Multipoint-BAX: a new approach for efficiently tuning particle accelerator emittance via virtual objectives

Although beam emittance is critical for the performance of high-brightness accelerators, optimization is often time limited as emittance calculations, commonly done via quadrupole scans, are typically slow. Such calculations are a type of multipoint query , i.e. each query requires multiple secondar...

Full description

Saved in:
Bibliographic Details
Published in:Machine learning: science and technology Vol. 5; no. 1; pp. 15004 - 15019
Main Authors: Ayoub Miskovich, Sara, Neiswanger, Willie, Colocho, William, Emma, Claudio, Garrahan, Jacqueline, Maxwell, Timothy, Mayes, Christopher, Ermon, Stefano, Edelen, Auralee, Ratner, Daniel
Format: Journal Article
Language:English
Published: Bristol IOP Publishing 01.03.2024
Subjects:
ISSN:2632-2153, 2632-2153
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Although beam emittance is critical for the performance of high-brightness accelerators, optimization is often time limited as emittance calculations, commonly done via quadrupole scans, are typically slow. Such calculations are a type of multipoint query , i.e. each query requires multiple secondary measurements. Traditional black-box optimizers such as Bayesian optimization are slow and inefficient when dealing with such objectives as they must acquire the full series of measurements, but return only the emittance, with each query. We propose a new information-theoretic algorithm, Multipoint-BAX , for black-box optimization on multipoint queries, which queries and models individual beam-size measurements using techniques from Bayesian Algorithm Execution (BAX). Our method avoids the slow multipoint query on the accelerator by acquiring points through a virtual objective , i.e. calculating the emittance objective from a fast learned model rather than directly from the accelerator. We use Multipoint-BAX to minimize emittance at the Linac Coherent Light Source (LCLS) and the Facility for Advanced Accelerator Experimental Tests II (FACET-II). In simulation, our method is 20× faster and more robust to noise compared to existing methods. In live tests, it matched the hand-tuned emittance at FACET-II and achieved a 24% lower emittance than hand-tuning at LCLS. Our method represents a conceptual shift for optimizing multipoint queries, and we anticipate that it can be readily adapted to similar problems in particle accelerators and other scientific instruments.
AbstractList Although beam emittance is critical for the performance of high-brightness accelerators, optimization is often time limited as emittance calculations, commonly done via quadrupole scans, are typically slow. Such calculations are a type of multipoint query, i.e. each query requires multiple secondary measurements. Traditional black-box optimizers such as Bayesian optimization are slow and inefficient when dealing with such objectives as they must acquire the full series of measurements, but return only the emittance, with each query. We propose a new information-theoretic algorithm, Multipoint-BAX, for black-box optimization on multipoint queries, which queries and models individual beam-size measurements using techniques from Bayesian Algorithm Execution (BAX). Our method avoids the slow multipoint query on the accelerator by acquiring points through a virtual objective, i.e. calculating the emittance objective from a fast learned model rather than directly from the accelerator. We use Multipoint-BAX to minimize emittance at the Linac Coherent Light Source (LCLS) and the Facility for Advanced Accelerator Experimental Tests II (FACET-II). In simulation, our method is 20× faster and more robust to noise compared to existing methods. In live tests, it matched the hand-tuned emittance at FACET-II and achieved a 24% lower emittance than hand-tuning at LCLS. Our method represents a conceptual shift for optimizing multipoint queries, and we anticipate that it can be readily adapted to similar problems in particle accelerators and other scientific instruments.
Although beam emittance is critical for the performance of high-brightness accelerators, optimization is often time limited as emittance calculations, commonly done via quadrupole scans, are typically slow. Such calculations are a type of multipoint query , i.e. each query requires multiple secondary measurements. Traditional black-box optimizers such as Bayesian optimization are slow and inefficient when dealing with such objectives as they must acquire the full series of measurements, but return only the emittance, with each query. We propose a new information-theoretic algorithm, Multipoint-BAX , for black-box optimization on multipoint queries, which queries and models individual beam-size measurements using techniques from Bayesian Algorithm Execution (BAX). Our method avoids the slow multipoint query on the accelerator by acquiring points through a virtual objective , i.e. calculating the emittance objective from a fast learned model rather than directly from the accelerator. We use Multipoint-BAX to minimize emittance at the Linac Coherent Light Source (LCLS) and the Facility for Advanced Accelerator Experimental Tests II (FACET-II). In simulation, our method is 20× faster and more robust to noise compared to existing methods. In live tests, it matched the hand-tuned emittance at FACET-II and achieved a 24% lower emittance than hand-tuning at LCLS. Our method represents a conceptual shift for optimizing multipoint queries, and we anticipate that it can be readily adapted to similar problems in particle accelerators and other scientific instruments.
