Research proposal content extraction using natural language processing and semi-supervised clustering: A demonstration and comparative analysis

Funding institutions often solicit text-based research proposals to evaluate potential recipients. Leveraging the information contained in these documents could help institutions understand the supply of research within their domain. In this work, an end-to-end methodology for semi-supervised docume...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientometrics Jg. 128; H. 5; S. 3197 - 3224
Hauptverfasser: Knisely, Benjamin M., Pavliscsak, Holly H.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cham Springer International Publishing 01.05.2023
Springer Nature B.V
Schlagworte:
ISSN:0138-9130, 1588-2861
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Funding institutions often solicit text-based research proposals to evaluate potential recipients. Leveraging the information contained in these documents could help institutions understand the supply of research within their domain. In this work, an end-to-end methodology for semi-supervised document clustering is introduced to partially automate classification of research proposals based on thematic areas of interest. The methodology consists of three stages: (1) manual annotation of a document sample; (2) semi-supervised clustering of documents; (3) evaluation of cluster results using quantitative metrics and qualitative ratings (coherence, relevance, distinctiveness) by experts. The methodology is described in detail to encourage replication and is demonstrated on a real-world data set. This demonstration sought to categorize proposals submitted to the US Army Telemedicine and Advanced Technology Research Center (TATRC) related to technological innovations in military medicine. A comparative analysis of method features was performed, including unsupervised vs. semi-supervised clustering, several document vectorization techniques, and several cluster result selection strategies. Outcomes suggest that pretrained Bidirectional Encoder Representations from Transformers (BERT) embeddings were better suited for the task than older text embedding techniques. When comparing expert ratings between algorithms, semi-supervised clustering produced coherence ratings ~ 25% better on average compared to standard unsupervised clustering with negligible differences in cluster distinctiveness. Last, it was shown that a cluster result selection strategy that balances internal and external validity produced ideal results. With further refinement, this methodological framework shows promise as a useful analytical tool for institutions to unlock hidden insights from untapped archives and similar administrative document repositories.
AbstractList Funding institutions often solicit text-based research proposals to evaluate potential recipients. Leveraging the information contained in these documents could help institutions understand the supply of research within their domain. In this work, an end-to-end methodology for semi-supervised document clustering is introduced to partially automate classification of research proposals based on thematic areas of interest. The methodology consists of three stages: (1) manual annotation of a document sample; (2) semi-supervised clustering of documents; (3) evaluation of cluster results using quantitative metrics and qualitative ratings (coherence, relevance, distinctiveness) by experts. The methodology is described in detail to encourage replication and is demonstrated on a real-world data set. This demonstration sought to categorize proposals submitted to the US Army Telemedicine and Advanced Technology Research Center (TATRC) related to technological innovations in military medicine. A comparative analysis of method features was performed, including unsupervised vs. semi-supervised clustering, several document vectorization techniques, and several cluster result selection strategies. Outcomes suggest that pretrained Bidirectional Encoder Representations from Transformers (BERT) embeddings were better suited for the task than older text embedding techniques. When comparing expert ratings between algorithms, semi-supervised clustering produced coherence ratings ~ 25% better on average compared to standard unsupervised clustering with negligible differences in cluster distinctiveness. Last, it was shown that a cluster result selection strategy that balances internal and external validity produced ideal results. With further refinement, this methodological framework shows promise as a useful analytical tool for institutions to unlock hidden insights from untapped archives and similar administrative document repositories.
Funding institutions often solicit text-based research proposals to evaluate potential recipients. Leveraging the information contained in these documents could help institutions understand the supply of research within their domain. In this work, an end-to-end methodology for semi-supervised document clustering is introduced to partially automate classification of research proposals based on thematic areas of interest. The methodology consists of three stages: (1) manual annotation of a document sample; (2) semi-supervised clustering of documents; (3) evaluation of cluster results using quantitative metrics and qualitative ratings (coherence, relevance, distinctiveness) by experts. The methodology is described in detail to encourage replication and is demonstrated on a real-world data set. This demonstration sought to categorize proposals submitted to the US Army Telemedicine and Advanced Technology Research Center (TATRC) related to technological innovations in military medicine. A comparative analysis of method features was performed, including unsupervised vs. semi-supervised clustering, several document vectorization techniques, and several cluster result selection strategies. Outcomes suggest that pretrained Bidirectional Encoder Representations from Transformers (BERT) embeddings were better suited for the task than older text embedding techniques. When comparing expert ratings between algorithms, semi-supervised clustering produced coherence ratings ~ 25% better on average compared to standard unsupervised clustering with negligible differences in cluster distinctiveness. Last, it was shown that a cluster result selection strategy that balances internal and external validity produced ideal results. With further refinement, this methodological framework shows promise as a useful analytical tool for institutions to unlock hidden insights from untapped archives and similar administrative document repositories. The online version contains supplementary material available at 10.1007/s11192-023-04689-3.
