Structural basis for the assembly of the mitotic motor Kinesin-5 into bipolar tetramers

Chromosome segregation during mitosis depends upon Kinesin-5 motors, which display a conserved, bipolar homotetrameric organization consisting of two motor dimers at opposite ends of a central rod. Kinesin-5 motors crosslink adjacent microtubules to drive or constrain their sliding apart, but the st...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:eLife Ročník 3; s. e02217
Hlavní autori: Scholey, Jessica E, Nithianantham, Stanley, Scholey, Jonathan M, Al-Bassam, Jawdat
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England eLife Sciences Publications Ltd 08.04.2014
eLife Sciences Publications, Ltd
Predmet:
ISSN:2050-084X, 2050-084X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Chromosome segregation during mitosis depends upon Kinesin-5 motors, which display a conserved, bipolar homotetrameric organization consisting of two motor dimers at opposite ends of a central rod. Kinesin-5 motors crosslink adjacent microtubules to drive or constrain their sliding apart, but the structural basis of their organization is unknown. In this study, we report the atomic structure of the bipolar assembly (BASS) domain that directs four Kinesin-5 subunits to form a bipolar minifilament. BASS is a novel 26-nm four-helix bundle, consisting of two anti-parallel coiled-coils at its center, stabilized by alternating hydrophobic and ionic four-helical interfaces, which based on mutagenesis experiments, are critical for tetramerization. Strikingly, N-terminal BASS helices bend as they emerge from the central bundle, swapping partner helices, to form dimeric parallel coiled-coils at both ends, which are offset by 90°. We propose that BASS is a mechanically stable, plectonemically-coiled junction, transmitting forces between Kinesin-5 motor dimers during microtubule sliding. Successful cell division requires copies of the chromosomes containing the genetic material of a cell to be accurately copied and then separated so that when a cell divides, each new daughter cell contains exactly one copy of each chromosome. If this does not happen, the cell may malfunction or die. To separate the duplicated chromosomes, a biological machine called the mitotic spindle forms inside the cell. This has two poles, one at each end, with each pole being responsible for gathering together the chromosomes for delivery to each of the daughter cells. Large numbers of long, thin protein tubes called microtubules extend out of each pole. Some microtubules attach to the chromosomes, whilst others are responsible for pushing apart the two poles—and the chromosomes attached to them—to the opposite sides of the cell before it divides. To move the poles, motor proteins slide pairs of microtubules that are attached to opposite poles over each other. The Kinesin-5 family of motor proteins is particularly important for mitosis, because it is essential for forming the mitotic spindle and for making it work correctly. These motors assemble into motile machines that can apply a force to both of the microtubules in a sliding pair at the same time because they contain motor units at each end connected by a central rod. The structure of this central rod is crucial for the successful operation of Kinesin-5. Scholey, Nithianantham et al. have now worked out the structure of a region of this filament called the bipolar assembly, or BASS domain. This structure is more complicated than expected: it contains four helixes made of protein that are all intertwined with each other. In addition, Scholey, Nithianantham et al. found two ‘molecular pockets’ that small molecules can access. By entering the pockets, the molecules could disrupt the structure of the BASS domain, and consequently prevent Kinesin-5 from forming the dual-ended machines required to work properly. As Kinesin-5 is required to build the mitotic spindle, this would interfere with cell division. Targeting molecules into these pockets could therefore potentially form part of an anti-cancer therapy, preventing the rapid cell divisions behind the spread of the disease.
AbstractList Chromosome segregation during mitosis depends upon Kinesin-5 motors, which display a conserved, bipolar homotetrameric organization consisting of two motor dimers at opposite ends of a central rod. Kinesin-5 motors crosslink adjacent microtubules to drive or constrain their sliding apart, but the structural basis of their organization is unknown. In this study, we report the atomic structure of the bipolar assembly (BASS) domain that directs four Kinesin-5 subunits to form a bipolar minifilament. BASS is a novel 26-nm four-helix bundle, consisting of two anti-parallel coiled-coils at its center, stabilized by alternating hydrophobic and ionic four-helical interfaces, which based on mutagenesis experiments, are critical for tetramerization. Strikingly, N-terminal BASS helices bend as they emerge from the central bundle, swapping partner helices, to form dimeric parallel coiled-coils at both ends, which are offset by 90°. We propose that BASS is a mechanically stable, plectonemically-coiled junction, transmitting forces between Kinesin-5 motor dimers during microtubule sliding. DOI: http://dx.doi.org/10.7554/eLife.02217.001.
Chromosome segregation during mitosis depends upon Kinesin-5 motors, which display a conserved, bipolar homotetrameric organization consisting of two motor dimers at opposite ends of a central rod. Kinesin-5 motors crosslink adjacent microtubules to drive or constrain their sliding apart, but the structural basis of their organization is unknown. In this study, we report the atomic structure of the bipolar assembly (BASS) domain that directs four Kinesin-5 subunits to form a bipolar minifilament. BASS is a novel 26-nm four-helix bundle, consisting of two anti-parallel coiled-coils at its center, stabilized by alternating hydrophobic and ionic four-helical interfaces, which based on mutagenesis experiments, are critical for tetramerization. Strikingly, N-terminal BASS helices bend as they emerge from the central bundle, swapping partner helices, to form dimeric parallel coiled-coils at both ends, which are offset by 90°. We propose that BASS is a mechanically stable, plectonemically-coiled junction, transmitting forces between Kinesin-5 motor dimers during microtubule sliding. DOI: http://dx.doi.org/10.7554/eLife.02217.001.Chromosome segregation during mitosis depends upon Kinesin-5 motors, which display a conserved, bipolar homotetrameric organization consisting of two motor dimers at opposite ends of a central rod. Kinesin-5 motors crosslink adjacent microtubules to drive or constrain their sliding apart, but the structural basis of their organization is unknown. In this study, we report the atomic structure of the bipolar assembly (BASS) domain that directs four Kinesin-5 subunits to form a bipolar minifilament. BASS is a novel 26-nm four-helix bundle, consisting of two anti-parallel coiled-coils at its center, stabilized by alternating hydrophobic and ionic four-helical interfaces, which based on mutagenesis experiments, are critical for tetramerization. Strikingly, N-terminal BASS helices bend as they emerge from the central bundle, swapping partner helices, to form dimeric parallel coiled-coils at both ends, which are offset by 90°. We propose that BASS is a mechanically stable, plectonemically-coiled junction, transmitting forces between Kinesin-5 motor dimers during microtubule sliding. DOI: http://dx.doi.org/10.7554/eLife.02217.001.