Author Mayes, Christopher
Neiswanger, Willie
Emma, Claudio
Ermon, Stefano
Colocho, William
Garrahan, Jacqueline
Maxwell, Timothy
Edelen, Auralee
Ayoub Miskovich, Sara
Ratner, Daniel
Author_xml – sequence: 1
  givenname: Sara
  orcidid: 0000-0002-3302-838X
  surname: Ayoub Miskovich
  fullname: Ayoub Miskovich, Sara
  organization: SLAC National Accelerator Laboratory , Menlo Park, CA, United States of America
– sequence: 2
  givenname: Willie
  orcidid: 0000-0002-9619-5572
  surname: Neiswanger
  fullname: Neiswanger, Willie
  organization: Department of Computer Science, Stanford University , Stanford, CA, United States of America
– sequence: 3
  givenname: William
  surname: Colocho
  fullname: Colocho, William
  organization: SLAC National Accelerator Laboratory , Menlo Park, CA, United States of America
– sequence: 4
  givenname: Claudio
  surname: Emma
  fullname: Emma, Claudio
  organization: SLAC National Accelerator Laboratory , Menlo Park, CA, United States of America
– sequence: 5
  givenname: Jacqueline
  surname: Garrahan
  fullname: Garrahan, Jacqueline
  organization: SLAC National Accelerator Laboratory , Menlo Park, CA, United States of America
– sequence: 6
  givenname: Timothy
  surname: Maxwell
  fullname: Maxwell, Timothy
  organization: SLAC National Accelerator Laboratory , Menlo Park, CA, United States of America
– sequence: 7
  givenname: Christopher
  surname: Mayes
  fullname: Mayes, Christopher
  organization: SLAC National Accelerator Laboratory , Menlo Park, CA, United States of America
– sequence: 8
  givenname: Stefano
  surname: Ermon
  fullname: Ermon, Stefano
  organization: Department of Computer Science, Stanford University , Stanford, CA, United States of America
– sequence: 9
  givenname: Auralee
  surname: Edelen
  fullname: Edelen, Auralee
  organization: SLAC National Accelerator Laboratory , Menlo Park, CA, United States of America
– sequence: 10
  givenname: Daniel
  surname: Ratner
  fullname: Ratner, Daniel
  organization: SLAC National Accelerator Laboratory , Menlo Park, CA, United States of America
BackLink https://www.osti.gov/biblio/2280736$$D View this record in Osti.gov
BookMark eNp9kUtv1TAQhSNUJErpnqUFCzaE-pnE7NqKR6UiNiCxsybOuPUl1w6OU9R_j0OqghDqwrI1-s7MGZ-n1UGIAavqOaNvGO26E94IXnOmxAkMrNHuUXV4Xzr46_2kOp7nHaWUKyYUp4fV90_LmP0Ufcj12em3twRIwJ8EpilFsNfExUTQOW89hjzekrwEH67IBCl7OyIBa3HEBHnl9j5nCBbJjYdyUl5gJLHfoc3-Budn1WMH44zHd_dR9fX9uy_nH-vLzx8uzk8vaytblWtEraxlmrdMDIo5bTlVutdONooLJhhzg0Ite9Ur1bStkgMo3gIWSEraiKPqYus7RNiZKfk9pFsTwZvfhZiuzJ19wxrbdaJ1Q-NQCtFpZDAoq1UnezFIKL1ebL3inL2Zrc9or20MoexkOO9oK9aBLzeofNqPBedsdnFJoexouC6GRSubtlB0o2yK85zQ3Vtj1KwxmjUns-ZkthiLpPlHUgxA9jHkBH58SPh6E_o4_THzAP7qP_h-LJsowwxlilJppsGJX5Gwve8
CODEN MLSTCK
CitedBy_id crossref_primary_10_1038_s41524_024_01326_2
crossref_primary_10_1088_2632_2153_ad2e18
crossref_primary_10_1103_PhysRevAccelBeams_27_084801
Cites_doi 10.1103/PhysRevSTAB.10.034801
10.2514/1.J052940
10.1038/s41467-021-25757-3
10.1093/bioinformatics/btx638
10.1103/PhysRevSTAB.18.084001
10.1103/PhysRevSTAB.4.053501
10.1103/PhysRevMaterials.2.013803
10.1103/PhysRevAccelBeams.23.114201
10.1103/PhysRevLett.124.124801
10.1038/s41467-020-20245-6
10.1109/TCST.2017.2664728
10.1093/comjnl/7.4.308
10.1103/PhysRevSTAB.9.044204
10.1023/A:1008306431147
10.1016/j.nima.2016.10.041
10.1103/PhysRevAccelBeams.22.082802
10.1103/PhysRevAccelBeams.24.062801
10.1109/PLASMA.1991.695803
10.1103/PhysRevAccelBeams.21.104601
10.1038/s41592-019-0686-2
10.1103/PhysRevAccelBeams.22.101301
10.1103/PhysRevSTAB.18.101002
10.2172/395453
10.1016/j.md.2016.04.001
10.2172/2283895
10.1103/PhysRevSTAB.9.031001
10.1103/PhysRevSTAB.11.030703
10.1103/PhysRevAccelBeams.22.054601
10.1109/PAC.1995.504603
10.1103/PhysRevSTAB.16.102803
10.1038/nphoton.2010.176
10.1021/acs.accounts.0c00713
10.1103/PhysRevAccelBeams.25.044601
10.1103/PhysRevAccelBeams.24.072802
ContentType Journal Article
Copyright 2024 The Author(s). Published by IOP Publishing Ltd
2024 The Author(s). Published by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Author(s). Published by IOP Publishing Ltd
– notice: 2024 The Author(s). Published by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)
CorporateAuthor_xml – name: SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)
DBID O3W
TSCCA
AAYXX
CITATION
3V.