Funding institutions often solicit text-based research proposals to evaluate potential recipients. Leveraging the information contained in these documents could help institutions understand the supply of research within their domain. In this work, an end-to-end methodology for semi-supervised document clustering is introduced to partially automate classification of research proposals based on thematic areas of interest. The methodology consists of three stages: (1) manual annotation of a document sample; (2) semi-supervised clustering of documents; (3) evaluation of cluster results using quantitative metrics and qualitative ratings (coherence, relevance, distinctiveness) by experts. The methodology is described in detail to encourage replication and is demonstrated on a real-world data set. This demonstration sought to categorize proposals submitted to the US Army Telemedicine and Advanced Technology Research Center (TATRC) related to technological innovations in military medicine. A comparative analysis of method features was performed, including unsupervised vs. semi-supervised clustering, several document vectorization techniques, and several cluster result selection strategies. Outcomes suggest that pretrained Bidirectional Encoder Representations from Transformers (BERT) embeddings were better suited for the task than older text embedding techniques. When comparing expert ratings between algorithms, semi-supervised clustering produced coherence ratings ~ 25% better on average compared to standard unsupervised clustering with negligible differences in cluster distinctiveness. Last, it was shown that a cluster result selection strategy that balances internal and external validity produced ideal results. With further refinement, this methodological framework shows promise as a useful analytical tool for institutions to unlock hidden insights from untapped archives and similar administrative document repositories.Funding institutions often solicit text-based research proposals to evaluate potential recipients. Leveraging the information contained in these documents could help institutions understand the supply of research within their domain. In this work, an end-to-end methodology for semi-supervised document clustering is introduced to partially automate classification of research proposals based on thematic areas of interest. The methodology consists of three stages: (1) manual annotation of a document sample; (2) semi-supervised clustering of documents; (3) evaluation of cluster results using quantitative metrics and qualitative ratings (coherence, relevance, distinctiveness) by experts. The methodology is described in detail to encourage replication and is demonstrated on a real-world data set. This demonstration sought to categorize proposals submitted to the US Army Telemedicine and Advanced Technology Research Center (TATRC) related to technological innovations in military medicine. A comparative analysis of method features was performed, including unsupervised vs. semi-supervised clustering, several document vectorization techniques, and several cluster result selection strategies. Outcomes suggest that pretrained Bidirectional Encoder Representations from Transformers (BERT) embeddings were better suited for the task than older text embedding techniques. When comparing expert ratings between algorithms, semi-supervised clustering produced coherence ratings ~ 25% better on average compared to standard unsupervised clustering with negligible differences in cluster distinctiveness. Last, it was shown that a cluster result selection strategy that balances internal and external validity produced ideal results. With further refinement, this methodological framework shows promise as a useful analytical tool for institutions to unlock hidden insights from untapped archives and similar administrative document repositories.The online version contains supplementary material available at 10.1007/s11192-023-04689-3.Supplementary InformationThe online version contains supplementary material available at 10.1007/s11192-023-04689-3.
Author Knisely, Benjamin M.
Pavliscsak, Holly H.
Author_xml – sequence: 1
  givenname: Benjamin M.
  orcidid: 0000-0001-8450-3198
  surname: Knisely
  fullname: Knisely, Benjamin M.
  email: benjamin.m.knisely2.ctr@health.mil
  organization: Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command
– sequence: 2
  givenname: Holly H.
  surname: Pavliscsak
  fullname: Pavliscsak, Holly H.
  organization: Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37101971$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1v1DAQhi1URLeFP8ABReLCJeCPfNhcUFVBi1QJCcHZmnVmt64SO3iSFf0V_GWc3VKgh54sa5731bwzc8KOQgzI2EvB3wrO23ckhDCy5FKVvGq0KdUTthK11qXUjThiKy6ULo1Q_JidEN3wLFJcP2PHqhVcmFas2K-vSAjJXRdjimMk6AsXw4RhKvDnlMBNPoZiJh-2RYBpThnoIWxn2OIicUj7GoSuIBx8SfOIaecJu8L1M02Ycvl9cVZ0OMRA2XLvuPAuDiMs_x3mP_S35Ok5e7qBnvDF3XvKvn_6-O38srz6cvH5_OyqdFVbTyVWtekEVlpr2XboDOdQVWuBwLu6Ftg1DlS9aTfrFkQFYJQEaTQoLdwatFSn7MPBd5zXA3YuB87R7Jj8AOnWRvD2_0rw13YbdzZPXiveNNnhzZ1Dij9mpMkOnhz2eToYZ7JS88aYSkmd0dcP0Js4p5yYrJJ1o4XWTZupV_-2dN_Ln2VlQB4AlyJRws09IvjSV2sPF2HzRdj9RViVRfqByPlpv4Mcy_ePS9VBSuOyREx_235E9RuhuM8q
