Phosphatidylinositol 4,5-bisphosphate optical uncaging potentiates exocytosis
Phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] is essential for exocytosis. Classical ways of manipulating PI(4,5)P2 levels are slower than its metabolism, making it difficult to distinguish effects of PI(4,5)P2 from those of its metabolites. We developed a membrane-permeant, photoactivatable PI(...
Uloženo v:
| Vydáno v: | eLife Ročník 6 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
England
eLife Sciences Publications Ltd
25.10.2017
eLife Sciences Publications, Ltd |
| Témata: | |
| ISSN: | 2050-084X, 2050-084X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] is essential for exocytosis. Classical ways of manipulating PI(4,5)P2 levels are slower than its metabolism, making it difficult to distinguish effects of PI(4,5)P2 from those of its metabolites. We developed a membrane-permeant, photoactivatable PI(4,5)P2, which is loaded into cells in an inactive form and activated by light, allowing sub-second increases in PI(4,5)P2 levels. By combining this compound with electrophysiological measurements in mouse adrenal chromaffin cells, we show that PI(4,5)P2 uncaging potentiates exocytosis and identify synaptotagmin-1 (the Ca2+ sensor for exocytosis) and Munc13-2 (a vesicle priming protein) as the relevant effector proteins. PI(4,5)P2 activation of exocytosis did not depend on the PI(4,5)P2-binding CAPS-proteins, suggesting that PI(4,5)P2 uncaging may bypass CAPS-function. Finally, PI(4,5)P2 uncaging triggered the rapid fusion of a subset of readily-releasable vesicles, revealing a rapid role of PI(4,5)P2 in fusion triggering. Thus, optical uncaging of signaling lipids can uncover their rapid effects on cellular processes and identify lipid effectors.
Cells in our body communicate by releasing compounds called transmitters that carry signals from one cell to the next. Packages called vesicles store transmitters within the signaling cell. When the cell needs to send a signal, the vesicles fuse with the cell's membrane and release their cargo. For many signaling processes, such as those used by neurons, this fusion is regulated, fast, and coupled to the signal that the cell receives to activate release. Specialized molecular machines made up of proteins and fatty acid molecules called signaling lipids enable this to happen.
One signaling lipid called PI(4,5)P2 (short for phosphatidylinositol 4,5-bisphosphate) is essential for vesicle fusion as well as for other processes in cells. It interacts with several proteins that help it control fusion and the release of transmitter. While it is possible to study the role of these proteins using genetic tools to inactivate them, the signaling lipids are more difficult to manipulate. Existing methods result in slow changes in PI(4,5)P2 levels, making it hard to directly attribute later changes to PI(4,5)P2.
Walter, Müller, Tawfik et al. developed a new method to measure how PI(4,5)P2 affects transmitter release in living mammalian cells, which causes a rapid increase in PI(4,5)P2 levels. The method uses a chemical compound called “caged PI(4,5)P2” that can be loaded into cells but remains undetected until ultraviolet light is shone on it. The ultraviolet light uncages the compound, generating active PI(4,5)P2 in less than one second. Walter et al. found that when they uncaged PI(4,5)P2 in this way, the amount of transmitter released by cells increased. Combining this with genetic tools, it was possible to investigate which proteins of the release machinery were required for this effect.
The results suggest that two different types of proteins that interact with PI(4,5)P2 are needed: one must bind PI(4,5)P2 to carry out its role and the other helps PI(4,5)P2 accumulate at the site of vesicle fusion. The new method also allowed Walter et al. to show that a fast increase in PI(4,5)P2 triggers a subset of vesicles to fuse very rapidly. This shows that PI(4,5)P2 rapidly regulates the release of transmitter. Caged PI(4,5)P2 will be useful to study other processes in cells that need PI(4,5)P2, helping scientists understand more about how signaling lipids control many different events at cellular membranes. |
|---|---|
| AbstractList | Phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] is essential for exocytosis. Classical ways of manipulating PI(4,5)P2 levels are slower than its metabolism, making it difficult to distinguish effects of PI(4,5)P2 from those of its metabolites. We developed a membrane-permeant, photoactivatable PI(4,5)P2, which is loaded into cells in an inactive form and activated by light, allowing sub-second increases in PI(4,5)P2 levels. By combining this compound with electrophysiological measurements in mouse adrenal chromaffin cells, we show that PI(4,5)P2 uncaging potentiates exocytosis and identify synaptotagmin-1 (the Ca2+ sensor for exocytosis) and Munc13-2 (a vesicle priming protein) as the relevant effector proteins. PI(4,5)P2 activation of exocytosis did not depend on the PI(4,5)P2-binding CAPS-proteins, suggesting that PI(4,5)P2 uncaging may bypass CAPS-function. Finally, PI(4,5)P2 uncaging triggered the rapid fusion of a subset of readily-releasable vesicles, revealing a rapid role of PI(4,5)P2 in fusion triggering. Thus, optical uncaging of signaling lipids can uncover their rapid effects on cellular processes and identify lipid effectors. Phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] is essential for exocytosis. Classical ways of manipulating PI(4,5)P2 levels are slower than its metabolism, making it difficult to distinguish effects of PI(4,5)P2 from those of its metabolites. We developed a membrane-permeant, photoactivatable PI(4,5)P2, which is loaded into cells in an inactive form and activated by light, allowing sub-second increases in PI(4,5)P2 levels. By combining this compound with electrophysiological measurements in mouse adrenal chromaffin cells, we show that PI(4,5)P2 uncaging potentiates exocytosis and identify synaptotagmin-1 (the Ca2+ sensor for exocytosis) and Munc13-2 (a vesicle priming protein) as the relevant effector proteins. PI(4,5)P2 activation of exocytosis did not depend on the PI(4,5)P2-binding CAPS-proteins, suggesting that PI(4,5)P2 uncaging may bypass CAPS-function. Finally, PI(4,5)P2 uncaging triggered the rapid fusion of a subset of readily-releasable