Structural basis for the assembly of the mitotic motor Kinesin-5 into bipolar tetramers
Chromosome segregation during mitosis depends upon Kinesin-5 motors, which display a conserved, bipolar homotetrameric organization consisting of two motor dimers at opposite ends of a central rod. Kinesin-5 motors crosslink adjacent microtubules to drive or constrain their sliding apart, but the st...
Uložené v:
| Vydané v: | eLife Ročník 3; s. e02217 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
England
eLife Sciences Publications Ltd
08.04.2014
eLife Sciences Publications, Ltd |
| Predmet: | |
| ISSN: | 2050-084X, 2050-084X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Chromosome segregation during mitosis depends upon Kinesin-5 motors, which display a conserved, bipolar homotetrameric organization consisting of two motor dimers at opposite ends of a central rod. Kinesin-5 motors crosslink adjacent microtubules to drive or constrain their sliding apart, but the structural basis of their organization is unknown. In this study, we report the atomic structure of the bipolar assembly (BASS) domain that directs four Kinesin-5 subunits to form a bipolar minifilament. BASS is a novel 26-nm four-helix bundle, consisting of two anti-parallel coiled-coils at its center, stabilized by alternating hydrophobic and ionic four-helical interfaces, which based on mutagenesis experiments, are critical for tetramerization. Strikingly, N-terminal BASS helices bend as they emerge from the central bundle, swapping partner helices, to form dimeric parallel coiled-coils at both ends, which are offset by 90°. We propose that BASS is a mechanically stable, plectonemically-coiled junction, transmitting forces between Kinesin-5 motor dimers during microtubule sliding.
Successful cell division requires copies of the chromosomes containing the genetic material of a cell to be accurately copied and then separated so that when a cell divides, each new daughter cell contains exactly one copy of each chromosome. If this does not happen, the cell may malfunction or die.
To separate the duplicated chromosomes, a biological machine called the mitotic spindle forms inside the cell. This has two poles, one at each end, with each pole being responsible for gathering together the chromosomes for delivery to each of the daughter cells. Large numbers of long, thin protein tubes called microtubules extend out of each pole. Some microtubules attach to the chromosomes, whilst others are responsible for pushing apart the two poles—and the chromosomes attached to them—to the opposite sides of the cell before it divides.
To move the poles, motor proteins slide pairs of microtubules that are attached to opposite poles over each other. The Kinesin-5 family of motor proteins is particularly important for mitosis, because it is essential for forming the mitotic spindle and for making it work correctly. These motors assemble into motile machines that can apply a force to both of the microtubules in a sliding pair at the same time because they contain motor units at each end connected by a central rod.
The structure of this central rod is crucial for the successful operation of Kinesin-5. Scholey, Nithianantham et al. have now worked out the structure of a region of this filament called the bipolar assembly, or BASS domain. This structure is more complicated than expected: it contains four helixes made of protein that are all intertwined with each other.
In addition, Scholey, Nithianantham et al. found two ‘molecular pockets’ that small molecules can access. By entering the pockets, the molecules could disrupt the structure of the BASS domain, and consequently prevent Kinesin-5 from forming the dual-ended machines required to work properly. As Kinesin-5 is required to build the mitotic spindle, this would interfere with cell division. Targeting molecules into these pockets could therefore potentially form part of an anti-cancer therapy, preventing the rapid cell divisions behind the spread of the disease. |
|---|---|
| AbstractList | Chromosome segregation during mitosis depends upon Kinesin-5 motors, which display a conserved, bipolar homotetrameric organization consisting of two motor dimers at opposite ends of a central rod. Kinesin-5 motors crosslink adjacent microtubules to drive or constrain their sliding apart, but the structural basis of their organization is unknown. In this study, we report the atomic structure of the bipolar assembly (BASS) domain that directs four Kinesin-5 subunits to form a bipolar minifilament. BASS is a novel 26-nm four-helix bundle, consisting of two anti-parallel coiled-coils at its center, stabilized by alternating hydrophobic and ionic four-helical interfaces, which based on mutagenesis experiments, are critical for tetramerization. Strikingly, N-terminal BASS helices bend as they emerge from the central bundle, swapping partner helices, to form dimeric parallel coiled-coils at both ends, which are offset by 90°. We propose that BASS is a mechanically stable, plectonemically-coiled junction, transmitting forces between Kinesin-5 motor dimers during microtubule sliding. DOI: http://dx.doi.org/10.7554/eLife.02217.001. Chromosome segregation during mitosis depends upon Kinesin-5 motors, which display a conserved, bipolar homotetrameric organization consisting of two motor dimers at opposite ends of a central rod. Kinesin-5 motors crosslink adjacent microtubules to drive or constrain their sliding apart, but the structural basis of their organization is unknown. In this study, we report the atomic structure of the bipolar assembly (BASS) domain that directs four Kinesin-5 subunits to form a bipolar minifilament. BASS is a novel 26-nm four-helix bundle, consisting of two anti-parallel coiled-coils at its center, stabilized by alternating hydrophobic and ionic