CitedBy_id crossref_primary_10_1093_milmed_usad314
crossref_primary_10_1155_2024_6671359
crossref_primary_10_1093_milmed_usae063
Cites_doi 10.1016/j.cptl.2018.03.019
10.1016/j.envsci.2006.10.004
10.1109/TFUZZ.2018.2889010
10.1109/ASRU46091.2019.9003958
10.1007/s11192-017-2609-2
10.46743/2160-3715/2019.4120
10.5281/zenodo.831850
10.3233/JIFS-189871
10.1016/j.ipm.2019.04.002
10.1016/j.ipm.2022.103069
10.1016/j.knosys.2021.107342
10.1007/s10586-018-2023-4
10.1016/j.joi.2018.09.004
10.1109/TSMCA.2011.2172205
10.3115/v1/D14-1162
10.2307/2284239
10.1016/j.yjbinx.2019.100057
10.1109/ICISC.2017.8068581
10.1007/s10489-021-02376-5
10.1007/978-3-319-19369-4_5
10.1038/nmeth.1619
10.1016/j.eswa.2022.116551
10.1016/j.joi.2020.101018
10.1016/j.hfh.2022.100016
10.11613/BM.2012.031
10.18653/v1/D19-1383
10.1186/s40537-022-00564-9
10.1109/ICOASE51841.2020.9436540
10.1007/978-3-030-32381-3_16
10.1093/ptj/85.3.257
10.5220/0006541900290039
10.1177/1063293X20982973
10.1007/s11192-020-03396-7
10.1007/s11192-019-03126-8
10.1007/s11192-014-1319-2
10.1109/TSE.2020.3036108
10.1093/reseval/rvw016
10.1109/ICAICTA53211.2021.9640285
10.1111/coin.12064
10.1016/j.ipm.2021.102683
10.1109/HICSS.2015.153
10.1093/scipol/scy026
10.1007/978-3-642-30111-7_25
10.1016/j.eswa.2020.113679
10.1109/ACCESS.2020.2980942
10.1016/j.envsci.2006.10.001
10.1109/ITNEC48623.2020.9085059
10.5441/002/edbt.2014.31
10.1002/wics.1270
10.1016/j.ipm.2021.102816
10.1007/s10994-006-6540-7
10.18637/jss.v025.i04
10.1016/j.eswa.2008.06.093
10.18653/v1/N19-1423
10.19026/rjaset.8.1118
10.1007/s12559-019-09664-w
10.18653/v1/D19-1410
10.1109/ICACSIS53237.2021.9631364
10.1504/IJAIP.2021.116369
10.1109/COMITCon.2019.8862247
10.1016/j.sapharm.2012.04.004
10.1080/09537325.2013.850477
10.1002/widm.1300
10.5829/ije.2021.34.12C.10
10.1007/978-3-030-51935-3_34
ContentType Journal Article
Copyright Akadémiai Kiadó, Budapest, Hungary 2023 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Akadémiai Kiadó, Budapest, Hungary 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Akadémiai Kiadó, Budapest, Hungary 2023.
Copyright_xml – notice: Akadémiai Kiadó, Budapest, Hungary 2023 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Akadémiai Kiadó, Budapest, Hungary 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Akadémiai Kiadó, Budapest, Hungary 2023.
DBID AAYXX
CITATION
NPM
3V.
7X2
8FE
8FG
8FH
8FK
ABJCF
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
D1I
DWQXO
E3H
F2A
GNUQQ
HCIFZ
JQ2
K7-
KB.
L6V
LK8
M0K
M7P
M7S
P5Z
P62
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
7X8
5PM
DOI 10.1007/s11192-023-04689-3
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Agricultural Science
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Materials Science & Engineering
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central (subscription)
Technology collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
ProQuest Central Student
SciTech Premium Collection (Proquest)
ProQuest Computer Science Collection
Computer Science Database (Proquest)
Materials Science Database
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
Biological Science Database (Proquest)
Engineering Database (Proquest)
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection (ProQuest)
Environmental Science Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Agricultural Science Database
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
Library and Information Science Abstracts (LISA)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
Environmental Science Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Environmental Science Database
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList

PubMed
Agricultural Science Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Computer Science
Medicine
EISSN 1588-2861
EndPage 3224
ExternalDocumentID PMC10083066
37101971
10_1007_s11192_023_04689_3
Genre Journal Article
GroupedDBID --K
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
1B1
1N0
1SB
2.D
203
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
77K
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHQT
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSNA
ACYUM
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDZB
AFEXP
AFGCZ
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LLZTM
M4Y
MA-
MET
MKB
N2Q
N9A
NB0
NDZJH
NPVJJ
NQ-
NQJWS
NU0
O-J
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9O
PF0
PT4
PT5
QOK
QOS
R-Y
R4E
R89
R9I
RHV
RIG
RKA
RNI
ROL
RPX
RPZ
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WHG
WK6
WK8
YLTOR
Z45
ZMTXR
~A9
~EX
77I
7X2
AAYXX
ABFSG
ABJCF
ABRTQ
ACSTC
AEUYN
AEZWR
AFFHD
AFHIU
AFKRA
AFOHR
AHWEU
AIXLP
ARAPS
ATCPS
ATHPR
BBNVY
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
HCIFZ
K7-
KB.
M0K
M7P
M7S
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PQGLB
PTHSS
PYCSY
-4Z
-59
-5G
-BR
-EM
ADINQ
GQ6
NPM
Z5O
Z7R
Z7U
Z7V
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8R
Z8T
Z8W
Z92
3V.