vesicles, revealing a rapid role of PI(4,5)P2 in fusion triggering. Thus, optical uncaging of signaling lipids can uncover their rapid effects on cellular processes and identify lipid effectors. Cells in our body communicate by releasing compounds called transmitters that carry signals from one cell to the next. Packages called vesicles store transmitters within the signaling cell. When the cell needs to send a signal, the vesicles fuse with the cell's membrane and release their cargo. For many signaling processes, such as those used by neurons, this fusion is regulated, fast, and coupled to the signal that the cell receives to activate release. Specialized molecular machines made up of proteins and fatty acid molecules called signaling lipids enable this to happen. One signaling lipid called PI(4,5)P2 (short for phosphatidylinositol 4,5-bisphosphate) is essential for vesicle fusion as well as for other processes in cells. It interacts with several proteins that help it control fusion and the release of transmitter. While it is possible to study the role of these proteins using genetic tools to inactivate them, the signaling lipids are more difficult to manipulate. Existing methods result in slow changes in PI(4,5)P2 levels, making it hard to directly attribute later changes to PI(4,5)P2. Walter, Müller, Tawfik et al. developed a new method to measure how PI(4,5)P2 affects transmitter release in living mammalian cells, which causes a rapid increase in PI(4,5)P2 levels. The method uses a chemical compound called “caged PI(4,5)P2” that can be loaded into cells but remains undetected until ultraviolet light is shone on it. The ultraviolet light uncages the compound, generating active PI(4,5)P2 in less than one second. Walter et al. found that when they uncaged PI(4,5)P2 in this way, the amount of transmitter released by cells increased. Combining this with genetic tools, it was possible to investigate which proteins of the release machinery were required for this effect. The results suggest that two different types of proteins that interact with PI(4,5)P2 are needed: one must bind PI(4,5)P2 to carry out its role and the other helps PI(4,5)P2 accumulate at the site of vesicle fusion. The new method also allowed Walter et al. to show that a fast increase in PI(4,5)P2 triggers a subset of vesicles to fuse very rapidly. This shows that PI(4,5)P2 rapidly regulates the release of transmitter. Caged PI(4,5)P2 will be useful to study other processes in cells that need PI(4,5)P2, helping scientists understand more about how signaling lipids control many different events at cellular membranes. Phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] is essential for exocytosis. Classical ways of manipulating PI(4,5)P2 levels are slower than its metabolism, making it difficult to distinguish effects of PI(4,5)P2 from those of its metabolites. We developed a membrane-permeant, photoactivatable PI(4,5)P2, which is loaded into cells in an inactive form and activated by light, allowing sub-second increases in PI(4,5)P2 levels. By combining this compound with electrophysiological measurements in mouse adrenal chromaffin cells, we show that PI(4,5)P2 uncaging potentiates exocytosis and identify synaptotagmin-1 (the Ca2+ sensor for exocytosis) and Munc13-2 (a vesicle priming protein) as the relevant effector proteins. PI(4,5)P2 activation of exocytosis did not depend on the PI(4,5)P2-binding CAPS-proteins, suggesting that PI(4,5)P2 uncaging may bypass CAPS-function. Finally, PI(4,5)P2 uncaging triggered the rapid fusion of a subset of readily-releasable vesicles, revealing a rapid role of PI(4,5)P2 in fusion triggering. Thus, optical uncaging of signaling lipids can uncover their rapid effects on cellular processes and identify lipid effectors. Cells in our body communicate by releasing compounds called transmitters that carry signals from one cell to the next. Packages called vesicles store transmitters within the signaling cell. When the cell needs to send a signal, the vesicles fuse with the cell's membrane and release their cargo. For many signaling processes, such as those used by neurons, this fusion is regulated, fast, and coupled to the signal that the cell receives to activate release. Specialized molecular machines made up of proteins and fatty acid molecules called signaling lipids enable this to happen. One signaling lipid called PI(4,5)P2 (short for phosphatidylinositol 4,5-bisphosphate) is essential for vesicle fusion as well as for other processes in cells. It interacts with several proteins that help it control fusion and the release of transmitter. While it is possible to study the role of these proteins using genetic tools to inactivate them, the signaling lipids are more difficult to manipulate. Existing methods result in slow changes in PI(4,5)P2 levels, making it hard to directly attribute later changes to PI(4,5)P2. Walter, Müller, Tawfik et al. developed a new method to measure how PI(4,5)P2 affects transmitter release in living mammalian cells, which causes a rapid increase in PI(4,5)P2 levels. The method uses a chemical compound called “caged PI(4,5)P2” that can be loaded into cells but remains undetected until ultraviolet light is shone on it. The ultraviolet light uncages the compound, generating active PI(4,5)P2 in less than one second. Walter et al. found that when they uncaged PI(4,5)P2 in this way, the amount of transmitter released by cells increased. Combining this with genetic tools, it was possible to investigate which proteins of the release machinery were required for this effect. The results suggest that two different types of proteins that interact with PI(4,5)P2 are needed: one must bind PI(4,5)P2 to carry out its role and the other helps PI(4,5)P2 accumulate at the site of vesicle fusion. The new method also allowed Walter et al. to show that a fast increase in PI(4,5)P2 triggers a subset of vesicles to fuse very rapidly. This shows that PI(4,5)P2 rapidly regulates the release of transmitter. Caged PI(4,5)P2 will be useful to study other processes in cells that need PI(4,5)P2, helping scientists understand more about how signaling lipids control many different events at cellular membranes. Phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] is essential for exocytosis. Classical ways of manipulating PI(4,5)P2 levels are slower than its