN264s3tj9kp0dITk7nv3F3DoQcSw4ka5NzkYPnW17wk18U8sWnH47E7ON-07Qr3qUp5ygPc1u5zKG8dfV2cBEvasMXS9qFKC2f1y3pB9pH7PvhwbfRJ-GrMwiQ2XAlbGQhiUAV1qYWpAIldVKmMYRFlJbaRnGqyywDAyUgCtioqhBGRhUqAhkZSB6z7bqpq13GNXJIW5o4sygOmdiWAGGFoqwpQCfSQMCiDjQ5-NTlVEHjR94nXXbgzBGcuQNnfhGwV_2axTpxx7Wz9zpQ5f4Rt_klnAL2oh_G50c2laKumnM_J4zxFxuwJ2sE6bdLdIKfN6kDpjZQp59Aqb03R-r5iUvxTbHi0i193WHZ5bn-fY2n11_jGbsdE8aT_4PeY9ur5Xn1nN2En6t5uxywrWyWuVZhq0bRgO3sH4wnU-yNYjlw6oqBe2HYTr8e_wHEeihM
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgoAL78dCASPBCSziJJvYSAhBS2nV7RahFu0tJJNYXYkmy2YLLT-K38iMN0m1VPTWA8fIdhw7n-fheQE8Mx7GURpYmXtFIEMSMGRKjFtmyrLdS-u-u-_4MoiHQz0amU9L8LuNhWG3ypYmOkKdV8h35K8CEtz7hvnT28l3yVWj2LraltCYw2KrOP5JKlv9ZnON_u9z31__sLu6IZuqAhLDuD-TVlkMFOrU2shiqFGHJsgiH71URZmxyo9MFseYY4b06VYVhfJVrlOtMFQ5BvTeC3CRM9nxidKrnUtJyGGozmrBXnr03ATpuFA9VnZ8SRxR0g6EgTxaZISnpNvTTpp_WWodA1y__r9t3Q241oja4t38bNyEpaK8BZe3G2eC23CwQ-TyYPyLViuQwT8VyLoEO085vL4Wqdg_5pA28XltR44-vq-qeibaNOyC5H1hC5cZVdSunhANEmmZi8mUZ2FOIsZlzfcf9R3YO5fF3oXlsiqL-yAMSQA2y_3YkriX-zZD9AoS1fMUTRDm2APVQiHBJjU7Vwj5lnRJpR18EoJP4uCTHPXgRTdmMk9McmbvlRYaSUOk6uQEFz142jUTeWGbUVoW1WHTx_NJS-_BvTkgu-kCE5ByGpoe6AWodh04dfliSznedynMORY-dENftqg--a5_L-PB2ct4Alc2drcHyWBzuPUQrvp82tjXw6zA8mx6WDyCS_hjNq6nj925FfD1vNH-B_MPgGg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFFVceD8MBRYJTrBq1t7EXiSEKGmgakmjiqLcjD32qpGoE-IUWn4av46Zje0qVPTWA0fLu7Zn_e08dl4Az00bw24SWJm180BqUjBkQoJbpsqy3yuKOu6848tuOBhEo5EZrsDvOheGwyprnugYdTZBPiPfCEhx7xiWTxu2CosY9vpvp98ld5BiT2vdTmMBkZ389CeZb-Wb7R796xe-39_6_P6jrDoMSNRhZy6tshgojBJruxZ1hJE2Qdr1sZ2obmqs8rsmDUPMMEUiw6o8V77KoiRSqFWGAT33CqyGpGToFqxubg2G-7Uc0JyU6nwYHLNH11XKjkvcY9PHlyQfJa2HDuTJslg8p-ueD9n8y2_rxGH_xv-8kDfheqWEi3eLXXMLVvLiNqx9qsIM7sDRHjHSo_Evolwgb4uZQLYyOKzKIfm1SMThKSe7if3enhx92JxMyrmoC7QLsgSEzV3NVFG6TkM0SSRFJqYzfgvLGDEuSj4ZKe_CwaUQew9axaTIH4AwpBvYNPNDS4pg5tsUsZ2TEp8laAKdoQeqhkWMVdF27h3yLW7KTTsoxQSl2EEpPvHgZTNnuihZcuHo9RomccW-yvgMIx48a24T42FvUlLkk-NqTNsn5HtwfwHO5nWBCchs1caDaAm2zQAuar58pxgfuuLmnCWv3dRXNcLPvuvfZDy8mIynsEYgj3e3BzuP4JrPG4-DQMw6tOaz4_wxXMUf83E5e1JtYgFfLxvufwCLc4rG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+cancer+classification%3A+a+hybrid+RDO-XGBoost+approach+for+feature+selection+and+predictive+insights&rft.jtitle=Cancer+immunology%2C+immunotherapy&rft.date=2024-10-09&rft.pub=Springer+Nature+B.V&rft.issn=0340-7004&rft.eissn=1432-0851&rft.volume=73&rft.issue=12&rft.spage=261&rft_id=info:doi/10.1007%2Fs00262-024-03843-x&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-0851&client=summon