four-helical interfaces, which based on mutagenesis experiments, are critical for tetramerization. Strikingly, N-terminal BASS helices bend as they emerge from the central bundle, swapping partner helices, to form dimeric parallel coiled-coils at both ends, which are offset by 90°. We propose that BASS is a mechanically stable, plectonemically-coiled junction, transmitting forces between Kinesin-5 motor dimers during microtubule sliding. DOI: http://dx.doi.org/10.7554/eLife.02217.001.Chromosome segregation during mitosis depends upon Kinesin-5 motors, which display a conserved, bipolar homotetrameric organization consisting of two motor dimers at opposite ends of a central rod. Kinesin-5 motors crosslink adjacent microtubules to drive or constrain their sliding apart, but the structural basis of their organization is unknown. In this study, we report the atomic structure of the bipolar assembly (BASS) domain that directs four Kinesin-5 subunits to form a bipolar minifilament. BASS is a novel 26-nm four-helix bundle, consisting of two anti-parallel coiled-coils at its center, stabilized by alternating hydrophobic and ionic four-helical interfaces, which based on mutagenesis experiments, are critical for tetramerization. Strikingly, N-terminal BASS helices bend as they emerge from the central bundle, swapping partner helices, to form dimeric parallel coiled-coils at both ends, which are offset by 90°. We propose that BASS is a mechanically stable, plectonemically-coiled junction, transmitting forces between Kinesin-5 motor dimers during microtubule sliding. DOI: http://dx.doi.org/10.7554/eLife.02217.001. Chromosome segregation during mitosis depends upon Kinesin-5 motors, which display a conserved, bipolar homotetrameric organization consisting of two motor dimers at opposite ends of a central rod. Kinesin-5 motors crosslink adjacent microtubules to drive or constrain their sliding apart, but the structural basis of their organization is unknown. In this study, we report the atomic structure of the bipolar assembly (BASS) domain that directs four Kinesin-5 subunits to form a bipolar minifilament. BASS is a novel 26-nm four-helix bundle, consisting of two anti-parallel coiled-coils at its center, stabilized by alternating hydrophobic and ionic four-helical interfaces, which based on mutagenesis experiments, are critical for tetramerization. Strikingly, N-terminal BASS helices bend as they emerge from the central bundle, swapping partner helices, to form dimeric parallel coiled-coils at both ends, which are offset by 90°. We propose that BASS is a mechanically stable, plectonemically-coiled junction, transmitting forces between Kinesin-5 motor dimers during microtubule sliding. Successful cell division requires copies of the chromosomes containing the genetic material of a cell to be accurately copied and then separated so that when a cell divides, each new daughter cell contains exactly one copy of each chromosome. If this does not happen, the cell may malfunction or die. To separate the duplicated chromosomes, a biological machine called the mitotic spindle forms inside the cell. This has two poles, one at each end, with each pole being responsible for gathering together the chromosomes for delivery to each of the daughter cells. Large numbers of long, thin protein tubes called microtubules extend out of each pole. Some microtubules attach to the chromosomes, whilst others are responsible for pushing apart the two poles—and the chromosomes attached to them—to the opposite sides of the cell before it divides. To move the poles, motor proteins slide pairs of microtubules that are attached to opposite poles over each other. The Kinesin-5 family of motor proteins is particularly important for mitosis, because it is essential for forming the mitotic spindle and for making it work correctly. These motors assemble into motile machines that can apply a force to both of the microtubules in a sliding pair at the same time because they contain motor units at each end connected by a central rod. The structure of this central rod is crucial for the successful operation of Kinesin-5. Scholey, Nithianantham et al. have now worked out the structure of a region of this filament called the bipolar assembly, or BASS domain. This structure is more complicated than expected: it contains four helixes made of protein that are all intertwined with each other. In addition, Scholey, Nithianantham et al. found two ‘molecular pockets’ that small molecules can access. By entering the pockets, the molecules could disrupt the structure of the BASS domain, and consequently prevent Kinesin-5 from forming the dual-ended machines required to work properly. As Kinesin-5 is required to build the mitotic spindle, this would interfere with cell division. Targeting molecules into these pockets could therefore potentially form part of an anti-cancer therapy, preventing the rapid cell divisions behind the spread of the disease. Chromosome segregation during mitosis depends upon Kinesin-5 motors, which display a conserved, bipolar homotetrameric organization consisting of two motor dimers at opposite ends of a central rod. Kinesin-5 motors crosslink adjacent microtubules to drive or constrain their sliding apart, but the structural basis of their organization is unknown. In this study, we report the atomic structure of the bipolar assembly (BASS) domain that directs four Kinesin-5 subunits to form a bipolar minifilament. BASS is a novel 26-nm four-helix bundle, consisting of two anti-parallel coiled-coils at its center, stabilized by alternating hydrophobic and ionic four-helical interfaces, which based on mutagenesis experiments, are critical for tetramerization. Strikingly, N-terminal BASS helices bend as they emerge from the central bundle, swapping partner helices, to form