Best practices for single-cell analysis across modalities

Recent advances in single-cell technologies have enabled high-throughput molecular profiling of cells across modalities and locations. Single-cell transcriptomics data can now be complemented by chromatin accessibility, surface protein expression, adaptive immune receptor repertoire profiling and sp...

Full description

Saved in:
Bibliographic Details
Published in:Nature reviews. Genetics Vol. 24; no. 8; pp. 550 - 572
Main Authors: Heumos, Lukas, Schaar, Anna C, Lance, Christopher, Litinetskaya, Anastasia, Drost, Felix, Zappia, Luke, Lücken, Malte D, Strobl, Daniel C, Henao, Juan, Curion, Fabiola, Schiller, Herbert B, Theis, Fabian J
Format: Journal Article
Language:English
Published: England Nature Publishing Group 01.08.2023
Subjects:
ISSN:1471-0056, 1471-0064, 1471-0064
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Recent advances in single-cell technologies have enabled high-throughput molecular profiling of cells across modalities and locations. Single-cell transcriptomics data can now be complemented by chromatin accessibility, surface protein expression, adaptive immune receptor repertoire profiling and spatial information. The increasing availability of single-cell data across modalities has motivated the development of novel computational methods to help analysts derive biological insights. As the field grows, it becomes increasingly difficult to navigate the vast landscape of tools and analysis steps. Here, we summarize independent benchmarking studies of unimodal and multimodal single-cell analysis across modalities to suggest comprehensive best-practice workflows for the most common analysis steps. Where independent benchmarks are not available, we review and contrast popular methods. Our article serves as an entry point for novices in the field of single-cell (multi-)omic analysis and guides advanced users to the most recent best practices.
AbstractList Recent advances in single-cell technologies have enabled high-throughput molecular profiling of cells across modalities and locations. Single-cell transcriptomics data can now be complemented by chromatin accessibility, surface protein expression, adaptive immune receptor repertoire profiling and spatial information. The increasing availability of single-cell data across modalities has motivated the development of novel computational methods to help analysts derive biological insights. As the field grows, it becomes increasingly difficult to navigate the vast landscape of tools and analysis steps. Here, we summarize independent benchmarking studies of unimodal and multimodal single-cell analysis across modalities to suggest comprehensive best-practice workflows for the most common analysis steps. Where independent benchmarks are not available, we review and contrast popular methods. Our article serves as an entry point for novices in the field of single-cell (multi-)omic analysis and guides advanced users to the most recent best practices.Recent advances in single-cell technologies have enabled high-throughput molecular profiling of cells across modalities and locations. Single-cell transcriptomics data can now be complemented by chromatin accessibility, surface protein expression, adaptive immune receptor repertoire profiling and spatial information. The increasing availability of single-cell data across modalities has motivated the development of novel computational methods to help analysts derive biological insights. As the field grows, it becomes increasingly difficult to navigate the vast landscape of tools and analysis steps. Here, we summarize independent benchmarking studies of unimodal and multimodal single-cell analysis across modalities to suggest comprehensive best-practice workflows for the most common analysis steps. Where independent benchmarks are not available, we review and contrast popular methods. Our article serves as an entry point for novices in the field of single-cell (multi-)omic analysis and guides advanced users to the most recent best practices.
Recent advances in single-cell technologies have enabled high-throughput molecular profiling of cells across modalities and locations. Single-cell transcriptomics data can now be complemented by chromatin accessibility, surface protein expression, adaptive immune receptor repertoire profiling and spatial information. The increasing availability of single-cell data across modalities has motivated the development of novel computational methods to help analysts derive biological insights. As the field grows, it becomes increasingly difficult to navigate the vast landscape of tools and analysis steps. Here, we summarize independent benchmarking studies of unimodal and multimodal single-cell analysis across modalities to suggest comprehensive best-practice workflows for the most common analysis steps. Where independent benchmarks are not available, we review and contrast popular methods. Our article serves as an entry point for novices in the field of single-cell (multi-)omic analysis and guides advanced users to the most recent best practices.
Recent advances in single-cell technologies have enabled high-throughput molecular profiling of cells across modalities and locations. Single-cell transcriptomics data can now be complemented by chromatin accessibility, surface protein expression, adaptive immune receptor repertoire profiling and spatial information. The increasing availability of single-cell data across modalities has motivated the development of novel computational methods to help analysts derive biological insights. As the field grows, it becomes increasingly difficult to navigate the vast landscape of tools and analysis steps. Here, we summarize independent benchmarking studies of unimodal and multimodal single-cell analysis across modalities to suggest comprehensive best-practice workflows for the most common analysis steps. Where independent benchmarks are not available, we review and contrast popular methods. Our article serves as an entry point for novices in the field of single-cell (multi-)omic analysis and guides advanced users to the most recent best practices.Practitioners in the field of single-cell omics are now faced with diverse options for analytical tools to process and integrate data from various molecular modalities. In an Expert Recommendation article, the authors provide guidance on robust single-cell data analysis, including choices of best-performing tools from benchmarking studies.