metabolism, making it difficult to distinguish effects of PI(4,5)P2 from those of its metabolites. We developed a membrane-permeant, photoactivatable PI(4,5)P2, which is loaded into cells in an inactive form and activated by light, allowing sub-second increases in PI(4,5)P2 levels. By combining this compound with electrophysiological measurements in mouse adrenal chromaffin cells, we show that PI(4,5)P2 uncaging potentiates exocytosis and identify synaptotagmin-1 (the Ca2+ sensor for exocytosis) and Munc13-2 (a vesicle priming protein) as the relevant effector proteins. PI(4,5)P2 activation of exocytosis did not depend on the PI(4,5)P2-binding CAPS-proteins, suggesting that PI(4,5)P2 uncaging may bypass CAPS-function. Finally, PI(4,5)P2 uncaging triggered the rapid fusion of a subset of readily-releasable vesicles, revealing a rapid role of PI(4,5)P2 in fusion triggering. Thus, optical uncaging of signaling lipids can uncover their rapid effects on cellular processes and identify lipid effectors.Phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] is essential for exocytosis. Classical ways of manipulating PI(4,5)P2 levels are slower than its metabolism, making it difficult to distinguish effects of PI(4,5)P2 from those of its metabolites. We developed a membrane-permeant, photoactivatable PI(4,5)P2, which is loaded into cells in an inactive form and activated by light, allowing sub-second increases in PI(4,5)P2 levels. By combining this compound with electrophysiological measurements in mouse adrenal chromaffin cells, we show that PI(4,5)P2 uncaging potentiates exocytosis and identify synaptotagmin-1 (the Ca2+ sensor for exocytosis) and Munc13-2 (a vesicle priming protein) as the relevant effector proteins. PI(4,5)P2 activation of exocytosis did not depend on the PI(4,5)P2-binding CAPS-proteins, suggesting that PI(4,5)P2 uncaging may bypass CAPS-function. Finally, PI(4,5)P2 uncaging triggered the rapid fusion of a subset of readily-releasable vesicles, revealing a rapid role of PI(4,5)P2 in fusion triggering. Thus, optical uncaging of signaling lipids can uncover their rapid effects on cellular processes and identify lipid effectors. Phosphatidylinositol-4,5-bisphosphate [PI(4,5)P ] is essential for exocytosis. Classical ways of manipulating PI(4,5)P levels are slower than its metabolism, making it difficult to distinguish effects of PI(4,5)P from those of its metabolites. We developed a membrane-permeant, photoactivatable PI(4,5)P , which is loaded into cells in an inactive form and activated by light, allowing sub-second increases in PI(4,5)P levels. By combining this compound with electrophysiological measurements in mouse adrenal chromaffin cells, we show that PI(4,5)P uncaging potentiates exocytosis and identify synaptotagmin-1 (the Ca sensor for exocytosis) and Munc13-2 (a vesicle priming protein) as the relevant effector proteins. PI(4,5)P activation of exocytosis did not depend on the PI(4,5)P -binding CAPS-proteins, suggesting that PI(4,5)P uncaging may bypass CAPS-function. Finally, PI(4,5)P uncaging triggered the rapid fusion of a subset of readily-releasable vesicles, revealing a rapid role of PI(4,5)P in fusion triggering. Thus, optical uncaging of signaling lipids can uncover their rapid effects on cellular processes and identify lipid effectors. |
| Author | Kruse, Martin Reither, Gregor Rettig, Jens Hille, Bertil Müller, Rainer Wierda, Keimpe DB Sørensen, Jakob Balslev Nadler, André Schultz, Carsten McCarthy, Anthony W Walter, Alexander M Ziomkiewicz, Iwona Tawfik, Bassam Lehmann, Martin Haucke, Volker Pinheiro, Paulo S |
| Author_xml | – sequence: 1 givenname: Alexander M orcidid: 0000-0001-5646-4750 surname: Walter fullname: Walter, Alexander M organization: Neurosecretion group, Center for Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany – sequence: 2 givenname: Rainer orcidid: 0000-0003-3464-494X surname: Müller fullname: Müller, Rainer organization: Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany – sequence: 3 givenname: Bassam orcidid: 0000-0003-1193-8494 surname: Tawfik fullname: Tawfik, Bassam organization: Neurosecretion group, Center for Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark – sequence: 4 givenname: Keimpe DB orcidid: 0000-0002-8784-9490 surname: Wierda fullname: Wierda, Keimpe DB organization: Neurosecretion group, Center for Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark – sequence: 5 givenname: Paulo S surname: Pinheiro fullname: Pinheiro, Paulo S organization: Neurosecretion group, Center for Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark – sequence: 6 givenname: André surname: Nadler fullname: Nadler, André organization: Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany – sequence: 7 givenname: Anthony W orcidid: 0000-0002-3771-351X surname: McCarthy fullname: McCarthy, Anthony W organization: Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany – sequence: 8 givenname: Iwona surname: Ziomkiewicz fullname: Ziomkiewicz, Iwona organization: Neurosecretion group, Center for Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark, Discovery Sciences, AstraZeneca, Cambridge, United Kingdom – sequence: 9 givenname: Martin surname: Kruse fullname: Kruse, Martin organization: Department of Physiology and Biophysics, School of Medicine, University of Washington, Seattle, United States – sequence: 10 givenname: Gregor surname: Reither fullname: Reither, Gregor organization: Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany – sequence: 11 givenname: Jens surname: Rettig fullname: Rettig, Jens organization: Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany – sequence: 12 givenname: Martin surname: Lehmann fullname: Lehmann, Martin organization: Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany – sequence: 13 givenname: Volker surname: Haucke fullname: Haucke, Volker organization: Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany – sequence: 14 givenname: Bertil surname: Hille fullname: Hille, Bertil organization: Department of Physiology and Biophysics, School of Medicine, University of Washington, Seattle, United States – sequence: 15 givenname: Carsten surname: Schultz fullname: Schultz, Carsten organization: Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany – sequence: 16 givenname: Jakob Balslev orcidid: 0000-0001-5465-3769 surname: Sørensen fullname: Sørensen, Jakob Balslev organization: Neurosecretion group, Center for Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29068313$$D View this record in MEDLINE/PubMed |