7XB
88I
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
M2P
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
OTOTI
DOA
DOI 10.1088/2632-2153/ad169f
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Science Database (ProQuest)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
OSTI.GOV
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2632-2153
ExternalDocumentID oai_doaj_org_article_16c8837fd6fe43389e1ad5c9584b3d4a
2280736
10_1088_2632_2153_ad169f
mlstad169f
GrantInformation_xml – fundername: Basic Energy Sciences
  grantid: DE-AC02-76SF00515
  funderid: http://dx.doi.org/10.13039/100006151
GroupedDBID 88I
ABHWH
ABUWG
ACHIP
AFKRA
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
CJUJL
DWQXO
EBS
GNUQQ
GROUPED_DOAJ
HCIFZ
IOP
K7-
M2P
M~E
N5L
O3W
OK1
PIMPY
TSCCA
AAYXX
AEINN
AFFHD
CITATION
PHGZM
PHGZT
PQGLB
3V.
7XB
8FE
8FG
8FK
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
OTOTI
ID FETCH-LOGICAL-c475t-ee95cc192713d51f9c2059b9f465231311fd5e94b5b5567754da527ae59b44063
IEDL.DBID O3W
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001140109500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2632-2153
IngestDate Fri Oct 03 12:52:38 EDT 2025
Mon Feb 10 03:53:27 EST 2025
Fri Jul 25 04:52:08 EDT 2025
Sat Nov 29 02:22:48 EST 2025
Tue Nov 18 22:02:54 EST 2025
Tue Aug 20 22:16:43 EDT 2024
Sun Aug 18 15:20:26 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c475t-ee95cc192713d51f9c2059b9f465231311fd5e94b5b5567754da527ae59b44063
Notes MLST-101447.R1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE
USDOE Office of Science (SC), Basic Energy Sciences (BES)
AC02-76SF00515
ORCID 0000-0002-3302-838X
0000-0002-9619-5572
0000000296195572
000000023302838X
OpenAccessLink https://iopscience.iop.org/article/10.1088/2632-2153/ad169f
PQID 2913137467
PQPubID 4916454
PageCount 16
ParticipantIDs osti_scitechconnect_2280736
doaj_primary_oai_doaj_org_article_16c8837fd6fe43389e1ad5c9584b3d4a
crossref_citationtrail_10_1088_2632_2153_ad169f
crossref_primary_10_1088_2632_2153_ad169f
iop_journals_10_1088_2632_2153_ad169f
proquest_journals_2913137467
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
– name: United States
PublicationTitle Machine learning: science and technology
PublicationTitleAbbrev MLST
PublicationTitleAlternate Mach. Learn.: Sci. Technol
PublicationYear 2024
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Neiswanger (mlstad169fbib32) 2021
Wang (mlstad169fbib35) 1991; 307
Akre (mlstad169fbib39) 2008; 11
Miskovich (mlstad169fbib40) 2022
Močkus (mlstad169fbib13) 1975
Xie (mlstad169fbib56) 1996; 950501
Hennig (mlstad169fbib43) 2012; 13
Livermore SLAC, LLNL (mlstad169fbib54) 2010
Schoenlein (mlstad169fbib27) 2016
Ody (mlstad169fbib31) 2017; 865
Strehl (mlstad169fbib38) 2006
SciPy 1.0 Contributors (mlstad169fbib63) 2020; 17
Adi Hanuka (mlstad169fbib50) 2021; 24
Newville (mlstad169fbib53) 2019
Ueno (mlstad169fbib11) 2016; 4
Yamashita (mlstad169fbib19) 2018; 2
Bergan (mlstad169fbib7) 2019; 22
Lauber (mlstad169fbib23) 2020; 23
Qiang (mlstad169fbib61) 2006; 9
Kushner (mlstad169fbib12) 1963
Shalloo (mlstad169fbib17) 2020; 11
Loehl (mlstad169fbib55) 2005
Belakaria (mlstad169fbib46) 2019
Brochu (mlstad169fbib2) 2010
Kirschner (mlstad169fbib15) 2019
Xu (mlstad169fbib52) 2022
Huang (mlstad169fbib26) 2007; 10
Kandasamy (mlstad169fbib42) 2020; 21
Nelder (mlstad169fbib33) 1965; 7
Belakaria (mlstad169fbib48) 2020; vol 34
Scheinker (mlstad169fbib5) 2013; 16
Char (mlstad169fbib10) 2019
Emma (mlstad169fbib25) 2010; 4
Terayama (mlstad169fbib22) 2017; 34
Scheinker (mlstad169fbib8) 2019; 22
Ratner (mlstad169fbib57) 2010; vol 7
Duris (mlstad169fbib16) 2020; 124
Moosbauer (mlstad169fbib58) 2022
Yakimenko (mlstad169fbib34) 2019; 22
Mehta (mlstad169fbib59) 2021
Nogueira (mlstad169fbib62) 2014
Piot (mlstad169fbib30) 2006; 9
Liem (mlstad169fbib21) 2015; 53