Author Strobl, Daniel C
Zappia, Luke
Heumos, Lukas
Curion, Fabiola
Theis, Fabian J
Lücken, Malte D
Schaar, Anna C
Lance, Christopher
Drost, Felix
Schiller, Herbert B
Litinetskaya, Anastasia
Henao, Juan
Author_xml – sequence: 1
  givenname: Lukas
  orcidid: 0000-0002-8937-3457
  surname: Heumos
  fullname: Heumos, Lukas
  organization: TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
– sequence: 2
  givenname: Anna C
  orcidid: 0000-0003-1063-005X
  surname: Schaar
  fullname: Schaar, Anna C
  organization: Munich Center for Machine Learning, Technical University of Munich, Garching, Germany
– sequence: 3
  givenname: Christopher
  orcidid: 0000-0002-1275-9802
  surname: Lance
  fullname: Lance, Christopher
  organization: Department of Paediatrics, Dr von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
– sequence: 4
  givenname: Anastasia
  surname: Litinetskaya
  fullname: Litinetskaya, Anastasia
  organization: Department of Mathematics, School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
– sequence: 5
  givenname: Felix
  orcidid: 0000-0002-2600-4048
  surname: Drost
  fullname: Drost, Felix
  organization: TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
– sequence: 6
  givenname: Luke
  orcidid: 0000-0001-7744-8565
  surname: Zappia
  fullname: Zappia, Luke
  organization: Department of Mathematics, School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
– sequence: 7
  givenname: Malte D
  orcidid: 0000-0001-7464-7921
  surname: Lücken
  fullname: Lücken, Malte D
  organization: Institute of Lung Health and Immunity, Helmholtz Munich, Munich, Germany
– sequence: 8
  givenname: Daniel C
  surname: Strobl
  fullname: Strobl, Daniel C
  organization: TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
– sequence: 9
  givenname: Juan
  surname: Henao
  fullname: Henao, Juan
  organization: Institute of Computational Biology, Department of Computational Health, Helmholtz Munich, Munich, Germany
– sequence: 10
  givenname: Fabiola
  orcidid: 0000-0003-2502-8803
  surname: Curion
  fullname: Curion, Fabiola
  organization: Department of Mathematics, School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
– sequence: 11
  givenname: Herbert B
  surname: Schiller
  fullname: Schiller, Herbert B
  organization: Institute of Lung Health and Immunity and Comprehensive Pneumology Center, Helmholtz Munich; Member of the German Center for Lung Research (DZL), Munich, Germany
– sequence: 12
  givenname: Fabian J
  orcidid: 0000-0002-2419-1943
  surname: Theis
  fullname: Theis, Fabian J
  email: fabian.theis@helmholtz-muenchen.de, fabian.theis@helmholtz-muenchen.de, fabian.theis@helmholtz-muenchen.de, fabian.theis@helmholtz-muenchen.de
  organization: Munich Center for Machine Learning, Technical University of Munich, Garching, Germany. fabian.theis@helmholtz-muenchen.de
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37002403$$D View this record in MEDLINE/PubMed
BookMark eNpd0E1LxDAQBuAgK-66-gc8SMGLl-ik-T7q4hcseNFziWkiWdpm7bTI_nsrrh48zQw8DO_MMZl1uQuEnDG4YsDNNQomtaJQcgogjaKfB2TBhGbTqMTsr5dqTo4RNwBMMc2PyJxrgFIAXxB7G3Aotr3zQ_IBi5j7AlP33gTqQ9MUrnPNDhMWzvcZsWhz7Zo0pIAn5DC6BsPpvi7J6_3dy-qRrp8fnlY3a-qFlgONAD4ab73VVjJZghBWMBuCqIEFabhjlsfaQ21cFNFCDEp4sLIGqaVnfEkuf_Zu-_wxTmmrNuF3NteFPGJVasutEdKYiV78o5s89tMFkzLcSKaEKid1vlfjWxvqatun1vW76vcp_At0CWQk
CitedBy_id crossref_primary_10_1038_s41556_025_01706_w
crossref_primary_10_1038_s41587_023_01934_1
crossref_primary_10_1016_j_cell_2025_06_009
crossref_primary_10_1016_j_coemr_2024_100524
crossref_primary_10_1016_j_xpro_2024_103475
crossref_primary_10_1038_s44320_025_00088_3
crossref_primary_10_1002_admt_202401953
crossref_primary_10_1007_s12032_025_03002_x
crossref_primary_10_1021_acs_jproteome_4c00091
crossref_primary_10_1093_carcin_bgaf038
crossref_primary_10_2174_0115748936278884240102094058
crossref_primary_10_1002_smtd_202400789
crossref_primary_10_1186_s12974_024_03210_8
crossref_primary_10_1360_SSV_2025_0140
crossref_primary_10_1038_s41592_024_02303_9
crossref_primary_10_1093_nargab_lqaf043
crossref_primary_10_1093_nargab_lqaf042