| BookMark | eNptktFrFDEQxoO02Fr75Lss-CLo1mSTbJIXQYrawok-KPgWssnsXY7cZk12xfvvzd21pS3NS8I3v_mYycwLdDTEARB6RfCF4Jx9gIXv4YLiBtNn6LTBHNdYst9H994n6DznNS5HMCmJeo5OGoVbSQk9Rd9-rGIeV2bybhv8ELOfYqjYe153vuiHGFRxnLw1oZoHa5Z-WFZjnGCYfInlCv5Fu51Kan6JjnsTMpzf3Gfo15fPPy-v6sX3r9eXnxa1ZYJPtW0Ut0A5bTAmXDbWtBYr3AsmXO8AHHYYG-EU6UkRpFElz-LOMC6gax09Q9cHXxfNWo_Jb0za6mi83gsxLbVJpeIA2pjOQQumk1wwZYi0SlglqZOccMx3Xh8PXuPcbcDZ0lYy4YHpw8jgV3oZ_2ouCKGCFYO3NwYp_pkhT3rjs4UQzABxzpoozlsiCW8K-uYRuo5zGspXFUo2kgjW7KjX9yu6K-V2agV4dwBsijkn6O8QgvVuLfR-LfR-LQpNHtHWT2XgcdeOD0_m_Ad35rz9 |
| CitedBy_id | crossref_primary_10_1016_j_tibs_2018_09_011 crossref_primary_10_1080_15384101_2022_2042777 crossref_primary_10_3389_fncel_2023_1193485 crossref_primary_10_1021_acsomega_5c00864 crossref_primary_10_26508_lsa_202000788 crossref_primary_10_1016_j_bbalip_2025_159651 crossref_primary_10_3389_fnins_2020_578409 crossref_primary_10_1007_s00018_021_03788_9 crossref_primary_10_1016_j_cbpa_2025_102581 crossref_primary_10_1016_j_neures_2017_12_006 crossref_primary_10_1016_j_neuron_2021_09_054 crossref_primary_10_1038_s41574_018_0105_2 crossref_primary_10_1038_s41583_020_0278_2 crossref_primary_10_1002_1873_3468_13160 crossref_primary_10_1016_j_tcb_2022_01_009 crossref_primary_10_1042_BCJ20180022 crossref_primary_10_7554_eLife_74810 crossref_primary_10_1002_1873_3468_13188 crossref_primary_10_1038_s41467_019_09114_z crossref_primary_10_1016_j_cbpa_2021_04_012 crossref_primary_10_1016_j_cbpa_2022_102234 crossref_primary_10_1083_jcb_202409196 crossref_primary_10_1007_s00125_025_06411_9 crossref_primary_10_1038_s41580_022_00490_x crossref_primary_10_1042_EBC20200041 crossref_primary_10_1091_mbc_E22_08_0372 crossref_primary_10_1016_j_ceb_2018_06_013 crossref_primary_10_3389_fendo_2025_1577505 crossref_primary_10_3390_cells10102535 crossref_primary_10_1111_bph_16371 crossref_primary_10_1016_j_bpj_2023_11_013 crossref_primary_10_1080_01677063_2018_1502762 crossref_primary_10_1111_ejn_16526 crossref_primary_10_1016_j_neuron_2023_08_016 crossref_primary_10_1016_j_jbc_2024_105757 crossref_primary_10_1016_j_neures_2017_09_013 crossref_primary_10_1074_jbc_RA119_007929 crossref_primary_10_1016_j_neuropharm_2024_110247 |
| Cites_doi | 10.1073/pnas.93.23.13327 10.1074/jbc.273.14.8337 10.1016/j.bbalip.2014.09.017 10.1523/JNEUROSCI.4908-06.2007 10.7554/eLife.01715 10.1523/JNEUROSCI.5672-07.2008 10.7554/eLife.10635 10.1016/j.celrep.2014.09.050 10.1523/JNEUROSCI.1236-13.2013 10.1083/jcb.200907018 10.1016/S0092-8674(03)00477-X 10.1042/bj2680015 10.1016/j.cell.2007.11.002 10.1002/anie.201007796 10.1016/S0968-0896(02)00552-7 10.1038/nsmb.2570 10.1091/mbc.E12-11-0829 10.1016/j.cell.2009.07.027 10.1016/S0092-8674(00)80732-1 10.1016/j.ymeth.2004.01.004 10.1016/j.neuron.2005.02.019 10.1073/pnas.1211305109 10.1016/j.neuron.2013.01.025 10.1038/nsmb709 10.1016/j.neuron.2004.07.028 10.1038/nchembio.348 10.1126/scisignal.2004532 10.1074/jbc.M312772200 10.1016/j.neuron.2010.07.001 10.1016/S0896-6273(00)80812-0 10.1038/nsmb.1758 10.1152/physrev.00028.2012 10.1523/JNEUROSCI.1011-16.2016 10.1073/pnas.122623799 10.1016/j.neuron.2007.01.021 10.1038/nature11320 10.1073/pnas.242624699 10.1038/nature05185 10.7554/eLife.17571 10.1073/pnas.0900755106 10.1016/S0092-8674(01)00635-3 10.1074/jbc.M112.343418 10.1016/j.neuron.2013.10.022 10.1038/nature00846 10.1007/978-94-007-3015-1_4 10.1073/pnas.201398798 10.1016/j.neuron.2007.09.015 10.1074/jbc.M600888200 10.15252/embj.201387549 10.1152/physiol.00026.2013 10.1007/BF00582306 10.1146/annurev-cellbio-101011-155818 10.1523/JNEUROSCI.3983-14.2015 10.1002/anie.201301716 10.1038/nature14975 10.1523/JNEUROSCI.3761-04.2005 10.1073/pnas.0712373105 10.1016/S0896-6273(00)80520-6 10.1038/374173a0 10.1083/jcb.201001164 10.1016/j.neuroscience.2006.08.014 10.1016/S0896-6273(00)80504-8 10.1016/0092-8674(94)90556-8 10.1091/mbc.E15-07-0509 10.1073/pnas.0501412102 10.1016/S0896-6273(01)00391-9 10.1016/j.neuron.2007.04.001 10.1038/nature03650 10.1016/j.bbalip.2014.03.012 10.1038/nature12360 10.1021/jo010692p 10.1016/j.neuron.2014.10.009 |
| ContentType | Journal Article |
| Copyright | 2017, Walter et al. This work is licensed under the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/3.0/ ) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2017, Walter et al 2017 Walter et al |
| Copyright_xml | – notice: 2017, Walter et al. This work is licensed under the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/3.0/ ) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2017, Walter et al 2017 Walter et al |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.7554/eLife.30203 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database AUTh Library subscriptions: ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Science Database ProQuest Biological Science ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Open Access: DOAJ - Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: ProQuest - Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2050-084X |
| ExternalDocumentID | oai_doaj_org_article_aabde6eab85749a18c97c983d851505d PMC5711374 29068313 10_7554_eLife_30203 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R37 NS008174 – fundername: ; – fundername: ; grantid: HEALTH-F2-2009-242167 – fundername: ; grantid: Transregio186 – fundername: ; grantid: Transregio83 – fundername: ; grantid: Emmy Noether Programme – fundername: ; grantid: R37NS008174 |
| GroupedDBID | 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAKDD AAYXX ABUWG ACGFO ACGOD ACPRK ADBBV ADRAZ AENEX AFFHD AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI CCPQU CITATION DIK DWQXO EMOBN FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IEA IHR INH INR ISR ITC KQ8 LK8 M1P M2P M48 M7P M~E NQS OK1 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO RHI RNS RPM UKHRP ALIPV CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c475t-c295ce3532001582ca6c090f747dfdeed0d00a7d91f1dfd8a9c47c0ba457eb6d3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 46 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000417123300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2050-084X |