Tomin (mlstad169fbib49) 2016
Wang (mlstad169fbib45) 2017
Roussel (mlstad169fbib18) 2021; 24
Benedikt (mlstad169fbib29) 2015; 18
Gardner (mlstad169fbib41) 2018
Jones (mlstad169fbib1) 1998; 13
Zhang (mlstad169fbib37) 1996
Huang (mlstad169fbib4) 2018; 21
Miguel Hernández-Lobato (mlstad169fbib44) 2014
Kandasamy (mlstad169fbib47) 2017
Brinkmann (mlstad169fbib28) 2001; 4
Thangaraj (mlstad169fbib36) 2012; 1507
Kandasamy (mlstad169fbib60) 2019
Miskovich (mlstad169fbib20) 2022; 25
Huang (mlstad169fbib3) 2015; 18
Roussel (mlstad169fbib51) 2021; 12
Terayama (mlstad169fbib9) 2021; 54
Minty (mlstad169fbib24) 2003; vol 01
Scheinker (mlstad169fbib6) 2018; 26
McIntire (mlstad169fbib14) 2016
References_xml – start-page: vol 32
  year: 2019
  ident: mlstad169fbib46
  article-title: Max-value entropy search for multi-objective Bayesian optimization
– volume: 10
  year: 2007
  ident: mlstad169fbib26
  article-title: Review of x-ray free-electron laser theory
  publication-title: Phys. Rev. ST Accel. Beams
  doi: 10.1103/PhysRevSTAB.10.034801
– start-page: vol 32
  year: 2019
  ident: mlstad169fbib10
  article-title: Offline contextual Bayesian optimization
– volume: 53
  start-page: 104
  year: 2015
  ident: mlstad169fbib21
  article-title: Multimission aircraft fuel-burn minimization via multipoint aerostructural optimization
  publication-title: AIAA J.
  doi: 10.2514/1.J052940
– volume: 12
  start-page: 5612
  year: 2021
  ident: mlstad169fbib51
  article-title: Turn-key constrained parameter space exploration for particle accelerators using Bayesian active learning
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-25757-3
– year: 2022
  ident: mlstad169fbib52
  article-title: Neural network prior mean for particle accelerator injector tuning
– start-page: p WEOW055
  year: 2016
  ident: mlstad169fbib14
  article-title: Bayesian optimization of FEL performance at LCLS
– volume: 34
  start-page: 770
  year: 2017
  ident: mlstad169fbib22
  article-title: Machine learning accelerates MD-based binding pose prediction between ligands and proteins
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx638
– volume: 18
  year: 2015
  ident: mlstad169fbib3
  article-title: Online optimization of storage ring nonlinear beam dynamics
  publication-title: Phys. Rev. ST Accel. Beams
  doi: 10.1103/PhysRevSTAB.18.084001
– start-page: pp 400
  year: 1975
  ident: mlstad169fbib13
  article-title: On Bayesian methods for seeking the extremum
– volume: vol 01
  year: 2003
  ident: mlstad169fbib24
– volume: 4
  year: 2001
  ident: mlstad169fbib28
  article-title: A low emittance, flat-beam electron source for linear colliders
  publication-title: Phys. Rev. ST Accel. Beams
  doi: 10.1103/PhysRevSTAB.4.053501
– volume: 2
  year: 2018
  ident: mlstad169fbib19
  article-title: Crystal structure prediction accelerated by Bayesian optimization
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/PhysRevMaterials.2.013803
– volume: 1507
  start-page: 757
  year: 2012
  ident: mlstad169fbib36
  article-title: A high-resolution multi-slit phase space measurement technique for low-emittance beams
– volume: 23
  year: 2020
  ident: mlstad169fbib23
  article-title: Longitudinal phase space reconstruction for a heavy ion accelerator
  publication-title: Phys. Rev. Accel. Beams
  doi: 10.1103/PhysRevAccelBeams.23.114201
– start-page: pp 3627
  year: 2017
  ident: mlstad169fbib45
  article-title: Max-value entropy search for efficient Bayesian optimization
– volume: 124
  year: 2020
  ident: mlstad169fbib16
  article-title: Bayesian optimization of a free-electron laser
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.124.124801
– volume: 13
  start-page: 1809
  year: 2012
  ident: mlstad169fbib43
  article-title: Entropy search for information-efficient global optimization
  publication-title: J. Mach. Learn. Res.