crossref_primary_10_1038_s41592_023_02067_8
crossref_primary_10_3389_fsysb_2024_1466368
crossref_primary_10_1093_bioadv_vbaf069
crossref_primary_10_3389_fgene_2023_1256991
crossref_primary_10_1093_bioadv_vbae099
crossref_primary_10_1111_imcb_70040
crossref_primary_10_1093_biostatistics_kxaf024
crossref_primary_10_1002_glia_24633
crossref_primary_10_1080_19396368_2025_2533992
crossref_primary_10_1038_s41551_025_01481_x
crossref_primary_10_1038_s41571_025_01003_3
crossref_primary_10_1093_plcell_koae003
crossref_primary_10_3390_biom13101516
crossref_primary_10_1038_s41588_024_01658_1
crossref_primary_10_1093_jxb_erae107
crossref_primary_10_1186_s12967_023_04382_2
crossref_primary_10_1038_s42003_025_07872_9
crossref_primary_10_1126_science_adp3957
crossref_primary_10_1038_s44385_025_00023_z
crossref_primary_10_1093_oxfimm_iqaf005
crossref_primary_10_1111_jgh_16915
crossref_primary_10_1126_science_adl0544
crossref_primary_10_1016_j_gpb_2023_06_003
crossref_primary_10_1038_s41556_025_01619_8
crossref_primary_10_1093_gigascience_giaf076
crossref_primary_10_1007_s12015_024_10831_2
crossref_primary_10_3390_genes15091114
crossref_primary_10_1016_j_mad_2024_111918
crossref_primary_10_1016_j_gde_2024_102155
crossref_primary_10_1038_s41592_024_02353_z
crossref_primary_10_1093_nar_gkae225
crossref_primary_10_3390_cimb46060316
crossref_primary_10_1093_gpbjnl_qzae026
crossref_primary_10_1016_j_talanta_2024_126728
crossref_primary_10_1093_bib_bbaf198
crossref_primary_10_1007_s40291_023_00668_9
crossref_primary_10_1038_s41584_023_01031_2
crossref_primary_10_7554_eLife_90214_3
crossref_primary_10_1016_j_neuint_2025_105998
crossref_primary_10_1371_journal_pone_0302118
crossref_primary_10_1038_s41590_024_01768_2
crossref_primary_10_1186_s13072_024_00547_5
crossref_primary_10_3390_genes14112033
crossref_primary_10_3390_genes15121551
crossref_primary_10_3390_stats7030059
crossref_primary_10_1038_s42256_025_01097_5
crossref_primary_10_1016_j_cotox_2024_100475
crossref_primary_10_1016_j_xcrp_2025_102811
crossref_primary_10_1186_s13059_024_03303_w
crossref_primary_10_1371_journal_pbio_3002640
crossref_primary_10_1038_s41467_024_53355_6
crossref_primary_10_1038_s41467_024_45661_w
crossref_primary_10_1186_s13059_025_03677_5
crossref_primary_10_3390_ijms252011298
crossref_primary_10_1002_adma_202415160
crossref_primary_10_1007_s10157_025_02679_8
crossref_primary_10_1016_j_copbio_2024_103078
crossref_primary_10_1186_s41065_025_00573_7
crossref_primary_10_1093_lifemeta_loaf010
crossref_primary_10_1038_s41588_025_02285_0
crossref_primary_10_1186_s12864_024_11015_5
crossref_primary_10_1038_s41598_025_99364_3
crossref_primary_10_1093_gpbjnl_qzaf002
crossref_primary_10_1016_j_immuni_2024_01_006
crossref_primary_10_1016_j_immuni_2023_10_002
crossref_primary_10_1038_s42256_024_00934_3
crossref_primary_10_1039_D5SC01764E
crossref_primary_10_1038_s41467_024_44757_7
crossref_primary_10_1038_s41467_025_59822_y
crossref_primary_10_3389_fimmu_2025_1554876
crossref_primary_10_1002_smtd_202300923
crossref_primary_10_1016_j_tifs_2025_105193
crossref_primary_10_1101_gr_278253_123
crossref_primary_10_1002_anie_202314468
crossref_primary_10_1016_j_biopha_2024_117005
crossref_primary_10_1016_j_cotox_2024_100464
crossref_primary_10_1523_JNEUROSCI_0043_24_2024
crossref_primary_10_1093_bib_bbae095
crossref_primary_10_1182_bloodadvances_2022009313
crossref_primary_10_1038_s41592_024_02511_3
crossref_primary_10_3390_cells13010027
crossref_primary_10_1371_journal_pcbi_1012962
crossref_primary_10_1093_gpbjnl_qzaf011
crossref_primary_10_3389_frai_2024_1424012
crossref_primary_10_1016_j_tins_2023_09_007
crossref_primary_10_1016_j_mam_2024_101253
crossref_primary_10_1186_s13059_024_03322_7
crossref_primary_10_1016_j_xpro_2025_103670
crossref_primary_10_1038_s41587_023_02040_y
crossref_primary_10_1038_s41598_025_89988_w
crossref_primary_10_3389_fimmu_2025_1529847
crossref_primary_10_1038_s41592_025_02624_3
crossref_primary_10_1093_bib_bbaf018
crossref_primary_10_1038_s41590_025_02161_3
crossref_primary_10_1371_journal_pcbi_1012480
crossref_primary_10_3389_fgene_2025_1603687