| IngestDate | Fri Oct 03 12:31:32 EDT 2025 Tue Nov 04 01:56:56 EST 2025 Fri Sep 05 06:14:09 EDT 2025 Tue Oct 07 06:46:15 EDT 2025 Mon Jul 21 06:04:53 EDT 2025 Tue Nov 18 21:24:48 EST 2025 Sat Nov 29 06:16:25 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | mouse adrenal chromaffin cell cell biology Munc13 neuroscience optical uncaging exocytosis synaptotagmin phosphatidylinositols |
| Language | English |
| License | http://creativecommons.org/licenses/by/4.0 This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c475t-c295ce3532001582ca6c090f747dfdeed0d00a7d91f1dfd8a9c47c0ba457eb6d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work. |
| ORCID | 0000-0002-8784-9490 0000-0003-1193-8494 0000-0001-5646-4750 0000-0003-3464-494X 0000-0002-3771-351X 0000-0001-5465-3769 |
| OpenAccessLink | https://doaj.org/article/aabde6eab85749a18c97c983d851505d |
| PMID | 29068313 |
| PQID | 1982817422 |
| PQPubID | 2045579 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_aabde6eab85749a18c97c983d851505d pubmedcentral_primary_oai_pubmedcentral_nih_gov_5711374 proquest_miscellaneous_1955618152 proquest_journals_1982817422 pubmed_primary_29068313 crossref_primary_10_7554_eLife_30203 crossref_citationtrail_10_7554_eLife_30203 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-10-25 |
| PublicationDateYYYYMMDD | 2017-10-25 |
| PublicationDate_xml | – month: 10 year: 2017 text: 2017-10-25 day: 25 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Cambridge |
| PublicationTitle | eLife |
| PublicationTitleAlternate | Elife |
| PublicationYear | 2017 |
| Publisher | eLife Sciences Publications Ltd eLife Sciences Publications, Ltd |
| Publisher_xml | – name: eLife Sciences Publications Ltd – name: eLife Sciences Publications, Ltd |
| References | James (bib23) 2009; 106 Nadler (bib43) 2013; 52 Südhof (bib60) 2013; 80 Subramanian (bib57) 2010; 6 Smith (bib55) 1998; 20 Imig (bib21) 2014; 84 Martin (bib37) 2012; 59 Mackler (bib35) 2002; 418 Schiavo (bib50) 1996; 93 Gong (bib15) 2005; 102 Sørensen (bib59) 2003; 114 Voets (bib64) 1999; 23 Yang (bib70) 2002; 99 Walter (bib68) 2010; 188 Rhee (bib47) 2002; 108 Lee (bib29) 2004; 279 Di Paolo (bib9) 2006; 443 Chang (bib6) 2015; 35 Voets (bib65) 2001; 31 Zhou (bib72) 2015; 525 Eberhard (bib10) 1990; 268 Nguyen Truong (bib44) 2014; 9 Kabachinski (bib25) 2016; 27 Jockusch (bib24) 2007; 131 Kabachinski (bib26) 2014; 25 Bai (bib1) 2004; 11 Fang (bib12) 2014; 29 Voets (bib63) 2001; 98 Wadel (bib66) 2007; 53 Zhou (bib71) 2007; 56 Laketa (bib28) 2014; 7 Idevall-Hagren (bib20) 2012; 109 Honigmann (bib18) 2013; 20 Mentel (bib39) 2011; 50 Schupp (bib53) 2016; 36 Lindau (bib31) 1988; 411 Dhara (bib8) 2016; 5 Liu (bib33) 2008; 28 Murata (bib42) 2005; 435 Genc (bib13) 2014; 3 Li (bib30) 2006; 281 Balla (bib2) 2013; 93 Suh (bib58) 2010; 67 Geppert (bib14) 1994; 79 Shin (bib54) 2010; 17 Jahn (bib22) 2012; 490 Walter (bib67) 2014; 33 Bruns (bib5) 2004; 33 Mohrmann (bib41) 2013; 33 Khuong (bib27) 2013; 77 Speidel (bib56) 2005; 46 Schultz (bib52) 2003; 11 Varoqueaux (bib62) 2002; 99 Eckardt (bib11) 2002; 67 Hay (bib17) 1995; 374 Man (bib36) 2015; 4 de Wit (bib7) 2009; 138 Grishanin (bib16) 2004; 43 Rohatgi (bib49) 1999; 97 Nili (bib45) 2006; 143 Wierda (bib69) 2007; 54 Basu (bib3) 2007; 27 Rizo (bib48) 2012; 28 Betz (bib4) 1998; 21 van den Bogaart (bib61) 2012; 287 Liu (bib32) 2010; 190 Loyet (bib34) 1998; 273 Schonn (bib51) 2008; 105 Milosevic (bib40) 2005; 25 Posor (bib46) 2013; 499 Höglinger (bib19) 2014; 1841 Martin (bib38) 2015; 1851 |
| References_xml | – volume: 93 start-page: 13327 year: 1996 ident: bib50 article-title: Calcium-dependent switching of the specificity of phosphoinositide binding to synaptotagmin publication-title: PNAS doi: 10.1073/pnas.93.23.13327 – volume: 273 start-page: 8337 year: 1998 ident: bib34 article-title: Specific binding of phosphatidylinositol 4,5-bisphosphate to calcium-dependent activator protein for secretion (CAPS), a potential phosphoinositide effector protein for regulated exocytosis publication-title: Journal of Biological Chemistry doi: 10.1074/jbc.273.14.8337 – volume: 1851 start-page: 785 year: 2015 ident: bib38 article-title: PI(4,5)P₂-binding effector proteins for vesicle exocytosis publication-title: Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids doi: 10.1016/j.bbalip.2014.09.017 – volume: 27 start-page: 1200 year: 2007 ident: bib3 article-title: Munc13-1 C1 domain activation lowers the energy barrier for synaptic vesicle fusion publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.4908-06.2007 – volume: 3 start-page: e01715 year: 2014 ident: bib13 article-title: Munc18-1 is a dynamically regulated PKC target during short-term enhancement of transmitter release publication-title: eLife doi: 10.7554/eLife.01715 – volume: 28 start-page: 5594 year: 2008 ident: bib33 article-title: CAPS facilitates filling of the rapidly releasable pool of large dense-core vesicles publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.5672-07.2008 – volume: 4 start-page: e10635 year: 2015 ident: bib36 article-title: Identification of a Munc13-sensitive step in chromaffin cell large dense-core vesicle exocytosis publication-title: eLife doi: 10.7554/eLife.10635 – volume: 9 start-page: 902 year: 2014 ident: bib44 article-title: Secretory vesicle priming by CAPS is independent of its SNARE-binding MUN domain publication-title: Cell Reports doi: 10.1016/j.celrep.2014.09.050 – volume: 33 start-page: 14417 year: 2013 ident: bib41 article-title: Synaptotagmin interaction with SNAP-25 governs vesicle docking, priming, and fusion triggering publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.1236-13.2013 – volume: 188 start-page: 401 year: 2010 ident: bib68 article-title: Synaptobrevin N-terminally bound to syntaxin-SNAP-25 defines the primed vesicle state in regulated exocytosis publication-title: The Journal of Cell Biology doi: 10.1083/jcb.200907018 – volume: 114 start-page: 75 year: 2003 ident: bib59 article-title: Differential control of the releasable vesicle pools by SNAP-25 splice variants and SNAP-23 publication-title: Cell doi: 10.1016/S0092-8674(03)00477-X – volume: 268 start-page: 15 year: 1990 ident: bib10 article-title: Evidence that the inositol phospholipids are necessary for exocytosis. Loss of inositol phospholipids and inhibition of secretion in permeabilized cells caused by a bacterial phospholipase C and removal of ATP publication-title: Biochemical Journal doi: 10.1042/bj2680015 – volume: 131 start-page: 796 year: 2007 ident: bib24 article-title: CAPS-1 and CAPS-2 are essential synaptic vesicle priming proteins publication-title: Cell doi: 10.1016/j.cell.2007.11.002 – volume: 50 start-page: 3811 year: 2011 ident: bib39 article-title: Photoactivatable and cell-membrane-permeable phosphatidylinositol 3,4,5-trisphosphate publication-title: Angewandte Chemie International Edition doi: 10.1002/anie.201007796 – volume: 11 start-page: 885 year: 2003 ident: bib52 article-title: Prodrugs of biologically active phosphate esters publication-title: Bioorganic & Medicinal Chemistry doi: 10.1016/S0968-0896(02)00552-7 – volume: 20 start-page: 679 year: 2013 ident: bib18 article-title: Phosphatidylinositol 4,5-bisphosphate clusters act as molecular beacons for vesicle recruitment publication-title: Nature Structural & Molecular Biology doi: 10.1038/nsmb.2570 – volume: 25 start-page: 508 year: 2014 ident: bib26 article-title: CAPS and Munc13 utilize distinct PIP2-linked mechanisms to promote vesicle exocytosis publication-title: Molecular Biology of the Cell doi: 10.1091/mbc.E12-11-0829 – volume: 138 start-page: 935 year: 2009 ident: bib7 article-title: Synaptotagmin-1 docks secretory vesicles to syntaxin-1/SNAP-25 acceptor complexes publication-title: Cell doi: 10.1016/j.cell.2009.07.027 – volume: 97 start-page: 221 year: 1999 ident: bib49 article-title: The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly publication-title: Cell doi: 10.1016/S0092-8674(00)80732-1 – volume: 33 start-page: 312 year: 2004 ident: bib5 article-title: Detection of transmitter release with carbon fiber electrodes publication-title: Methods doi: 10.1016/j.ymeth.2004.01.004 – volume: 46 start-page: 75 year: 2005 ident: bib56 article-title: CAPS1 regulates catecholamine loading of large dense-core vesicles publication-title: Neuron doi: 10.1016/j.neuron.2005.02.019 – volume: 109 start-page: E2316 year: 2012 ident: bib20 article-title: Optogenetic control of phosphoinositide metabolism publication-title: PNAS doi: 10.1073/pnas.1211305109 – volume: 77 start-page: 1097 year: 2013 ident: bib27 article-title: Synaptic PI(3,4,5)P3 is required for Syntaxin1A clustering and neurotransmitter release publication-title: Neuron doi: 10.1016/j.neuron.2013.01.025 – volume: 11 start-page: 36 year: 2004 ident: bib1 article-title: PIP2 increases the speed of response of synaptotagmin and steers its membrane-penetration activity toward the plasma membrane publication-title: Nature Structural & Molecular Biology doi: 10.1038/nsmb709 – volume: 43 start-page: 551 year: 2004 ident: bib16 article-title: CAPS acts at a prefusion step in dense-core vesicle exocytosis as a PIP2 binding protein publication-title: Neuron doi: 10.1016/j.neuron.2004.07.028 – volume: 6 start-page: 324 year: 2010 ident: bib57 article-title: Activation of membrane-permeant caged PtdIns(3)P induces endosomal fusion in cells publication-title: Nature Chemical Biology doi: 10.1038/nchembio.348 – volume: 7 start-page: ra5 year: 2014 ident: bib28 article-title: PIP₃ induces the recycling of receptor tyrosine kinases publication-title: Science Signaling doi: 10.1126/scisignal.2004532 – volume: 279 start-page: 24362 year: 2004 ident: bib29 article-title: The pleckstrin homology domain of phosphoinositide-specific phospholipase Cdelta4 is not a critical determinant of the membrane localization of the enzyme publication-title: Journal of Biological Chemistry doi: 10.1074/jbc.M312772200 – volume: 67 start-page: 224 year: 2010 ident: bib58 article-title: Modulation of high-voltage activated Ca(2+) channels by membrane phosphatidylinositol 4,5-bisphosphate publication-title: Neuron doi: 10.1016/j.neuron.2010.07.001 – volume: 23 start-page: 607 year: 1999 ident: bib64 article-title: Mechanisms underlying phasic and sustained secretion in chromaffin cells from mouse adrenal slices publication-title: Neuron doi: 10.1016/S0896-6273(00)80812-0 – volume: 17 start-page: 280 year: 2010 ident: bib54 article-title: Munc13 C2B domain is an activity-dependent Ca2+ regulator of synaptic exocytosis publication-title: Nature Structural & Molecular Biology doi: 10.1038/nsmb.1758 – volume: 93 start-page: 1019 year: 2013 ident: bib2 article-title: Phosphoinositides: tiny lipids with giant impact on cell regulation publication-title: Physiological Reviews doi: 10.1152/physrev.00028.2012 – volume: 36 start-page: 11865 year: 2016 ident: bib53 article-title: Interactions between SNAP-25 and synaptotagmin-1 are involved in vesicle priming, clamping spontaneous and stimulating evoked neurotransmission publication-title: The Journal of Neuroscience doi: 10.1523/JNEUROSCI.1011-16.2016 – volume: 99 start-page: 9037 year: 2002 ident: bib62 article-title: Total arrest of spontaneous and evoked synaptic transmission but normal synaptogenesis in the absence of Munc13-mediated vesicle priming publication-title: PNAS doi: 10.1073/pnas.122623799 – volume: 53 start-page: 563 year: 2007 ident: bib66 article-title: The coupling between synaptic vesicles and Ca2+ channels determines fast neurotransmitter release publication-title: Neuron doi: 10.1016/j.neuron.2007.01.021 – volume: 490 start-page: 201 year: 2012 ident: bib22 article-title: Molecular machines governing exocytosis of synaptic vesicles publication-title: Nature doi: 10.1038/nature11320 – volume: 99 start-page: 17060 year: 2002 ident: bib70 article-title: A highly Ca2+-sensitive pool of vesicles is regulated by protein kinase C in adrenal chromaffin cells publication-title: PNAS doi: 10.1073/pnas.242624699 – volume: 443 start-page: 651 year: 2006 ident: bib9 article-title: Phosphoinositides in cell regulation and membrane dynamics publication-title: Nature doi: 10.1038/nature05185 – volume: 5 start-page: e17571 year: 2016 ident: bib8 article-title: v-SNARE transmembrane domains function as catalysts for vesicle fusion publication-title: eLife doi: 10.7554/eLife.17571 – volume: 106 start-page: 17308 year: 2009 ident: bib23 article-title: CAPS drives trans-SNARE complex formation and membrane fusion through syntaxin interactions publication-title: PNAS doi: 10.1073/pnas.0900755106 – volume: 108 start-page: 121 year: 2002 ident: bib47 article-title: Beta phorbol ester- and diacylglycerol-induced augmentation of transmitter release is mediated by Munc13s and not by PKCs publication-title: Cell doi: 