Research proposal content extraction using natural language processing and semi-supervised clustering: A demonstration and comparative analysis
Funding institutions often solicit text-based research proposals to evaluate potential recipients. Leveraging the information contained in these documents could help institutions understand the supply of research within their domain. In this work, an end-to-end methodology for semi-supervised docume...
Gespeichert in:
| Veröffentlicht in: | Scientometrics Jg. 128; H. 5; S. 3197 - 3224 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Cham
Springer International Publishing
01.05.2023
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0138-9130, 1588-2861 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Funding institutions often solicit text-based research proposals to evaluate potential recipients. Leveraging the information contained in these documents could help institutions understand the supply of research within their domain. In this work, an end-to-end methodology for semi-supervised document clustering is introduced to partially automate classification of research proposals based on thematic areas of interest. The methodology consists of three stages: (1) manual annotation of a document sample; (2) semi-supervised clustering of documents; (3) evaluation of cluster results using quantitative metrics and qualitative ratings (coherence, relevance, distinctiveness) by experts. The methodology is described in detail to encourage replication and is demonstrated on a real-world data set. This demonstration sought to categorize proposals submitted to the US Army Telemedicine and Advanced Technology Research Center (TATRC) related to technological innovations in military medicine. A comparative analysis of method features was performed, including unsupervised vs. semi-supervised clustering, several document vectorization techniques, and several cluster result selection strategies. Outcomes suggest that pretrained Bidirectional Encoder Representations from Transformers (BERT) embeddings were better suited for the task than older text embedding techniques. When comparing expert ratings between algorithms, semi-supervised clustering produced coherence ratings ~ 25% better on average compared to standard unsupervised clustering with negligible differences in cluster distinctiveness. Last, it was shown that a cluster result selection strategy that balances internal and external validity produced ideal results. With further refinement, this methodological framework shows promise as a useful analytical tool for institutions to unlock hidden insights from untapped archives and similar administrative document repositories. |
|---|---|
| AbstractList | Funding institutions often solicit text-based research proposals to evaluate potential recipients. Leveraging the information contained in these documents could help institutions understand the supply of research within their domain. In this work, an end-to-end methodology for semi-supervised document clustering is introduced to partially automate classification of research proposals based on thematic areas of interest. The methodology consists of three stages: (1) manual annotation of a document sample; (2) semi-supervised clustering of documents; (3) evaluation of cluster results using quantitative metrics and qualitative ratings (coherence, relevance, distinctiveness) by experts. The methodology is described in detail to encourage replication and is demonstrated on a real-world data set. This demonstration sought to categorize proposals submitted to the US Army Telemedicine and Advanced Technology Research Center (TATRC) related to technological innovations in military medicine. A comparative analysis of method features was performed, including unsupervised vs. semi-supervised clustering, several document vectorization techniques, and several cluster result selection strategies. Outcomes suggest that pretrained Bidirectional Encoder Representations from Transformers (BERT) embeddings were better suited for the task than older text embedding techniques. When comparing expert ratings between algorithms, semi-supervised clustering produced coherence ratings ~ 25% better on average compared to standard unsupervised clustering with negligible differences in cluster distinctiveness. Last, it was shown that a cluster result selection strategy that balances internal and external validity produced ideal results. With further refinement, this methodological framework shows promise as a useful analytical tool for institutions to unlock hidden insights from untapped archives and similar administrative document repositories. Funding institutions often solicit text-based research proposals to evaluate