crossref_primary_10_1109_JBHI_2024_3460761
crossref_primary_10_1002_anie_202319248
crossref_primary_10_1038_s41467_024_49806_9
crossref_primary_10_1007_s40242_025_4243_5
crossref_primary_10_1038_s42003_024_07238_7
crossref_primary_10_1371_journal_pbio_3003085
crossref_primary_10_1016_j_molcel_2024_08_002
crossref_primary_10_1038_s41592_024_02532_y
crossref_primary_10_1111_bph_70128
crossref_primary_10_1161_CIRCRESAHA_124_325656
crossref_primary_10_1186_s12931_024_02823_0
crossref_primary_10_1186_s13059_025_03731_2
crossref_primary_10_1093_bib_bbae399
crossref_primary_10_1111_brv_13063
crossref_primary_10_1038_s43586_023_00284_1
crossref_primary_10_1038_s44161_024_00533_w
crossref_primary_10_1093_nargab_lqae134
crossref_primary_10_3390_diagnostics14192172
crossref_primary_10_1186_s13059_025_03716_1
crossref_primary_10_1038_s41467_024_53340_z
crossref_primary_10_1093_bib_bbae152
crossref_primary_10_1038_s41568_024_00757_9
crossref_primary_10_1038_s41598_025_96823_9
crossref_primary_10_1016_j_molmed_2025_06_004
crossref_primary_10_1017_S2633903X24000138
crossref_primary_10_1186_s13059_024_03249_z
crossref_primary_10_1186_s13062_025_00691_2
crossref_primary_10_1016_j_csbj_2024_07_012
crossref_primary_10_1038_s41598_025_95079_7
crossref_primary_10_1016_j_exphem_2024_104167
crossref_primary_10_1038_s41586_024_07079_8
crossref_primary_10_1186_s12983_025_00579_x
crossref_primary_10_3389_fgene_2023_1304661
crossref_primary_10_1038_s41467_024_54516_3
crossref_primary_10_1080_13102818_2024_2379837
crossref_primary_10_1016_j_jid_2024_02_006
crossref_primary_10_1038_s41592_024_02263_0
crossref_primary_10_1038_s43018_025_00942_1
crossref_primary_10_1093_bib_bbaf397
crossref_primary_10_1016_j_medp_2024_100042
crossref_primary_10_1080_17474086_2023_2285985
crossref_primary_10_1088_1478_3975_adda85
crossref_primary_10_1186_s12915_025_02128_8
crossref_primary_10_1016_j_biotechadv_2024_108506
crossref_primary_10_1186_s13059_025_03574_x
crossref_primary_10_3390_cells14030156
crossref_primary_10_1093_bib_bbad525
crossref_primary_10_3389_fonc_2025_1584178
crossref_primary_10_1186_s12885_024_13258_7
crossref_primary_10_1038_s41467_024_51003_7
crossref_primary_10_1038_s44318_024_00313_z
crossref_primary_10_3390_ijms25137367
crossref_primary_10_1038_s41417_024_00788_2
crossref_primary_10_1371_journal_ppat_1012012
crossref_primary_10_1002_bit_70030
crossref_primary_10_1093_bib_bbaf388
crossref_primary_10_1016_j_crmeth_2023_100591
crossref_primary_10_1016_j_measurement_2024_116258
crossref_primary_10_1145_3702646
crossref_primary_10_1146_annurev_genet_072920_013842
crossref_primary_10_1186_s12943_024_02113_9
crossref_primary_10_1093_bioinformatics_btaf114
crossref_primary_10_1038_s41556_024_01469_w
crossref_primary_10_1038_s41597_025_04381_6
crossref_primary_10_3389_fimmu_2025_1599303
crossref_primary_10_1007_s11426_023_1793_7
crossref_primary_10_1016_j_cell_2025_02_009
crossref_primary_10_1016_j_esmoop_2024_104105
crossref_primary_10_1016_j_drudis_2024_103889
crossref_primary_10_3390_ijms252413382
crossref_primary_10_3389_fgene_2023_1256064
crossref_primary_10_1038_s41467_024_52356_9
crossref_primary_10_34133_research_0743
crossref_primary_10_1021_acs_analchem_5c00863
crossref_primary_10_1021_acs_jproteome_4c00658
crossref_primary_10_1016_j_isci_2025_112713
crossref_primary_10_1172_JCI186421
crossref_primary_10_1002_adma_202409102
crossref_primary_10_1038_s41593_025_01973_8
crossref_primary_10_1016_j_ajog_2024_08_040
crossref_primary_10_1016_j_talanta_2024_126225
crossref_primary_10_1038_s41568_024_00737_z
crossref_primary_10_1016_j_bosn_2025_04_001
crossref_primary_10_1002_ange_202314468
crossref_primary_10_1038_s41431_024_01564_4
crossref_primary_10_1038_s41586_024_08487_6
crossref_primary_10_1038_s42255_025_01296_9
crossref_primary_10_1089_gen_44_02_08
crossref_primary_10_1161_CIRCRESAHA_124_323672
crossref_primary_10_1016_j_intimp_2025_114381
crossref_primary_10_1038_s41571_023_00830_6
crossref_primary_10_1038_s41597_024_03002_y
crossref_primary_10_3389_fmicb_2023_1236653
crossref_primary_10_1016_j_trac_2024_118109
crossref_primary_10_1016_j_pharmthera_2024_108613
