Best practices for single-cell analysis across modalities
Recent advances in single-cell technologies have enabled high-throughput molecular profiling of cells across modalities and locations. Single-cell transcriptomics data can now be complemented by chromatin accessibility, surface protein expression, adaptive immune receptor repertoire profiling and sp...
Saved in:
| Published in: | Nature reviews. Genetics Vol. 24; no. 8; pp. 550 - 572 |
|---|---|
| Main Authors: | , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
England
Nature Publishing Group
01.08.2023
|
| Subjects: | |
| ISSN: | 1471-0056, 1471-0064, 1471-0064 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Recent advances in single-cell technologies have enabled high-throughput molecular profiling of cells across modalities and locations. Single-cell transcriptomics data can now be complemented by chromatin accessibility, surface protein expression, adaptive immune receptor repertoire profiling and spatial information. The increasing availability of single-cell data across modalities has motivated the development of novel computational methods to help analysts derive biological insights. As the field grows, it becomes increasingly difficult to navigate the vast landscape of tools and analysis steps. Here, we summarize independent benchmarking studies of unimodal and multimodal single-cell analysis across modalities to suggest comprehensive best-practice workflows for the most common analysis steps. Where independent benchmarks are not available, we review and contrast popular methods. Our article serves as an entry point for novices in the field of single-cell (multi-)omic analysis and guides advanced users to the most recent best practices. |
|---|---|
| AbstractList | Recent advances in single-cell technologies have enabled high-throughput molecular profiling of cells across modalities and locations. Single-cell transcriptomics data can now be complemented by chromatin accessibility, surface protein expression, adaptive immune receptor repertoire profiling and spatial information. The increasing availability of single-cell data across modalities has motivated the development of novel computational methods to help analysts derive biological insights. As the field grows, it becomes increasingly difficult to navigate the vast landscape of tools and analysis steps. Here, we summarize independent benchmarking studies of unimodal and multimodal single-cell analysis across modalities to suggest comprehensive best-practice workflows for the most common analysis steps. Where independent benchmarks are not available, we review and contrast popular methods. Our article serves as an entry point for novices in the field of single-cell (multi-)omic analysis and guides advanced users to the most recent best practices.Recent advances in single-cell technologies have enabled high-throughput molecular profiling of cells across modalities and locations. Single-cell transcriptomics data can now be complemented by chromatin accessibility, surface protein expression, adaptive immune receptor repertoire profiling and spatial information. The increasing availability of single-cell data across modalities has motivated the development of novel computational methods to help analysts derive biological insights. As the field grows, it becomes increasingly difficult to navigate the vast landscape of tools and analysis steps. Here, we summarize independent benchmarking studies of unimodal and multimodal single-cell analysis across modalities to suggest comprehensive best-practice workflows for the most common analysis steps. Where independent benchmarks are not available, we review and contrast popular methods. Our article serves as an entry point for novices in the field of single-cell (multi-)omic analysis and guides advanced users to the most recent best practices. Recent advances in single-cell technologies have enabled high-throughput molecular profiling of cells across modalities and locations. Single-cell transcriptomics data can now be complemented by chromatin accessibility, surface protein expression, adaptive immune receptor repertoire profiling and spatial information. The increasing availability of single-cell data across modalities has motivated the development of novel computational methods to help analysts derive biological insights. As the field grows, it becomes increasingly difficult to navigate