potential recipients. Leveraging the information contained in these documents could help institutions understand the supply of research within their domain. In this work, an end-to-end methodology for semi-supervised document clustering is introduced to partially automate classification of research proposals based on thematic areas of interest. The methodology consists of three stages: (1) manual annotation of a document sample; (2) semi-supervised clustering of documents; (3) evaluation of cluster results using quantitative metrics and qualitative ratings (coherence, relevance, distinctiveness) by experts. The methodology is described in detail to encourage replication and is demonstrated on a real-world data set. This demonstration sought to categorize proposals submitted to the US Army Telemedicine and Advanced Technology Research Center (TATRC) related to technological innovations in military medicine. A comparative analysis of method features was performed, including unsupervised vs. semi-supervised clustering, several document vectorization techniques, and several cluster result selection strategies. Outcomes suggest that pretrained Bidirectional Encoder Representations from Transformers (BERT) embeddings were better suited for the task than older text embedding techniques. When comparing expert ratings between algorithms, semi-supervised clustering produced coherence ratings ~ 25% better on average compared to standard unsupervised clustering with negligible differences in cluster distinctiveness. Last, it was shown that a cluster result selection strategy that balances internal and external validity produced ideal results. With further refinement, this methodological framework shows promise as a useful analytical tool for institutions to unlock hidden insights from untapped archives and similar administrative document repositories. The online version contains supplementary material available at 10.1007/s11192-023-04689-3. Funding institutions often solicit text-based research proposals to evaluate potential recipients. Leveraging the information contained in these documents could help institutions understand the supply of research within their domain. In this work, an end-to-end methodology for semi-supervised document clustering is introduced to partially automate classification of research proposals based on thematic areas of interest. The methodology consists of three stages: (1) manual annotation of a document sample; (2) semi-supervised clustering of documents; (3) evaluation of cluster results using quantitative metrics and qualitative ratings (coherence, relevance, distinctiveness) by experts. The methodology is described in detail to encourage replication and is demonstrated on a real-world data set. This demonstration sought to categorize proposals submitted to the US Army Telemedicine and Advanced Technology Research Center (TATRC) related to technological innovations in military medicine. A comparative analysis of method features was performed, including unsupervised vs. semi-supervised clustering, several document vectorization techniques, and several cluster result selection strategies. Outcomes suggest that pretrained Bidirectional Encoder Representations from Transformers (BERT) embeddings were better suited for the task than older text embedding techniques. When comparing expert ratings between algorithms, semi-supervised clustering produced coherence ratings ~ 25% better on average compared to standard unsupervised clustering with negligible differences in cluster distinctiveness. Last, it was shown that a cluster result selection strategy that balances internal and external validity produced ideal results. With further refinement, this methodological framework shows promise as a useful analytical tool for institutions to unlock hidden insights from untapped archives and similar administrative document repositories.Funding institutions often solicit text-based research proposals to evaluate potential recipients. Leveraging the information contained in these documents could help institutions understand the supply of research within their domain. In this work, an end-to-end methodology for semi-supervised document clustering is introduced to partially automate classification of research proposals based on thematic areas of interest. The methodology consists of three stages: (1) manual annotation of a document sample; (2) semi-supervised clustering of documents; (3) evaluation of cluster results using quantitative metrics and qualitative ratings (coherence, relevance, distinctiveness) by experts. The methodology is described in detail to encourage replication and is demonstrated on a real-world data set. This demonstration sought to categorize proposals