crossref_primary_10_1038_s41467_025_59206_2
crossref_primary_10_1186_s10020_024_00955_z
crossref_primary_10_1186_s13059_024_03219_5
crossref_primary_10_1007_s10456_024_09955_3
crossref_primary_10_1038_s41592_024_02429_w
crossref_primary_10_1126_sciadv_adm7042
crossref_primary_10_1177_11779322241287120
crossref_primary_10_1093_bioadv_vbaf105
crossref_primary_10_1038_s41467_025_63029_6
crossref_primary_10_1038_s41587_025_02702_z
crossref_primary_10_1200_EDBK_430734
crossref_primary_10_1007_s11538_023_01213_9
crossref_primary_10_3892_mmr_2024_13415
crossref_primary_10_1016_j_immuni_2025_04_009
crossref_primary_10_1371_journal_pone_0322706
crossref_primary_10_1038_s41467_025_59448_0
crossref_primary_10_1002_advs_202401815
crossref_primary_10_1038_s41467_024_51059_5
crossref_primary_10_1093_rheumatology_keaf252
crossref_primary_10_1093_nar_gkad1146
crossref_primary_10_1093_nar_gkae1186
crossref_primary_10_1016_j_addicn_2025_100209
crossref_primary_10_1038_s42003_024_07171_9
crossref_primary_10_1016_j_tig_2024_12_009
crossref_primary_10_1002_advs_202509247
crossref_primary_10_1007_s12015_024_10764_w
crossref_primary_10_1080_10428194_2024_2422833
crossref_primary_10_1096_fj_202400303R
crossref_primary_10_1145_3718988
crossref_primary_10_1093_bioinformatics_btaf268
crossref_primary_10_1038_s41540_024_00364_2
crossref_primary_10_1186_s13059_025_03514_9
crossref_primary_10_1093_bib_bbae382
crossref_primary_10_1172_jci_insight_169105
crossref_primary_10_1038_s43588_024_00689_2
crossref_primary_10_1186_s40478_025_01966_5
crossref_primary_10_1126_science_adf6162
crossref_primary_10_1111_jne_70072
crossref_primary_10_1038_s41467_024_53971_2
crossref_primary_10_1093_bib_bbaf109
crossref_primary_10_1038_s41523_025_00808_w
crossref_primary_10_1186_s13059_024_03356_x
crossref_primary_10_1038_s41467_025_56280_4
crossref_primary_10_1038_s41596_023_00932_6
crossref_primary_10_1093_nar_gkaf805
crossref_primary_10_1093_bib_bbaf465
crossref_primary_10_1038_s41577_025_01199_6
crossref_primary_10_1101_gr_278215_123
crossref_primary_10_3390_bioengineering11060542
crossref_primary_10_1016_j_xpro_2024_103521
crossref_primary_10_1093_burnst_tkae043
crossref_primary_10_1186_s13059_023_03123_4
crossref_primary_10_1038_s41587_023_01943_0
crossref_primary_10_3390_cancers16173100
crossref_primary_10_1002_ange_202319248
crossref_primary_10_1007_s11936_025_01100_7
crossref_primary_10_1016_j_xpro_2024_103083
crossref_primary_10_3389_fimmu_2024_1479166
crossref_primary_10_1038_s41592_025_02713_3
crossref_primary_10_1002_eji_202451234
crossref_primary_10_1007_s00216_023_05028_4
crossref_primary_10_1038_s41467_023_41855_w
crossref_primary_10_3390_ijms25084485
crossref_primary_10_1038_s41580_024_00822_z
crossref_primary_10_1093_genetics_iyae167
crossref_primary_10_1038_s41586_025_08989_x
crossref_primary_10_1093_bib_bbaf339
crossref_primary_10_1093_nar_gkad874
crossref_primary_10_1038_s41421_024_00753_1
crossref_primary_10_1080_08820139_2025_2457039
crossref_primary_10_1103_8vpj_bj7d
crossref_primary_10_1038_s41467_025_59424_8
crossref_primary_10_1039_D5AN00037H
crossref_primary_10_1016_j_bios_2024_117074
crossref_primary_10_1038_s41587_025_02694_w
crossref_primary_10_1002_adtp_202400351
crossref_primary_10_1186_s13059_025_03602_w
crossref_primary_10_1038_s42003_025_08123_7
crossref_primary_10_2147_JIR_S490457
crossref_primary_10_1016_j_ard_2025_04_011
crossref_primary_10_1016_j_csbj_2025_06_047
crossref_primary_10_1016_j_csbj_2024_12_030
crossref_primary_10_1016_j_tig_2023_07_005
crossref_primary_10_3390_cancers16061213
crossref_primary_10_1186_s13059_024_03450_0
crossref_primary_10_3389_fchem_2024_1428547
crossref_primary_10_26508_lsa_202402713
crossref_primary_10_7554_eLife_104856
crossref_primary_10_1038_s41586_025_09503_z
crossref_primary_10_1038_s44320_024_00045_6
crossref_primary_10_1186_s12859_023_05590_9
crossref_primary_10_1371_journal_pcbi_1012512
crossref_primary_10_1016_j_kint_2023_11_033
crossref_primary_10_1093_cei_uxae077
crossref_primary_10_1038_s41588_025_02124_2
crossref_primary_10_1186_s13059_024_03398_1
crossref_primary_10_1242_dev_202832