10.1016/S0092-8674(01)00635-3 – volume: 287 start-page: 16447 year: 2012 ident: bib61 article-title: Phosphatidylinositol 4,5-bisphosphate increases Ca2+ affinity of synaptotagmin-1 by 40-fold publication-title: Journal of Biological Chemistry doi: 10.1074/jbc.M112.343418 – volume: 80 start-page: 675 year: 2013 ident: bib60 article-title: Neurotransmitter release: the last millisecond in the life of a synaptic vesicle publication-title: Neuron doi: 10.1016/j.neuron.2013.10.022 – volume: 418 start-page: 340 year: 2002 ident: bib35 article-title: The C(2)B Ca(2+)-binding motif of synaptotagmin is required for synaptic transmission in vivo publication-title: Nature doi: 10.1038/nature00846 – volume: 59 start-page: 111 year: 2012 ident: bib37 article-title: Role of PI(4,5)P(2) in vesicle exocytosis and membrane fusion publication-title: Sub-Cellular Biochemistry doi: 10.1007/978-94-007-3015-1_4 – volume: 98 start-page: 11680 year: 2001 ident: bib63 article-title: Intracellular calcium dependence of large dense-core vesicle exocytosis in the absence of synaptotagmin I publication-title: PNAS doi: 10.1073/pnas.201398798 – volume: 56 start-page: 657 year: 2007 ident: bib71 article-title: PKA activation bypasses the requirement for UNC-31 in the docking of dense core vesicles from C. elegans neurons publication-title: Neuron doi: 10.1016/j.neuron.2007.09.015 – volume: 281 start-page: 15845 year: 2006 ident: bib30 article-title: Phosphatidylinositol phosphates as co-activators of Ca2+ binding to C2 domains of synaptotagmin 1 publication-title: Journal of Biological Chemistry doi: 10.1074/jbc.M600888200 – volume: 33 start-page: 1681 year: 2014 ident: bib67 article-title: The SNARE protein vti1a functions in dense-core vesicle biogenesis publication-title: The EMBO Journal doi: 10.15252/embj.201387549 – volume: 29 start-page: 278 year: 2014 ident: bib12 article-title: How could SNARE proteins open a fusion pore? publication-title: Physiology doi: 10.1152/physiol.00026.2013 – volume: 411 start-page: 137 year: 1988 ident: bib31 article-title: Patch-clamp techniques for time-resolved capacitance measurements in single cells publication-title: Pflügers Archiv European Journal of Physiology doi: 10.1007/BF00582306 – volume: 28 start-page: 279 year: 2012 ident: bib48 article-title: The membrane fusion enigma: SNAREs, Sec1/Munc18 proteins, and their accomplices--guilty as charged? publication-title: Annual Review of Cell and Developmental Biology doi: 10.1146/annurev-cellbio-101011-155818 – volume: 35 start-page: 5772 year: 2015 ident: bib6 article-title: A structural role for the synaptobrevin 2 transmembrane domain in dense-core vesicle fusion pores publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.3983-14.2015 – volume: 52 start-page: 6330 year: 2013 ident: bib43 article-title: The fatty acid composition of diacylglycerols determines local signaling patterns publication-title: Angewandte Chemie International Edition doi: 10.1002/anie.201301716 – volume: 525 start-page: 62 year: 2015 ident: bib72 article-title: Architecture of the synaptotagmin-SNARE machinery for neuronal exocytosis publication-title: Nature doi: 10.1038/nature14975 – volume: 25 start-page: 2557 year: 2005 ident: bib40 article-title: Plasmalemmal phosphatidylinositol-4,5-bisphosphate level regulates the releasable vesicle pool size in chromaffin cells publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.3761-04.2005 – volume: 105 start-page: 3998 year: 2008 ident: bib51 article-title: Synaptotagmin-1 and -7 are functionally overlapping Ca2+ sensors for exocytosis in adrenal chromaffin cells publication-title: PNAS doi: 10.1073/pnas.0712373105 – volume: 21 start-page: 123 year: 1998 ident: bib4 article-title: Munc13-1 is a presynaptic phorbol ester receptor that enhances neurotransmitter release publication-title: Neuron doi: 10.1016/S0896-6273(00)80520-6 – volume: 374 start-page: 173 year: 1995 ident: bib17 article-title: ATP-dependent inositide phosphorylation required for Ca(2+)-activated secretion publication-title: Nature doi: 10.1038/374173a0 – volume: 190 start-page: 1067 year: 2010 ident: bib32 article-title: Two distinct secretory vesicle-priming steps in adrenal chromaffin cells publication-title: The Journal of Cell Biology doi: 10.1083/jcb.201001164 – volume: 143 start-page: 487 year: 2006 ident: bib45 article-title: Munc18-1 phosphorylation by protein kinase C potentiates vesicle pool replenishment in bovine chromaffin cells publication-title: Neuroscience doi: 10.1016/j.neuroscience.2006.08.014 – volume: 20 start-page: 1243 year: 1998 ident: bib55 article-title: Cytosolic Ca2+ acts by two separate pathways to modulate the supply of release-competent vesicles in chromaffin cells publication-title: Neuron doi: 10.1016/S0896-6273(00)80504-8 – volume: 79 start-page: 717 year: 1994 ident: bib14 article-title: Synaptotagmin I: a major Ca2+ sensor for transmitter release at a central synapse publication-title: Cell doi: 10.1016/0092-8674(94)90556-8 – volume: 27 start-page: 654 year: 2016 ident: bib25 article-title: Resident CAPS on dense-core vesicles docks and primes vesicles for fusion publication-title: Molecular Biology of the Cell doi: 10.1091/mbc.E15-07-0509 – volume: 102 start-page: 5204 year: 2005 ident: bib15 article-title: Phosphatidylinositol phosphate kinase type I gamma regulates dynamics of large dense-core vesicle fusion publication-title: PNAS doi: 10.1073/pnas.0501412102 – volume: 31 start-page: 581 year: 2001 ident: bib65 article-title: Munc18-1 promotes large dense-core vesicle docking publication-title: Neuron doi: 10.1016/S0896-6273(01)00391-9 – volume: 54 start-page: 275 year: 2007 ident: bib69 article-title: Interdependence of PKC-dependent and PKC-independent pathways for presynaptic plasticity publication-title: Neuron doi: 10.1016/j.neuron.2007.04.001 – volume: 435 start-page: 1239 year: 2005 ident: bib42 article-title: Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor publication-title: Nature doi: 10.1038/nature03650 – volume: 1841 start-page: 1085 year: 2014 ident: bib19 article-title: Caged lipids as tools for investigating cellular signaling publication-title: Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids doi: 10.1016/j.bbalip.2014.03.012 – volume: 499 start-page: 233 year: 2013 ident: bib46 article-title: Spatiotemporal control of endocytosis by phosphatidylinositol-3,4-bisphosphate publication-title: Nature doi: 10.1038/nature12360 – volume: 67 start-page: 703 year: 2002 ident: bib11 article-title: Deactivation behavior and excited-state properties of (coumarin-4-yl)methyl derivatives. 2. Photocleavage of selected (coumarin-4-yl)methyl-caged adenosine cyclic 3',5'-monophosphates with fluorescence enhancement publication-title: The Journal of Organic Chemistry doi: 10.1021/jo010692p – volume: 84 start-page: 416 year: 2014 ident: bib21 article-title: The morphological and molecular nature of synaptic vesicle priming at presynaptic active zones publication-title: Neuron doi: 10.1016/j.neuron.2014.10.009 |