submitted to the US Army Telemedicine and Advanced Technology Research Center (TATRC) related to technological innovations in military medicine. A comparative analysis of method features was performed, including unsupervised vs. semi-supervised clustering, several document vectorization techniques, and several cluster result selection strategies. Outcomes suggest that pretrained Bidirectional Encoder Representations from Transformers (BERT) embeddings were better suited for the task than older text embedding techniques. When comparing expert ratings between algorithms, semi-supervised clustering produced coherence ratings ~ 25% better on average compared to standard unsupervised clustering with negligible differences in cluster distinctiveness. Last, it was shown that a cluster result selection strategy that balances internal and external validity produced ideal results. With further refinement, this methodological framework shows promise as a useful analytical tool for institutions to unlock hidden insights from untapped archives and similar administrative document repositories.The online version contains supplementary material available at 10.1007/s11192-023-04689-3.Supplementary InformationThe online version contains supplementary material available at 10.1007/s11192-023-04689-3. |
| Author | Knisely, Benjamin M. Pavliscsak, Holly H. |
| Author_xml | – sequence: 1 givenname: Benjamin M. orcidid: 0000-0001-8450-3198 surname: Knisely fullname: Knisely, Benjamin M. email: benjamin.m.knisely2.ctr@health.mil organization: Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command – sequence: 2 givenname: Holly H. surname: Pavliscsak fullname: Pavliscsak, Holly H. organization: Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37101971$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kk1v1DAQhi1URLeFP8ABReLCJeCPfNhcUFVBi1QJCcHZmnVmt64SO3iSFf0V_GWc3VKgh54sa5731bwzc8KOQgzI2EvB3wrO23ckhDCy5FKVvGq0KdUTthK11qXUjThiKy6ULo1Q_JidEN3wLFJcP2PHqhVcmFas2K-vSAjJXRdjimMk6AsXw4RhKvDnlMBNPoZiJh-2RYBpThnoIWxn2OIicUj7GoSuIBx8SfOIaecJu8L1M02Ycvl9cVZ0OMRA2XLvuPAuDiMs_x3mP_S35Ok5e7qBnvDF3XvKvn_6-O38srz6cvH5_OyqdFVbTyVWtekEVlpr2XboDOdQVWuBwLu6Ftg1DlS9aTfrFkQFYJQEaTQoLdwatFSn7MPBd5zXA3YuB87R7Jj8AOnWRvD2_0rw13YbdzZPXiveNNnhzZ1Dij9mpMkOnhz2eToYZ7JS88aYSkmd0dcP0Js4p5yYrJJ1o4XWTZupV_-2dN_Ln2VlQB4AlyJRws09IvjSV2sPF2HzRdj9RViVRfqByPlpv4Mcy_ePS9VBSuOyREx_235E9RuhuM8q |
| CitedBy_id | crossref_primary_10_1093_milmed_usad314 crossref_primary_10_1155_2024_6671359 crossref_primary_10_1093_milmed_usae063 |
| Cites_doi | 10.1016/j.cptl.2018.03.019 10.1016/j.envsci.2006.10.004 10.1109/TFUZZ.2018.2889010 10.1109/ASRU46091.2019.9003958 10.1007/s11192-017-2609-2 10.46743/2160-3715/2019.4120 10.5281/zenodo.831850 10.3233/JIFS-189871 10.1016/j.ipm.2019.04.002 10.1016/j.ipm.2022.103069 10.1016/j.knosys.2021.107342 10.1007/s10586-018-2023-4 10.1016/j.joi.2018.09.004 10.1109/TSMCA.2011.2172205 10.3115/v1/D14-1162 10.2307/2284239 10.1016/j.yjbinx.2019.100057 10.1109/ICISC.2017.8068581 10.1007/s10489-021-02376-5 10.1007/978-3-319-19369-4_5 10.1038/nmeth.1619 10.1016/j.eswa.2022.116551 10.1016/j.joi.2020.101018 10.1016/j.hfh.2022.100016 10.11613/BM.2012.031 10.18653/v1/D19-1383 10.1186/s40537-022-00564-9 10.1109/ICOASE51841.2020.9436540 10.1007/978-3-030-32381-3_16 10.1093/ptj/85.3.257 10.5220/0006541900290039 10.1177/1063293X20982973 10.1007/s11192-020-03396-7 10.1007/s11192-019-03126-8 10.1007/s11192-014-1319-2 10.1109/TSE.2020.3036108 10.1093/reseval/rvw016 10.1109/ICAICTA53211.2021.9640285 10.1111/coin.12064 10.1016/j.ipm.2021.102683 10.1109/HICSS.2015.153 10.1093/scipol/scy026 10.1007/978-3-642-30111-7_25 10.1016/j.eswa.2020.113679 10.1109/ACCESS.2020.2980942 10.1016/j.envsci.2006.10.001 10.1109/ITNEC48623.2020.9085059 10.5441/002/edbt.2014.31 10.1002/wics.1270 10.1016/j.ipm.2021.102816 10.1007/s10994-006-6540-7 10.18637/jss.v025.i04 10.1016/j.eswa.2008.06.093 10.18653/v1/N19-1423 10.19026/rjaset.8.1118 10.1007/s12559-019-09664-w 10.18653/v1/D19-1410 10.1109/ICACSIS53237.2021.9631364 10.1504/IJAIP.2021.116369 10.1109/COMITCon.2019.8862247 10.1016/j.sapharm.2012.04.004 10.1080/09537325.2013.850477 10.1002/widm.1300 10.5829/ije.2021.34.12C.10 10.1007/978-3-030-51935-3_34 |
| ContentType | Journal Article |
| Copyright | Akadémiai Kiadó, Budapest, Hungary 2023 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Akadémiai Kiadó, Budapest, Hungary 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Akadémiai Kiadó, Budapest, Hungary 2023. |
| Copyright_xml | – notice: Akadémiai Kiadó, Budapest, Hungary 2023 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Akadémiai Kiadó, Budapest, Hungary 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Akadémiai Kiadó, Budapest, Hungary 2023. |