crossref_primary_10_7554_eLife_104856_3
crossref_primary_10_1016_j_cels_2024_11_009
crossref_primary_10_1126_scitranslmed_adl6758
crossref_primary_10_1016_j_coisb_2024_100534
crossref_primary_10_1038_s41467_024_47989_9
crossref_primary_10_1016_j_inffus_2025_103479
crossref_primary_10_1016_j_ccell_2024_05_003
crossref_primary_10_1021_acsnano_5c02111
crossref_primary_10_1038_s41592_024_02327_1
crossref_primary_10_1177_0271678X241305914
crossref_primary_10_1186_s13073_023_01259_3
crossref_primary_10_1016_j_patter_2025_101326
crossref_primary_10_1016_j_cell_2024_03_009
crossref_primary_10_1186_s13059_024_03338_z
crossref_primary_10_1080_19490976_2025_2528428
crossref_primary_10_1016_j_cell_2024_04_032
crossref_primary_10_1016_j_jaci_2024_11_001
crossref_primary_10_1038_s41467_025_60899_8
crossref_primary_10_1093_nargab_lqaf073
crossref_primary_10_3748_wjg_v31_i31_109605
crossref_primary_10_1097_COH_0000000000000809
crossref_primary_10_3389_fimmu_2023_1275937
crossref_primary_10_3390_biomedicines11082264
crossref_primary_10_1093_nar_gkae1145
crossref_primary_10_1016_j_xgen_2025_100765
crossref_primary_10_1016_j_xgen_2025_100886
crossref_primary_10_1016_j_xgen_2025_100766
crossref_primary_10_1097_TP_0000000000004925
crossref_primary_10_1038_s41592_025_02737_9
crossref_primary_10_1038_s42003_024_06964_2
crossref_primary_10_1016_j_tig_2023_10_003
crossref_primary_10_1038_s41540_024_00441_6
crossref_primary_10_3389_fcell_2024_1500474
crossref_primary_10_1016_j_ajhg_2024_10_019
crossref_primary_10_1016_j_csbj_2025_03_051
crossref_primary_10_1038_s41568_023_00657_4
crossref_primary_10_1016_j_lfs_2025_123751
crossref_primary_10_1186_s40168_025_02089_8
crossref_primary_10_1007_s00521_024_09662_6
crossref_primary_10_1186_s12967_025_06785_9
crossref_primary_10_1016_j_yexmp_2024_104944
crossref_primary_10_1152_ajpgi_00182_2024
crossref_primary_10_3389_fimmu_2023_1306169
crossref_primary_10_1016_j_celbio_2025_100099
crossref_primary_10_1111_imcb_12801
crossref_primary_10_1158_1078_0432_CCR_24_0049
crossref_primary_10_26599_BDMA_2025_9020009
crossref_primary_10_1016_j_devcel_2025_06_032
crossref_primary_10_1128_jvi_01858_23
crossref_primary_10_1002_advs_202500870
crossref_primary_10_1146_annurev_immunol_090122_042631
crossref_primary_10_1186_s12859_024_05788_5
crossref_primary_10_1016_j_celrep_2025_116168
crossref_primary_10_1038_s41597_024_03399_6
crossref_primary_10_1515_oncologie_2023_0244
crossref_primary_10_1016_j_copbio_2024_103151
crossref_primary_10_1016_j_jaci_2024_05_008
crossref_primary_10_1038_s41576_024_00750_w
crossref_primary_10_1007_s10238_024_01484_z
crossref_primary_10_1002_qub2_78
crossref_primary_10_1186_s13059_024_03254_2
crossref_primary_10_1093_nargab_lqaf089
crossref_primary_10_1002_smtd_202401107
crossref_primary_10_1016_j_biotechadv_2025_108528
crossref_primary_10_1038_s41576_023_00628_3
crossref_primary_10_3390_cancers16193265
crossref_primary_10_1038_s41592_025_02799_9
crossref_primary_10_3389_fimmu_2025_1518658
crossref_primary_10_7554_eLife_90214
crossref_primary_10_1146_annurev_biodatasci_101424_121439
crossref_primary_10_15252_msb_202110571
crossref_primary_10_1016_j_crmeth_2025_101086
crossref_primary_10_1371_journal_pone_0299358
crossref_primary_10_1093_nar_gkae1043
crossref_primary_10_1038_s41377_025_01809_x
ContentType Journal Article
Contributor Ansari, Meshal
Ostner, Johannes
Schubert, Benjamin
Büttner, Maren
Frishberg, Amit
Martens, Laura D
Jones, Matthew G
Ramírez-Suástegui, Ciro
Badia-I-Mompel, Pau
Saez-Rodriguez, Julio
Sarkar, Hirak
Dony, Leander
Palla, Giovanni
Tanevski, Jovan
He, Dongze
Aliee, Hananeh
Müller, Christian L
Weiler, Philipp
Nitzan, Mor
Patro, Rob
Virshup, Isaac
Dimitrov, Daniel
Lotfollahi, Mohammad
Srivastava, Avi
Piran, Zoe
Dann, Emma
Hediyeh-Zadeh, Soroor
Sikkema, Lisa
Hetzel, Leon
Ibarra, Ignacio L
Contributor_xml – sequence: 1
  givenname: Hananeh
  surname: Aliee
  fullname: Aliee, Hananeh
– sequence: 2
  givenname: Meshal
  surname: Ansari
  fullname: Ansari, Meshal
– sequence: 3
  givenname: Pau
  surname: Badia-I-Mompel
  fullname: Badia-I-Mompel, Pau
– sequence: 4