8FE
8FG
8FH
8FK
AZQEC
D1I
DWQXO
E3H
F2A
GNUQQ
JQ2
L6V
LK8
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c475t-e459d1e488827dec900a44b1ea0d551ed6ca35f7fb7a14aa932a298a381cba823
IEDL.DBID RSV
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000965935800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0138-9130
IngestDate Tue Nov 04 02:06:48 EST 2025
Fri Sep 05 05:58:08 EDT 2025
Sat Nov 15 05:53:11 EST 2025
Wed Feb 19 02:24:33 EST 2025
Tue Nov 18 21:33:20 EST 2025
Sat Nov 29 08:00:17 EST 2025
Thu Apr 10 08:03:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Text mining
Cluster validation
Document clustering
Research portfolio
Machine learning
Language English
License Akadémiai Kiadó, Budapest, Hungary 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c475t-e459d1e488827dec900a44b1ea0d551ed6ca35f7fb7a14aa932a298a381cba823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8450-3198
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC10083066
PMID 37101971
PQID 3256818867
PQPubID 2043823
PageCount 28
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10083066
proquest_miscellaneous_2806994328
proquest_journals_3256818867
pubmed_primary_37101971
crossref_primary_10_1007_s11192_023_04689_3
crossref_citationtrail_10_1007_s11192_023_04689_3
springer_journals_10_1007_s11192_023_04689_3
PublicationCentury 2000
PublicationDate 2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Switzerland
– name: Dordrecht
PublicationSubtitle An International Journal for all Quantitative Aspects of the Science of Science, Communication in Science and Science Policy
PublicationTitle Scientometrics
PublicationTitleAbbrev Scientometrics
PublicationTitleAlternate Scientometrics
PublicationYear 2023
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References LG Nichols (4689_CR49) 2014; 100
Y Wang (4689_CR72) 2015
E Bair (4689_CR7) 2013; 5
4689_CR40
P Jiménez (4689_CR29) 2021; 58
SA Curiskis (4689_CR17) 2020; 57
FK Khattak (4689_CR32) 2019; 100
IO Arnarsson (4689_CR4) 2021; 29
4689_CR47
Y Qin (4689_CR56) 2019; 11
EC McNie (4689_CR41) 2007; 10
T Mikolov (4689_CR43) 2013
GT Reddy (4689_CR59) 2020; 8
M Pourrajabi (4689_CR54) 2014
K Kaya (4689_CR31) 2022; 59
KW Boyack (4689_CR12) 2018; 114
A Ebadi (4689_CR20) 2020; 14
4689_CR71
P Bhattacharya (4689_CR10) 2022; 59
CA Freyman (4689_CR23) 2016; 25
DS Priya (4689_CR55) 2014
MA Mutasodirin (4689_CR48) 2021; 2021
4689_CR34
4689_CR37
D Sarewitz (4689_CR65) 2007; 10
M Mittal (4689_CR45) 2019; 9
Y Hu (4689_CR28) 2016; 32
SK Mishra (4689_CR44) 2022; 52
J Ma (4689_CR38) 2012; 42
E Rendón (4689_CR61) 2011; 5
F Pedregosa (4689_CR51) 2011; 12
SM Sadjadi (4689_CR62) 2021; 34
4689_CR3
4689_CR60
4689_CR5
J Kim (4689_CR33) 2020; 123
WM Rand (4689_CR58) 1971; 66
4689_CR6
A Castleberry (4689_CR14) 2018; 10
J Bergstra (4689_CR9) 2012; 13
RA Saravanan (4689_CR64) 2021; 19
4689_CR1
R Pappagari (4689_CR50) 2019; 2019
N Kalpokaite (4689_CR30) 2019
K Rajput (4689_CR57) 2017; 2017
Y Zhou (4689_CR76) 2019; 120
S Bird (4689_CR11) 2009
R Sandhiya (4689_CR63) 2019; 22
N Gisev (4689_CR27) 2013; 9
S Gajawada (4689_CR24) 2012
ML McHugh (4689_CR39) 2012; 22
A Subakti (4689_CR68) 2022; 9
S Bajpai (4689_CR8) 2015; 41
WS El-Kassas (4689_CR22) 2021; 165
AJ Gates (4689_CR25) 2017; 18
J Edler (4689_CR21) 2018; 45
Y Li (4689_CR35) 2020; 1
J Sim (4689_CR66) 2005; 85
Z Ghasemi (4689_CR26) 2022; 195
C Sun (4689_CR69) 2019
J Wu (4689_CR73) 2009; 36
4689_CR52
S Choi (4689_CR15) 2014; 26
A Penta (4689_CR53) 2021; 229
A Starczewski (4689_CR67) 2015
M Allaoui (4689_CR2) 2020
G Brock (4689_CR13) 2008
4689_CR16
EM Talley (4689_CR70) 2011; 8
4689_CR18
Y Zhang (4689_CR74) 2018; 12
SM Mohammed (4689_CR46) 2020
J Dhanani (4689_CR19) 2021; 41
J-P Mei (4689_CR42) 2019; 27
M Li (4689_CR36) 2022; 48
S Zhong (4689_CR75) 2006; 65
References_xml – volume: 10
  start-page: 807
  issue: 6
  year: 2018
  ident: 4689_CR14
  publication-title: Currents in Pharmacy Teaching and Learning
  doi: 10.1016/j.cptl.2018.03.019
– volume: 10
  start-page: 17
  issue: 1
  year: 2007
  ident: 4689_CR41
  publication-title: Environmental Science & Policy
  doi: 10.1016/j.envsci.2006.10.004
– volume: 27
  start-page: 1726
  issue: 9
  year: 2019
  ident: 4689_CR42
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/TFUZZ.2018.2889010
– volume: 41
  start-page: 20
  year: 2015
  ident: 4689_CR8
  publication-title: Journal of the Indian Academy of Applied Psychology