the vast landscape of tools and analysis steps. Here, we summarize independent benchmarking studies of unimodal and multimodal single-cell analysis across modalities to suggest comprehensive best-practice workflows for the most common analysis steps. Where independent benchmarks are not available, we review and contrast popular methods. Our article serves as an entry point for novices in the field of single-cell (multi-)omic analysis and guides advanced users to the most recent best practices. Recent advances in single-cell technologies have enabled high-throughput molecular profiling of cells across modalities and locations. Single-cell transcriptomics data can now be complemented by chromatin accessibility, surface protein expression, adaptive immune receptor repertoire profiling and spatial information. The increasing availability of single-cell data across modalities has motivated the development of novel computational methods to help analysts derive biological insights. As the field grows, it becomes increasingly difficult to navigate the vast landscape of tools and analysis steps. Here, we summarize independent benchmarking studies of unimodal and multimodal single-cell analysis across modalities to suggest comprehensive best-practice workflows for the most common analysis steps. Where independent benchmarks are not available, we review and contrast popular methods. Our article serves as an entry point for novices in the field of single-cell (multi-)omic analysis and guides advanced users to the most recent best practices.Practitioners in the field of single-cell omics are now faced with diverse options for analytical tools to process and integrate data from various molecular modalities. In an Expert Recommendation article, the authors provide guidance on robust single-cell data analysis, including choices of best-performing tools from benchmarking studies. |
| Author | Strobl, Daniel C Zappia, Luke Heumos, Lukas Curion, Fabiola Theis, Fabian J Lücken, Malte D Schaar, Anna C Lance, Christopher Drost, Felix Schiller, Herbert B Litinetskaya, Anastasia Henao, Juan |
| Author_xml | – sequence: 1 givenname: Lukas orcidid: 0000-0002-8937-3457 surname: Heumos fullname: Heumos, Lukas organization: TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany – sequence: 2 givenname: Anna C orcidid: 0000-0003-1063-005X surname: Schaar fullname: Schaar, Anna C organization: Munich Center for Machine Learning, Technical University of Munich, Garching, Germany – sequence: 3 givenname: Christopher orcidid: 0000-0002-1275-9802 surname: Lance fullname: Lance, Christopher organization: Department of Paediatrics, Dr von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany – sequence: 4 givenname: Anastasia surname: Litinetskaya fullname: Litinetskaya, Anastasia organization: Department of Mathematics, School of Computation, Information and Technology, Technical University of Munich, Garching, Germany – sequence: 5 givenname: Felix orcidid: 0000-0002-2600-4048 surname: Drost fullname: Drost, Felix organization: TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany – sequence: 6 givenname: Luke orcidid: 0000-0001-7744-8565 surname: Zappia fullname: Zappia, Luke organization: Department of Mathematics, School of Computation, Information and Technology, Technical University of Munich, Garching, Germany – sequence: 7 givenname: Malte D orcidid: 0000-0001-7464-7921 surname: Lücken fullname: Lücken, Malte D organization: Institute of Lung Health and Immunity, Helmholtz Munich, Munich, Germany – sequence: 8 givenname: Daniel C surname: Strobl fullname: Strobl, Daniel C organization: TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany – sequence: 9 givenname: Juan surname: Henao fullname: Henao, Juan organization: Institute of Computational Biology, Department of Computational Health, Helmholtz Munich, Munich, Germany – sequence: 10 givenname: Fabiola orcidid: 0000-0003-2502-8803 surname: Curion fullname: Curion, Fabiola organization: Department of Mathematics, School of Computation, Information and Technology, Technical University of Munich, Garching, Germany – sequence: 11 givenname: Herbert B surname: Schiller fullname: Schiller, Herbert B organization: Institute of Lung Health and Immunity and Comprehensive Pneumology Center, Helmholtz Munich; Member of the German Center for Lung Research (DZL), Munich, Germany – sequence: 12 givenname: Fabian J orcidid: 0000-0002-2419-1943 surname: Theis fullname: Theis, Fabian J email: fabian.theis@helmholtz-muenchen.de, fabian.theis@helmholtz-muenchen.de, fabian.theis@helmholtz-muenchen.de, fabian.theis@helmholtz-muenchen.de organization: Munich Center for Machine Learning, Technical University of Munich, Garching, Germany. fabian.theis@helmholtz-muenchen.de |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37002403$$D View this record in MEDLINE/PubMed |