  givenname: Maren
  surname: Büttner
  fullname: Büttner, Maren
– sequence: 5
  givenname: Emma
  surname: Dann
  fullname: Dann, Emma
– sequence: 6
  givenname: Daniel
  surname: Dimitrov
  fullname: Dimitrov, Daniel
– sequence: 7
  givenname: Leander
  surname: Dony
  fullname: Dony, Leander
– sequence: 8
  givenname: Amit
  surname: Frishberg
  fullname: Frishberg, Amit
– sequence: 9
  givenname: Dongze
  surname: He
  fullname: He, Dongze
– sequence: 10
  givenname: Soroor
  surname: Hediyeh-Zadeh
  fullname: Hediyeh-Zadeh, Soroor
– sequence: 11
  givenname: Leon
  surname: Hetzel
  fullname: Hetzel, Leon
– sequence: 12
  givenname: Ignacio L
  surname: Ibarra
  fullname: Ibarra, Ignacio L
– sequence: 13
  givenname: Matthew G
  surname: Jones
  fullname: Jones, Matthew G
– sequence: 14
  givenname: Mohammad
  surname: Lotfollahi
  fullname: Lotfollahi, Mohammad
– sequence: 15
  givenname: Laura D
  surname: Martens
  fullname: Martens, Laura D
– sequence: 16
  givenname: Christian L
  surname: Müller
  fullname: Müller, Christian L
– sequence: 17
  givenname: Mor
  surname: Nitzan
  fullname: Nitzan, Mor
– sequence: 18
  givenname: Johannes
  surname: Ostner
  fullname: Ostner, Johannes
– sequence: 19
  givenname: Giovanni
  surname: Palla
  fullname: Palla, Giovanni
– sequence: 20
  givenname: Rob
  surname: Patro
  fullname: Patro, Rob
– sequence: 21
  givenname: Zoe
  surname: Piran
  fullname: Piran, Zoe
– sequence: 22
  givenname: Ciro
  surname: Ramírez-Suástegui
  fullname: Ramírez-Suástegui, Ciro
– sequence: 23
  givenname: Julio
  surname: Saez-Rodriguez
  fullname: Saez-Rodriguez, Julio
– sequence: 24
  givenname: Hirak
  surname: Sarkar
  fullname: Sarkar, Hirak
– sequence: 25
  givenname: Benjamin
  surname: Schubert
  fullname: Schubert, Benjamin
– sequence: 26
  givenname: Lisa
  surname: Sikkema
  fullname: Sikkema, Lisa
– sequence: 27
  givenname: Avi
  surname: Srivastava
  fullname: Srivastava, Avi
– sequence: 28
  givenname: Jovan
  surname: Tanevski
  fullname: Tanevski, Jovan
– sequence: 29
  givenname: Isaac
  surname: Virshup
  fullname: Virshup, Isaac
– sequence: 30
  givenname: Philipp
  surname: Weiler
  fullname: Weiler, Philipp
Copyright 2023. Springer Nature Limited.
Copyright Nature Publishing Group Aug 2023
Copyright_xml – notice: 2023. Springer Nature Limited.
– notice: Copyright Nature Publishing Group Aug 2023
CorporateAuthor Single-cell Best Practices Consortium
CorporateAuthor_xml – name: Single-cell Best Practices Consortium
DBID CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7QR
7RV
7TK
7TM
7X7
7XB
88A
88E
8AO
8C1
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
LK8
M0S
M1P
M7P
NAPCQ
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
DOI 10.1038/s41576-023-00586-w
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Neurosciences Abstracts
Nucleic Acids Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Public Health
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
ProQuest Central Student
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-0064
EndPage 572
ExternalDocumentID 37002403
Genre Research Support, U.S. Gov't, Non-P.H.S
Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Wellcome Trust
– fundername: NCI NIH HHS
  grantid: K99 CA267677
– fundername: NHGRI NIH HHS
  grantid: R01 HG009937
GroupedDBID ---
-DZ
.55
0R~
123
29M
36B
39C
4.4
53G
70F
7RV
7X7
88E
8AO
8C1
8FE
8FH
8FI
8FJ
8R4
8R5
AARCD
AAWYQ
AAYZH
ABAWZ
ABDBF
ABFSG
ABJNI
ABLJU
ABUWG
ACGFS
ACIWK
ACPRK
ACSTC
ACUHS
ADBBV
AENEX
AEZWR
AFANA
AFBBN
AFFNX
AFHIU
AFKRA
AFSHS
AGAYW
AHBCP
AHMBA
AHOSX
AHSBF
AHWEU
AIBTJ
AIXLP
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALPWD
ARMCB
ASPBG
ATHPR
AVWKF
AXYYD
AZFZN
B0M
BBNVY
BENPR
BHPHI
BKEYQ
BKKNO
BPHCQ
BVXVI
CCPQU
CGR
CS3
CUY
CVF
DB5
DU5
EAD
EAP
EBS
ECM
EE.
EIF
EJD
EMB
EMK
EMOBN
EPL
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IGS
IHR
IHW
INH
INR
ISR
ITC
LK8
M1P
M7P
N9A
NAPCQ
NFIDA
NNMJJ
NPM
O9-
ODYON
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q2X
RIG
RNR
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
WOW
X7M
~8M
3V.