– volume: 2019
  start-page: 838
  year: 2019
  ident: 4689_CR50
  publication-title: IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)
  doi: 10.1109/ASRU46091.2019.9003958
– ident: 4689_CR37
– volume: 114
  start-page: 449
  issue: 2
  year: 2018
  ident: 4689_CR12
  publication-title: Scientometrics
  doi: 10.1007/s11192-017-2609-2
– year: 2019
  ident: 4689_CR30
  publication-title: The Qualitative Report
  doi: 10.46743/2160-3715/2019.4120
– volume: 13
  start-page: 281
  issue: 10
  year: 2012
  ident: 4689_CR9
  publication-title: Journal of Machine Learning Research
– ident: 4689_CR6
  doi: 10.5281/zenodo.831850
– volume: 41
  start-page: 5497
  issue: 5
  year: 2021
  ident: 4689_CR19
  publication-title: Journal of Intelligent & Fuzzy Systems
  doi: 10.3233/JIFS-189871
– volume: 57
  start-page: 102034
  issue: 2
  year: 2020
  ident: 4689_CR17
  publication-title: Information Processing & Management
  doi: 10.1016/j.ipm.2019.04.002
– ident: 4689_CR71
– volume: 59
  start-page: 103069
  issue: 6
  year: 2022
  ident: 4689_CR10
  publication-title: Information Processing & Management
  doi: 10.1016/j.ipm.2022.103069
– volume: 229
  start-page: 107342
  year: 2021
  ident: 4689_CR53
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2021.107342
– volume: 22
  start-page: 3213
  issue: 2
  year: 2019
  ident: 4689_CR63
  publication-title: Cluster Computing
  doi: 10.1007/s10586-018-2023-4
– volume: 12
  start-page: 1099
  issue: 4
  year: 2018
  ident: 4689_CR74
  publication-title: Journal of Informetrics
  doi: 10.1016/j.joi.2018.09.004
– volume: 42
  start-page: 784
  issue: 3
  year: 2012
  ident: 4689_CR38
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics - Part a: Systems and Humans
  doi: 10.1109/TSMCA.2011.2172205
– ident: 4689_CR52
  doi: 10.3115/v1/D14-1162
– volume: 66
  start-page: 846
  issue: 336
  year: 1971
  ident: 4689_CR58
  publication-title: Journal of the American Statistical Association
  doi: 10.2307/2284239
– volume: 100
  start-page: 100057
  year: 2019
  ident: 4689_CR32
  publication-title: Journal of Biomedical Informatics
  doi: 10.1016/j.yjbinx.2019.100057
– volume: 2017
  start-page: 1
  year: 2017
  ident: 4689_CR57
  publication-title: International Conference on Inventive Systems and Control (ICISC)
  doi: 10.1109/ICISC.2017.8068581
– volume: 52
  start-page: 1520
  issue: 2
  year: 2022
  ident: 4689_CR44
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-021-02376-5
– start-page: 49
  volume-title: Artificial intelligence and soft computing
  year: 2015
  ident: 4689_CR67
  doi: 10.1007/978-3-319-19369-4_5
– volume: 8
  start-page: 443
  issue: 6
  year: 2011
  ident: 4689_CR70
  publication-title: Nature Methods
  doi: 10.1038/nmeth.1619
– volume: 195
  start-page: 116551
  year: 2022
  ident: 4689_CR26
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2022.116551
– volume: 14
  start-page: 101018
  issue: 2
  year: 2020
  ident: 4689_CR20
  publication-title: Journal of Informetrics
  doi: 10.1016/j.joi.2020.101018
– ident: 4689_CR34
  doi: 10.1016/j.hfh.2022.100016
– volume: 22
  start-page: 276
  issue: 3
  year: 2012
  ident: 4689_CR39
  publication-title: Biochemia Medica
  doi: 10.11613/BM.2012.031
– ident: 4689_CR16
  doi: 10.18653/v1/D19-1383
– volume: 18
  start-page: 3049
  issue: 1
  year: 2017
  ident: 4689_CR25
  publication-title: The Journal of Machine Learning Research
– volume: 9
  start-page: 15
  issue: 1
  year: 2022
  ident: 4689_CR68
  publication-title: Journal of Big Data
  doi: 10.1186/s40537-022-00564-9
– year: 2020
  ident: 4689_CR46
  publication-title: International Conference on Advanced Science and Engineering (ICOASE)
  doi: 10.1109/ICOASE51841.2020.9436540
– start-page: 194
  volume-title: Chinese Computational Linguistics
  year: 2019
  ident: 4689_CR69
  doi: 10.1007/978-3-030-32381-3_16
– volume: 85
  start-page: 257
  issue: 3
  year: 2005
  ident: 4689_CR66
  publication-title: Physical Therapy
  doi: 10.1093/ptj/85.3.257
– ident: 4689_CR47
  doi: 10.5220/0006541900290039
– volume: 29
  start-page: 142
  issue: 2
  year: 2021
  ident: 4689_CR4
  publication-title: Concurrent Engineering
  doi: 10.1177/1063293X20982973
– volume: 123
  start-page: 563
  issue: 2
  year: 2020
  ident: 4689_CR33
  publication-title: Scientometrics
  doi: 10.1007/s11192-020-03396-7