| BookMark | eNpd0E1LxDAQBuAgK-66-gc8SMGLl-ik-T7q4hcseNFziWkiWdpm7bTI_nsrrh48zQw8DO_MMZl1uQuEnDG4YsDNNQomtaJQcgogjaKfB2TBhGbTqMTsr5dqTo4RNwBMMc2PyJxrgFIAXxB7G3Aotr3zQ_IBi5j7AlP33gTqQ9MUrnPNDhMWzvcZsWhz7Zo0pIAn5DC6BsPpvi7J6_3dy-qRrp8fnlY3a-qFlgONAD4ab73VVjJZghBWMBuCqIEFabhjlsfaQ21cFNFCDEp4sLIGqaVnfEkuf_Zu-_wxTmmrNuF3NteFPGJVasutEdKYiV78o5s89tMFkzLcSKaEKid1vlfjWxvqatun1vW76vcp_At0CWQk |
| CitedBy_id | crossref_primary_10_1038_s41556_025_01706_w crossref_primary_10_1038_s41587_023_01934_1 crossref_primary_10_1016_j_cell_2025_06_009 crossref_primary_10_1016_j_coemr_2024_100524 crossref_primary_10_1016_j_xpro_2024_103475 crossref_primary_10_1038_s44320_025_00088_3 crossref_primary_10_1002_admt_202401953 crossref_primary_10_1007_s12032_025_03002_x crossref_primary_10_1021_acs_jproteome_4c00091 crossref_primary_10_1093_carcin_bgaf038 crossref_primary_10_2174_0115748936278884240102094058 crossref_primary_10_1002_smtd_202400789 crossref_primary_10_1186_s12974_024_03210_8 crossref_primary_10_1360_SSV_2025_0140 crossref_primary_10_1038_s41592_024_02303_9 crossref_primary_10_1093_nargab_lqaf043 crossref_primary_10_1093_nargab_lqaf042 crossref_primary_10_1038_s41592_023_02067_8 crossref_primary_10_3389_fsysb_2024_1466368 crossref_primary_10_1093_bioadv_vbaf069 crossref_primary_10_3389_fgene_2023_1256991 crossref_primary_10_1093_bioadv_vbae099 crossref_primary_10_1111_imcb_70040 crossref_primary_10_1093_biostatistics_kxaf024 crossref_primary_10_1002_glia_24633 crossref_primary_10_1080_19396368_2025_2533992 crossref_primary_10_1038_s41551_025_01481_x crossref_primary_10_1038_s41571_025_01003_3 crossref_primary_10_1093_plcell_koae003 crossref_primary_10_3390_biom13101516 crossref_primary_10_1038_s41588_024_01658_1 crossref_primary_10_1093_jxb_erae107 crossref_primary_10_1186_s12967_023_04382_2 crossref_primary_10_1038_s42003_025_07872_9 crossref_primary_10_1126_science_adp3957 crossref_primary_10_1038_s44385_025_00023_z crossref_primary_10_1093_oxfimm_iqaf005 crossref_primary_10_1111_jgh_16915 crossref_primary_10_1126_science_adl0544 crossref_primary_10_1016_j_gpb_2023_06_003 crossref_primary_10_1038_s41556_025_01619_8 crossref_primary_10_1093_gigascience_giaf076 crossref_primary_10_1007_s12015_024_10831_2 crossref_primary_10_3390_genes15091114 crossref_primary_10_1016_j_mad_2024_111918 crossref_primary_10_1016_j_gde_2024_102155 crossref_primary_10_1038_s41592_024_02353_z crossref_primary_10_1093_nar_gkae225 crossref_primary_10_3390_cimb46060316 crossref_primary_10_1093_gpbjnl_qzae026 crossref_primary_10_1016_j_talanta_2024_126728 crossref_primary_10_1093_bib_bbaf198 crossref_primary_10_1007_s40291_023_00668_9 crossref_primary_10_1038_s41584_023_01031_2 crossref_primary_10_7554_eLife_90214_3 crossref_primary_10_1016_j_neuint_2025_105998 crossref_primary_10_1371_journal_pone_0302118 crossref_primary_10_1038_s41590_024_01768_2 crossref_primary_10_1186_s13072_024_00547_5 crossref_primary_10_3390_genes14112033 crossref_primary_10_3390_genes15121551 crossref_primary_10_3390_stats7030059 crossref_primary_10_1038_s42256_025_01097_5 crossref_primary_10_1016_j_cotox_2024_100475 crossref_primary_10_1016_j_xcrp_2025_102811 crossref_primary_10_1186_s13059_024_03303_w crossref_primary_10_1371_journal_pbio_3002640 crossref_primary_10_1038_s41467_024_53355_6 crossref_primary_10_1038_s41467_024_45661_w crossref_primary_10_1186_s13059_025_03677_5 crossref_primary_10_3390_ijms252011298 crossref_primary_10_1002_adma_202415160 crossref_primary_10_1007_s10157_025_02679_8 crossref_primary_10_1016_j_copbio_2024_103078 crossref_primary_10_1186_s41065_025_00573_7 crossref_primary_10_1093_lifemeta_loaf010 crossref_primary_10_1038_s41588_025_02285_0 crossref_primary_10_1186_s12864_024_11015_5 crossref_primary_10_1038_s41598_025_99364_3 crossref_primary_10_1093_gpbjnl_qzaf002 crossref_primary_10_1016_j_immuni_2024_01_006 crossref_primary_10_1016_j_immuni_2023_10_002 crossref_primary_10_1038_s42256_024_00934_3 crossref_primary_10_1039_D5SC01764E