dimeric parallel coiled-coils at both ends, which are offset by 90°. We propose that BASS is a mechanically stable, plectonemically-coiled junction, transmitting forces between Kinesin-5 motor dimers during microtubule sliding. DOI: http://dx.doi.org/10.7554/eLife.02217.001 Successful cell division requires copies of the chromosomes containing the genetic material of a cell to be accurately copied and then separated so that when a cell divides, each new daughter cell contains exactly one copy of each chromosome. If this does not happen, the cell may malfunction or die. To separate the duplicated chromosomes, a biological machine called the mitotic spindle forms inside the cell. This has two poles, one at each end, with each pole being responsible for gathering together the chromosomes for delivery to each of the daughter cells. Large numbers of long, thin protein tubes called microtubules extend out of each pole. Some microtubules attach to the chromosomes, whilst others are responsible for pushing apart the two poles—and the chromosomes attached to them—to the opposite sides of the cell before it divides. To move the poles, motor proteins slide pairs of microtubules that are attached to opposite poles over each other. The Kinesin-5 family of motor proteins is particularly important for mitosis, because it is essential for forming the mitotic spindle and for making it work correctly. These motors assemble into motile machines that can apply a force to both of the microtubules in a sliding pair at the same time because they contain motor units at each end connected by a central rod. The structure of this central rod is crucial for the successful operation of Kinesin-5. Scholey, Nithianantham et al. have now worked out the structure of a region of this filament called the bipolar assembly, or BASS domain. This structure is more complicated than expected: it contains four helixes made of protein that are all intertwined with each other. In addition, Scholey, Nithianantham et al. found two ‘molecular pockets’ that small molecules can access. By entering the pockets, the molecules could disrupt the structure of the BASS domain, and consequently prevent Kinesin-5 from forming the dual-ended machines required to work properly. As Kinesin-5 is required to build the mitotic spindle, this would interfere with cell division. Targeting molecules into these pockets could therefore potentially form part of an anti-cancer therapy, preventing the rapid cell divisions behind the spread of the disease. DOI: http://dx.doi.org/10.7554/eLife.02217.002 Chromosome segregation during mitosis depends upon Kinesin-5 motors, which display a conserved, bipolar homotetrameric organization consisting of two motor dimers at opposite ends of a central rod. Kinesin-5 motors crosslink adjacent microtubules to drive or constrain their sliding apart, but the structural basis of their organization is unknown. In this study, we report the atomic structure of the bipolar assembly (BASS) domain that directs four Kinesin-5 subunits to form a bipolar minifilament. BASS is a novel 26-nm four-helix bundle, consisting of two anti-parallel coiled-coils at its center, stabilized by alternating hydrophobic and ionic four-helical interfaces, which based on mutagenesis experiments, are critical for tetramerization. Strikingly, N-terminal BASS helices bend as they emerge from the central bundle, swapping partner helices, to form dimeric parallel coiled-coils at both ends, which are offset by 90°. We propose that BASS is a mechanically stable, plectonemically-coiled junction, transmitting forces between Kinesin-5 motor dimers during microtubule sliding. Chromosome segregation during mitosis depends upon Kinesin-5 motors, which display a conserved, bipolar homotetrameric organization consisting of two motor dimers at opposite ends of a central rod. Kinesin-5 motors crosslink adjacent microtubules to drive or constrain their sliding apart, but the structural basis of their organization is unknown. In this study, we report the atomic structure of the bipolar assembly (BASS) domain that directs four Kinesin-5 subunits to form a bipolar minifilament. BASS is a novel 26-nm four-helix bundle, consisting of two anti-parallel coiled-coils at its center, stabilized by alternating hydrophobic and ionic four-helical interfaces, which based on mutagenesis experiments, are critical for tetramerization. Strikingly, N-terminal BASS helices bend as they emerge from the central bundle, swapping partner helices, to form dimeric parallel coiled-coils at both ends, which are offset by 90°. We propose that BASS is a mechanically stable, plectonemically-coiled junction, transmitting forces between Kinesin-5 motor dimers during microtubule sliding.DOI: http://dx.doi.org/10.7554/eLife.02217.001 |
| Author | Nithianantham, Stanley Al-Bassam, Jawdat Scholey, Jessica E Scholey, Jonathan M |
| Author_xml | – sequence: 1 givenname: Jessica E surname: Scholey fullname: Scholey, Jessica E organization: Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States – sequence: 2 givenname: Stanley surname: Nithianantham fullname: Nithianantham, Stanley organization: Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States – sequence: 3 givenname: Jonathan M surname: Scholey fullname: Scholey, Jonathan M organization: Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States – sequence: 4 givenname: Jawdat surname: Al-Bassam fullname: Al-Bassam, Jawdat organization: Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24714498$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkk1rFTEUhoNUbK1duZcBN0KZmmQy-dgIpVgtXnChoruQyZy0uWQm1yQj9N-be28rbTGbfL3nyXtOzkt0MMcZEHpN8Jnoe_YeVt7BGaaUiGfoiOIet1iyXwcP1ofoJOc1rkMwKYl6gQ4pE4QxJY_Qz28lLbYsyYRmMNnnxsXUlBtoTM4wDeG2iW63n3yJxdtmiqUqvvgZsp_bvvFzic3gNzGYGgglmQlSfoWeOxMynNzNx-jH5cfvF5_b1ddPVxfnq9Yy0ZcWpHTESlCDEG4kI6OCOiml4ILY6nJkvFOUjEoax7EEzhmXBBQWEqTqeXeMrvbcMZq13iQ_mXSro_F6dxDTtTap2g6gKaPQCeJwRxyDThlc3xudI1yaEUtXWR_2rM0yTDBamGsy4RH08c3sb_R1_KM7JaQQuALe3QFS_L1ALnry2UIIZoa4ZE36WvWuJ7Sr0rdPpOu4pLmWShPFec2M0y3wzUNH_6zc_18VkL3ApphzAqetL6b4uDXogyZYb9tE79pE79qkxpw-ibnH_k_9FySavag |