– volume: 120
  start-page: 167
  issue: 1
  year: 2019
  ident: 4689_CR76
  publication-title: Scientometrics
  doi: 10.1007/s11192-019-03126-8
– volume: 100
  start-page: 741
  issue: 3
  year: 2014
  ident: 4689_CR49
  publication-title: Scientometrics
  doi: 10.1007/s11192-014-1319-2
– volume: 48
  start-page: 1771
  issue: 5
  year: 2022
  ident: 4689_CR36
  publication-title: IEEE Transactions on Software Engineering
  doi: 10.1109/TSE.2020.3036108
– volume: 25
  start-page: 442
  issue: 4
  year: 2016
  ident: 4689_CR23
  publication-title: Research Evaluation
  doi: 10.1093/reseval/rvw016
– ident: 4689_CR5
  doi: 10.1109/ICAICTA53211.2021.9640285
– volume-title: Advances in neural information processing systems
  year: 2013
  ident: 4689_CR43
– volume: 32
  start-page: 480
  issue: 3
  year: 2016
  ident: 4689_CR28
  publication-title: Computational Intelligence
  doi: 10.1111/coin.12064
– volume: 58
  start-page: 102683
  issue: 6
  year: 2021
  ident: 4689_CR29
  publication-title: Information Processing & Management
  doi: 10.1016/j.ipm.2021.102683
– year: 2015
  ident: 4689_CR72
  publication-title: 48th Hawaii International Conference on System Sciences
  doi: 10.1109/HICSS.2015.153
– volume: 45
  start-page: 433
  issue: 4
  year: 2018
  ident: 4689_CR21
  publication-title: Science and Public Policy
  doi: 10.1093/scipol/scy026
– start-page: 267
  volume-title: Advances in Computer Science, Engineering & Applications
  year: 2012
  ident: 4689_CR24
  doi: 10.1007/978-3-642-30111-7_25
– volume: 165
  start-page: 113679
  year: 2021
  ident: 4689_CR22
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.113679
– volume: 8
  start-page: 54776
  year: 2020
  ident: 4689_CR59
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2980942
– volume: 10
  start-page: 5
  issue: 1
  year: 2007
  ident: 4689_CR65
  publication-title: Environmental Science & Policy
  doi: 10.1016/j.envsci.2006.10.001
– volume: 1
  start-page: 1426
  year: 2020
  ident: 4689_CR35
  publication-title: IEEE 4th Information Technology, Networking Electronic and Automation Control Conference (ITNEC)
  doi: 10.1109/ITNEC48623.2020.9085059
– year: 2014
  ident: 4689_CR54
  publication-title: 17th International Conference on Extending Database Technology (EDBT)
  doi: 10.5441/002/edbt.2014.31
– volume: 5
  start-page: 349
  issue: 5
  year: 2013
  ident: 4689_CR7
  publication-title: Wiley Interdisciplinary Reviews. Computational Statistics
  doi: 10.1002/wics.1270
– volume: 59
  start-page: 102816
  issue: 1
  year: 2022
  ident: 4689_CR31
  publication-title: Information Processing & Management
  doi: 10.1016/j.ipm.2021.102816
– volume: 65
  start-page: 3
  issue: 1
  year: 2006
  ident: 4689_CR75
  publication-title: Machine Learning
  doi: 10.1007/s10994-006-6540-7
– volume: 5
  start-page: 27
  issue: 1
  year: 2011
  ident: 4689_CR61
  publication-title: International Journal of Computers and Communications
– year: 2008
  ident: 4689_CR13
  publication-title: Journal of Statistical Software
  doi: 10.18637/jss.v025.i04
– volume: 36
  start-page: 6050
  issue: 3, Part 2
  year: 2009
  ident: 4689_CR73
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2008.06.093
– ident: 4689_CR18
  doi: 10.18653/v1/N19-1423
– year: 2014
  ident: 4689_CR55
  publication-title: Research Journal of Applied Sciences, Engineering and Technology,
  doi: 10.19026/rjaset.8.1118
– volume: 11
  start-page: 599
  issue: 5
  year: 2019
  ident: 4689_CR56
  publication-title: Cognitive Computation
  doi: 10.1007/s12559-019-09664-w
– volume-title: Natural Language Processing with Python: Analyzing Text with the Natural Language Toolkit
  year: 2009
  ident: 4689_CR11
– ident: 4689_CR60
  doi: 10.18653/v1/D19-1410
– volume: 2021
  start-page: 1
  year: 2021
  ident: 4689_CR48
  publication-title: International Conference on Advanced Computer Science and Information Systems (ICACSIS)
  doi: 10.1109/ICACSIS53237.2021.9631364
– volume: 12
  start-page: 2825
  issue: 85
  year: 2011
  ident: 4689_CR51
  publication-title: Journal of Machine Learning Research
– ident: 4689_CR3
– volume: 19
  start-page: 422
  issue: 3–4
  year: 2021
  ident: 4689_CR64
  publication-title: International Journal of Advanced Intelligence Paradigms
  doi: 10.1504/IJAIP.2021.116369
– ident: 4689_CR1
  doi: 10.1109/COMITCon.2019.8862247
– ident: 4689_CR40
– volume: 9
  start-page: 330