– volume: 11
  start-page: 6355
  year: 2020
  ident: mlstad169fbib17
  article-title: Automation and control of laser wakefield accelerators using Bayesian optimization
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20245-6
– volume: 26
  start-page: 336
  year: 2018
  ident: mlstad169fbib6
  article-title: Minimization of betatron oscillations of electron beam injected into a time-varying lattice via extremum seeking
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2017.2664728
– volume: 7
  start-page: 308
  year: 1965
  ident: mlstad169fbib33
  article-title: A Simplex method for function minimization
  publication-title: Comput. J.
  doi: 10.1093/comjnl/7.4.308
– start-page: vol 27
  year: 2014
  ident: mlstad169fbib44
  article-title: Predictive entropy search for efficient global optimization of black-box functions
– volume: 9
  year: 2006
  ident: mlstad169fbib61
  article-title: Three-dimensional quasistatic model for high brightness beam dynamics simulation
  publication-title: Phys. Rev. ST Accel. Beams
  doi: 10.1103/PhysRevSTAB.9.044204
– year: 2010
  ident: mlstad169fbib2
  article-title: A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning
– volume: 13
  start-page: 455
  year: 1998
  ident: mlstad169fbib1
  article-title: Efficient global optimization of expensive black-box functions
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1008306431147
– year: 2014
  ident: mlstad169fbib62
  article-title: Bayesian optimization: open source constrained global optimization tool for Python (version 1.1)
– volume: 865
  start-page: 75
  year: 2017
  ident: mlstad169fbib31
  article-title: Flat electron beam sources for DLA accelerators
  publication-title: Nucl. Instrum. Methods Phys. Res. A
  doi: 10.1016/j.nima.2016.10.041
– volume: 22
  year: 2019
  ident: mlstad169fbib8
  article-title: Model-independent tuning for maximizing free electron laser pulse energy
  publication-title: Phys. Rev. Accel. Beams
  doi: 10.1103/PhysRevAccelBeams.22.082802
– volume: 24
  year: 2021
  ident: mlstad169fbib18
  article-title: Multiobjective Bayesian optimization for online accelerator tuning
  publication-title: Phys. Rev. Accel. Beams
  doi: 10.1103/PhysRevAccelBeams.24.062801
– volume: 307
  start-page: 190
  year: 1991
  ident: mlstad169fbib35
  article-title: Beam emittance measurement by the pepper-pot method
  publication-title: Nucl. Instrum. Methods Phys. Res. A
  doi: 10.1109/PLASMA.1991.695803
– start-page: pp 69
  year: 1963
  ident: mlstad169fbib12
  article-title: A new method of locating the maximum point of an arbitrary multipeak curve in the presence of noise
– volume: 21
  year: 2018
  ident: mlstad169fbib4
  article-title: Robust simplex algorithm for online optimization
  publication-title: Phys. Rev. Accel. Beams
  doi: 10.1103/PhysRevAccelBeams.21.104601
– year: 2019
  ident: mlstad169fbib15
  article-title: Adaptive and safe Bayesian optimization in high dimensions via one-dimensional subspaces
– volume: 17
  start-page: 261
  year: 2020
  ident: mlstad169fbib63
  article-title: SciPy 1.0: fundamental algorithms for scientific computing in python, (version 1.7.3)
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0686-2
– volume: 22
  year: 2019
  ident: mlstad169fbib34
  article-title: Facet-ii facility for advanced accelerator experimental tests
  publication-title: Phys. Rev. Accel. Beams
  doi: 10.1103/PhysRevAccelBeams.22.101301
– year: 2021
  ident: mlstad169fbib59
  article-title: An experimental design perspective on model-based reinforcement learning
– volume: vol 7
  year: 2010
  ident: mlstad169fbib57
  article-title: FEL gain length and taper measurements at LCLS
– volume: 18
  year: 2015
  ident: mlstad169fbib29
  article-title: Optimizing integrated luminosity of future hadron colliders
  publication-title: Phys. Rev. ST Accel. Beams
  doi: 10.1103/PhysRevSTAB.18.101002
– year: 1996
  ident: mlstad169fbib37
  article-title: Emittance formula for slits and pepper-pot measurement
  doi: 10.2172/395453
– volume: 4
  start-page: 18
  year: 2016
  ident: mlstad169fbib11
  article-title: Combo: an efficient Bayesian optimization library for materials science
  publication-title: Mater. Discovery
  doi: 10.1016/j.md.2016.04.001