Chromosome segregation during mitosis depends upon Kinesin-5 motors, which display a conserved, bipolar homotetrameric organization consisting of two motor dimers at opposite ends of a central rod. Kinesin-5 motors crosslink adjacent microtubules to drive or constrain their sliding apart, but the structural basis of their organization is unknown. In this study, we report the atomic structure of the bipolar assembly (BASS) domain that directs four Kinesin-5 subunits to form a bipolar minifilament. BASS is a novel 26-nm four-helix bundle, consisting of two anti-parallel coiled-coils at its center, stabilized by alternating hydrophobic and ionic four-helical interfaces, which based on mutagenesis experiments, are critical for tetramerization. Strikingly, N-terminal BASS helices bend as they emerge from the central bundle, swapping partner helices, to form dimeric parallel coiled-coils at both ends, which are offset by 90°. We propose that BASS is a mechanically stable, plectonemically-coiled junction, transmitting forces between Kinesin-5 motor dimers during microtubule sliding. Successful cell division requires copies of the chromosomes containing the genetic material of a cell to be accurately copied and then separated so that when a cell divides, each new daughter cell contains exactly one copy of each chromosome. If this does not happen, the cell may malfunction or die. To separate the duplicated chromosomes, a biological machine called the mitotic spindle forms inside the cell. This has two poles, one at each end, with each pole being responsible for gathering together the chromosomes for delivery to each of the daughter cells. Large numbers of long, thin protein tubes called microtubules extend out of each pole. Some microtubules attach to the chromosomes, whilst others are responsible for pushing apart the two poles—and the chromosomes attached to them—to the opposite sides of the cell before it divides. To move the poles, motor proteins slide pairs of microtubules that are attached to opposite poles over each other. The Kinesin-5 family of motor proteins is particularly important for mitosis, because it is essential for forming the mitotic spindle and for making it work correctly. These motors assemble into motile machines that can apply a force to both of the microtubules in a sliding pair at the same time because they contain motor units at each end connected by a central rod. The structure of this central rod is crucial for the successful operation of Kinesin-5. Scholey, Nithianantham et al. have now worked out the structure of a region of this filament called the bipolar assembly, or BASS domain. This structure is more complicated than expected: it contains four helixes made of protein that are all intertwined with each other. In addition, Scholey, Nithianantham et al. found two ‘molecular pockets’ that small molecules can access. By entering the pockets, the molecules could disrupt the structure of the BASS domain, and consequently prevent Kinesin-5 from forming the dual-ended machines required to work properly. As Kinesin-5 is required to build the mitotic spindle, this would interfere with cell division. Targeting molecules into these pockets could therefore potentially form part of an anti-cancer therapy, preventing the rapid cell divisions behind the spread of the disease.
Chromosome segregation during mitosis depends upon Kinesin-5 motors, which display a conserved, bipolar homotetrameric organization consisting of two motor dimers at opposite ends of a central rod. Kinesin-5 motors crosslink adjacent microtubules to drive or constrain their sliding apart, but the structural basis of their organization is unknown. In this study, we report the atomic structure of the bipolar assembly (BASS) domain that directs four Kinesin-5 subunits to form a bipolar minifilament. BASS is a novel 26-nm four-helix bundle, consisting of two anti-parallel coiled-coils at its center, stabilized by alternating hydrophobic and ionic four-helical interfaces, which based on mutagenesis experiments, are critical for tetramerization. Strikingly, N-terminal BASS helices bend as they emerge from the central bundle, swapping partner helices, to form dimeric parallel coiled-coils at both ends, which are offset by 90°. We propose that BASS is a mechanically stable, plectonemically-coiled junction, transmitting forces between Kinesin-5 motor dimers during microtubule sliding. DOI: http://dx.doi.org/10.7554/eLife.02217.001 Successful cell division requires copies of the chromosomes containing the genetic material of a cell to be accurately copied and then separated so that when a cell divides, each new daughter cell contains exactly one copy of each chromosome. If this does not happen, the cell may malfunction or die. To separate the duplicated chromosomes, a biological machine called the mitotic spindle forms inside the cell. This has two poles, one at each end, with each pole being responsible for gathering together the chromosomes for delivery to each of the daughter cells. Large numbers of long, thin protein tubes called microtubules extend out of each pole. Some microtubules attach to the chromosomes, whilst others are responsible for pushing apart the two poles—and the chromosomes attached to them—to the opposite sides of the cell before it divides. To move the poles, motor proteins slide pairs of microtubules that are attached to opposite poles over each other. The Kinesin-5 family of motor proteins is particularly important for mitosis, because it is essential for forming the mitotic spindle and for making it work correctly. These motors assemble into motile machines that can apply a force to both of the microtubules in a sliding pair at the same time because they contain motor units at each end connected by a central rod. The structure of this central rod is crucial for the successful operation of Kinesin-5. Scholey, Nithianantham et al. have now worked out the structure of a region of this filament called the bipolar assembly, or BASS domain. This structure is more complicated than expected: it contains four helixes made of protein that are all intertwined with each other. In addition, Scholey, Nithianantham et al. found two ‘molecular pockets’ that small molecules can access. By entering the pockets, the molecules could disrupt the structure of the BASS domain, and consequently prevent Kinesin-5 from forming the dual-ended machines required to work properly. As Kinesin-5 is required to build the mitotic spindle, this would interfere with cell division. Targeting molecules into these pockets could therefore potentially form part of an anti-cancer therapy, preventing the rapid cell divisions behind the spread of the disease. DOI: http://dx.doi.org/10.7554/eLife.02217.002
Chromosome segregation during mitosis depends upon Kinesin-5 motors, which display a conserved, bipolar homotetrameric organization consisting of two motor dimers at opposite ends of a central rod. Kinesin-5 motors crosslink adjacent microtubules to drive or constrain their sliding apart, but the structural basis of their organization is unknown. In this study, we report the atomic structure of the bipolar assembly (BASS) domain that directs four Kinesin-5 subunits to form a bipolar minifilament. BASS is a novel 26-nm four-helix bundle, consisting of two anti-parallel coiled-coils at its center, stabilized by alternating hydrophobic and ionic four-helical interfaces, which based on mutagenesis experiments, are critical for tetramerization. Strikingly, N-terminal BASS helices bend as they emerge from the central bundle, swapping partner helices, to form dimeric parallel coiled-coils at both ends, which are offset by 90°. We propose that BASS is a mechanically stable, plectonemically-coiled junction, transmitting forces between Kinesin-5 motor dimers during microtubule sliding.