crossref_primary_10_1038_s41467_024_44757_7 crossref_primary_10_1038_s41467_025_59822_y crossref_primary_10_3389_fimmu_2025_1554876 crossref_primary_10_1002_smtd_202300923 crossref_primary_10_1016_j_tifs_2025_105193 crossref_primary_10_1101_gr_278253_123 crossref_primary_10_1002_anie_202314468 crossref_primary_10_1016_j_biopha_2024_117005 crossref_primary_10_1016_j_cotox_2024_100464 crossref_primary_10_1523_JNEUROSCI_0043_24_2024 crossref_primary_10_1093_bib_bbae095 crossref_primary_10_1182_bloodadvances_2022009313 crossref_primary_10_1038_s41592_024_02511_3 crossref_primary_10_3390_cells13010027 crossref_primary_10_1371_journal_pcbi_1012962 crossref_primary_10_1093_gpbjnl_qzaf011 crossref_primary_10_3389_frai_2024_1424012 crossref_primary_10_1016_j_tins_2023_09_007 crossref_primary_10_1016_j_mam_2024_101253 crossref_primary_10_1186_s13059_024_03322_7 crossref_primary_10_1016_j_xpro_2025_103670 crossref_primary_10_1038_s41587_023_02040_y crossref_primary_10_1038_s41598_025_89988_w crossref_primary_10_3389_fimmu_2025_1529847 crossref_primary_10_1038_s41592_025_02624_3 crossref_primary_10_1093_bib_bbaf018 crossref_primary_10_1038_s41590_025_02161_3 crossref_primary_10_1371_journal_pcbi_1012480 crossref_primary_10_3389_fgene_2025_1603687 crossref_primary_10_1109_JBHI_2024_3460761 crossref_primary_10_1002_anie_202319248 crossref_primary_10_1038_s41467_024_49806_9 crossref_primary_10_1007_s40242_025_4243_5 crossref_primary_10_1038_s42003_024_07238_7 crossref_primary_10_1371_journal_pbio_3003085 crossref_primary_10_1016_j_molcel_2024_08_002 crossref_primary_10_1038_s41592_024_02532_y crossref_primary_10_1111_bph_70128 crossref_primary_10_1161_CIRCRESAHA_124_325656 crossref_primary_10_1186_s12931_024_02823_0 crossref_primary_10_1186_s13059_025_03731_2 crossref_primary_10_1093_bib_bbae399 crossref_primary_10_1111_brv_13063 crossref_primary_10_1038_s43586_023_00284_1 crossref_primary_10_1038_s44161_024_00533_w crossref_primary_10_1093_nargab_lqae134 crossref_primary_10_3390_diagnostics14192172 crossref_primary_10_1186_s13059_025_03716_1 crossref_primary_10_1038_s41467_024_53340_z crossref_primary_10_1093_bib_bbae152 crossref_primary_10_1038_s41568_024_00757_9 crossref_primary_10_1038_s41598_025_96823_9 crossref_primary_10_1016_j_molmed_2025_06_004 crossref_primary_10_1017_S2633903X24000138 crossref_primary_10_1186_s13059_024_03249_z crossref_primary_10_1186_s13062_025_00691_2 crossref_primary_10_1016_j_csbj_2024_07_012 crossref_primary_10_1038_s41598_025_95079_7 crossref_primary_10_1016_j_exphem_2024_104167 crossref_primary_10_1038_s41586_024_07079_8 crossref_primary_10_1186_s12983_025_00579_x crossref_primary_10_3389_fgene_2023_1304661 crossref_primary_10_1038_s41467_024_54516_3 crossref_primary_10_1080_13102818_2024_2379837 crossref_primary_10_1016_j_jid_2024_02_006 crossref_primary_10_1038_s41592_024_02263_0 crossref_primary_10_1038_s43018_025_00942_1 crossref_primary_10_1093_bib_bbaf397 crossref_primary_10_1016_j_medp_2024_100042 crossref_primary_10_1080_17474086_2023_2285985 crossref_primary_10_1088_1478_3975_adda85 crossref_primary_10_1186_s12915_025_02128_8 crossref_primary_10_1016_j_biotechadv_2024_108506 crossref_primary_10_1186_s13059_025_03574_x crossref_primary_10_3390_cells14030156 crossref_primary_10_1093_bib_bbad525 crossref_primary_10_3389_fonc_2025_1584178 crossref_primary_10_1186_s12885_024_13258_7 crossref_primary_10_1038_s41467_024_51003_7 crossref_primary_10_1038_s44318_024_00313_z crossref_primary_10_3390_ijms25137367 crossref_primary_10_1038_s41417_024_00788_2 crossref_primary_10_1371_journal_ppat_1012012 crossref_primary_10_1002_bit_70030 crossref_primary_10_1093_bib_bbaf388 crossref_primary_10_1016_j_crmeth_2023_100591 crossref_primary_10_1016_j_measurement_2024_116258 crossref_primary_10_1145_3702646 crossref_primary_10_1146_annurev_genet_072920_013842 crossref_primary_10_1186_s12943_024_02113_9 crossref_primary_10_1093_bioinformatics_btaf114 crossref_primary_10_1038_s41556_024_01469_w crossref_primary_10_1038_s41597_025_04381_6 crossref_primary_10_3389_fimmu_2025_1599303 crossref_primary_10_1007_s11426_023_1793_7 crossref_primary_10_1016_j_cell_2025_02_009 crossref_primary_10_1016_j_esmoop_2024_104105 crossref_primary_10_1016_j_drudis_2024_103889 crossref_primary_10_3390_ijms252413382 crossref_primary_10_3389_fgene_2023_1256064 crossref_primary_10_1038_s41467_024_52356_9 crossref_primary_10_34133_research_0743 crossref_primary_10_1021_acs_analchem_5c00863 