| DBID | AAYXX CITATION NPM 3V. 7X2 8FE 8FG 8FH 8FK ABJCF AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI BKSAR CCPQU D1I DWQXO E3H F2A GNUQQ HCIFZ JQ2 K7- KB. L6V LK8 M0K M7P M7S P5Z P62 PATMY PCBAR PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY 7X8 5PM |
| DOI | 10.1007/s11192-023-04689-3 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Agricultural Science ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Materials Science & Engineering ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central (subscription) Technology collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) ProQuest Central Student SciTech Premium Collection (Proquest) ProQuest Computer Science Collection Computer Science Database (Proquest) Materials Science Database ProQuest Engineering Collection Biological Sciences Agricultural Science Database Biological Science Database (Proquest) Engineering Database (Proquest) Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection (ProQuest) Environmental Science Collection MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed Agricultural Science Database Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) Library and Information Science Abstracts (LISA) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Materials Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection Environmental Science Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Environmental Science Database ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | PubMed Agricultural Science Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: KB. name: Materials Science Database url: http://search.proquest.com/materialsscijournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Computer Science Medicine |
| EISSN | 1588-2861 |
| EndPage | 3224 |
| ExternalDocumentID | PMC10083066 37101971 10_1007_s11192_023_04689_3 |
| Genre | Journal Article |
| GroupedDBID | --K -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 123 1B1 1N0 1SB 2.D 203 28- 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 77K 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AANZL AAOBN AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHQT ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACYUM ACZOJ ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDZB AFEXP AFGCZ AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHPBZ AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LLZTM M4Y MA- MET MKB N2Q N9A NB0 NDZJH NPVJJ NQ- NQJWS NU0 O-J O9- O93 O9G O9I O9J OAM OVD P19 P9O PF0 PT4 PT5 QOK QOS R-Y R4E R89 R9I RHV RIG RKA RNI ROL RPX RPZ RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WHG WK6 WK8 YLTOR Z45 ZMTXR ~A9 ~EX 77I 7X2 AAYXX ABFSG ABJCF ABRTQ ACSTC AEUYN AEZWR AFFHD AFHIU AFKRA AFOHR AHWEU AIXLP ARAPS ATCPS ATHPR BBNVY BENPR BGLVJ BHPHI BKSAR CCPQU CITATION HCIFZ K7- KB. M0K M7P M7S PATMY PCBAR PDBOC PHGZM PHGZT PQGLB PTHSS PYCSY -4Z -59 -5G -BR -EM ADINQ GQ6 NPM Z5O Z7R Z7U Z7V Z7X Z7Z Z81 Z83 Z88 Z8M Z8R Z8T Z8W Z92 3V. 8FE 8FG 8FH 8FK AZQEC D1I DWQXO E3H F2A GNUQQ JQ2 L6V LK8 P62 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM |
| ID | FETCH-LOGICAL-c475t-e459d1e488827dec900a44b1ea0d551ed6ca35f7fb7a14aa932a298a381cba823 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000965935800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0138-9130 |
| IngestDate | Tue Nov 04 02:06:48 EST 2025 Fri Sep 05 05:58:08 EDT 2025 Sat Nov 15 05:53:11 EST 2025 Wed Feb 19 02:24:33 EST 2025 Tue Nov 18 21:33:20 EST 2025 Sat Nov 29 08:00:17 EST 2025 Thu Apr 10 08:03:05 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Text mining Cluster validation Document clustering Research portfolio Machine learning |
| Language | English |
| License | Akadémiai Kiadó, Budapest, Hungary 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c475t-e459d1e488827dec900a44b1ea0d551ed6ca35f7fb7a14aa932a298a381cba823 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-8450-3198 |
| OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC10083066 |
| PMID | 37101971 |
| PQID | 3256818867 |
| PQPubID | 2043823 |
| PageCount | 28 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10083066 proquest_miscellaneous_2806994328 proquest_journals_3256818867 pubmed_primary_37101971 crossref_primary_10_1007_s11192_023_04689_3 crossref_citationtrail_10_1007_s11192_023_04689_3 springer_journals_10_1007_s11192_023_04689_3 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-05-01 |
| PublicationDateYYYYMMDD | 2023-05-01 |
| PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Switzerland – name: Dordrecht |
| PublicationSubtitle | An International Journal for all Quantitative Aspects of the Science of Science, Communication in Science and Science Policy |
| PublicationTitle | Scientometrics |
| PublicationTitleAbbrev | Scientometrics |