Chromosome segregation during mitosis depends upon Kinesin-5 motors, which display a conserved, bipolar homotetrameric organization consisting of two motor dimers at opposite ends of a central rod. Kinesin-5 motors crosslink adjacent microtubules to drive or constrain their sliding apart, but the structural basis of their organization is unknown. In this study, we report the atomic structure of the bipolar assembly (BASS) domain that directs four Kinesin-5 subunits to form a bipolar minifilament. BASS is a novel 26-nm four-helix bundle, consisting of two anti-parallel coiled-coils at its center, stabilized by alternating hydrophobic and ionic four-helical interfaces, which based on mutagenesis experiments, are critical for tetramerization. Strikingly, N-terminal BASS helices bend as they emerge from the central bundle, swapping partner helices, to form dimeric parallel coiled-coils at both ends, which are offset by 90°. We propose that BASS is a mechanically stable, plectonemically-coiled junction, transmitting forces between Kinesin-5 motor dimers during microtubule sliding.DOI: http://dx.doi.org/10.7554/eLife.02217.001
Author Nithianantham, Stanley
Al-Bassam, Jawdat
Scholey, Jessica E
Scholey, Jonathan M
Author_xml – sequence: 1
  givenname: Jessica E
  surname: Scholey
  fullname: Scholey, Jessica E
  organization: Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
– sequence: 2
  givenname: Stanley
  surname: Nithianantham
  fullname: Nithianantham, Stanley
  organization: Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
– sequence: 3
  givenname: Jonathan M
  surname: Scholey
  fullname: Scholey, Jonathan M
  organization: Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
– sequence: 4
  givenname: Jawdat
  surname: Al-Bassam
  fullname: Al-Bassam, Jawdat
  organization: Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24714498$$D View this record in MEDLINE/PubMed
BookMark eNptkk1rFTEUhoNUbK1duZcBN0KZmmQy-dgIpVgtXnChoruQyZy0uWQm1yQj9N-be28rbTGbfL3nyXtOzkt0MMcZEHpN8Jnoe_YeVt7BGaaUiGfoiOIet1iyXwcP1ofoJOc1rkMwKYl6gQ4pE4QxJY_Qz28lLbYsyYRmMNnnxsXUlBtoTM4wDeG2iW63n3yJxdtmiqUqvvgZsp_bvvFzic3gNzGYGgglmQlSfoWeOxMynNzNx-jH5cfvF5_b1ddPVxfnq9Yy0ZcWpHTESlCDEG4kI6OCOiml4ILY6nJkvFOUjEoax7EEzhmXBBQWEqTqeXeMrvbcMZq13iQ_mXSro_F6dxDTtTap2g6gKaPQCeJwRxyDThlc3xudI1yaEUtXWR_2rM0yTDBamGsy4RH08c3sb_R1_KM7JaQQuALe3QFS_L1ALnry2UIIZoa4ZE36WvWuJ7Sr0rdPpOu4pLmWShPFec2M0y3wzUNH_6zc_18VkL3ApphzAqetL6b4uDXogyZYb9tE79pE79qkxpw-ibnH_k_9FySavag
CitedBy_id crossref_primary_10_7554_eLife_03398
crossref_primary_10_1002_cm_21380
crossref_primary_10_1038_s41594_024_01475_4
crossref_primary_10_3389_fonc_2022_965455
crossref_primary_10_1016_j_bbrc_2019_08_026
crossref_primary_10_1242_jcs_260474
crossref_primary_10_1074_jbc_M116_730697
crossref_primary_10_1242_jcs_195040
crossref_primary_10_1002_bies_201600062
crossref_primary_10_1073_pnas_1801242115
crossref_primary_10_1016_j_prp_2025_155904
crossref_primary_10_1016_j_devcel_2015_08_017
crossref_primary_10_1016_j_bcp_2020_114364
crossref_primary_10_1083_jcb_201612064
crossref_primary_10_1007_s00018_021_03928_1
crossref_primary_10_1016_j_bpc_2021_106548
crossref_primary_10_1091_mbc_E22_05_0153
crossref_primary_10_1242_dev_204424
crossref_primary_10_7554_eLife_72865
crossref_primary_10_1074_jbc_M114_620799
crossref_primary_10_1016_j_bpj_2017_09_006
crossref_primary_10_1007_s00018_018_2754_7
crossref_primary_10_1007_s00018_021_03891_x
crossref_primary_10_7554_eLife_89958_3
crossref_primary_10_1007_s00018_017_2523_z
crossref_primary_10_7554_eLife_51131
crossref_primary_10_1038_s44318_024_00048_x
crossref_primary_10_3390_ijms22157857
crossref_primary_10_1007_s11120_014_0043_3
crossref_primary_10_1038_s41598_019_43774_7
crossref_primary_10_1093_jb_mvab120
crossref_primary_10_1038_s41467_024_50990_x
crossref_primary_10_1038_s41580_024_00780_6
crossref_primary_10_1016_j_cell_2018_09_029
crossref_primary_10_1091_mbc_E23_07_0287
crossref_primary_10_1038_srep25597
crossref_primary_10_1073_pnas_2306480120
crossref_primary_10_1016_j_cub_2014_09_011
crossref_primary_10_1038_s41420_022_01281_1
crossref_primary_10_3390_jof8030294
crossref_primary_10_7554_eLife_89958
crossref_primary_10_1016_j_csbj_2022_08_020
crossref_primary_10_1073_pnas_1611581113
crossref_primary_10_1016_j_bpj_2015_03_018
crossref_primary_10_1007_s00412_022_00772_5
crossref_primary_10_3390_ijms22126420
crossref_primary_10_1002_appl_70017
crossref_primary_10_1091_mbc_E14_12_1631
crossref_primary_10_3390_biology5040051
crossref_primary_10_1146_annurev_cellbio_121420_100107
crossref_primary_10_1091_mbc_e16_05_0331
crossref_primary_10_7554_eLife_02715
crossref_primary_10_1074_jbc_M116_737577
crossref_primary_10_7554_eLife_71036
crossref_primary_10_1007_s00705_018_3753_6
crossref_primary_10_1016_j_tcb_2018_08_004
crossref_primary_10_1016_j_cub_2024_08_035
Cites_doi 10.1107/S0907444994003112
10.1016/j.devcel.2012.10.011
10.1016/j.cub.2008.10.026
10.1038/nature03503
10.1038/384225a0
10.1107/S0907444904019158
10.1146/annurev-cellbio-100109-104006
10.1083/jcb.200408113
10.1016/j.cell.2008.07.038
10.1091/mbc.E05-11-1090
10.1074/jbc.M113.499848
10.1016/j.cub.2006.09.064
10.1186/1747-1028-1-31
10.1038/379270a0
10.1038/ncb1394
10.1107/S0907444909038360
10.1016/j.jmb.2004.10.048