– start-page: p WEOY036
  year: 2016
  ident: mlstad169fbib49
  article-title: Progress in automatic software-based optimization of accelerator performance
– year: 2021
  ident: mlstad169fbib32
  article-title: Bayesian algorithm execution: estimating computable properties of black-box functions using mutual information
– volume: vol 34
  start-page: pp 10035
  year: 2020
  ident: mlstad169fbib48
  article-title: Multi-fidelity multi-objective bayesian optimization: An output space entropy search approach
– year: 2022
  ident: mlstad169fbib40
  article-title: PyEmittance: a general python package for particle beam emittance measurements with adaptive quadrupole scans
  doi: 10.2172/2283895
– volume: 9
  year: 2006
  ident: mlstad169fbib30
  article-title: Photoinjector generation of a flat electron beam with transverse emittance ratio of 100
  publication-title: Phys. Rev. ST Accel. Beams
  doi: 10.1103/PhysRevSTAB.9.031001
– year: 2022
  ident: mlstad169fbib58
  article-title: Enhancing explainability of hyperparameter optimization via Bayesian algorithm execution
– start-page: pp 3222
  year: 2019
  ident: mlstad169fbib60
  article-title: Myopic posterior sampling for adaptive goal oriented design of experiments
– start-page: vol 31
  year: 2018
  ident: mlstad169fbib41
  article-title: GPyTorch: blackbox matrix-matrix Gaussian process inference with GPU acceleration
– volume: 11
  year: 2008
  ident: mlstad169fbib39
  article-title: Commissioning the linac coherent light source injector
  publication-title: Phys. Rev. ST Accel. Beams
  doi: 10.1103/PhysRevSTAB.11.030703
– start-page: 6
  year: 2010
  ident: mlstad169fbib54
  article-title: Operational performance of LCLS beam instrumentation
– volume: 22
  year: 2019
  ident: mlstad169fbib7
  article-title: Online storage ring optimization using dimension-reduction and genetic algorithms
  publication-title: Phys. Rev. Accel. Beams
  doi: 10.1103/PhysRevAccelBeams.22.054601
– year: 2005
  ident: mlstad169fbib55
  article-title: Measurements of the transverse emittance at the VUV-FEL
– volume: 950501
  start-page: 183
  year: 1996
  ident: mlstad169fbib56
  article-title: Design optimization for an x-ray free electron laser driven by SLAC LINAC
  publication-title: Conf. Proc. C
  doi: 10.1109/PAC.1995.504603
– volume: 16
  year: 2013
  ident: mlstad169fbib5
  article-title: Model-independent particle accelerator tuning
  publication-title: Phys. Rev. ST Accel. Beams
  doi: 10.1103/PhysRevSTAB.16.102803
– start-page: pp 213
  year: 2006
  ident: mlstad169fbib38
– volume: 4
  start-page: 641
  year: 2010
  ident: mlstad169fbib25
  article-title: First lasing and operation of an ångstrom-wavelength free-electron laser
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2010.176
– start-page: pp 1799
  year: 2017
  ident: mlstad169fbib47
  article-title: Multi-fidelity Bayesian optimisation with continuous approximations
– volume: 54
  start-page: 1334
  year: 2021
  ident: mlstad169fbib9
  article-title: Black-box optimization for automated discovery
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.0c00713
– start-page: 1
  year: 2016
  ident: mlstad169fbib27
  article-title: LCLS-ii high energy (LCLS-ii-HE): a transformative x-ray laser for science
– year: 2019
  ident: mlstad169fbib53
  article-title: pyepics/pyepics (3.4.0)
– volume: 25
  year: 2022
  ident: mlstad169fbib20
  article-title: Online Bayesian optimization for a recoil mass separator
  publication-title: Phys. Rev. Accel. Beams
  doi: 10.1103/PhysRevAccelBeams.25.044601
– volume: 24
  year: 2021
  ident: mlstad169fbib50
  article-title: Physics model-informed Gaussian process for online optimization of particle accelerators
  publication-title: Phys. Rev. Accel. Beams
  doi: 10.1103/PhysRevAccelBeams.24.072802
– volume: 21
  start-page: 3098
  year: 2020
  ident: mlstad169fbib42
  article-title: Tuning hyperparameters without grad students: scalable and robust Bayesian optimisation with dragonfly
  publication-title: J. Mach. Learn. Res.
SSID ssj0002513520
Score 2.289045
Snippet Although beam emittance is critical for the performance of high-brightness accelerators, optimization is often time limited as emittance calculations, commonly...