| SSID | ssj0000748819 |
| Score | 2.3749208 |
| Snippet | Phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] is essential for exocytosis. Classical ways of manipulating PI(4,5)P2 levels are slower than its metabolism,... Phosphatidylinositol-4,5-bisphosphate [PI(4,5)P ] is essential for exocytosis. Classical ways of manipulating PI(4,5)P levels are slower than its metabolism,... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| SubjectTerms | adrenal chromaffin cell Adrenal glands Animals Biology Biophysics Calcium Carrier Proteins - metabolism Cell Biology Cell Line Chromaffin cells Chromaffin Cells - metabolism Cytological Techniques - methods Enzymes Exocytosis Experiments Intracellular Signaling Peptides and Proteins - metabolism Kinases Lipids Membrane Proteins - metabolism Metabolism Metabolites Mice Munc13 Nerve Tissue Proteins - metabolism Neuroscience optical uncaging Phosphatidylinositol 4,5-diphosphate Phosphatidylinositol 4,5-Diphosphate - metabolism phosphatidylinositols Physiology Plasma Proteins Signal transduction Synaptotagmin Synaptotagmin I - metabolism |
| SummonAdditionalLinks | – databaseName: ProQuest Biological Science dbid: M7P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BAYkL70egoCD1hAh17GRtnxAgKg5Q7QGk3iLHdtiVqjhsUsT-e2acbGBRxYWrH9IoY3u-eWQ-gKNaOaaMEZmTlGaUssy0siJDqN8wX_iidi6STcjTU3V2ppdTwK2fyip3b2J8qF2wFCM_RueYK4TPnL_pvmfEGkXZ1YlC4ypcoy4JIpbuLecYC5pHhRZv_C1PouE89p_WjX8tKP22Z4hiv_7LQObftZJ_GJ-T2_8r9h24NcHO9O14Tu7CFd_egxsjEeX2PnxerkLfrVBLbou4kwq5wnlavCrRccbxcc6noYuR7xRtYSQ3SrswULUR4dXU_wx2O-DW_gF8Pfnw5f3HbCJayGwhyyGzXJfWC-KIQHSguDULyzRr0NVwjUMryhxjRjqdNzkOKKNxn2W1KUqiVHHiIRy0ofWPIZXeGG8Y1wsl8A1emLw2NfowliNSMb5J4OXuq1d26kJOZBjnFXojpKIqqqiKKkrgaF7cjc03Ll_2jtQ3L6GO2XEgbL5V0wWsjKmdX3hTq1IW2uTKamm1Eg4hJ6JAl8DhToHVdI376rf2EngxT-MFpKyKaX24oDXEMKoQByXwaDwrsyTUS1-JHCWUe6doT9T9mXa9ik2-S5nnQhZP_i3WU7jJCWegMeXlIRwMmwv_DK7bH8O63zyPt-EXFZgYhA priority: 102 providerName: ProQuest |
| Title | Phosphatidylinositol 4,5-bisphosphate optical uncaging potentiates exocytosis |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/29068313 https://www.proquest.com/docview/1982817422 https://www.proquest.com/docview/1955618152 https://pubmed.ncbi.nlm.nih.gov/PMC5711374 https://doaj.org/article/aabde6eab85749a18c97c983d851505d |
| Volume | 6 |
| WOSCitedRecordID | wos000417123300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: M7P dateStart: 20120101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: 7X7 dateStart: 20120101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest - Publicly Available Content Database customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: PIMPY dateStart: 20120101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: M2P dateStart: 20120101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9swED62doO9lP2euzZ40Kcxr5JsR9LjOlo2WIIZG2RPRpZkEih2aNzR_Pe9k92QjMJe-nIPkgzy6aT7zjrfB3BSKceUMWniJF0zSpknWtk0QahfM5_5rHIukE3I6VTNZrrYovqinLC-PHCvuFNjKufH3lQql5k2XFktrVapQ6iA3tvR6YuoZyuYCmewRMPkuv8hT6LLPPU_FrX_nNLF244LCpX674OX_2ZJbrmdi-dwMODF-Es_zxfwyDcv4WnPILl-BZNi3q6Wc1SvWyNgpAys9jLOPuUY8WJ73-fjdhk-WcfoxAIrUbxsO0oTIqAZ-5vWrjt8dPUafl-c__r6LRkYEhKbybxLrNC59SmRO6BbV8KasWWa1RgjuNqh-2OOMSOd5jXHBmU0PmdZZbKcuFBc-gb2mrbx7yCW3hhvmNBjleLhOTa8MhUGH1YgxDC-juDjndJKO5QPJxaLyxLDCNJwGTRcBg1HcLIZvOyrZtw_7Iy0vxlCpa5DAxpAORhA-T8DiODobu3KYf-tSq4xksRgS4gIPmy6cefQdYhpfHtNY4gaVCGAieBtv9SbmVARfJVynKHcMYKdqe72NIt5qM6dS85TmR0-xLu9h2eCYAT6SpEfwV53de2P4Yn92y1WVyN4LGcySDWC_bPzafFzFLYByokoSEqU-8X3SfHnFggHEfk |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qBQQb3o9AgSCVDSI0cZKxvUCIV9Wq09EsitRd6tgOM1KVhEkKzE_xjdzrJAODKnZdsPUjcpKTe47tGx-A7VyYUCgVB4bTNiPnaSCFjgOU-kVoE5vkxjizCT6ZiONjOd2An8O_MJRWOcREF6hNpWmNfAcnx0ygfGbsbf01INco2l0dLDQ6WBzY5XecsjVv9j_i-33B2O6now97Qe8qEOiEp22gmUy1jckQAalQMK1GOpRhgbraFAYpIzRhqLiRURFhgVAS--kwV0lK_iEmxutegssoI5hwqYLT1ZoO0rFAhu1-A-RI1Dt2PC_s65i2-9aIz_kDnCdq_87N_IPsdm_-b4_pFtzoZbX_rvsObsOGLe_A1c5oc3kXDqezqqlniEKzRF1NiWrVqZ-8SoN8juVdnfWr2q3s-8j1zrzJr6uWsqlIj_v2R6WXLXZt7sHnC7mX-7BZVqV9CD63SlkVMjkSMXLMSEW5ynGOphkqMWULD14ObznT_SnrZPZxmuFsiyCROUhkDhIebK8a193hIuc3e09wWTWhE8FdQbX4kvUBJlMqN3ZkVS5SnkgVCS25liI2KKlR5RoPtgbAZH2YarLfaPHg-aoaAwztGqnSVmfUhhxUBeo8Dx502FyNhLwCRBzhCPkaateGul5TzmfuEPOUR1HMk0f_HtYzuLZ3dDjOxvuTg8dwnZGmQuHA0i3YbBdn9glc0d_aebN46r5EH04uGtO_AD43d0k |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V8hAX3o9AgSCVCyJs4iRr-4AQUFZULas9gNRb6tgOu1KVhE0K7F_j1zHjJAuLKm49cPUjcuIvM5_t8XwAu7kwoVAqDgynY0bO00AKHQdI9YvQJjbJjXFiE3w6FUdHcrYFP4e7MBRWOdhEZ6hNpWmPfISLYyaQPjM2KvqwiNne5HX9NSAFKTppHeQ0Oogc2NV3XL41r_b3cK6fMTZ5_-ndh6BXGAh0wtM20Eym2sYkjoBuUTCtxjqUYYEc2xQG3UdowlBxI6MiwgKhJPbTYa6SlLRETIzPvQAXOSUtd2GDs_X-Drpmgd62uxLI0WmP7OGisC9jOvrbcIJOK-Asgvt3nOYfjm9y_X_-ZDfgWk-3_Tfd_3ETtmx5Cy53Apyr2_BxNq-aeo7oNCvk2xTAVp34yYs0yBdY3tVZv6rdjr-PHMCJOvl11VKUFfF03_6o9KrFrs0d-Hwu73IXtsuqtPfB51Ypq0ImxyJG3zNWUa5yXLtphgxN2cKD58OMZ7rPvk4iICcZrsIIHpmDR-bg4cHuunHdJR05u9lbgs66CWUKdwXV8kvWG55MqdzYsVW5SHkiVSS05FqK2CDVRvZrPNgZwJP15qvJfiPHg6frajQ8dJqkSludUhtSVhXI_zy41-F0PRLSEBBxhCPkGwjeGOpmTbmYu-TmKY-imCcP_j2sJ3AFoZwd7k8PHsJVRlQL-QRLd2C7XZ7aR3BJf2sXzfKx-yl9OD5vSP8CSlmABg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phosphatidylinositol+4%2C5-bisphosphate+optical+uncaging+potentiates+exocytosis&rft.jtitle=eLife&rft.au=Walter%2C+Alexander+M&rft.au=M%C3%BCller%2C+Rainer&rft.au=Tawfik%2C+Bassam&rft.au=Wierda%2C+Keimpe+DB&rft.date=2017-10-25&rft.pub=eLife+Sciences+Publications%2C+Ltd&rft.eissn=2050-084X&rft.volume=6&rft_id=info:doi/10.7554%2FeLife.30203&rft_id=info%3Apmid%2F29068313&rft.externalDocID=PMC5711374 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-084X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-084X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-084X&client=summon |