| PublicationTitleAlternate | Scientometrics |
| PublicationYear | 2023 |
| Publisher | Springer International Publishing Springer Nature B.V |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
| References | LG Nichols (4689_CR49) 2014; 100 Y Wang (4689_CR72) 2015 E Bair (4689_CR7) 2013; 5 4689_CR40 P Jiménez (4689_CR29) 2021; 58 SA Curiskis (4689_CR17) 2020; 57 FK Khattak (4689_CR32) 2019; 100 IO Arnarsson (4689_CR4) 2021; 29 4689_CR47 Y Qin (4689_CR56) 2019; 11 EC McNie (4689_CR41) 2007; 10 T Mikolov (4689_CR43) 2013 GT Reddy (4689_CR59) 2020; 8 M Pourrajabi (4689_CR54) 2014 K Kaya (4689_CR31) 2022; 59 KW Boyack (4689_CR12) 2018; 114 A Ebadi (4689_CR20) 2020; 14 4689_CR71 P Bhattacharya (4689_CR10) 2022; 59 CA Freyman (4689_CR23) 2016; 25 DS Priya (4689_CR55) 2014 MA Mutasodirin (4689_CR48) 2021; 2021 4689_CR34 4689_CR37 D Sarewitz (4689_CR65) 2007; 10 M Mittal (4689_CR45) 2019; 9 Y Hu (4689_CR28) 2016; 32 SK Mishra (4689_CR44) 2022; 52 J Ma (4689_CR38) 2012; 42 E Rendón (4689_CR61) 2011; 5 F Pedregosa (4689_CR51) 2011; 12 SM Sadjadi (4689_CR62) 2021; 34 4689_CR3 4689_CR60 4689_CR5 J Kim (4689_CR33) 2020; 123 WM Rand (4689_CR58) 1971; 66 4689_CR6 A Castleberry (4689_CR14) 2018; 10 J Bergstra (4689_CR9) 2012; 13 RA Saravanan (4689_CR64) 2021; 19 4689_CR1 R Pappagari (4689_CR50) 2019; 2019 N Kalpokaite (4689_CR30) 2019 K Rajput (4689_CR57) 2017; 2017 Y Zhou (4689_CR76) 2019; 120 S Bird (4689_CR11) 2009 R Sandhiya (4689_CR63) 2019; 22 N Gisev (4689_CR27) 2013; 9 S Gajawada (4689_CR24) 2012 ML McHugh (4689_CR39) 2012; 22 A Subakti (4689_CR68) 2022; 9 S Bajpai (4689_CR8) 2015; 41 WS El-Kassas (4689_CR22) 2021; 165 AJ Gates (4689_CR25) 2017; 18 J Edler (4689_CR21) 2018; 45 Y Li (4689_CR35) 2020; 1 J Sim (4689_CR66) 2005; 85 Z Ghasemi (4689_CR26) 2022; 195 C Sun (4689_CR69) 2019 J Wu (4689_CR73) 2009; 36 4689_CR52 S Choi (4689_CR15) 2014; 26 A Penta (4689_CR53) 2021; 229 A Starczewski (4689_CR67) 2015 M Allaoui (4689_CR2) 2020 G Brock (4689_CR13) 2008 4689_CR16 EM Talley (4689_CR70) 2011; 8 4689_CR18 Y Zhang (4689_CR74) 2018; 12 SM Mohammed (4689_CR46) 2020 J Dhanani (4689_CR19) 2021; 41 J-P Mei (4689_CR42) 2019; 27 M Li (4689_CR36) 2022; 48 S Zhong (4689_CR75) 2006; 65 |
| References_xml | – volume: 10 start-page: 807 issue: 6 year: 2018 ident: 4689_CR14 publication-title: Currents in Pharmacy Teaching and Learning doi: 10.1016/j.cptl.2018.03.019 – volume: 10 start-page: 17 issue: 1 year: 2007 ident: 4689_CR41 publication-title: Environmental Science & Policy doi: 10.1016/j.envsci.2006.10.004 – volume: 27 start-page: 1726 issue: 9 year: 2019 ident: 4689_CR42 publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/TFUZZ.2018.2889010 – volume: 41 start-page: 20 year: 2015 ident: 4689_CR8 publication-title: Journal of the Indian Academy of Applied Psychology – volume: 2019 start-page: 838 year: 2019 ident: 4689_CR50 publication-title: IEEE Automatic Speech Recognition and Understanding Workshop (ASRU) doi: 10.1109/ASRU46091.2019.9003958 – ident: 4689_CR37 – volume: 114 start-page: 449 issue: 2 year: 2018 ident: 4689_CR12 publication-title: Scientometrics doi: 10.1007/s11192-017-2609-2 – year: 2019 ident: 4689_CR30 publication-title: The Qualitative Report doi: 10.46743/2160-3715/2019.4120 – volume: 13 start-page: 281 issue: 10 year: 2012 ident: 4689_CR9 publication-title: Journal of Machine Learning Research – ident: 4689_CR6 doi: 10.5281/zenodo.831850 – volume: 41 start-page: 5497 issue: 5 year: 2021 ident: 4689_CR19 publication-title: Journal of Intelligent & Fuzzy Systems doi: 10.3233/JIFS-189871 – volume: 57 start-page: 102034 issue: 2 year: 2020 ident: 4689_CR17 publication-title: Information Processing & Management doi: 10.1016/j.ipm.2019.04.002 – ident: 4689_CR71 – volume: 59 start-page: 103069 issue: 6 year: 2022 ident: 4689_CR10 publication-title: Information Processing & Management doi: 10.1016/j.ipm.2022.103069 – volume: 229 start-page: 107342 year: 2021 ident: 4689_CR53 publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2021.107342 – volume: 22 start-page: 3213 issue: 2 year: 2019 ident: 4689_CR63 publication-title: Cluster Computing doi: 10.1007/s10586-018-2023-4 – volume: 12 start-page: 1099 issue: 4 year: 2018 ident: 4689_CR74 publication-title: Journal of Informetrics doi: 10.1016/j.joi.2018.09.004 – volume: 42 start-page: 784 issue: 3 year: 2012 ident: 4689_CR38 publication-title: IEEE Transactions on Systems, Man, and Cybernetics - Part a: Systems and Humans doi: 10.1109/TSMCA.2011.2172205 – ident: 4689_CR52 doi: 10.3115/v1/D14-1162 – volume: 66 start-page: 846 issue: 336 year: 1971 ident: 4689_CR58 publication-title: Journal of the American Statistical Association doi: 10.2307/2284239 – volume: 100 start-page: 100057 year: 2019 ident: 