SourceID doaj
osti
proquest
crossref
iop
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 15004
SubjectTerms Algorithms
Bayesian algorithm execution
Bayesian analysis
Bayesian optimization
Black boxes
Coherent light
Emittance
Information theory
Light sources
Linear accelerators
multipoint optimization
online optimization
Optimization
particle accelerator
PARTICLE ACCELERATORS
Quadrupoles
Queries
Tuning
x-ray free electron laser
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxYELb8S2BfkABw7WJvEjNrcWUXFAFQdAe7PisS0Ftpto163Ev2fsZEsrpHLhsIddzebhmfH3Tex8Q8gbAF1hjRZZUKJlQgvJjAbHvJJQc6mEK_1Tvn9uz8_1amW-3Gj1lfeETfLA08AtawUai6joVQwC6ykT6s5LMAicjntRqFHVmhvFVJ6DEbWRWVTzuiRm0jLrkjPEN77sfK1MvIVDRa4f0aUfRvwyYHL9NTUXvDl7TB7ORJGeTBf4hNwLm6fk0b4JA51z8hn5WV6hHYd-k9jpyeo97SgyZbrXCqdISmkoOhEIL-tfNF3mJyF0nO-cdgCIPGWxnYaLPqUcBvSq7_CzzS-X0MH9mGbF3XPy7ezj1w-f2NxBgYFoZWIhGAmAJA5LUS_raKBBOuVMFAoL0Ky0E70MRjjppFRZDM93smm7gEYCoZ6_IAebYRNeEiq4Djp0sQH0Q6sqVzswldcxQGwbzhdkuR9PC7O8eO5ysbZlmVtrmz1gswfs5IEFeXf9j3GS1rjD9jS76Noui2KXHzBU7Dxg9l-hsiBv0cF2TtLdHSejt-wu1rtkpa1tfjpUCTt6NDnKUWKRpmStXcibkiDZoi3E1YIc74Pnz1Eag-PNc3eXw_9xM0fkQYP8atoOd0wO0vYyvCL34Sr1u-3rkg2_AR4DDEg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Publicly Available Content Database
  dbid: PIMPY
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZgy4EL5SmWFuQDHDhY2cR2EnNBLaICCao9AFpOVjJ2UGC7CZu0Ev-emcTZqkLaE4cckkziKDOe-caPbxh7CZAvMEerhE9VJlSutDA5lMKlGmKpU1UO9VO-fcrOz_PVyizD9uguLKucfOLgqEe2Z1q3jU44cg3QiHmUmFjGkkplvG1_C6ohRXOtoaDGbXZAxFvJjB0sP35eft-NuWAsR7yxCLOV2L8iYisXGPVkVLg4NdWN6DSQ-GPMqZsWTxrscv847CEKnR3-3--_z-4FNMpPRvN5wG75zUN2OFV64KHjP2K_hn26bVNvenF6snrDC45wnE-E5ByRL_cDGQU2v_7D-0sabuFtsEteAGB4G2b0ub-o-55sjV_VBR5b2sHCm_Ln6Hq7x-zr2fsv7z6IUKZBgMp0L7w3GgCRIua7TseVgQQxW2kqlWKWS3Q-ldPeqFKXWqfEuOcKnWSFRyGFeEI-YbNNs_FPGVcy97kvqgQqr7J0UcYlmIXLKw9Vlkg5Z9GkHguBw5xKaaztMJee55YUakmhdlTonL3ePdGO_B17ZE9J4zs5Yt4eLjTbHzb8MBunkGNSX7kUPxHze-PjwmkwCORK6VQxZ6_QXmzwBN2exvgNuYt111ttY0tDUAtlW4ciR2R0FrEQEfoCrXyC3g4ERjKds-PJ0K7fcm1Xz_bfPmJ3E4Rn42q6Yzbrt5f-ObsDV33dbV-EjvMXLOcnCw
  priority: 102
  providerName: ProQuest
Title Multipoint-BAX: a new approach for efficiently tuning particle accelerator emittance via virtual objectives
URI https://iopscience.iop.org/article/10.1088/2632-2153/ad169f
https://www.proquest.com/docview/2913137467
https://www.osti.gov/biblio/2280736
https://doaj.org/article/16c8837fd6fe43389e1ad5c9584b3d4a
Volume 5
WOSCitedRecordID wos001140109500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2632-2153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513520
  issn: 2632-2153
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIOP
  databaseName: Institute of Physics Open Access Journal Titles
  customDbUrl:
  eissn: 2632-2153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513520
  issn: 2632-2153
  databaseCode: O3W
  dateStart: 20200301
  isFulltext: true
  titleUrlDefault: http://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2632-2153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513520
  issn: 2632-2153
  databaseCode: M~E
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2632-2153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513520
  issn: 2632-2153
  databaseCode: K7-
  dateStart: 20200301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2632-2153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513520
  issn: 2632-2153
  databaseCode: BENPR