  issue: 3
  year: 2013
  ident: 4689_CR27
  publication-title: Research in Social and Administrative Pharmacy
  doi: 10.1016/j.sapharm.2012.04.004
– volume: 26
  start-page: 241
  issue: 3
  year: 2014
  ident: 4689_CR15
  publication-title: Technology Analysis & Strategic Management
  doi: 10.1080/09537325.2013.850477
– volume: 9
  start-page: e1300
  issue: 3
  year: 2019
  ident: 4689_CR45
  publication-title: Wires Data Mining and Knowledge Discovery
  doi: 10.1002/widm.1300
– volume: 34
  start-page: 2648
  issue: 12
  year: 2021
  ident: 4689_CR62
  publication-title: International Journal of Engineering
  doi: 10.5829/ije.2021.34.12C.10
– start-page: 317
  volume-title: Image and Signal Processing
  year: 2020
  ident: 4689_CR2
  doi: 10.1007/978-3-030-51935-3_34
SSID ssj0007308
Score 2.424167
Snippet Funding institutions often solicit text-based research proposals to evaluate potential recipients. Leveraging the information contained in these documents...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3197
SubjectTerms Algorithms
Annotations
Army
Averages
Bidirectionality
Classification
Clustering
Coherence
Comparative analysis
Computer Science
Distinctiveness
Documents
Embedding
Extraction
Funding
Information Storage and Retrieval
Innovations
Institutions
Library Science
Machine learning
Medical technology
Medicine
Methodology
Military technology
Natural language processing
Proposals
Ratings
Ratings & rankings
Research facilities
Research methodology
Research proposals
Subject specialists
Technological change
Telecommunications
Telemedicine
Trends
SummonAdditionalLinks – databaseName: Computer Science Database (Proquest)
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1BQYgL0PLRQEFG4gACizj2bmwuqEJUSEDFAVBvkdd2YKU2m252-Rv8ZWYcJ6uloheOkZ0Py2_GL57xG4BnuZUTkwfLcW21XLmJ4kYGwa1HMoGU1-exxtL3T-XxsT45MV_ShluX0ioHnxgdtV842iN_LQuSytJ6Wr5tzzlVjaLoaiqhcRWuiaIQhPOPJR89MaI3emIRjVrm6dBMf3ROCMq7LCQlN2rD5fbCdIFtXkya_CtyGheko9v_O5Q7cCtRUXbYY2cXroRmD258TsH2PdhNdt-x50mc-sVd-D2k6rGW6it0-ADKdsevZejml_0xCUbZ9D9YFA3FDsOeKGv7UwnUZhvPunA25926JXfVBc_c6ZpkG7D5DTtkPpwRd-0RGvu7jVI5XvdiKvfg29H7r-8-8FTUgTtVTlY8qInxIqDf0EXpgzN5bpWaiWBzj-wt-KlD-NRlPSutUNYiv7SF0RaZhZtZXcj7sNMsmrAPrKxrZVVtkCFqCtDOSHinnPra-NzX1mUghhmtXFI8p8Ibp9VGq5lQUCEKqoiCSmbwcryn7fU-Lu19MMxwlWy_qzbTm8HTsRmtlkIxtgmLdVdRPNsYJQudwYMeV-PrJJI-YUqRgd5C3NiBFMG3W5r5z6gMTkpN-A84zeDVAM7Nd_17GA8vH8YjuFlEQ6E0zwPYWS3X4TFcd79W8275JJrcH3rzNGU
  priority: 102
  providerName: ProQuest
Title Research proposal content extraction using natural language processing and semi-supervised clustering: A demonstration and comparative analysis
URI https://link.springer.com/article/10.1007/s11192-023-04689-3
https://www.ncbi.nlm.nih.gov/pubmed/37101971
https://www.proquest.com/docview/3256818867
https://www.proquest.com/docview/2806994328
https://pubmed.ncbi.nlm.nih.gov/PMC10083066
Volume 128
WOSCitedRecordID wos000965935800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Collection
  customDbUrl:
  eissn: 1588-2861
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0007308
  issn: 0138-9130
  databaseCode: P5Z
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Agricultural Science Database
  customDbUrl:
  eissn: 1588-2861
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0007308
  issn: 0138-9130
  databaseCode: M0K
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1588-2861
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0007308
  issn: 0138-9130
  databaseCode: M7P
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database (Proquest)
  customDbUrl:
  eissn: 1588-2861
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0007308
  issn: 0138-9130
  databaseCode: K7-
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1588-2861
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0007308
  issn: 0138-9130
  databaseCode: PCBAR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database (Proquest)
  customDbUrl:
  eissn: 1588-2861
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0007308
  issn: 0138-9130
  databaseCode: M7S
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1588-2861
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0007308
  issn: 0138-9130
  databaseCode: PATMY
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1588-2861
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0007308
  issn: 0138-9130
  databaseCode: KB.