10.1016/S1074-5521(02)00212-0
10.1091/mbc.E08-10-1033
10.1107/S0907444902016657
10.1017/S0033583512000017
10.1016/S0092-8674(03)00111-9
10.1016/S0021-9258(17)31593-4
10.1016/j.cub.2010.12.038
10.1038/ncomms2348
10.1016/0092-8674(90)90350-N
10.1016/j.cub.2007.05.001
10.1002/jcc.20084
10.1038/359540a0
10.1083/jcb.200910125
10.2210/pdb3iv1/pdb
10.1002/cm.20349
10.1107/S0021889807021206
10.1038/nm1213-1550a
10.1126/science.288.5463.88
10.1038/nrm2832
10.1038/nrm2774
10.1021/bi050742a
10.1016/j.jmb.2009.03.008
10.1016/j.jmb.2008.08.059
10.1006/jmbi.1993.1012
10.1074/jbc.M604817200
10.1042/BST0371045
10.1074/jbc.M211889200
10.1074/jbc.274.40.28779
10.1016/S0022-2836(63)80008-X
10.1083/jcb.144.1.125
ContentType Journal Article
Copyright Copyright © 2014, Scholey et al. This work is licensed under the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/3.0/ ) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2014, Scholey et al 2014 Scholey et al
Copyright_xml – notice: Copyright © 2014, Scholey et al. This work is licensed under the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/3.0/ ) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2014, Scholey et al 2014 Scholey et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.7554/eLife.02217
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest One Academic
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
CrossRef


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2050-084X
ExternalDocumentID oai_doaj_org_article_242e371f031f4e39a01d4dff168ad08f
PMC3978770
24714498
10_7554_eLife_02217
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01-GM05550712S1
– fundername: NIGMS NIH HHS
  grantid: R00-GM08249
– fundername: NIGMS NIH HHS
  grantid: R00 GM084292
– fundername: NIGMS NIH HHS
  grantid: R01-GM55507
– fundername: National Institutes of Health
  grantid: R00-GM08249, R01-GM55507, R01-GM05550712S1
– fundername: University of California Cancer Coordinating committee
GroupedDBID 53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAKDD
AAYXX
ABUWG
ACGFO
ACGOD
ACPRK
ADBBV
ADRAZ
AENEX
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
DIK
DWQXO
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IEA
IHR
INH
ISR
ITC
KQ8
LK8
M1P
M2P
M48
M7P
M~E
NQS
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RHI
RNS
RPM
UKHRP
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c475t-e88f1c8e9b77fd1d4272f8887671c247d463921d98af608e664681e9078e89563
IEDL.DBID DOA
ISICitedReferencesCount 64
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000334351700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2050-084X
IngestDate Fri Oct 03 12:44:43 EDT 2025
Tue Nov 04 01:56:05 EST 2025
Thu Oct 02 06:41:56 EDT 2025
Tue Oct 07 06:45:09 EDT 2025
Thu Apr 03 07:01:45 EDT 2025
Tue Nov 18 20:51:13 EST 2025
Sat Nov 29 02:17:19 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords microtubule
coiled-coil
mitosis
motor protein
X-ray structure
Kinesin-5
Language English
License http://creativecommons.org/licenses/by/3.0
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c475t-e88f1c8e9b77fd1d4272f8887671c247d463921d98af608e664681e9078e89563
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
OpenAccessLink https://doaj.org/article/242e371f031f4e39a01d4dff168ad08f
PMID 24714498
PQID 1966563620
PQPubID 2045579
ParticipantIDs doaj_primary_oai_doaj_org_article_242e371f031f4e39a01d4dff168ad08f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3978770
proquest_miscellaneous_1514435123
proquest_journals_1966563620
pubmed_primary_24714498
crossref_citationtrail_10_7554_eLife_02217
crossref_primary_10_7554_eLife_02217
PublicationCentury 2000
PublicationDate 2014-04-08
PublicationDateYYYYMMDD 2014-04-08
PublicationDate_xml – month: 04
  year: 2014
  text: 2014-04-08
  day: 08
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle eLife
PublicationTitleAlternate Elife
PublicationYear 2014
Publisher eLife Sciences Publications Ltd
eLife Sciences Publications, Ltd
Publisher_xml – name: eLife Sciences Publications Ltd
– name: eLife Sciences Publications, Ltd
References Fujiwara (bib11) 2008; 383
McIntosh (bib26) 2012; 45
Kashina (bib20) 1996a; 379
Enos (bib9) 1990; 60
Kashina (bib21) 1996b; 384
Sawin (bib32) 1992; 359
Hentrich (bib14) 2010; 189
Kapitein (bib18) 2005; 435
Bodey (bib4) 2009; 388
Turbedsky (bib38) 2005; 345
Sharp (bib34) 1999; 144
Maliga (bib24) 2002; 9
Subramanian (bib36) 2012; 23
Vale (bib39) 2003; 112
Tao (bib37) 2006; 16
Cole (bib6) 1994; 269
Hirokawa (bib16) 2009; 10
Vale (bib40) 2000; 288
Billington (bib3) 2013; 288
Loughlin (bib23) 2008; 134
Yadav (bib48) 2005; 44
Adams (bib2) 2002; 58
Saunders (bib31) 2007; 17
Brust-Mascher (bib5) 2009; 20
DeLano (bib7) 2002
Project (bib30) 1994; 50
Huxley (bib17) 1963; 7
Lawrence (bib22) 2004; 167
Owens (bib28) 2013; 19
Sheldrick (bib35) 2010; 66
Hildebrandt (bib15) 2006; 281
Goshima (bib13) 2010; 26
Van Duyne (bib44) 1993; 229
Scholey (bib33) 2009; 66
Emsley (bib8) 2004; 60
Kaseda (bib19) 2009; 37
van den Wildenberg (bib43) 2008; 18
Wickstead (bib47) 2006; 17
Valentine (bib42) 2006b; 8
Valentine (bib41) 2006a; 1
Gordon (bib12) 1999; 274
Neculai (bib27)
Acar (bib1) 2013; 4
McCoy (bib25) 2007; 40
Pettersen (bib29) 2004; 25
Walczak (bib45) 2010; 11
Weinger (bib46) 2011; 21