4689_CR32 publication-title: Journal of Biomedical Informatics doi: 10.1016/j.yjbinx.2019.100057 – volume: 2017 start-page: 1 year: 2017 ident: 4689_CR57 publication-title: International Conference on Inventive Systems and Control (ICISC) doi: 10.1109/ICISC.2017.8068581 – volume: 52 start-page: 1520 issue: 2 year: 2022 ident: 4689_CR44 publication-title: Applied Intelligence doi: 10.1007/s10489-021-02376-5 – start-page: 49 volume-title: Artificial intelligence and soft computing year: 2015 ident: 4689_CR67 doi: 10.1007/978-3-319-19369-4_5 – volume: 8 start-page: 443 issue: 6 year: 2011 ident: 4689_CR70 publication-title: Nature Methods doi: 10.1038/nmeth.1619 – volume: 195 start-page: 116551 year: 2022 ident: 4689_CR26 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2022.116551 – volume: 14 start-page: 101018 issue: 2 year: 2020 ident: 4689_CR20 publication-title: Journal of Informetrics doi: 10.1016/j.joi.2020.101018 – ident: 4689_CR34 doi: 10.1016/j.hfh.2022.100016 – volume: 22 start-page: 276 issue: 3 year: 2012 ident: 4689_CR39 publication-title: Biochemia Medica doi: 10.11613/BM.2012.031 – ident: 4689_CR16 doi: 10.18653/v1/D19-1383 – volume: 18 start-page: 3049 issue: 1 year: 2017 ident: 4689_CR25 publication-title: The Journal of Machine Learning Research – volume: 9 start-page: 15 issue: 1 year: 2022 ident: 4689_CR68 publication-title: Journal of Big Data doi: 10.1186/s40537-022-00564-9 – year: 2020 ident: 4689_CR46 publication-title: International Conference on Advanced Science and Engineering (ICOASE) doi: 10.1109/ICOASE51841.2020.9436540 – start-page: 194 volume-title: Chinese Computational Linguistics year: 2019 ident: 4689_CR69 doi: 10.1007/978-3-030-32381-3_16 – volume: 85 start-page: 257 issue: 3 year: 2005 ident: 4689_CR66 publication-title: Physical Therapy doi: 10.1093/ptj/85.3.257 – ident: 4689_CR47 doi: 10.5220/0006541900290039 – volume: 29 start-page: 142 issue: 2 year: 2021 ident: 4689_CR4 publication-title: Concurrent Engineering doi: 10.1177/1063293X20982973 – volume: 123 start-page: 563 issue: 2 year: 2020 ident: 4689_CR33 publication-title: Scientometrics doi: 10.1007/s11192-020-03396-7 – volume: 120 start-page: 167 issue: 1 year: 2019 ident: 4689_CR76 publication-title: Scientometrics doi: 10.1007/s11192-019-03126-8 – volume: 100 start-page: 741 issue: 3 year: 2014 ident: 4689_CR49 publication-title: Scientometrics doi: 10.1007/s11192-014-1319-2 – volume: 48 start-page: 1771 issue: 5 year: 2022 ident: 4689_CR36 publication-title: IEEE Transactions on Software Engineering doi: 10.1109/TSE.2020.3036108 – volume: 25 start-page: 442 issue: 4 year: 2016 ident: 4689_CR23 publication-title: Research Evaluation doi: 10.1093/reseval/rvw016 – ident: 4689_CR5 doi: 10.1109/ICAICTA53211.2021.9640285 – volume-title: Advances in neural information processing systems year: 2013 ident: 4689_CR43 – volume: 32 start-page: 480 issue: 3 year: 2016 ident: 4689_CR28 publication-title: Computational Intelligence doi: 10.1111/coin.12064 – volume: 58 start-page: 102683 issue: 6 year: 2021 ident: 4689_CR29 publication-title: Information Processing & Management doi: 10.1016/j.ipm.2021.102683 – year: 2015 ident: 4689_CR72 publication-title: 48th Hawaii International Conference on System Sciences doi: 10.1109/HICSS.2015.153 – volume: 45 start-page: 433 issue: 4 year: 2018 ident: 4689_CR21 publication-title: Science and Public Policy doi: 10.1093/scipol/scy026 – start-page: 267 volume-title: Advances in Computer Science, Engineering & Applications year: 2012 ident: 4689_CR24 doi: 10.1007/978-3-642-30111-7_25 – volume: 165 start-page: 113679 year: 2021 ident: 4689_CR22 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2020.113679 – volume: 8 start-page: 54776 year: 2020 ident: 4689_CR59 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2980942 – volume: 10 start-page: 5 issue: 1 year: 2007 ident: 4689_CR65 publication-title: Environmental Science & Policy doi: 10.1016/j.envsci.2006.10.001 – volume: 1 start-page: 1426 year: 2020 ident: 4689_CR35 publication-title: IEEE 4th Information Technology, Networking Electronic and Automation Control Conference (ITNEC) doi: 10.1109/ITNEC48623.2020.9085059 – year: 2014 ident: 4689_CR54 publication-title: 17th International Conference on Extending Database Technology (EDBT) doi: 10.5441/002/edbt.2014.31 – volume: 5 start-page: 349 issue: 5 year: 2013 ident: 4689_CR7 publication-title: Wiley Interdisciplinary Reviews. Computational Statistics doi: 10.1002/wics.1270 – volume: 59 start-page: 102816 issue: 1 year: 2022 ident: 4689_CR31 publication-title: Information Processing & Management doi: 10.1016/j.ipm.2021.102816 – volume: 65 start-page: 3 issue: 1 year: 2006 ident: 4689_CR75 publication-title: Machine Learning doi: 