| CitedBy_id | crossref_primary_10_7554_eLife_03398 crossref_primary_10_1002_cm_21380 crossref_primary_10_1038_s41594_024_01475_4 crossref_primary_10_3389_fonc_2022_965455 crossref_primary_10_1016_j_bbrc_2019_08_026 crossref_primary_10_1242_jcs_260474 crossref_primary_10_1074_jbc_M116_730697 crossref_primary_10_1242_jcs_195040 crossref_primary_10_1002_bies_201600062 crossref_primary_10_1073_pnas_1801242115 crossref_primary_10_1016_j_prp_2025_155904 crossref_primary_10_1016_j_devcel_2015_08_017 crossref_primary_10_1016_j_bcp_2020_114364 crossref_primary_10_1083_jcb_201612064 crossref_primary_10_1007_s00018_021_03928_1 crossref_primary_10_1016_j_bpc_2021_106548 crossref_primary_10_1091_mbc_E22_05_0153 crossref_primary_10_1242_dev_204424 crossref_primary_10_7554_eLife_72865 crossref_primary_10_1074_jbc_M114_620799 crossref_primary_10_1016_j_bpj_2017_09_006 crossref_primary_10_1007_s00018_018_2754_7 crossref_primary_10_1007_s00018_021_03891_x crossref_primary_10_7554_eLife_89958_3 crossref_primary_10_1007_s00018_017_2523_z crossref_primary_10_7554_eLife_51131 crossref_primary_10_1038_s44318_024_00048_x crossref_primary_10_3390_ijms22157857 crossref_primary_10_1007_s11120_014_0043_3 crossref_primary_10_1038_s41598_019_43774_7 crossref_primary_10_1093_jb_mvab120 crossref_primary_10_1038_s41467_024_50990_x crossref_primary_10_1038_s41580_024_00780_6 crossref_primary_10_1016_j_cell_2018_09_029 crossref_primary_10_1091_mbc_E23_07_0287 crossref_primary_10_1038_srep25597 crossref_primary_10_1073_pnas_2306480120 crossref_primary_10_1016_j_cub_2014_09_011 crossref_primary_10_1038_s41420_022_01281_1 crossref_primary_10_3390_jof8030294 crossref_primary_10_7554_eLife_89958 crossref_primary_10_1016_j_csbj_2022_08_020 crossref_primary_10_1073_pnas_1611581113 crossref_primary_10_1016_j_bpj_2015_03_018 crossref_primary_10_1007_s00412_022_00772_5 crossref_primary_10_3390_ijms22126420 crossref_primary_10_1002_appl_70017 crossref_primary_10_1091_mbc_E14_12_1631 crossref_primary_10_3390_biology5040051 crossref_primary_10_1146_annurev_cellbio_121420_100107 crossref_primary_10_1091_mbc_e16_05_0331 crossref_primary_10_7554_eLife_02715 crossref_primary_10_1074_jbc_M116_737577 crossref_primary_10_7554_eLife_71036 crossref_primary_10_1007_s00705_018_3753_6 crossref_primary_10_1016_j_tcb_2018_08_004 crossref_primary_10_1016_j_cub_2024_08_035 |
| Cites_doi | 10.1107/S0907444994003112 10.1016/j.devcel.2012.10.011 10.1016/j.cub.2008.10.026 10.1038/nature03503 10.1038/384225a0 10.1107/S0907444904019158 10.1146/annurev-cellbio-100109-104006 10.1083/jcb.200408113 10.1016/j.cell.2008.07.038 10.1091/mbc.E05-11-1090 10.1074/jbc.M113.499848 10.1016/j.cub.2006.09.064 10.1186/1747-1028-1-31 10.1038/379270a0 10.1038/ncb1394 10.1107/S0907444909038360 10.1016/j.jmb.2004.10.048 10.1016/S1074-5521(02)00212-0 10.1091/mbc.E08-10-1033 10.1107/S0907444902016657 10.1017/S0033583512000017 10.1016/S0092-8674(03)00111-9 10.1016/S0021-9258(17)31593-4 10.1016/j.cub.2010.12.038 10.1038/ncomms2348 10.1016/0092-8674(90)90350-N 10.1016/j.cub.2007.05.001 10.1002/jcc.20084 10.1038/359540a0 10.1083/jcb.200910125 10.2210/pdb3iv1/pdb 10.1002/cm.20349 10.1107/S0021889807021206 10.1038/nm1213-1550a 10.1126/science.288.5463.88 10.1038/nrm2832 10.1038/nrm2774 10.1021/bi050742a 10.1016/j.jmb.2009.03.008 10.1016/j.jmb.2008.08.059 10.1006/jmbi.1993.1012 10.1074/jbc.M604817200 10.1042/BST0371045 10.1074/jbc.M211889200 10.1074/jbc.274.40.28779 10.1016/S0022-2836(63)80008-X 10.1083/jcb.144.1.125 |
| ContentType | Journal Article |
| Copyright | Copyright © 2014, Scholey et al. This work is licensed under the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/3.0/ ) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2014, Scholey et al 2014 Scholey et al |
| Copyright_xml | – notice: Copyright © 2014, Scholey et al. This work is licensed under the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/3.0/ ) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2014, Scholey et al 2014 Scholey et al |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.7554/eLife.02217 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest One Academic ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2050-084X |
| ExternalDocumentID | oai_doaj_org_article_242e371f031f4e39a01d4dff168ad08f PMC3978770 24714498 10_7554_eLife_02217 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01-GM05550712S1 – fundername: NIGMS NIH HHS grantid: R00-GM08249 – fundername: NIGMS NIH HHS grantid: R00 GM084292 – fundername: NIGMS NIH HHS grantid: R01-GM55507 – fundername: National Institutes of Health grantid: R00-GM08249, R01-GM55507, R01-GM05550712S1 – fundername: University of California Cancer Coordinating committee |
| GroupedDBID | 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAKDD AAYXX ABUWG ACGFO ACGOD ACPRK ADBBV ADRAZ AENEX AFFHD AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI CCPQU CITATION DIK DWQXO FYUFA GNUQQ GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO IEA IHR INH ISR ITC KQ8 LK8 M1P M2P M48 M7P M~E NQS OK1 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO RHI RNS RPM UKHRP ALIPV CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c475t-e88f1c8e9b77fd1d4272f8887671c247d463921d98af608e664681e9078e89563 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 64 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000334351700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2050-084X |