Ernst (bib10) 2003; 278
14064165 - J Mol Biol. 1963 Sep;7:281-308
20439998 - J Cell Biol. 2010 May 3;189(3):465-80
18692476 - Cell. 2008 Aug 8;134(3):548-548.e1
19158379 - Mol Biol Cell. 2009 Mar;20(6):1749-62
15572765 - Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32
12496247 - J Biol Chem. 2003 Mar 7;278(10):8630-6
21236672 - Curr Biol. 2011 Jan 25;21(2):154-60
24072716 - J Biol Chem. 2013 Nov 15;288(46):33398-410
16481395 - Mol Biol Cell. 2006 Apr;17(4):1734-43
8083185 - J Biol Chem. 1994 Sep 16;269(37):22913-6
9885249 - J Cell Biol. 1999 Jan 11;144(1):125-38
20383001 - Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):479-85
12600311 - Cell. 2003 Feb 21;112(4):467-80
12393927 - Acta Crystallogr D Biol Crystallogr. 2002 Nov;58(Pt 11):1948-54
19754449 - Biochem Soc Trans. 2009 Oct;37(Pt 5):1045-9
2138511 - Cell. 1990 Mar 23;60(6):1019-27
15299374 - Acta Crystallogr D Biol Crystallogr. 1994 Sep 1;50(Pt 5):760-3
19461840 - J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674
19062285 - Curr Biol. 2008 Dec 9;18(23):1860-4
15571728 - J Mol Biol. 2005 Jan 14;345(2):363-73
17173688 - Cell Div. 2006 Dec 15;1:31
1406972 - Nature. 1992 Oct 8;359(6395):540-3
19285086 - J Mol Biol. 2009 May 1;388(2):218-24
18782578 - J Mol Biol. 2008 Nov 21;383(4):854-70
10753125 - Science. 2000 Apr 7;288(5463):88-95
22321376 - Q Rev Biophys. 2012 May;45(2):147-207
15264254 - J Comput Chem. 2004 Oct;25(13):1605-12
8918872 - Nature. 1996 Nov 21;384(6606):225
19773780 - Nat Rev Mol Cell Biol. 2009 Oct;10(10):682-96
17580072 - Curr Biol. 2007 Jun 19;17(12):R453-4
8538794 - Nature. 1996 Jan 18;379(6562):270-2
16604065 - Nat Cell Biol. 2006 May;8(5):470-6
20604709 - Annu Rev Cell Dev Biol. 2010;26:21-57
16829678 - J Biol Chem. 2006 Sep 8;281(36):26004-13
19291760 - Cell Motil Cytoskeleton. 2009 Aug;66(8):500-8
15479732 - J Cell Biol. 2004 Oct 11;167(1):19-22
16008357 - Biochemistry. 2005 Jul 19;44(28):9723-32
20068571 - Nat Rev Mol Cell Biol. 2010 Feb;11(2):91-102
15875026 - Nature. 2005 May 5;435(7038):114-8
23299893 - Nat Commun. 2013;4:1343
10497250 - J Biol Chem. 1999 Oct 1;274(40):28779-86
24714499 - Elife. 2014;3:e02715
17141610 - Curr Biol. 2006 Dec 5;16(23):2293-302
23153484 - Dev Cell. 2012 Nov 13;23(5):874-85
24309639 - Nat Med. 2013 Dec;19(12):1550
12323373 - Chem Biol. 2002 Sep;9(9):989-96
7678431 - J Mol Biol. 1993 Jan 5;229(1):105-24
References_xml – year: 2002
  ident: bib7
  article-title: PyMOL molecular viewer
– volume: 50
  start-page: 760
  year: 1994
  ident: bib30
  article-title: Number 4, the CCP4 suite: programs for protein crystallography
  publication-title: Acta Crystallographica Section D Biological Crystallography
  doi: 10.1107/S0907444994003112
– volume: 23
  start-page: 874
  year: 2012
  ident: bib36
  article-title: Building complexity: insights into self-organized assembly of microtubule-based architectures
  publication-title: Developmental Cell
  doi: 10.1016/j.devcel.2012.10.011
– volume: 18
  start-page: 1860
  year: 2008
  ident: bib43
  article-title: The homotetrameric Kinesin-5 KLP61F preferentially crosslinks microtubules into antiparallel orientations
  publication-title: Current Biology: CB
  doi: 10.1016/j.cub.2008.10.026
– volume: 435
  start-page: 114
  year: 2005
  ident: bib18
  article-title: The bipolar mitotic kinesin Eg5 moves on both microtubules that it crosslinks
  publication-title: Nature
  doi: 10.1038/nature03503
– volume: 384
  start-page: 225
  year: 1996b
  ident: bib21
  article-title: An essential bipolar mitotic motor
  publication-title: Nature
  doi: 10.1038/384225a0
– volume: 60
  start-page: 2126
  year: 2004
  ident: bib8
  article-title: Coot: model-building tools for molecular graphics
  publication-title: Acta Crystallographica Section D Biological Crystallography
  doi: 10.1107/S0907444904019158
– volume: 26
  start-page: 21
  year: 2010
  ident: bib13
  article-title: Control of mitotic spindle length
  publication-title: Annual Review of Cell and Developmental Biology
  doi: 10.1146/annurev-cellbio-100109-104006
– volume: 167
  start-page: 19
  year: 2004
  ident: bib22
  article-title: A standardized kinesin nomenclature
  publication-title: The Journal of Cell Biology
  doi: 10.1083/jcb.200408113
– volume: 134
  start-page: 548
  year: 2008
  ident: bib23
  article-title: SnapShot: motor proteins in spindle assembly
  publication-title: Cell
  doi: 10.1016/j.cell.2008.07.038
– volume: 17
  start-page: 1734
  year: 2006
  ident: bib47
  article-title: A “holistic” kinesin phylogeny reveals new kinesin families and predicts protein functions
  publication-title: Molecular Biology of the Cell
  doi: 10.1091/mbc.E05-11-1090
– volume: 288
  start-page: 33398
  year: 2013
  ident: bib3
  article-title: Characterization of three full-length human nonmuscle myosin ii Paralogs
  publication-title: The Journal of Biological Chemistry
  doi: 10.1074/jbc.M113.499848
– volume: 16
  start-page: 2293
  year: 2006
  ident: bib37
  article-title: A homotetrameric Kinesin-5, KLP61F, bundles microtubules and antagonizes Ncd in motility assays
  publication-title: Current Biology: CB
  doi: 10.1016/j.cub.2006.09.064
– volume: 1
  start-page: 31
  year: 2006a
  ident: bib41
  article-title: Eg5 steps it up!