  dateStart: 20200301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2632-2153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513520
  issn: 2632-2153
  databaseCode: PIMPY
  dateStart: 20200301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2632-2153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513520
  issn: 2632-2153
  databaseCode: M2P
  dateStart: 20200301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKy4FLy1Pdtqx8gAMHs0lsJzacumgrEHSJEI_lZCV-SAvbTbSbVuLCb2fseBdVoAqJQ6wkmsTW-DHf-PENQk-0Fgn4aI7YnBWECcaJFLomJuc6pTxndYif8vldMZ2K2UyWO-jl9ixM08ah_znc9kTBvQrjhjgx8gzjBCwVHVUmzaW7hfao4Nx7Xu_pl-0ECxhuABdJXJr824fXTFFg7AcDA7nCQwP964_ROZics4P_KuxdtB-RJj7tRe-hHbu8jw42URxw7NQP0PdwBrdt5suOjE9nL3CFAWrjDdk4BlSLbSCaAPu0-IG7Sz-VgttYBlxpDaYrrNZjezHvOt-O8NW8gmvlT6fgpv7WD6vrh-jT2eTjq9ckhmAgmhW8I9ZKrjWgQPBlDU-d1BngsVo6loMH66l6nOFWsprXnOeeTc9UPCsqC0IMsAJ9hHaXzdIeIsyosMJWLtPOsiJP6rTWMjHCWe2KjNIBGm1qQ-nIT-7DZCxUWCcXQnldKq9L1etygJ5tv2h7bo4bZMe-grdynlU7vIBKU1FhKs21AIfdmRyKCL67tGlluJYA0mpqWDVAT6GeVezl6xsyw9fkLhbrTnGVKj-9lDDVGhA59m1MQfvxZL3a72rSnQrkRDQfoJNN0_v9l0yCvqkPD3P0j-U4RncywGD9lrkTtNutLu1jdFtfdfP1aoj2xpNp-WEYpiEgfVsQSM-z0qc_J8PQnUCqfHNefv0FML8bnA
linkProvider IOP Publishing
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEF2VggQXyldFaIE90AOHVWLvh9dIqGqBqlVCxKGg3BZ7d40CaWwSt6h_it_YmbWdqkLKrQcOPsQZ24n9ZufNevYNIW-s1QPI0QrmlUiY0EKyVNucOSVtxKUSeeif8m2UjMd6Mkm_bJC_3VoYLKvsxsQwULvS4hx5P04jHnFsjrFf_WbYNQrfrnYtNBpYDP3lH0jZlu9PPsLz3Yvjo0-nH45Z21WAWZHImnmfSmuB2EB65mRUpDYGipGnhVCQlKH6TOGkT0UucykVCsS5TMZJ5sFIQPjjcN475K7gWmEJ2TBhqzkd4ArAZwbt21Dw3z6qoTOIqryfuUilxY3oF5oEQEyblhV8KMGl_wkIIcodbf1v9-cRedjyaXrQOMBjsuHnT8hW16uCtkPXU_IrrDSuyum8ZocHk3c0o5BQ0E5SnQJ3pz7IaUAUnl3S-hwnjGjVehbNrIUAHWoSqD-b1jV6C72YZrAtcA0OLfOfTfBYPiNfb-Uvb5PNeTn3zwkFWHjtsyK2hReJGuRRbtOB04W3RRJz3iP9DgDGtirs2AxkZkI1gNYGIWMQMqaBTI-8XR1RNQoka2wPEVMrO9QODzvKxQ_T3jATKas1Twqn4CdyIKw-ypy0KVDRnDuR9cgeINK0Y9lyzcXoDbuz2bI20kQGJ9EGwlQOTHYQ1gbYHEoSW6zdsrUJEkxc9chuB-Xrs1zj-MX6r1-T-8enn0dmdDIe7pAHMZDNpjZwl2zWi3P_ktyzF_V0uXgVnJSS77eN-iuvI3Pn
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagIMSF8qoILeADHDiETeJHbG4tsAJRLT3w2JuVjG1pYbsb7aaV-u87dryLKlCFxCFSYo1ja2bsmfHjG0JeAqgCYzSfO8nrnCsucq2gza0UUDIheRvzp3w_ricTNZ3qk5TnNN6FWXZp6n-DrwNQ8MDCdCBOjQLCeI6Wio0aW0rtR531N8mtgFMSwPO_sB_bRRY03lhapO3Jv1W-Yo4iaj8aGWwZP5Y4xv6YoaPZGe_-d4fvk3vJ46SHA_kDcsMtHpLdTTYHmgb3I_Ir3sXtlrNFnx8dTt_ShqLLTTeg4xS9W-oi4ATaqfkF7c_CkgrtUj9oA4AmLO7aU3c66_ugT_R81uCzCrdU6LL9OUyv68fk2_jD13cf85SKIQdeiz53TgsA9AYxprWi9Boq9Mta7bnESDZA9ngrnOataIWQAVXPNqKqG4dEHH0Gtkd2FsuFe0IoZ8op1_gKvOO1LNqyBV1Y5R34umIsI6ONRAwknPKQLmNu4n65Uibw0wR-moGfGXm9rdENGB3X0B4FIW_pArp2LEDBmcQwU0pQGLh7K7GLGMNrVzZWgEZnrWWWNxl5hbI2abSvr2mMXqE7na97I0xpwjJTwQ3qQUb2g54Z1KEA2gvhdBP0JoIUMZmRg436_f5LpZHfLKSJefqP_XhB7py8H5vjT5PP--RuhW7ZcIrugOz0qzP3jNyG8362Xj2Po-cSX7MZyQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multipoint-BAX%3A+a+new+approach+for+efficiently+tuning+particle+accelerator+emittance+via+virtual+objectives&rft.jtitle=Machine+learning%3A+science+and+technology&rft.au=Ayoub+Miskovich%2C+Sara&rft.au=Neiswanger%2C+Willie&rft.au=Colocho%2C+William&rft.au=Emma%2C+Claudio&rft.date=2024-03-01&rft.pub=IOP+Publishing&rft.eissn=2632-2153&rft.volume=5&rft.issue=1&rft_id=info:doi/10.1088%2F2632-2153%2Fad169f&rft.externalDocID=mlstad169f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2632-2153&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2632-2153&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2632-2153&client=summon