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1588-2861
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0007308
  issn: 0138-9130
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1588-2861
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007308
  issn: 0138-9130
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-xjQdeNja-MkZlJB5A4ClO3NrmbUObkAZVtcFU8RK5sQOVtqxqWv4N_mXunI-qDJDgxUrkS5rId-dfene_A3gR27RvYm857q2Wy7wvuUm94NYhmEDI6-LQY-nygxoO9XhsRk1RWNVmu7chyeCpV8VuQlCmZJJSOqI2PN2ALdzuNJnj-cVl539RZ4P_FcGU07gplfn9Pda3o1sY83aq5C_x0rANne783wvch-0GdrKjWk924Y4v92CnbenAGgvfg93mqGIvG0LqVw_gR5uex2bUU6HCG1GGOz4rQ9c-r0sjGGXQf2WBKBQF2v9B2ayuRKA5WzpW-espr5YzclGVdyy_WhJVA06_ZUfM-WvCq7VWBvl8xU6O5zWBykP4fHry6d173jRy4LlU_QX3sm-c8OgrdKKcz00cWyknwtvYIWLzbpCjyhSqmCgrpLWIKW1itEU0kU-sTtJHsFnelP4JMFUU0srCICrUFJSdENmOGrjCuNgVNo9AtOuZ5Q3LOTXbuMpW_My0DBkuQxaWIUsjeN1dM6s5Pv4qfdCqSdbYe5WlCRG5aT1QETzvptFSKfxiS3-zrDKKYRsj00RH8LjWqu7nUgR6wigRgV7Tt06AWMDXZ8rpt8AGTuxM-N03iOBNq3ar5_rza-z_m_hTuJcEzaVUzwPYXMyX_hnczb8vptW8BxtqrHuwdXwyHJ3j2ZniNB4f4vgxPqNRjcJ4geOo_6UXTPYnp001rw
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwED5NAwEvwAaMwAAjgQQCa_nh1jYSQhMwbWpX8TDQ3oJrO1BpS0vTgvgr-E_4G7lzklZlYm974LGykybOd58vubvvAJ7EJuvo2BuOe6vhwnYE15lPuHHoTKDL6-LQY-lTXw4G6vhYf1iD320tDKVVtpwYiNqNLX0j38lSkspSqivfTL5x6hpF0dW2hUYNi57_-QNf2arXB-_w-T5N0733R2_3edNVgFshOzPuRUe7xCNwVSqdtzqOjRDDxJvYofvgXdfi9ReyGEqTCGPQwTGpVga3Njs0ioQOkPIviUxJ0urvSb5gfrSWwPxJIJEsbop06lK9JKE8zzSjZEqleba6EZ7xbs8maf4VqQ0b4N6N_23pbsL1xtVmu7VtbMCaLzfhymGTTLAJGw2vVexZI779_Bb8alMR2YT6R1R4Asrmx9VhuI1N6zIQRtUCX1gQRcUJ7TdfNqmrLmjMlI5V_nTEq_mE6LjyjtmTOclS4PArtsucPyXfvLbAMN8uldjxdy0Wcxs-Xsga3YH1clz6u8BkUQgjCo0esKIA9JCEhWTXFdrFrjA2gqRFUG4bRXdqLHKSL7WoCXU5oi4PqMuzCF4sjpnUeibnzt5uEZU33FblSzhF8HgxjKxEoSZT-vG8yiler7XIUhXBVo3jxd9l6NQmWiYRqBWELyaQ4vnqSDn6GpTPSYkK33G7EbxsjWF5Xf--jXvn38YjuLp_dNjP-weD3n24lgYjpZTWbVifTef-AVy232ejavowmDuDzxdtJH8AaumSGg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED7BQIgXxsavwAAj8QACa3HsNjZvE1CBmKpJwLS3yLUdqLRlUdPyb_Avc-f8KGWAhHhL5GvSyJ_PX3J33wE8Ta0cmTRYjnur5cqNFDcyCG49kgmkvD6NPZaOD_PpVJ-cmKOfqvhjtnsfkmxrGkilqVru177cXxe-CUFZk5mk1ERtuLwMVxQ1DaL39Y_Hgy9G_EZfLOKylmlXNvP7a2xuTRf45sW0yV9ip3FLmmz__8PchBsdHWUHLX524FKodmG7b_XAupW_CzvdUcOedULVz2_B9z5tj9XUa6HBC3V3ZujyF23JBKPM-i8sCoiiQf99lNVthQKN2cqzJpzNebOqyXU1wTN3uiIJBxx-xQ6YD2fEY1u0Rnu3Vi3H81ZY5TZ8nrz99Pod7xo8cKfy0ZIHNTJeBPQhOst9cCZNrVIzEWzqkckFP3YIpTIvZ7kVylrkmjYz2iLLcDOrM3kHtqrzKtwDlpelsqo0yBY1BWtnJMKTj31pfOpL6xIQ_dwWrlM_pyYcp8Vat5mmocBpKOI0FDKBF8Nv6lb746_Wez1kis4PNIXMSOBN63GewJNhGFcwhWVsFc5XTUGxbWOUzHQCd1uEDbeTSACFyUUCegN7gwGpg2-OVPOvUSWcVJvwfXCcwMseguv_9efHuP9v5o_h2tGbSXH4fvrhAVzPIogpG3QPtpaLVXgIV9235bxZPIrr8gdqkTlz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+proposal+content+extraction+using+natural+language+processing+and+semi-supervised+clustering%3A+A+demonstration+and+comparative+analysis&rft.jtitle=Scientometrics&rft.au=Knisely%2C+Benjamin+M.&rft.au=Pavliscsak%2C+Holly+H.&rft.date=2023-05-01&rft.pub=Springer+International+Publishing&rft.issn=0138-9130&rft.eissn=1588-2861&rft.volume=128&rft.issue=5&rft.spage=3197&rft.epage=3224&rft_id=info:doi/10.1007%2Fs11192-023-04689-3&rft.externalDocID=10_1007_s11192_023_04689_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0138-9130&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0138-9130&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0138-9130&client=summon