  publication-title: Cell Division
  doi: 10.1186/1747-1028-1-31
– volume: 379
  start-page: 270
  year: 1996a
  ident: bib20
  article-title: A bipolar kinesin
  publication-title: Nature
  doi: 10.1038/379270a0
– volume: 8
  start-page: 470
  year: 2006b
  ident: bib42
  article-title: Individual dimers of the mitotic kinesin motor Eg5 step processively and support substantial loads in vitro
  publication-title: Nature Cell Biology
  doi: 10.1038/ncb1394
– volume: 66
  start-page: 479
  year: 2010
  ident: bib35
  article-title: Experimental phasing with SHELXC/D/E: combining chain tracing with density modification
  publication-title: Acta Crystallographica Section D Biological Crystallography
  doi: 10.1107/S0907444909038360
– volume: 345
  start-page: 363
  year: 2005
  ident: bib38
  article-title: Assembly of Acanthamoeba myosin-II minifilaments. Model of anti-parallel dimers based on EM and X-ray diffraction of 2D and 3D crystals
  publication-title: Journal of Molecular Biology
  doi: 10.1016/j.jmb.2004.10.048
– volume: 9
  start-page: 989
  year: 2002
  ident: bib24
  article-title: Evidence that monastrol is an allosteric inhibitor of the mitotic kinesin Eg5
  publication-title: Chemistry & Biology
  doi: 10.1016/S1074-5521(02)00212-0
– volume: 20
  start-page: 1749
  year: 2009
  ident: bib5
  article-title: Kinesin-5-dependent poleward flux and spindle length control in Drosophila embryo mitosis
  publication-title: Molecular Biology of the Cell
  doi: 10.1091/mbc.E08-10-1033
– volume: 58
  start-page: 1948
  year: 2002
  ident: bib2
  article-title: PHENIX: building new software for automated crystallographic structure determination
  publication-title: Acta Crystallographica Section D Biological Crystallography
  doi: 10.1107/S0907444902016657
– volume: 45
  start-page: 147
  year: 2012
  ident: bib26
  article-title: Biophysics of mitosis
  publication-title: Quarterly Reviews of Biophysics
  doi: 10.1017/S0033583512000017
– volume: 112
  start-page: 467
  year: 2003
  ident: bib39
  article-title: The molecular motor toolbox for intracellular transport
  publication-title: Cell
  doi: 10.1016/S0092-8674(03)00111-9
– volume: 269
  start-page: 22913
  year: 1994
  ident: bib6
  article-title: A “slow” homotetrameric kinesin-related motor protein purified from Drosophila embryos
  publication-title: The Journal of Biological Chemistry
  doi: 10.1016/S0021-9258(17)31593-4
– volume: 21
  start-page: 154
  year: 2011
  ident: bib46
  article-title: A nonmotor microtubule binding site in Kinesin-5 is required for filament crosslinking and sliding
  publication-title: Current Biology: CB
  doi: 10.1016/j.cub.2010.12.038
– volume: 4
  start-page: 1343
  year: 2013
  ident: bib1
  article-title: The bipolar assembly domain of the mitotic motor Kinesin-5
  publication-title: Nature Communications
  doi: 10.1038/ncomms2348
– volume: 60
  start-page: 1019
  year: 1990
  ident: bib9
  article-title: Mutation of a gene that encodes a kinesin-like protein blocks nuclear division in A. nidulans
  publication-title: Cell
  doi: 10.1016/0092-8674(90)90350-N
– volume: 17
  start-page: R453
  year: 2007
  ident: bib31
  article-title: Kinesin-5 acts as a brake in anaphase spindle elongation
  publication-title: Current Biology: CB
  doi: 10.1016/j.cub.2007.05.001
– volume: 25
  start-page: 1605
  year: 2004
  ident: bib29
  article-title: UCSF Chimera–a visualization system for exploratory research and analysis
  publication-title: Journal of Computational Chemistry
  doi: 10.1002/jcc.20084
– volume: 359
  start-page: 540
  year: 1992
  ident: bib32
  article-title: Mitotic spindle organization by a plus-end-directed microtubule motor
  publication-title: Nature
  doi: 10.1038/359540a0
– volume: 189
  start-page: 465
  year: 2010
  ident: bib14
  article-title: Microtubule organization by the antagonistic mitotic motors Kinesin-5 and Kinesin-14
  publication-title: The Journal of Cell Biology
  doi: 10.1083/jcb.200910125
– ident: bib27
  doi: 10.2210/pdb3iv1/pdb
– volume: 66
  start-page: 500
  year: 2009
  ident: bib33
  article-title: Kinesin-5 in Drosophila embryo mitosis: sliding filament or spindle matrix mechanism?
  publication-title: Cell Motility and the Cytoskeleton
  doi: 10.1002/cm.20349
– volume: 40
  start-page: 658
  year: 2007
  ident: bib25
  article-title: Phaser crystallographic software
  publication-title: Journal of Applied Crystallography
  doi: 10.1107/S0021889807021206
– volume: 19
  start-page: 1550
  year: 2013
  ident: bib28
  article-title: Kinesin inhibitor marches toward first-in-class pivotal trial
  publication-title: Nature Medicine
  doi: 10.1038/nm1213-1550a
– volume: 288
  start-page: 88
  year: 2000
  ident: bib40
  article-title: The way things move: looking under the hood of molecular motor proteins
  publication-title: Science
  doi: 10.1126/science.288.5463.88
– volume: 11
  start-page: 91
  year: 2010
  ident: bib45
  article-title: Mechanisms of chromosome behaviour during mitosis
  publication-title: Nature Reviews Molecular Cell Biology
  doi: 10.1038/nrm2832
– volume: 10
  start-page: 682
  year: 2009
  ident: bib16
  article-title: Kinesin superfamily motor proteins and intracellular transport
  publication-title: Nature reviews Molecular Cell Biology