| IngestDate | Fri Oct 03 12:44:43 EDT 2025 Tue Nov 04 01:56:05 EST 2025 Thu Oct 02 06:41:56 EDT 2025 Tue Oct 07 06:45:09 EDT 2025 Thu Apr 03 07:01:45 EDT 2025 Tue Nov 18 20:51:13 EST 2025 Sat Nov 29 02:17:19 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | microtubule coiled-coil mitosis motor protein X-ray structure Kinesin-5 |
| Language | English |
| License | http://creativecommons.org/licenses/by/3.0 This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c475t-e88f1c8e9b77fd1d4272f8887671c247d463921d98af608e664681e9078e89563 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work. |
| OpenAccessLink | https://doaj.org/article/242e371f031f4e39a01d4dff168ad08f |
| PMID | 24714498 |
| PQID | 1966563620 |
| PQPubID | 2045579 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_242e371f031f4e39a01d4dff168ad08f pubmedcentral_primary_oai_pubmedcentral_nih_gov_3978770 proquest_miscellaneous_1514435123 proquest_journals_1966563620 pubmed_primary_24714498 crossref_citationtrail_10_7554_eLife_02217 crossref_primary_10_7554_eLife_02217 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-04-08 |
| PublicationDateYYYYMMDD | 2014-04-08 |
| PublicationDate_xml | – month: 04 year: 2014 text: 2014-04-08 day: 08 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Cambridge |
| PublicationTitle | eLife |
| PublicationTitleAlternate | Elife |
| PublicationYear | 2014 |
| Publisher | eLife Sciences Publications Ltd eLife Sciences Publications, Ltd |
| Publisher_xml | – name: eLife Sciences Publications Ltd – name: eLife Sciences Publications, Ltd |
| References | Fujiwara (bib11) 2008; 383 McIntosh (bib26) 2012; 45 Kashina (bib20) 1996a; 379 Enos (bib9) 1990; 60 Kashina (bib21) 1996b; 384 Sawin (bib32) 1992; 359 Hentrich (bib14) 2010; 189 Kapitein (bib18) 2005; 435 Bodey (bib4) 2009; 388 Turbedsky (bib38) 2005; 345 Sharp (bib34) 1999; 144 Maliga (bib24) 2002; 9 Subramanian (bib36) 2012; 23 Vale (bib39) 2003; 112 Tao (bib37) 2006; 16 Cole (bib6) 1994; 269 Hirokawa (bib16) 2009; 10 Vale (bib40) 2000; 288 Billington (bib3) 2013; 288 Loughlin (bib23) 2008; 134 Yadav (bib48) 2005; 44 Adams (bib2) 2002; 58 Saunders (bib31) 2007; 17 Brust-Mascher (bib5) 2009; 20 DeLano (bib7) 2002 Project (bib30) 1994; 50 Huxley (bib17) 1963; 7 Lawrence (bib22) 2004; 167 Owens (bib28) 2013; 19 Sheldrick (bib35) 2010; 66 Hildebrandt (bib15) 2006; 281 Goshima (bib13) 2010; 26 Van Duyne (bib44) 1993; 229 Scholey (bib33) 2009; 66 Emsley (bib8) 2004; 60 Kaseda (bib19) 2009; 37 van den Wildenberg (bib43) 2008; 18 Wickstead (bib47) 2006; 17 Valentine (bib42) 2006b; 8 Valentine (bib41) 2006a; 1 Gordon (bib12) 1999; 274 Neculai (bib27) Acar (bib1) 2013; 4 McCoy (bib25) 2007; 40 Pettersen (bib29) 2004; 25 Walczak (bib45) 2010; 11 Weinger (bib46) 2011; 21 Ernst (bib10) 2003; 278 14064165 - J Mol Biol. 1963 Sep;7:281-308 20439998 - J Cell Biol. 2010 May 3;189(3):465-80 18692476 - Cell. 2008 Aug 8;134(3):548-548.e1 19158379 - Mol Biol Cell. 2009 Mar;20(6):1749-62 15572765 - Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32 12496247 - J Biol Chem. 2003 Mar 7;278(10):8630-6 21236672 - Curr Biol. 2011 Jan 25;21(2):154-60 24072716 - J Biol Chem. 2013 Nov 15;288(46):33398-410 16481395 - Mol Biol Cell. 2006 Apr;17(4):1734-43 8083185 - J Biol Chem. 1994 Sep 16;269(37):22913-6 9885249 - J Cell Biol. 1999 Jan 11;144(1):125-38 20383001 - Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):479-85 12600311 - Cell. 2003 Feb 21;112(4):467-80 12393927 - Acta Crystallogr D Biol Crystallogr. 2002 Nov;58(Pt 11):1948-54 19754449 - Biochem Soc Trans. 2009 Oct;37(Pt 5):1045-9 2138511 - Cell. 1990 Mar 23;60(6):1019-27 15299374 - Acta Crystallogr D Biol Crystallogr. 1994 Sep 1;50(Pt 5):760-3 19461840 - J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674 19062285 - Curr Biol. 2008 Dec 9;18(23):1860-4 15571728 - J Mol Biol. 2005 Jan 14;345(2):363-73 17173688 - Cell Div. 2006 Dec 15;1:31 1406972 - Nature. 1992 Oct 8;359(6395):540-3 19285086 - J Mol Biol. 2009 May 1;388(2):218-24 18782578 - J Mol Biol. 2008 Nov 21;383(4):854-70 10753125 - Science. 2000 Apr 7;288(5463):88-95 22321376 - Q Rev Biophys. 2012 May;45(2):147-207 15264254 - J Comput Chem. 2004 Oct;25(13):1605-12 8918872 - Nature. 1996 Nov 21;384(6606):225 19773780 - Nat Rev Mol Cell Biol. 2009 Oct;10(10):682-96 17580072 - Curr Biol. 2007 Jun 19;17(12):R453-4 8538794 - Nature. 1996 Jan 18;379(6562):270-2 16604065 - Nat Cell Biol. 2006 May;8(5):470-6 20604709 - Annu Rev Cell Dev Biol. 2010;26:21-57 16829678 - J Biol Chem. 2006 Sep 8;281(36):26004-13 19291760 - Cell Motil Cytoskeleton. 2009 Aug;66(8):500-8 15479732 - J Cell Biol. 2004 Oct 11;167(1):19-22 16008357 - Biochemistry. 2005 Jul 19;44(28):9723-32 20068571 - Nat Rev Mol Cell Biol. 2010 Feb;11(2):91-102 15875026 - Nature. 2005 May 5;435(7038):114-8 23299893 - Nat Commun. 2013;4:1343 10497250 - J Biol Chem. 1999 Oct 1;274(40):28779-86 24714499 - Elife. 2014;3:e02715 17141610 - Curr Biol. 2006 Dec 5;16(23):2293-302 23153484 - Dev Cell. 2012 Nov 13;23(5):874-85 24309639 - Nat Med. 2013 Dec;19(12):1550 12323373 - Chem Biol. 2002 Sep;9(9):989-96 7678431 - J Mol Biol. 1993 Jan 5;229(1):105-24 |