10.1007/s10994-006-6540-7 – volume: 5 start-page: 27 issue: 1 year: 2011 ident: 4689_CR61 publication-title: International Journal of Computers and Communications – year: 2008 ident: 4689_CR13 publication-title: Journal of Statistical Software doi: 10.18637/jss.v025.i04 – volume: 36 start-page: 6050 issue: 3, Part 2 year: 2009 ident: 4689_CR73 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2008.06.093 – ident: 4689_CR18 doi: 10.18653/v1/N19-1423 – year: 2014 ident: 4689_CR55 publication-title: Research Journal of Applied Sciences, Engineering and Technology, doi: 10.19026/rjaset.8.1118 – volume: 11 start-page: 599 issue: 5 year: 2019 ident: 4689_CR56 publication-title: Cognitive Computation doi: 10.1007/s12559-019-09664-w – volume-title: Natural Language Processing with Python: Analyzing Text with the Natural Language Toolkit year: 2009 ident: 4689_CR11 – ident: 4689_CR60 doi: 10.18653/v1/D19-1410 – volume: 2021 start-page: 1 year: 2021 ident: 4689_CR48 publication-title: International Conference on Advanced Computer Science and Information Systems (ICACSIS) doi: 10.1109/ICACSIS53237.2021.9631364 – volume: 12 start-page: 2825 issue: 85 year: 2011 ident: 4689_CR51 publication-title: Journal of Machine Learning Research – ident: 4689_CR3 – volume: 19 start-page: 422 issue: 3–4 year: 2021 ident: 4689_CR64 publication-title: International Journal of Advanced Intelligence Paradigms doi: 10.1504/IJAIP.2021.116369 – ident: 4689_CR1 doi: 10.1109/COMITCon.2019.8862247 – ident: 4689_CR40 – volume: 9 start-page: 330 issue: 3 year: 2013 ident: 4689_CR27 publication-title: Research in Social and Administrative Pharmacy doi: 10.1016/j.sapharm.2012.04.004 – volume: 26 start-page: 241 issue: 3 year: 2014 ident: 4689_CR15 publication-title: Technology Analysis & Strategic Management doi: 10.1080/09537325.2013.850477 – volume: 9 start-page: e1300 issue: 3 year: 2019 ident: 4689_CR45 publication-title: Wires Data Mining and Knowledge Discovery doi: 10.1002/widm.1300 – volume: 34 start-page: 2648 issue: 12 year: 2021 ident: 4689_CR62 publication-title: International Journal of Engineering doi: 10.5829/ije.2021.34.12C.10 – start-page: 317 volume-title: Image and Signal Processing year: 2020 ident: 4689_CR2 doi: 10.1007/978-3-030-51935-3_34 |
| SSID | ssj0007308 |
| Score | 2.424167 |
| Snippet | Funding institutions often solicit text-based research proposals to evaluate potential recipients. Leveraging the information contained in these documents... |
| SourceID | pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 3197 |
| SubjectTerms | Algorithms Annotations Army Averages Bidirectionality Classification Clustering Coherence Comparative analysis Computer Science Distinctiveness Documents Embedding Extraction Funding Information Storage and Retrieval Innovations Institutions Library Science Machine learning Medical technology Medicine Methodology Military technology Natural language processing Proposals Ratings Ratings & rankings Research facilities Research methodology Research proposals Subject specialists Technological change Telecommunications Telemedicine Trends |
| SummonAdditionalLinks | – databaseName: Computer Science Database (Proquest) dbid: K7- link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1BQYgL0PLRQEFG4gACizj2bmwuqEJUSEDFAVBvkdd2YKU2m252-Rv8ZWYcJ6uloheOkZ0Py2_GL57xG4BnuZUTkwfLcW21XLmJ4kYGwa1HMoGU1-exxtL3T-XxsT45MV_ShluX0ioHnxgdtV842iN_LQuSytJ6Wr5tzzlVjaLoaiqhcRWuiaIQhPOPJR89MaI3emIRjVrm6dBMf3ROCMq7LCQlN2rD5fbCdIFtXkya_CtyGheko9v_O5Q7cCtRUXbYY2cXroRmD258TsH2PdhNdt-x50mc-sVd-D2k6rGW6it0-ADKdsevZejml_0xCUbZ9D9YFA3FDsOeKGv7UwnUZhvPunA25926JXfVBc_c6ZpkG7D5DTtkPpwRd-0RGvu7jVI5XvdiKvfg29H7r-8-8FTUgTtVTlY8qInxIqDf0EXpgzN5bpWaiWBzj-wt-KlD-NRlPSutUNYiv7SF0RaZhZtZXcj7sNMsmrAPrKxrZVVtkCFqCtDOSHinnPra-NzX1mUghhmtXFI8p8Ibp9VGq5lQUCEKqoiCSmbwcryn7fU-Lu19MMxwlWy_qzbTm8HTsRmtlkIxtgmLdVdRPNsYJQudwYMeV-PrJJI-YUqRgd5C3NiBFMG3W5r5z6gMTkpN-A84zeDVAM7Nd_17GA8vH8YjuFlEQ6E0zwPYWS3X4TFcd79W8275JJrcH3rzNGU priority: 102 providerName: ProQuest |
| Title | Research proposal content extraction using natural language processing and semi-supervised clustering: A demonstration and comparative analysis |
| URI | https://link.springer.com/article/10.1007/s11192-023-04689-3 https://www.ncbi.nlm.nih.gov/pubmed/37101971 https://www.proquest.com/docview/3256818867 https://www.proquest.com/docview/2806994328 https://pubmed.ncbi.nlm.nih.gov/PMC10083066 |
| Volume | 128 |