  doi: 10.1038/nrm2774
– volume: 44
  start-page: 9723
  year: 2005
  ident: bib48
  article-title: Structure-based engineering of internal cavities in coiled-coil peptides
  publication-title: Biochemistry
  doi: 10.1021/bi050742a
– volume: 388
  start-page: 218
  year: 2009
  ident: bib4
  article-title: 9-Angstrom structure of a microtubule-bound mitotic motor
  publication-title: Journal of Molecular Biology
  doi: 10.1016/j.jmb.2009.03.008
– volume: 383
  start-page: 854
  year: 2008
  ident: bib11
  article-title: X-ray crystal structure of a TRPM assembly domain reveals an antiparallel four-stranded coiled-coil
  publication-title: Journal of Molecular Biology
  doi: 10.1016/j.jmb.2008.08.059
– volume: 229
  start-page: 105
  year: 1993
  ident: bib44
  article-title: Atomic structures of the human immunophilin FKBP-12 complexes with FK506 and rapamycin
  publication-title: Journal of Molecular Biology
  doi: 10.1006/jmbi.1993.1012
– volume: 281
  start-page: 26004
  year: 2006
  ident: bib15
  article-title: Homotetrameric form of Cin8p, a Saccharomyces cerevisiae Kinesin-5 motor, is essential for its in vivo function
  publication-title: The Journal of Biological Chemistry
  doi: 10.1074/jbc.M604817200
– volume: 37
  start-page: 1045
  year: 2009
  ident: bib19
  article-title: Walking, hopping, diffusing and braking modes of Kinesin-5
  publication-title: Biochemical Society Transactions
  doi: 10.1042/BST0371045
– volume: 278
  start-page: 8630
  year: 2003
  ident: bib10
  article-title: High resolution structure, stability, and synaptotagmin binding of a truncated neuronal SNARE complex
  publication-title: The Journal of Biological Chemistry
  doi: 10.1074/jbc.M211889200
– volume: 274
  start-page: 28779
  year: 1999
  ident: bib12
  article-title: The kinesin-related protein Kip1p of Saccharomyces cerevisiae is bipolar
  publication-title: The Journal of Biological Chemistry
  doi: 10.1074/jbc.274.40.28779
– volume: 7
  start-page: 281
  year: 1963
  ident: bib17
  article-title: Electron microscope studies on the structure of natural and synthetic protein filaments from striated muscle
  publication-title: Journal of Molecular Biology
  doi: 10.1016/S0022-2836(63)80008-X
– volume: 144
  start-page: 125
  year: 1999
  ident: bib34
  article-title: The bipolar kinesin, KLP61F, cross-links microtubules within interpolar microtubule bundles of Drosophila embryonic mitotic spindles
  publication-title: The Journal of Cell Biology
  doi: 10.1083/jcb.144.1.125
– reference: 18782578 - J Mol Biol. 2008 Nov 21;383(4):854-70
– reference: 12323373 - Chem Biol. 2002 Sep;9(9):989-96
– reference: 8538794 - Nature. 1996 Jan 18;379(6562):270-2
– reference: 8083185 - J Biol Chem. 1994 Sep 16;269(37):22913-6
– reference: 19158379 - Mol Biol Cell. 2009 Mar;20(6):1749-62
– reference: 8918872 - Nature. 1996 Nov 21;384(6606):225
– reference: 18692476 - Cell. 2008 Aug 8;134(3):548-548.e1
– reference: 19285086 - J Mol Biol. 2009 May 1;388(2):218-24
– reference: 10497250 - J Biol Chem. 1999 Oct 1;274(40):28779-86
– reference: 15479732 - J Cell Biol. 2004 Oct 11;167(1):19-22
– reference: 12600311 - Cell. 2003 Feb 21;112(4):467-80
– reference: 19773780 - Nat Rev Mol Cell Biol. 2009 Oct;10(10):682-96
– reference: 15571728 - J Mol Biol. 2005 Jan 14;345(2):363-73
– reference: 7678431 - J Mol Biol. 1993 Jan 5;229(1):105-24
– reference: 15572765 - Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32
– reference: 19291760 - Cell Motil Cytoskeleton. 2009 Aug;66(8):500-8
– reference: 15299374 - Acta Crystallogr D Biol Crystallogr. 1994 Sep 1;50(Pt 5):760-3
– reference: 16604065 - Nat Cell Biol. 2006 May;8(5):470-6
– reference: 16008357 - Biochemistry. 2005 Jul 19;44(28):9723-32
– reference: 16829678 - J Biol Chem. 2006 Sep 8;281(36):26004-13
– reference: 17141610 - Curr Biol. 2006 Dec 5;16(23):2293-302
– reference: 15264254 - J Comput Chem. 2004 Oct;25(13):1605-12
– reference: 16481395 - Mol Biol Cell. 2006 Apr;17(4):1734-43
– reference: 12496247 - J Biol Chem. 2003 Mar 7;278(10):8630-6
– reference: 20068571 - Nat Rev Mol Cell Biol. 2010 Feb;11(2):91-102
– reference: 23153484 - Dev Cell. 2012 Nov 13;23(5):874-85
– reference: 20383001 - Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):479-85
– reference: 17580072 - Curr Biol. 2007 Jun 19;17(12):R453-4
– reference: 19461840 - J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674
– reference: 21236672 - Curr Biol. 2011 Jan 25;21(2):154-60
– reference: 2138511 - Cell. 1990 Mar 23;60(6):1019-27
– reference: 17173688 - Cell Div. 2006 Dec 15;1:31
– reference: 1406972 - Nature. 1992 Oct 8;359(6395):540-3
– reference: 24714499 - Elife. 2014;3:e02715
– reference: 20604709 - Annu Rev Cell Dev Biol. 2010;26:21-57
– reference: 24072716 - J Biol Chem. 2013 Nov 15;288(46):33398-410
– reference: 10753125 - Science. 2000 Apr 7;288(5463):88-95
– reference: 20439998 - J Cell Biol. 2010 May 3;189(3):465-80
– reference: 22321376 - Q Rev Biophys. 2012 May;45(2):147-207
– reference: 24309639 - Nat Med. 2013 Dec;19(12):1550
– reference: 9885249 - J Cell Biol. 1999 Jan 11;144(1):125-38
– reference: 19754449 - Biochem Soc Trans. 2009 Oct;37(Pt 5):1045-9
– reference: 15875026 - Nature. 2005 May 5;435(7038):114-8
– reference: 14064165 - J Mol Biol. 1963 Sep;7:281-308