| References_xml | – year: 2002 ident: bib7 article-title: PyMOL molecular viewer – volume: 50 start-page: 760 year: 1994 ident: bib30 article-title: Number 4, the CCP4 suite: programs for protein crystallography publication-title: Acta Crystallographica Section D Biological Crystallography doi: 10.1107/S0907444994003112 – volume: 23 start-page: 874 year: 2012 ident: bib36 article-title: Building complexity: insights into self-organized assembly of microtubule-based architectures publication-title: Developmental Cell doi: 10.1016/j.devcel.2012.10.011 – volume: 18 start-page: 1860 year: 2008 ident: bib43 article-title: The homotetrameric Kinesin-5 KLP61F preferentially crosslinks microtubules into antiparallel orientations publication-title: Current Biology: CB doi: 10.1016/j.cub.2008.10.026 – volume: 435 start-page: 114 year: 2005 ident: bib18 article-title: The bipolar mitotic kinesin Eg5 moves on both microtubules that it crosslinks publication-title: Nature doi: 10.1038/nature03503 – volume: 384 start-page: 225 year: 1996b ident: bib21 article-title: An essential bipolar mitotic motor publication-title: Nature doi: 10.1038/384225a0 – volume: 60 start-page: 2126 year: 2004 ident: bib8 article-title: Coot: model-building tools for molecular graphics publication-title: Acta Crystallographica Section D Biological Crystallography doi: 10.1107/S0907444904019158 – volume: 26 start-page: 21 year: 2010 ident: bib13 article-title: Control of mitotic spindle length publication-title: Annual Review of Cell and Developmental Biology doi: 10.1146/annurev-cellbio-100109-104006 – volume: 167 start-page: 19 year: 2004 ident: bib22 article-title: A standardized kinesin nomenclature publication-title: The Journal of Cell Biology doi: 10.1083/jcb.200408113 – volume: 134 start-page: 548 year: 2008 ident: bib23 article-title: SnapShot: motor proteins in spindle assembly publication-title: Cell doi: 10.1016/j.cell.2008.07.038 – volume: 17 start-page: 1734 year: 2006 ident: bib47 article-title: A “holistic” kinesin phylogeny reveals new kinesin families and predicts protein functions publication-title: Molecular Biology of the Cell doi: 10.1091/mbc.E05-11-1090 – volume: 288 start-page: 33398 year: 2013 ident: bib3 article-title: Characterization of three full-length human nonmuscle myosin ii Paralogs publication-title: The Journal of Biological Chemistry doi: 10.1074/jbc.M113.499848 – volume: 16 start-page: 2293 year: 2006 ident: bib37 article-title: A homotetrameric Kinesin-5, KLP61F, bundles microtubules and antagonizes Ncd in motility assays publication-title: Current Biology: CB doi: 10.1016/j.cub.2006.09.064 – volume: 1 start-page: 31 year: 2006a ident: bib41 article-title: Eg5 steps it up! publication-title: Cell Division doi: 10.1186/1747-1028-1-31 – volume: 379 start-page: 270 year: 1996a ident: bib20 article-title: A bipolar kinesin publication-title: Nature doi: 10.1038/379270a0 – volume: 8 start-page: 470 year: 2006b ident: bib42 article-title: Individual dimers of the mitotic kinesin motor Eg5 step processively and support substantial loads in vitro publication-title: Nature Cell Biology doi: 10.1038/ncb1394 – volume: 66 start-page: 479 year: 2010 ident: bib35 article-title: Experimental phasing with SHELXC/D/E: combining chain tracing with density modification publication-title: Acta Crystallographica Section D Biological Crystallography doi: 10.1107/S0907444909038360 – volume: 345 start-page: 363 year: 2005 ident: bib38 article-title: Assembly of Acanthamoeba myosin-II minifilaments. Model of anti-parallel dimers based on EM and X-ray diffraction of 2D and 3D crystals publication-title: Journal of Molecular Biology doi: 10.1016/j.jmb.2004.10.048 – volume: 9 start-page: 989 year: 2002 ident: bib24 article-title: Evidence that monastrol is an allosteric inhibitor of the mitotic kinesin Eg5 publication-title: Chemistry & Biology doi: 10.1016/S1074-5521(02)00212-0 – volume: 20 start-page: 1749 year: 2009 ident: bib5 article-title: Kinesin-5-dependent poleward flux and spindle length control in Drosophila embryo mitosis publication-title: Molecular Biology of the Cell doi: 10.1091/mbc.E08-10-1033 – volume: 58 start-page: 1948 year: 2002 ident: bib2 article-title: PHENIX: building new software for automated crystallographic structure determination publication-title: Acta Crystallographica Section D Biological Crystallography doi: 10.1107/S0907444902016657 – volume: 45 start-page: 147 year: 2012 ident: bib26 article-title: Biophysics of mitosis publication-title: Quarterly Reviews of Biophysics doi: 10.1017/S0033583512000017 – volume: 112 start-page: 467 year: 2003 ident: bib39 article-title: The molecular motor toolbox for intracellular transport publication-title: Cell doi: 10.1016/S0092-8674(03)00111-9 – volume: 269 start-page: 22913 year: 1994 ident: bib6 article-title: A “slow” homotetrameric kinesin-related motor protein purified from Drosophila embryos publication-title: The Journal of Biological Chemistry doi: 10.1016/S0021-9258(17)31593-4 – volume: 21 start-page: 154 year: 2011 ident: bib46 article-title: A nonmotor microtubule binding site in Kinesin-5 is required for filament crosslinking and sliding publication-title: Current Biology: CB doi: 10.1016/j.cub.2010.12.038 – volume: 4 start-page: 1343 year: 2013 ident: bib1 article-title: The bipolar assembly domain of the mitotic motor Kinesin-5 publication-title: Nature Communications doi: 10.1038/ncomms2348 – volume: 60 start-page: 1019 year: 1990 ident: bib9 article-title: Mutation of a gene that encodes a kinesin-like protein blocks nuclear division in A. nidulans publication-title: Cell doi: 10.1016/0092-8674(90)90350-N – volume: 17 start-page: R453 year: 2007 ident: bib31 article-title: Kinesin-5 acts as a brake in anaphase spindle elongation publication-title: Current Biology: CB doi: 10.1016/j.cub.2007.05.001 – volume: 25 start-page: 1605 year: 2004 ident: bib29 article-title: UCSF Chimera–a visualization system for exploratory research and analysis publication-title: Journal of Computational Chemistry doi: 10.1002/jcc.20084 – volume: 359 start-page: 540 year: 1992 ident: bib32 article-title: Mitotic spindle organization by a plus-end-directed microtubule motor publication-title: Nature doi: 10.1038/359540a0 – volume: 189 start-page: 465 year: 2010 ident: bib14 article-title: Microtubule organization by the antagonistic mitotic motors Kinesin-5 and Kinesin-14 publication-title: The Journal of Cell Biology doi: 10.1083/jcb.200910125 – ident: bib27 doi: 10.2210/pdb3iv1/pdb – volume: 66 start-page: 500 year: 2009 ident: bib33 article-title: Kinesin-5 in Drosophila embryo mitosis: sliding filament or