| WOSCitedRecordID | wos000965935800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Collection customDbUrl: eissn: 1588-2861 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0007308 issn: 0138-9130 databaseCode: P5Z dateStart: 20230101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Agricultural Science Database customDbUrl: eissn: 1588-2861 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0007308 issn: 0138-9130 databaseCode: M0K dateStart: 20230101 isFulltext: true titleUrlDefault: https://search.proquest.com/agriculturejournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1588-2861 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0007308 issn: 0138-9130 databaseCode: M7P dateStart: 20230101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database (Proquest) customDbUrl: eissn: 1588-2861 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0007308 issn: 0138-9130 databaseCode: K7- dateStart: 20230101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1588-2861 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0007308 issn: 0138-9130 databaseCode: PCBAR dateStart: 20230101 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database (Proquest) customDbUrl: eissn: 1588-2861 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0007308 issn: 0138-9130 databaseCode: M7S dateStart: 20230101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1588-2861 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0007308 issn: 0138-9130 databaseCode: PATMY dateStart: 20230101 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 1588-2861 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0007308 issn: 0138-9130 databaseCode: KB. dateStart: 20230101 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1588-2861 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0007308 issn: 0138-9130 databaseCode: BENPR dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1588-2861 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007308 issn: 0138-9130 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-xjQdeNja-MkZlJB5A4ClO3NrmbUObkAZVtcFU8RK5sQOVtqxqWv4N_mXunI-qDJDgxUrkS5rId-dfene_A3gR27RvYm857q2Wy7wvuUm94NYhmEDI6-LQY-nygxoO9XhsRk1RWNVmu7chyeCpV8VuQlCmZJJSOqI2PN2ALdzuNJnj-cVl539RZ4P_FcGU07gplfn9Pda3o1sY83aq5C_x0rANne783wvch-0GdrKjWk924Y4v92CnbenAGgvfg93mqGIvG0LqVw_gR5uex2bUU6HCG1GGOz4rQ9c-r0sjGGXQf2WBKBQF2v9B2ayuRKA5WzpW-espr5YzclGVdyy_WhJVA06_ZUfM-WvCq7VWBvl8xU6O5zWBykP4fHry6d173jRy4LlU_QX3sm-c8OgrdKKcz00cWyknwtvYIWLzbpCjyhSqmCgrpLWIKW1itEU0kU-sTtJHsFnelP4JMFUU0srCICrUFJSdENmOGrjCuNgVNo9AtOuZ5Q3LOTXbuMpW_My0DBkuQxaWIUsjeN1dM6s5Pv4qfdCqSdbYe5WlCRG5aT1QETzvptFSKfxiS3-zrDKKYRsj00RH8LjWqu7nUgR6wigRgV7Tt06AWMDXZ8rpt8AGTuxM-N03iOBNq3ar5_rza-z_m_hTuJcEzaVUzwPYXMyX_hnczb8vptW8BxtqrHuwdXwyHJ3j2ZniNB4f4vgxPqNRjcJ4geOo_6UXTPYnp001rw |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwED5NAwEvwAaMwAAjgQQCa_nh1jYSQhMwbWpX8TDQ3oJrO1BpS0vTgvgr-E_4G7lzklZlYm974LGykybOd58vubvvAJ7EJuvo2BuOe6vhwnYE15lPuHHoTKDL6-LQY-lTXw4G6vhYf1iD320tDKVVtpwYiNqNLX0j38lSkspSqivfTL5x6hpF0dW2hUYNi57_-QNf2arXB-_w-T5N0733R2_3edNVgFshOzPuRUe7xCNwVSqdtzqOjRDDxJvYofvgXdfi9ReyGEqTCGPQwTGpVga3Njs0ioQOkPIviUxJ0urvSb5gfrSWwPxJIJEsbop06lK9JKE8zzSjZEqleba6EZ7xbs8maf4VqQ0b4N6N_23pbsL1xtVmu7VtbMCaLzfhymGTTLAJGw2vVexZI779_Bb8alMR2YT6R1R4Asrmx9VhuI1N6zIQRtUCX1gQRcUJ7TdfNqmrLmjMlI5V_nTEq_mE6LjyjtmTOclS4PArtsucPyXfvLbAMN8uldjxdy0Wcxs-Xsga3YH1clz6u8BkUQgjCo0esKIA9JCEhWTXFdrFrjA2gqRFUG4bRXdqLHKSL7WoCXU5oi4PqMuzCF4sjpnUeibnzt5uEZU33FblSzhF8HgxjKxEoSZT-vG8yiler7XIUhXBVo3jxd9l6NQmWiYRqBWELyaQ4vnqSDn6GpTPSYkK33G7EbxsjWF5Xf--jXvn38YjuLp_dNjP-weD3n24lgYjpZTWbVifTef-AVy232ejavowmDuDzxdtJH8AaumSGg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED7BQIgXxsavwAAj8QACa3HsNjZvE1CBmKpJwLS3yLUdqLRlUdPyb_Avc-f8KGWAhHhL5GvSyJ_PX3J33wE8Ta0cmTRYjnur5cqNFDcyCG49kgmkvD6NPZaOD_PpVJ-cmKOfqvhjtnsfkmxrGkilqVru177cXxe-CUFZk5mk1ERtuLwMVxQ1DaL39Y_Hgy9G_EZfLOKylmlXNvP7a2xuTRf45sW0yV9ip3FLmmz__8PchBsdHWUHLX524FKodmG7b_XAupW_CzvdUcOedULVz2_B9z5tj9XUa6HBC3V3ZujyF23JBKPM-i8sCoiiQf99lNVthQKN2cqzJpzNebOqyXU1wTN3uiIJBxx-xQ6YD2fEY1u0Rnu3Vi3H81ZY5TZ8nrz99Pod7xo8cKfy0ZIHNTJeBPQhOst9cCZNrVIzEWzqkckFP3YIpTIvZ7kVylrkmjYz2iLLcDOrM3kHtqrzKtwDlpelsqo0yBY1BWtnJMKTj31pfOpL6xIQ_dwWrlM_pyYcp8Vat5mmocBpKOI0FDKBF8Nv6lb746_Wez1kis4PNIXMSOBN63GewJNhGFcwhWVsFc5XTUGxbWOUzHQCd1uEDbeTSACFyUUCegN7gwGpg2-OVPOvUSWcVJvwfXCcwMseguv_9efHuP9v5o_h2tGbSXH4fvrhAVzPIogpG3QPtpaLVXgIV9235bxZPIrr8gdqkTlz |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+proposal+content+extraction+using+natural+language+processing+and+semi-supervised+clustering%3A+A+demonstration+and+comparative+analysis&rft.jtitle=Scientometrics&rft.au=Knisely%2C+Benjamin+M.&rft.au=Pavliscsak%2C+Holly+H.&rft.date=2023-05-01&rft.pub=Springer+International+Publishing&rft.issn=0138-9130&rft.eissn=1588-2861&rft.volume=128&rft.issue=5&rft.spage=3197&rft.epage=3224&rft_id=info:doi/10.1007%2Fs11192-023-04689-3&rft.externalDocID=10_1007_s11192_023_04689_3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0138-9130&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0138-9130&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0138-9130&client=summon |