– reference: 23299893 - Nat Commun. 2013;4:1343
– reference: 12393927 - Acta Crystallogr D Biol Crystallogr. 2002 Nov;58(Pt 11):1948-54
– reference: 19062285 - Curr Biol. 2008 Dec 9;18(23):1860-4
SSID ssj0000748819
Score 2.3083162
Snippet Chromosome segregation during mitosis depends upon Kinesin-5 motors, which display a conserved, bipolar homotetrameric organization consisting of two motor...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e02217
SubjectTerms Amino Acid Sequence
Animals
Biophysics and Structural Biology
Biopolymers - chemistry
Cell Biology
Cell division
coiled-coil
Crystallography
Crystallography, X-Ray
Drosophila
Hydrophobicity
Interfaces
Kinesin
Kinesin - chemistry
Kinesin-5
microtubule
Microtubules
Mitosis
Models, Molecular
Molecular Sequence Data
motor protein
Mutagenesis
Protein Conformation
Sequence Homology, Amino Acid
X-ray structure
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9VAEB60KvhivVWjVVbokxCby57s5EmsWASlFFTsW0g2u22gTY4nUei_99tNTuqR4ouPyQ5hkrl9szuZIdpTkbXutCt0Z16hrIwNK8ZlqRJZcrmI0pr9sAl1dMQnJ_nxtOHWT2WVa5_oHXXdabdHvg9NAfSAu43eLn-EbmqUO12dRmjcpFuuS0LqS_eO5z0WhEdGxBt_y1MInPvmc2PNG8QtP6DsKhD5fv3Xgcy_ayX_CD6H2__L9n26N8FO8W7Ukwd0w7QP6c44iPLyEX3_4tvIuhYcAnGt6QWwrAA2FMDW5qI6vxSd9dcX8AB4hoCEQfHJFc03bbgQTTt0omqWLlMWgxlczdeqf0zfDj98ff8xnEYuhFqqxRAaZhtrNnmllK3jWiYqsUiSVaZinUhVSyCaJK5zLm0WsckymXFskGGzYaRa6Q5ttV1rnpKoc9h3tWCbVJmMNKCe1hXQIjCCzlNjA3q9_v6FnvqRu7EY5wXyEieswgur8MIKaG8mXo5tOK4nO3CCnElc72x_o1udFpMpFgAlJlWxhTuz0qR5GeE9a6hsxmUdMRjbXYuymAy6L67kGNCreRmm6M5XytZ0P0ED8An0CSwQ0JNRa2ZO8O2wmHNAakOfNljdXGmbM9_uG4iRlYqe_Zut53QXWG4sKuJd2oLamBd0W_8amn710tvFb_nUGHY
  priority: 102
  providerName: ProQuest
Title Structural basis for the assembly of the mitotic motor Kinesin-5 into bipolar tetramers
URI https://www.ncbi.nlm.nih.gov/pubmed/24714498
https://www.proquest.com/docview/1966563620
https://www.proquest.com/docview/1514435123
https://pubmed.ncbi.nlm.nih.gov/PMC3978770
https://doaj.org/article/242e371f031f4e39a01d4dff168ad08f
Volume 3
WOSCitedRecordID wos000334351700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: M7P
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: 7X7
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: PIMPY
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: M2P
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9tAEB7apIVeSvpWm5gt5FRQo5c1o2NTElraGNEHdU9Cj10qSOQQq4X8-367Uhw7BHrpZUHewV7Nzuz3DTueIdrnwBh72-XbOy8_qbTxK8FjyVFSSjkN4kZcswmezWQ-z_K1Vl82J2woDzwo7gAQomMODYzPJDrOyiBskgY_kErZBGLs6QvWsxZMuTOYYZhhNvwhjwGZB_pza_RbIJZrTXYNQa5S_2308maW5BrsHO_Qw5EvqnfDOh_RHd09pvtDB8nLJ_Tjq6v_amtnKABSu1QgoQqkToEU67Pq9FItjHs-g-viOxS2BhKfbLZ72_lT1Xb9QlXtuQ1xVa97m6x1sXxK34-Pvr3_4I-9Evw64WnvaxET1qKzitk0UFHEkUF0yymHdZRwk4CKRGGTSWnSQHSaJqmEGqGxaEGMFD-jrW7R6RekmgyOWU3FRFWaBDU4Wl1XoHkA9zqLtfHozZX6inosJG77WZwWCCisrgun68Lp2qP9lfD5UD_jdrFDuw8rEVv02n0AUyhGUyj-ZQoe7V7tYjF64rLACQPKCpgOPHq9moYP2YuRstOL35ABawRtBIh79HzY9NVKoDtMZuIRb5jDxlI3Z7r2l6vTDaonzMHL__Fur-gBqNqQMyS7tAXj0nt0r_7Tt8uLCd3lObtRJrR9eDTLv0ycQ2A8iXI7Msbt_ONJ_vMvz9URXQ
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbtRAEC2FCShc2AOGAI0ULkgmXnrc7QNCbFFGMxmNRBDhZLx0g6XEHsYGND_FN_Lay4RBEbccONpdstr261eveqki2hWO1ma1yzZrXjZPlLYTictYeDyW8dDxM9kUmxDTqTw-Dmcb9Ks_C2O2Vfac2BB1VqZmjnwPSIH0AN06L-ffbFM1yqyu9iU0WliM1fInQrbqxegt_u9Tz9t_d_TmwO6qCtgpF8PaVlJqN5UqTITQmZtxT3gacaAIhJt6XGQcTttzs1DGOnCkCgIeSFchiJRKIprw8dxLtMkBdjmgzdnocPZpNasDhyzhY9uDgAKuek9Ncq2ew1M2JdHOXF9TIeA8Wfv37sw_3N3-9f_tQ92ga52wZq_akXCTNlRxi660pTaXt-nj-yZRrkkywuC584pBrTOoX4boQZ0mJ0tW6ub6FByHZzBgGBZjcywgL-why4u6ZEk-N3MBrFa12dW2qO7Qhwt5q20aFGWh7hHLQjBYMpTaSwLupBCzaZpAD0MFpaGvtEXP-v8dpV3GdVP44yRC5GXAETXgiBpwWLS7Mp63iUbON3ttgLMyMdnBmxvl4kvUkU0E2aV84WoQtubKD2MH75lhUAYyzhyJju300Ik6yqqiM9xY9GTVDLIxK0hxocrvsIG8hr6G2rHobovSVU_w7dAYSovEGn7XurreUuRfm4Tm0MRSCOf-v7v1mLYOjg4n0WQ0HT-gq1Cu7RYquUMDQEg9pMvpjzqvFo-6Ucno80Xj-ze6PHOO
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V8hAX3o9AASOVC1LYvDZ2DggBZUW11WolQPSWJo4Nkdpk2QTQ_jV-HZ-dZMuiilsPHB2PLCf5PPONPZ4h2uWe1ua0yzVnXm6UK-3mAs2MB1EmsrEXFsIWm-CzmTg8TOZb9Gu4C2PCKgedaBV1UUuzRz4CUkA9oG69ke7DIuZ7k1eLb66pIGVOWodyGh1Epmr1E-5b83J_D__6WRBM3n18-97tKwy4MuLj1lVCaF8KleSc68IvooAHGj4hj7kvg4gXEQx44BeJyHTsCRXHUSx8BYdSKAHPIsS4F-giN0nLbdjgfL2_A9MsYG27K4EcRnukDkqtXsBm2uJop0bQ1go4i-D-Haf5h-GbXP-fP9kNutbTbfa6Wx83aUtVt-hyV4BzdZs-f7Dpc03qEQZ7XjYMHJ6BEzP4FOokP16xWtv2CTQfxmBANiSm5rJAWbljVlZtzfJyYXYIWKtaE-u2bO7Qp3N5q7u0XdWVuk-sSKDX8rHQQR5HngTFlTIHSwY3kkmotEPPh3-fyj4PuykHcpzCHzNASS1QUgsUh3bXwosu_cjZYm8MiNYiJme4fVAvv6S9CkpBxlTIfQ01riMVJpmH9yywVGORFZ7AxHYGGKW9ImvSUww59HTdDRVkzpWyStXfIQPSDdYNDuTQvQ6x65ng26EzEQ7xDSxvTHWzpyq_2jTnYMqCc-_Bv6f1hK4A1OnB_mz6kK6CznZxVWKHtoEg9YguyR9t2Swf2-XJ6Oi8wf0bgpZ6zQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+basis+for+the+assembly+of+the+mitotic+motor+Kinesin-5+into+bipolar+tetramers&rft.jtitle=eLife&rft.au=Scholey%2C+Jessica+E&rft.au=Nithianantham%2C+Stanley&rft.au=Scholey%2C+Jonathan+M&rft.au=Al-Bassam%2C+Jawdat&rft.date=2014-04-08&rft.eissn=2050-084X&rft.volume=3&rft.spage=e02217&rft_id=info:doi/10.7554%2FeLife.02217&rft_id=info%3Apmid%2F24714498&rft.externalDocID=24714498
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-084X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-084X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-084X&client=summon