crossref_primary_10_1021_acs_jproteome_4c00658 crossref_primary_10_1016_j_isci_2025_112713 crossref_primary_10_1172_JCI186421 crossref_primary_10_1002_adma_202409102 crossref_primary_10_1038_s41593_025_01973_8 crossref_primary_10_1016_j_ajog_2024_08_040 crossref_primary_10_1016_j_talanta_2024_126225 crossref_primary_10_1038_s41568_024_00737_z crossref_primary_10_1016_j_bosn_2025_04_001 crossref_primary_10_1002_ange_202314468 crossref_primary_10_1038_s41431_024_01564_4 crossref_primary_10_1038_s41586_024_08487_6 crossref_primary_10_1038_s42255_025_01296_9 crossref_primary_10_1089_gen_44_02_08 crossref_primary_10_1161_CIRCRESAHA_124_323672 crossref_primary_10_1016_j_intimp_2025_114381 crossref_primary_10_1038_s41571_023_00830_6 crossref_primary_10_1038_s41597_024_03002_y crossref_primary_10_3389_fmicb_2023_1236653 crossref_primary_10_1016_j_trac_2024_118109 crossref_primary_10_1016_j_pharmthera_2024_108613 crossref_primary_10_1038_s41467_025_59206_2 crossref_primary_10_1186_s10020_024_00955_z crossref_primary_10_1186_s13059_024_03219_5 crossref_primary_10_1007_s10456_024_09955_3 crossref_primary_10_1038_s41592_024_02429_w crossref_primary_10_1126_sciadv_adm7042 crossref_primary_10_1177_11779322241287120 crossref_primary_10_1093_bioadv_vbaf105 crossref_primary_10_1038_s41467_025_63029_6 crossref_primary_10_1038_s41587_025_02702_z crossref_primary_10_1200_EDBK_430734 crossref_primary_10_1007_s11538_023_01213_9 crossref_primary_10_3892_mmr_2024_13415 crossref_primary_10_1016_j_immuni_2025_04_009 crossref_primary_10_1371_journal_pone_0322706 crossref_primary_10_1038_s41467_025_59448_0 crossref_primary_10_1002_advs_202401815 crossref_primary_10_1038_s41467_024_51059_5 crossref_primary_10_1093_rheumatology_keaf252 crossref_primary_10_1093_nar_gkad1146 crossref_primary_10_1093_nar_gkae1186 crossref_primary_10_1016_j_addicn_2025_100209 crossref_primary_10_1038_s42003_024_07171_9 crossref_primary_10_1016_j_tig_2024_12_009 crossref_primary_10_1002_advs_202509247 crossref_primary_10_1007_s12015_024_10764_w crossref_primary_10_1080_10428194_2024_2422833 crossref_primary_10_1096_fj_202400303R crossref_primary_10_1145_3718988 crossref_primary_10_1093_bioinformatics_btaf268 crossref_primary_10_1038_s41540_024_00364_2 crossref_primary_10_1186_s13059_025_03514_9 crossref_primary_10_1093_bib_bbae382 crossref_primary_10_1172_jci_insight_169105 crossref_primary_10_1038_s43588_024_00689_2 crossref_primary_10_1186_s40478_025_01966_5 crossref_primary_10_1126_science_adf6162 crossref_primary_10_1111_jne_70072 crossref_primary_10_1038_s41467_024_53971_2 crossref_primary_10_1093_bib_bbaf109 crossref_primary_10_1038_s41523_025_00808_w crossref_primary_10_1186_s13059_024_03356_x crossref_primary_10_1038_s41467_025_56280_4 crossref_primary_10_1038_s41596_023_00932_6 crossref_primary_10_1093_nar_gkaf805 crossref_primary_10_1093_bib_bbaf465 crossref_primary_10_1038_s41577_025_01199_6 crossref_primary_10_1101_gr_278215_123 crossref_primary_10_3390_bioengineering11060542 crossref_primary_10_1016_j_xpro_2024_103521 crossref_primary_10_1093_burnst_tkae043 crossref_primary_10_1186_s13059_023_03123_4 crossref_primary_10_1038_s41587_023_01943_0 crossref_primary_10_3390_cancers16173100 crossref_primary_10_1002_ange_202319248 crossref_primary_10_1007_s11936_025_01100_7 crossref_primary_10_1016_j_xpro_2024_103083 crossref_primary_10_3389_fimmu_2024_1479166 crossref_primary_10_1038_s41592_025_02713_3 crossref_primary_10_1002_eji_202451234 crossref_primary_10_1007_s00216_023_05028_4 crossref_primary_10_1038_s41467_023_41855_w crossref_primary_10_3390_ijms25084485 crossref_primary_10_1038_s41580_024_00822_z crossref_primary_10_1093_genetics_iyae167 crossref_primary_10_1038_s41586_025_08989_x crossref_primary_10_1093_bib_bbaf339 crossref_primary_10_1093_nar_gkad874 crossref_primary_10_1038_s41421_024_00753_1 crossref_primary_10_1080_08820139_2025_2457039 crossref_primary_10_1103_8vpj_bj7d crossref_primary_10_1038_s41467_025_59424_8 crossref_primary_10_1039_D5AN00037H crossref_primary_10_1016_j_bios_2024_117074 crossref_primary_10_1038_s41587_025_02694_w crossref_primary_10_1002_adtp_202400351 crossref_primary_10_1186_s13059_025_03602_w crossref_primary_10_1038_s42003_025_08123_7 crossref_primary_10_2147_JIR_S490457 crossref_primary_10_1016_j_ard_2025_04_011 crossref_primary_10_1016_j_csbj_2025_06_047 crossref_primary_10_1016_j_csbj_2024_12_030 crossref_primary_10_1016_j_tig_2023_07_005 