spindle matrix mechanism? publication-title: Cell Motility and the Cytoskeleton doi: 10.1002/cm.20349 – volume: 40 start-page: 658 year: 2007 ident: bib25 article-title: Phaser crystallographic software publication-title: Journal of Applied Crystallography doi: 10.1107/S0021889807021206 – volume: 19 start-page: 1550 year: 2013 ident: bib28 article-title: Kinesin inhibitor marches toward first-in-class pivotal trial publication-title: Nature Medicine doi: 10.1038/nm1213-1550a – volume: 288 start-page: 88 year: 2000 ident: bib40 article-title: The way things move: looking under the hood of molecular motor proteins publication-title: Science doi: 10.1126/science.288.5463.88 – volume: 11 start-page: 91 year: 2010 ident: bib45 article-title: Mechanisms of chromosome behaviour during mitosis publication-title: Nature Reviews Molecular Cell Biology doi: 10.1038/nrm2832 – volume: 10 start-page: 682 year: 2009 ident: bib16 article-title: Kinesin superfamily motor proteins and intracellular transport publication-title: Nature reviews Molecular Cell Biology doi: 10.1038/nrm2774 – volume: 44 start-page: 9723 year: 2005 ident: bib48 article-title: Structure-based engineering of internal cavities in coiled-coil peptides publication-title: Biochemistry doi: 10.1021/bi050742a – volume: 388 start-page: 218 year: 2009 ident: bib4 article-title: 9-Angstrom structure of a microtubule-bound mitotic motor publication-title: Journal of Molecular Biology doi: 10.1016/j.jmb.2009.03.008 – volume: 383 start-page: 854 year: 2008 ident: bib11 article-title: X-ray crystal structure of a TRPM assembly domain reveals an antiparallel four-stranded coiled-coil publication-title: Journal of Molecular Biology doi: 10.1016/j.jmb.2008.08.059 – volume: 229 start-page: 105 year: 1993 ident: bib44 article-title: Atomic structures of the human immunophilin FKBP-12 complexes with FK506 and rapamycin publication-title: Journal of Molecular Biology doi: 10.1006/jmbi.1993.1012 – volume: 281 start-page: 26004 year: 2006 ident: bib15 article-title: Homotetrameric form of Cin8p, a Saccharomyces cerevisiae Kinesin-5 motor, is essential for its in vivo function publication-title: The Journal of Biological Chemistry doi: 10.1074/jbc.M604817200 – volume: 37 start-page: 1045 year: 2009 ident: bib19 article-title: Walking, hopping, diffusing and braking modes of Kinesin-5 publication-title: Biochemical Society Transactions doi: 10.1042/BST0371045 – volume: 278 start-page: 8630 year: 2003 ident: bib10 article-title: High resolution structure, stability, and synaptotagmin binding of a truncated neuronal SNARE complex publication-title: The Journal of Biological Chemistry doi: 10.1074/jbc.M211889200 – volume: 274 start-page: 28779 year: 1999 ident: bib12 article-title: The kinesin-related protein Kip1p of Saccharomyces cerevisiae is bipolar publication-title: The Journal of Biological Chemistry doi: 10.1074/jbc.274.40.28779 – volume: 7 start-page: 281 year: 1963 ident: bib17 article-title: Electron microscope studies on the structure of natural and synthetic protein filaments from striated muscle publication-title: Journal of Molecular Biology doi: 10.1016/S0022-2836(63)80008-X – volume: 144 start-page: 125 year: 1999 ident: bib34 article-title: The bipolar kinesin, KLP61F, cross-links microtubules within interpolar microtubule bundles of Drosophila embryonic mitotic spindles publication-title: The Journal of Cell Biology doi: 10.1083/jcb.144.1.125 – reference: 18782578 - J Mol Biol. 2008 Nov 21;383(4):854-70 – reference: 12323373 - Chem Biol. 2002 Sep;9(9):989-96 – reference: 8538794 - Nature. 1996 Jan 18;379(6562):270-2 – reference: 8083185 - J Biol Chem. 1994 Sep 16;269(37):22913-6 – reference: 19158379 - Mol Biol Cell. 2009 Mar;20(6):1749-62 – reference: 8918872 - Nature. 1996 Nov 21;384(6606):225 – reference: 18692476 - Cell. 2008 Aug 8;134(3):548-548.e1 – reference: 19285086 - J Mol Biol. 2009 May 1;388(2):218-24 – reference: 10497250 - J Biol Chem. 1999 Oct 1;274(40):28779-86 – reference: 15479732 - J Cell Biol. 2004 Oct 11;167(1):19-22 – reference: 12600311 - Cell. 2003 Feb 21;112(4):467-80 – reference: 19773780 - Nat Rev Mol Cell Biol. 2009 Oct;10(10):682-96 – reference: 15571728 - J Mol Biol. 2005 Jan 14;345(2):363-73 – reference: 7678431 - J Mol Biol. 1993 Jan 5;229(1):105-24 – reference: 15572765 - Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32 – reference: 19291760 - Cell Motil Cytoskeleton. 2009 Aug;66(8):500-8 – reference: 15299374 - Acta Crystallogr D Biol Crystallogr. 1994 Sep 1;50(Pt 5):760-3 – reference: 16604065 - Nat Cell Biol. 2006 May;8(5):470-6 – reference: 16008357 - Biochemistry. 2005 Jul 19;44(28):9723-32 – reference: 16829678 - J Biol Chem. 2006 Sep 8;281(36):26004-13 – reference: 17141610 - Curr Biol. 2006 Dec 5;16(23):2293-302 – reference: 15264254 - J Comput Chem. 2004 Oct;25(13):1605-12 – reference: 16481395 - Mol Biol Cell. 2006 Apr;17(4):1734-43 – reference: 12496247 - J Biol Chem. 2003 Mar 7;278(10):8630-6 – reference: 20068571 - Nat Rev Mol Cell Biol. 2010 Feb;11(2):91-102 – reference: 23153484 - Dev Cell. 2012 Nov 13;23(5):874-85 – reference: 20383001 - Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):479-85 – reference: 17580072 - Curr Biol. 2007 Jun 19;17(12):R453-4 – reference: 19461840 - J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674 – reference: 21236672 - Curr Biol. 2011 Jan 25;21(2):154-60 – reference: 2138511 - Cell. 1990 Mar 23;60(6):1019-27 – reference: 17173688 - Cell Div. 2006 Dec 15;1:31 – reference: 1406972 - Nature. 1992 Oct 8;359(6395):540-3 – reference: 24714499 - Elife. 2014;3:e02715 – reference: 20604709 - Annu Rev Cell Dev Biol. 2010;26:21-57 – reference: 24072716 - J Biol Chem. 2013 Nov 15;288(46):33398-410 – reference: 10753125 - Science. 2000 Apr 7;288(5463):88-95 – reference: 20439998 - J Cell Biol. 2010 May 3;189(3):465-80 – reference: 22321376 - Q Rev Biophys. 2012 May;45(2):147-207 – reference: 24309639 - Nat Med. 2013 Dec;19(12):1550 – reference: 9885249 - J Cell Biol. 1999 Jan 11;144(1):125-38 – reference: 19754449 - Biochem Soc Trans. 2009 Oct;37(Pt 5):1045-9 – reference: 15875026 - Nature. 2005 May 5;435(7038):114-8 – reference: 14064165 - J Mol Biol. 1963 Sep;7:281-308 – reference: 23299893 - Nat Commun. 2013;4:1343 – reference: 12393927 - Acta Crystallogr D Biol Crystallogr. 2002 Nov;58(Pt 11):1948-54 – reference: 19062285 - Curr Biol. 2008 Dec 9;18(23):1860-4 |