7QP
7QR
7TK
7TM
7XB
88A
8FD
8FK
AGSTI
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
ID FETCH-LOGICAL-c475t-f00cf8c9c97951520449419ee4d01e583a193fdc0d8af4f90fe64c095d0575c13
IEDL.DBID M7P
ISICitedReferencesCount 460
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000961193300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-0056
1471-0064
IngestDate Sun Nov 09 11:49:21 EST 2025
Tue Oct 07 05:17:12 EDT 2025
Mon Jul 21 06:17:34 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License 2023. Springer Nature Limited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c475t-f00cf8c9c97951520449419ee4d01e583a193fdc0d8af4f90fe64c095d0575c13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-1275-9802
0000-0002-2419-1943
0000-0002-8937-3457
0000-0003-2502-8803
0000-0001-7464-7921
0000-0002-2600-4048
0000-0001-7744-8565
0000-0003-1063-005X
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC10066026
PMID 37002403
PQID 2838516462
PQPubID 44267
PageCount 23
ParticipantIDs proquest_miscellaneous_2793984588
proquest_journals_2838516462
pubmed_primary_37002403
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Nature reviews. Genetics
PublicationTitleAlternate Nat Rev Genet
PublicationYear 2023
Publisher Nature Publishing Group
Publisher_xml – name: Nature Publishing Group
SSID ssj0016173
Score 2.754563
SecondaryResourceType review_article
Snippet Recent advances in single-cell technologies have enabled high-throughput molecular profiling of cells across modalities and locations. Single-cell...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 550
SubjectTerms Chromatin
Electrons
Gene Expression Profiling - methods
Proteomics
Single-Cell Analysis - methods
Transcriptomics
Title Best practices for single-cell analysis across modalities
URI https://www.ncbi.nlm.nih.gov/pubmed/37002403
https://www.proquest.com/docview/2838516462
https://www.proquest.com/docview/2793984588
Volume 24
WOSCitedRecordID wos000961193300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB7UKnjx_ajWsoLX0Owmu0lOYqXFi6WISm8lzQMEbdWtiv_eSXarJ714mUuWsJvMznzzBjhjTEyMsGjkTIqC8Mx7MuGeEoQaAuGp1zTzcdiEGAzkaKSGtcOtrNMqFzIxCmo7M8FH3kE1iOCg4EV2_vxCwtSoEF2tR2gsQyN0SWAxdW_4HUUoqghzigKYhJ6XddEMZbJTouISIf2WhRVZkI_fIWZUNf3N_77kFmzUIDO5qLhiG5bcdAfWqrGTn7ugurhjsqiPKhPErUlwGTw6Evz4ia4blSQ66tDkaWYDWkebeg_u-r3byytSj1Aghot8TjylxkujjBIIpfKMcq54qpzjlqYul0wjgPPWUCu1515R7wpuEHbZgONMyvZhZTqbukNIci0YsyoPJi2neiJtqq3mHm0aR5mlTWgtzmRc_wfl-OdAmnD6vYwcHD5HT93sDZ9BEaFkqJhtwkF17uPnqtXGmInYhI0d_b35Maxn8SpDYl4LVuavb-4EVs37_KF8bcOyuLkPdCQilUjlZdqGRrc3GN60I9MgHQyvvwB2QcPg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTxsxEB7xKIJLaaGlKY8aCY4W3rV3vT5UiFcUBI0qRKvcFscPCQkSmk1A_Kn-Rsb7gBPccuBsy7I945lvPC-AHc5l30iLRk4_TamIvad94RlFqCERnnrNYl82m5Ddbtbrqd8z8L_JhQlhlY1MLAW1HZrwR76HahDBQSrSeP_uHw1do4J3tWmhUbHFmXt8QJOt-Hl6jPTdjeP2yeVRh9ZdBagRMhlTz5jxmVFGSUQXScyEUCJSzgnLIpdkXCOm8dYwm2kvvGLepcIgErEB2piI47qzMI9yPAohZPLi77PXIq082hEKfBpqbNZJOoxnewUqShnCfXkYyVL68DqkLVVbe_m9Xcon-FiDaHJQcf1nmHGDFVio2mo-roI6xBOQJv-rIIjLSfgSuXE0-CmIrguxEF1iBHI7tMEauXbFF_gzlX1_hbnBcOC-AUm05NyqJJjsgul-ZiNttfBosznGLWvBRkODvH7nRf5CgBZsPw_jCw3H0QM3nOAcFIEqCxnBLVir6JzfVaVEci7LInP8-9uL_4DFzuWv8_z8tHu2DktxyUYhCHED5sajiduED-Z-fF2MtkqGJHA1bWI_AXZ7GX4
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTxsxEB7xFpcCpZS0PIwERyvO2rteH6qqBSIQKOIAEret44cUqSTAhiL-Wn9dZ_YBJ3rjwNkry95vZvyNPQ-AfSn10GmPTs4wy7hKYuRDFQVHqqGRnkYrklg1m9CDQX59bS5m4G-bC0Nhla1NrAy1nzi6I-_iMYjkIFNZ0o1NWMTFUf_77R2nDlL00tq206hF5Cw8PaL7Vn47PUKsD5Kkf3x5eMKbDgPcKZ1OeRTCxdwZZzQyjTQRShnVMyEoL3ohzaVFfhO9Ez63UUUjYsiUQ1biiea4nsR5Z2FeS5RiylI_fA4vIbehCu5H48-p3maTsCNk3i3x0NQU-itpJM_44-v0tjrm-ivv-QetwoeGXLMftTaswUwYf4TFut3m0zqYn7gb1uaFlQz5OqOrkt-B0_sFs02BFmYr7sBuJp68lFEoP8HVm6x7A-bGk3HYBJZaLaU3KbnySthh7nvWWxXRlwtCetGBrRaPotH_sngBowN7z8OoubQdOw6TB_wGTaPJKVO4A59rzIvbusRIIXVVfE5--f_ku7CEGBfnp4Ozr7CcVBJFsYlbMDe9fwjbsOD-TEfl_U4lmwx-vTXW_wBBPiHZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Best+practices+for+single-cell+analysis+across+modalities&rft.jtitle=Nature+reviews.+Genetics&rft.date=2023-08-01&rft.pub=Nature+Publishing+Group&rft.issn=1471-0056&rft.eissn=1471-0064&rft.volume=24&rft.issue=8&rft.spage=550&rft.epage=572&rft_id=info:doi/10.1038%2Fs41576-023-00586-w&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-0056&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-0056&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-0056&client=summon