crossref_primary_10_3390_cancers16061213 crossref_primary_10_1186_s13059_024_03450_0 crossref_primary_10_3389_fchem_2024_1428547 crossref_primary_10_26508_lsa_202402713 crossref_primary_10_7554_eLife_104856 crossref_primary_10_1038_s41586_025_09503_z crossref_primary_10_1038_s44320_024_00045_6 crossref_primary_10_1186_s12859_023_05590_9 crossref_primary_10_1371_journal_pcbi_1012512 crossref_primary_10_1016_j_kint_2023_11_033 crossref_primary_10_1093_cei_uxae077 crossref_primary_10_1038_s41588_025_02124_2 crossref_primary_10_1186_s13059_024_03398_1 crossref_primary_10_1242_dev_202832 crossref_primary_10_7554_eLife_104856_3 crossref_primary_10_1016_j_cels_2024_11_009 crossref_primary_10_1126_scitranslmed_adl6758 crossref_primary_10_1016_j_coisb_2024_100534 crossref_primary_10_1038_s41467_024_47989_9 crossref_primary_10_1016_j_inffus_2025_103479 crossref_primary_10_1016_j_ccell_2024_05_003 crossref_primary_10_1021_acsnano_5c02111 crossref_primary_10_1038_s41592_024_02327_1 crossref_primary_10_1177_0271678X241305914 crossref_primary_10_1186_s13073_023_01259_3 crossref_primary_10_1016_j_patter_2025_101326 crossref_primary_10_1016_j_cell_2024_03_009 crossref_primary_10_1186_s13059_024_03338_z crossref_primary_10_1080_19490976_2025_2528428 crossref_primary_10_1016_j_cell_2024_04_032 crossref_primary_10_1016_j_jaci_2024_11_001 crossref_primary_10_1038_s41467_025_60899_8 crossref_primary_10_1093_nargab_lqaf073 crossref_primary_10_3748_wjg_v31_i31_109605 crossref_primary_10_1097_COH_0000000000000809 crossref_primary_10_3389_fimmu_2023_1275937 crossref_primary_10_3390_biomedicines11082264 crossref_primary_10_1093_nar_gkae1145 crossref_primary_10_1016_j_xgen_2025_100765 crossref_primary_10_1016_j_xgen_2025_100886 crossref_primary_10_1016_j_xgen_2025_100766 crossref_primary_10_1097_TP_0000000000004925 crossref_primary_10_1038_s41592_025_02737_9 crossref_primary_10_1038_s42003_024_06964_2 crossref_primary_10_1016_j_tig_2023_10_003 crossref_primary_10_1038_s41540_024_00441_6 crossref_primary_10_3389_fcell_2024_1500474 crossref_primary_10_1016_j_ajhg_2024_10_019 crossref_primary_10_1016_j_csbj_2025_03_051 crossref_primary_10_1038_s41568_023_00657_4 crossref_primary_10_1016_j_lfs_2025_123751 crossref_primary_10_1186_s40168_025_02089_8 crossref_primary_10_1007_s00521_024_09662_6 crossref_primary_10_1186_s12967_025_06785_9 crossref_primary_10_1016_j_yexmp_2024_104944 crossref_primary_10_1152_ajpgi_00182_2024 crossref_primary_10_3389_fimmu_2023_1306169 crossref_primary_10_1016_j_celbio_2025_100099 crossref_primary_10_1111_imcb_12801 crossref_primary_10_1158_1078_0432_CCR_24_0049 crossref_primary_10_26599_BDMA_2025_9020009 crossref_primary_10_1016_j_devcel_2025_06_032 crossref_primary_10_1128_jvi_01858_23 crossref_primary_10_1002_advs_202500870 crossref_primary_10_1146_annurev_immunol_090122_042631 crossref_primary_10_1186_s12859_024_05788_5 crossref_primary_10_1016_j_celrep_2025_116168 crossref_primary_10_1038_s41597_024_03399_6 crossref_primary_10_1515_oncologie_2023_0244 crossref_primary_10_1016_j_copbio_2024_103151 crossref_primary_10_1016_j_jaci_2024_05_008 crossref_primary_10_1038_s41576_024_00750_w crossref_primary_10_1007_s10238_024_01484_z crossref_primary_10_1002_qub2_78 crossref_primary_10_1186_s13059_024_03254_2 crossref_primary_10_1093_nargab_lqaf089 crossref_primary_10_1002_smtd_202401107 crossref_primary_10_1016_j_biotechadv_2025_108528 crossref_primary_10_1038_s41576_023_00628_3 crossref_primary_10_3390_cancers16193265 crossref_primary_10_1038_s41592_025_02799_9 crossref_primary_10_3389_fimmu_2025_1518658 crossref_primary_10_7554_eLife_90214 crossref_primary_10_1146_annurev_biodatasci_101424_121439 crossref_primary_10_15252_msb_202110571 crossref_primary_10_1016_j_crmeth_2025_101086 crossref_primary_10_1371_journal_pone_0299358 crossref_primary_10_1093_nar_gkae1043 crossref_primary_10_1038_s41377_025_01809_x |
| ContentType | Journal Article |
| Contributor | Ansari, Meshal Ostner, Johannes Schubert, Benjamin Büttner, Maren Frishberg, Amit Martens, Laura D Jones, Matthew G Ramírez-Suástegui, Ciro Badia-I-Mompel, Pau Saez-Rodriguez, Julio Sarkar, Hirak Dony, Leander Palla, Giovanni Tanevski, Jovan He, Dongze Aliee, Hananeh Müller, Christian L Weiler, Philipp Nitzan, Mor Patro, Rob Virshup, Isaac Dimitrov, Daniel Lotfollahi, Mohammad Srivastava, Avi Piran, Zoe Dann, Emma Hediyeh-Zadeh, Soroor Sikkema, Lisa Hetzel, Leon Ibarra, Ignacio L |