| SSID | ssj0000748819 |
| Score | 2.3083162 |
| Snippet | Chromosome segregation during mitosis depends upon Kinesin-5 motors, which display a conserved, bipolar homotetrameric organization consisting of two motor... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e02217 |
| SubjectTerms | Amino Acid Sequence Animals Biophysics and Structural Biology Biopolymers - chemistry Cell Biology Cell division coiled-coil Crystallography Crystallography, X-Ray Drosophila Hydrophobicity Interfaces Kinesin Kinesin - chemistry Kinesin-5 microtubule Microtubules Mitosis Models, Molecular Molecular Sequence Data motor protein Mutagenesis Protein Conformation Sequence Homology, Amino Acid X-ray structure |
| SummonAdditionalLinks | – databaseName: Biological Science Database dbid: M7P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9VAEB60KvhivVWjVVbokxCby57s5EmsWASlFFTsW0g2u22gTY4nUei_99tNTuqR4ouPyQ5hkrl9szuZIdpTkbXutCt0Z16hrIwNK8ZlqRJZcrmI0pr9sAl1dMQnJ_nxtOHWT2WVa5_oHXXdabdHvg9NAfSAu43eLn-EbmqUO12dRmjcpFuuS0LqS_eO5z0WhEdGxBt_y1MInPvmc2PNG8QtP6DsKhD5fv3Xgcy_ayX_CD6H2__L9n26N8FO8W7Ukwd0w7QP6c44iPLyEX3_4tvIuhYcAnGt6QWwrAA2FMDW5qI6vxSd9dcX8AB4hoCEQfHJFc03bbgQTTt0omqWLlMWgxlczdeqf0zfDj98ff8xnEYuhFqqxRAaZhtrNnmllK3jWiYqsUiSVaZinUhVSyCaJK5zLm0WsckymXFskGGzYaRa6Q5ttV1rnpKoc9h3tWCbVJmMNKCe1hXQIjCCzlNjA3q9_v6FnvqRu7EY5wXyEieswgur8MIKaG8mXo5tOK4nO3CCnElc72x_o1udFpMpFgAlJlWxhTuz0qR5GeE9a6hsxmUdMRjbXYuymAy6L67kGNCreRmm6M5XytZ0P0ED8An0CSwQ0JNRa2ZO8O2wmHNAakOfNljdXGmbM9_uG4iRlYqe_Zut53QXWG4sKuJd2oLamBd0W_8amn710tvFb_nUGHY priority: 102 providerName: ProQuest |
| Title | Structural basis for the assembly of the mitotic motor Kinesin-5 into bipolar tetramers |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/24714498 https://www.proquest.com/docview/1966563620 https://www.proquest.com/docview/1514435123 https://pubmed.ncbi.nlm.nih.gov/PMC3978770 https://doaj.org/article/242e371f031f4e39a01d4dff168ad08f |
| Volume | 3 |
| WOSCitedRecordID | wos000334351700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: M7P dateStart: 20120101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: 7X7 dateStart: 20120101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: PIMPY dateStart: 20120101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: M2P dateStart: 20120101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9tAEB7apIVeSvpWm5gt5FRQo5c1o2NTElraGNEHdU9Cj10qSOQQq4X8-367Uhw7BHrpZUHewV7Nzuz3DTueIdrnwBh72-XbOy8_qbTxK8FjyVFSSjkN4kZcswmezWQ-z_K1Vl82J2woDzwo7gAQomMODYzPJDrOyiBskgY_kErZBGLs6QvWsxZMuTOYYZhhNvwhjwGZB_pza_RbIJZrTXYNQa5S_2308maW5BrsHO_Qw5EvqnfDOh_RHd09pvtDB8nLJ_Tjq6v_amtnKABSu1QgoQqkToEU67Pq9FItjHs-g-viOxS2BhKfbLZ72_lT1Xb9QlXtuQ1xVa97m6x1sXxK34-Pvr3_4I-9Evw64WnvaxET1qKzitk0UFHEkUF0yymHdZRwk4CKRGGTSWnSQHSaJqmEGqGxaEGMFD-jrW7R6RekmgyOWU3FRFWaBDU4Wl1XoHkA9zqLtfHozZX6inosJG77WZwWCCisrgun68Lp2qP9lfD5UD_jdrFDuw8rEVv02n0AUyhGUyj-ZQoe7V7tYjF64rLACQPKCpgOPHq9moYP2YuRstOL35ABawRtBIh79HzY9NVKoDtMZuIRb5jDxlI3Z7r2l6vTDaonzMHL__Fur-gBqNqQMyS7tAXj0nt0r_7Tt8uLCd3lObtRJrR9eDTLv0ycQ2A8iXI7Msbt_ONJ_vMvz9URXQ |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbtRAEC2FCShc2AOGAI0ULkgmXnrc7QNCbFFGMxmNRBDhZLx0g6XEHsYGND_FN_Lay4RBEbccONpdstr261eveqki2hWO1ma1yzZrXjZPlLYTictYeDyW8dDxM9kUmxDTqTw-Dmcb9Ks_C2O2Vfac2BB1VqZmjnwPSIH0AN06L-ffbFM1yqyu9iU0WliM1fInQrbqxegt_u9Tz9t_d_TmwO6qCtgpF8PaVlJqN5UqTITQmZtxT3gacaAIhJt6XGQcTttzs1DGOnCkCgIeSFchiJRKIprw8dxLtMkBdjmgzdnocPZpNasDhyzhY9uDgAKuek9Ncq2ew1M2JdHOXF9TIeA8Wfv37sw_3N3-9f_tQ92ga52wZq_akXCTNlRxi660pTaXt-nj-yZRrkkywuC584pBrTOoX4boQZ0mJ0tW6ub6FByHZzBgGBZjcywgL-why4u6ZEk-N3MBrFa12dW2qO7Qhwt5q20aFGWh7hHLQjBYMpTaSwLupBCzaZpAD0MFpaGvtEXP-v8dpV3GdVP44yRC5GXAETXgiBpwWLS7Mp63iUbON3ttgLMyMdnBmxvl4kvUkU0E2aV84WoQtubKD2MH75lhUAYyzhyJju300Ik6yqqiM9xY9GTVDLIxK0hxocrvsIG8hr6G2rHobovSVU_w7dAYSovEGn7XurreUuRfm4Tm0MRSCOf-v7v1mLYOjg4n0WQ0HT-gq1Cu7RYquUMDQEg9pMvpjzqvFo-6Ucno80Xj-ze6PHOO |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V8hAX3o9AASOVC1LYvDZ2DggBZUW11WolQPSWJo4Nkdpk2QTQ_jV-HZ-dZMuiilsPHB2PLCf5PPONPZ4h2uWe1ua0yzVnXm6UK-3mAs2MB1EmsrEXFsIWm-CzmTg8TOZb9Gu4C2PCKgedaBV1UUuzRz4CUkA9oG69ke7DIuZ7k1eLb66pIGVOWodyGh1Epmr1E-5b83J_D__6WRBM3n18-97tKwy4MuLj1lVCaF8KleSc68IvooAHGj4hj7kvg4gXEQx44BeJyHTsCRXHUSx8BYdSKAHPIsS4F-giN0nLbdjgfL2_A9MsYG27K4EcRnukDkqtXsBm2uJop0bQ1go4i-D-Haf5h-GbXP-fP9kNutbTbfa6Wx83aUtVt-hyV4BzdZs-f7Dpc03qEQZ7XjYMHJ6BEzP4FOokP16xWtv2CTQfxmBANiSm5rJAWbljVlZtzfJyYXYIWKtaE-u2bO7Qp3N5q7u0XdWVuk-sSKDX8rHQQR5HngTFlTIHSwY3kkmotEPPh3-fyj4PuykHcpzCHzNASS1QUgsUh3bXwosu_cjZYm8MiNYiJme4fVAvv6S9CkpBxlTIfQ01riMVJpmH9yywVGORFZ7AxHYGGKW9ImvSUww59HTdDRVkzpWyStXfIQPSDdYNDuTQvQ6x65ng26EzEQ7xDSxvTHWzpyq_2jTnYMqCc-_Bv6f1hK4A1OnB_mz6kK6CznZxVWKHtoEg9YguyR9t2Swf2-XJ6Oi8wf0bgpZ6zQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+basis+for+the+assembly+of+the+mitotic+motor+Kinesin-5+into+bipolar+tetramers&rft.jtitle=eLife&rft.au=Scholey%2C+Jessica+E&rft.au=Nithianantham%2C+Stanley&rft.au=Scholey%2C+Jonathan+M&rft.au=Al-Bassam%2C+Jawdat&rft.date=2014-04-08&rft.eissn=2050-084X&rft.volume=3&rft.spage=e02217&rft_id=info:doi/10.7554%2FeLife.02217&rft_id=info%3Apmid%2F24714498&rft.externalDocID=24714498 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-084X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-084X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-084X&client=summon |