| Contributor_xml | – sequence: 1 givenname: Hananeh surname: Aliee fullname: Aliee, Hananeh – sequence: 2 givenname: Meshal surname: Ansari fullname: Ansari, Meshal – sequence: 3 givenname: Pau surname: Badia-I-Mompel fullname: Badia-I-Mompel, Pau – sequence: 4 givenname: Maren surname: Büttner fullname: Büttner, Maren – sequence: 5 givenname: Emma surname: Dann fullname: Dann, Emma – sequence: 6 givenname: Daniel surname: Dimitrov fullname: Dimitrov, Daniel – sequence: 7 givenname: Leander surname: Dony fullname: Dony, Leander – sequence: 8 givenname: Amit surname: Frishberg fullname: Frishberg, Amit – sequence: 9 givenname: Dongze surname: He fullname: He, Dongze – sequence: 10 givenname: Soroor surname: Hediyeh-Zadeh fullname: Hediyeh-Zadeh, Soroor – sequence: 11 givenname: Leon surname: Hetzel fullname: Hetzel, Leon – sequence: 12 givenname: Ignacio L surname: Ibarra fullname: Ibarra, Ignacio L – sequence: 13 givenname: Matthew G surname: Jones fullname: Jones, Matthew G – sequence: 14 givenname: Mohammad surname: Lotfollahi fullname: Lotfollahi, Mohammad – sequence: 15 givenname: Laura D surname: Martens fullname: Martens, Laura D – sequence: 16 givenname: Christian L surname: Müller fullname: Müller, Christian L – sequence: 17 givenname: Mor surname: Nitzan fullname: Nitzan, Mor – sequence: 18 givenname: Johannes surname: Ostner fullname: Ostner, Johannes – sequence: 19 givenname: Giovanni surname: Palla fullname: Palla, Giovanni – sequence: 20 givenname: Rob surname: Patro fullname: Patro, Rob – sequence: 21 givenname: Zoe surname: Piran fullname: Piran, Zoe – sequence: 22 givenname: Ciro surname: Ramírez-Suástegui fullname: Ramírez-Suástegui, Ciro – sequence: 23 givenname: Julio surname: Saez-Rodriguez fullname: Saez-Rodriguez, Julio – sequence: 24 givenname: Hirak surname: Sarkar fullname: Sarkar, Hirak – sequence: 25 givenname: Benjamin surname: Schubert fullname: Schubert, Benjamin – sequence: 26 givenname: Lisa surname: Sikkema fullname: Sikkema, Lisa – sequence: 27 givenname: Avi surname: Srivastava fullname: Srivastava, Avi – sequence: 28 givenname: Jovan surname: Tanevski fullname: Tanevski, Jovan – sequence: 29 givenname: Isaac surname: Virshup fullname: Virshup, Isaac – sequence: 30 givenname: Philipp surname: Weiler fullname: Weiler, Philipp |
| Copyright | 2023. Springer Nature Limited. Copyright Nature Publishing Group Aug 2023 |
| Copyright_xml | – notice: 2023. Springer Nature Limited. – notice: Copyright Nature Publishing Group Aug 2023 |
| CorporateAuthor | Single-cell Best Practices Consortium |
| CorporateAuthor_xml | – name: Single-cell Best Practices Consortium |
| DBID | CGR CUY CVF ECM EIF NPM 3V. 7QP 7QR 7RV 7TK 7TM 7X7 7XB 88A 88E 8AO 8C1 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB0 LK8 M0S M1P M7P NAPCQ P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 |
| DOI | 10.1038/s41576-023-00586-w |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Neurosciences Abstracts Nucleic Acids Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Public Health ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE ProQuest Central Student |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1471-0064 |
| EndPage | 572 |
| ExternalDocumentID | 37002403 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: Wellcome Trust – fundername: NCI NIH HHS grantid: K99 CA267677 – fundername: NHGRI NIH HHS grantid: R01 HG009937 |
| GroupedDBID | --- -DZ .55 0R~ 123 29M 36B 39C 4.4 53G 70F 7RV 7X7 88E 8AO 8C1 8FE 8FH 8FI 8FJ 8R4 8R5 AARCD AAWYQ AAYZH ABAWZ ABDBF ABFSG ABJNI ABLJU ABUWG ACGFS ACIWK ACPRK ACSTC ACUHS ADBBV AENEX AEZWR AFANA AFBBN AFFNX AFHIU AFKRA AFSHS AGAYW AHBCP AHMBA AHOSX AHSBF AHWEU AIBTJ AIXLP ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ALPWD ARMCB ASPBG ATHPR AVWKF AXYYD AZFZN B0M BBNVY BENPR BHPHI BKEYQ BKKNO BPHCQ BVXVI CCPQU CGR CS3 CUY CVF DB5 DU5 EAD EAP EBS ECM EE. EIF EJD EMB EMK EMOBN EPL ESX EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA HCIFZ HMCUK HVGLF HZ~ IAO IGS IHR IHW INH INR ISR ITC LK8 M1P M7P N9A NAPCQ NFIDA NNMJJ NPM O9- ODYON PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q2X RIG RNR RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP WOW X7M ~8M 3V. 7QP 7QR 7TK 7TM 7XB 88A 8FD 8FK AGSTI AZQEC DWQXO FR3 GNUQQ K9. P64 PKEHL PQEST PQUKI PRINS RC3 7X8 |
| ID | FETCH-LOGICAL-c475t-f00cf8c9c97951520449419ee4d01e583a193fdc0d8af4f90fe64c095d0575c13 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 460 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000961193300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1471-0056 1471-0064 |
| IngestDate | Sun Nov 09 11:49:21 EST 2025 Tue Oct 07 05:17:12 EDT 2025 Mon Jul 21 06:17:34 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | 2023. Springer Nature Limited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c475t-f00cf8c9c97951520449419ee4d01e583a193fdc0d8af4f90fe64c095d0575c13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-1275-9802 0000-0002-2419-1943 0000-0002-8937-3457 0000-0003-2502-8803 0000-0001-7464-7921 0000-0002-2600-4048 0000-0001-7744-8565 0000-0003-1063-005X |
| OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC10066026 |
| PMID | 37002403 |
| PQID | 2838516462 |
| PQPubID | 44267 |
| PageCount | 23 |
| ParticipantIDs | proquest_miscellaneous_2793984588 proquest_journals_2838516462 pubmed_primary_37002403 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-08-01 |
| PublicationDateYYYYMMDD | 2023-08-01 |
| PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: London |
| PublicationTitle | Nature reviews. Genetics |
| PublicationTitleAlternate | Nat Rev Genet |
| PublicationYear | 2023 |
| Publisher | Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group |
| SSID | ssj0016173 |
| Score | 2.754563 |
| SecondaryResourceType | review_article |
| Snippet | Recent advances in single-cell technologies have enabled high-throughput molecular profiling of cells across modalities and locations. Single-cell... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 550 |
| SubjectTerms | Chromatin Electrons Gene Expression Profiling - methods Proteomics Single-Cell Analysis - methods Transcriptomics |
| Title | Best practices for single-cell analysis across modalities |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/37002403 https://www.proquest.com/docview/2838516462 https://www.proquest.com/docview/2793984588 |
| Volume | 24 |
| WOSCitedRecordID | wos000961193300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB7UKnjx_ajWsoLX0Owmu0lOYqXFi6WISm8lzQMEbdWtiv_eSXarJ714mUuWsJvMznzzBjhjTEyMsGjkTIqC8Mx7MuGeEoQaAuGp1zTzcdiEGAzkaKSGtcOtrNMqFzIxCmo7M8FH3kE1iOCg4EV2_vxCwtSoEF2tR2gsQyN0SWAxdW_4HUUoqghzigKYhJ6XddEMZbJTouISIf2WhRVZkI_fIWZUNf3N_77kFmzUIDO5qLhiG5bcdAfWqrGTn7ugurhjsqiPKhPErUlwGTw6Evz4ia4blSQ66tDkaWYDWkebeg_u-r3byytSj1Aghot8TjylxkujjBIIpfKMcq54qpzjlqYul0wjgPPWUCu1515R7wpuEHbZgONMyvZhZTqbukNIci0YsyoPJi2neiJtqq3mHm0aR5mlTWgtzmRc_wfl-OdAmnD6vYwcHD5HT93sDZ9BEaFkqJhtwkF17uPnqtXGmInYhI0d_b35Maxn8SpDYl4LVuavb-4EVs37_KF8bcOyuLkPdCQilUjlZdqGRrc3GN60I9MgHQyvvwB2QcPg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTxsxEB7xKIJLaaGlKY8aCY4W3rV3vT5UiFcUBI0qRKvcFscPCQkSmk1A_Kn-Rsb7gBPccuBsy7I945lvPC-AHc5l30iLRk4_TamIvad94RlFqCERnnrNYl82m5Ddbtbrqd8z8L_JhQlhlY1MLAW1HZrwR76HahDBQSrSeP_uHw1do4J3tWmhUbHFmXt8QJOt-Hl6jPTdjeP2yeVRh9ZdBagRMhlTz5jxmVFGSUQXScyEUCJSzgnLIpdkXCOm8dYwm2kvvGLepcIgErEB2piI47qzMI9yPAohZPLi77PXIq082hEKfBpqbNZJOoxnewUqShnCfXkYyVL68DqkLVVbe_m9Xcon-FiDaHJQcf1nmHGDFVio2mo-roI6xBOQJv-rIIjLSfgSuXE0-CmIrguxEF1iBHI7tMEauXbFF_gzlX1_hbnBcOC-AUm05NyqJJjsgul-ZiNttfBosznGLWvBRkODvH7nRf5CgBZsPw_jCw3H0QM3nOAcFIEqCxnBLVir6JzfVaVEci7LInP8-9uL_4DFzuWv8_z8tHu2DktxyUYhCHED5sajiduED-Z-fF2MtkqGJHA1bWI_AXZ7GX4 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTxsxEB7xFpcCpZS0PIwERyvO2rteH6qqBSIQKOIAEret44cUqSTAhiL-Wn9dZ_YBJ3rjwNkry95vZvyNPQ-AfSn10GmPTs4wy7hKYuRDFQVHqqGRnkYrklg1m9CDQX59bS5m4G-bC0Nhla1NrAy1nzi6I-_iMYjkIFNZ0o1NWMTFUf_77R2nDlL00tq206hF5Cw8PaL7Vn47PUKsD5Kkf3x5eMKbDgPcKZ1OeRTCxdwZZzQyjTQRShnVMyEoL3ohzaVFfhO9Ez63UUUjYsiUQ1biiea4nsR5Z2FeS5RiylI_fA4vIbehCu5H48-p3maTsCNk3i3x0NQU-itpJM_44-v0tjrm-ivv-QetwoeGXLMftTaswUwYf4TFut3m0zqYn7gb1uaFlQz5OqOrkt-B0_sFs02BFmYr7sBuJp68lFEoP8HVm6x7A-bGk3HYBJZaLaU3KbnySthh7nvWWxXRlwtCetGBrRaPotH_sngBowN7z8OoubQdOw6TB_wGTaPJKVO4A59rzIvbusRIIXVVfE5--f_ku7CEGBfnp4Ozr7CcVBJFsYlbMDe9fwjbsOD-TEfl_U4lmwx-vTXW_wBBPiHZ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Best+practices+for+single-cell+analysis+across+modalities&rft.jtitle=Nature+reviews.+Genetics&rft.date=2023-08-01&rft.pub=Nature+Publishing+Group&rft.issn=1471-0056&rft.eissn=1471-0064&rft.volume=24&rft.issue=8&rft.spage=550&rft.epage=572&rft_id=info:doi/10.1038%2Fs41576-023-00586-w&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-0056&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-0056&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-0056&client=summon |