Artificial Intelligence in Physical Sciences: Symbolic Regression Trends and Perspectives
Symbolic regression (SR) is a machine learning-based regression method based on genetic programming principles that integrates techniques and processes from heterogeneous scientific fields and is capable of providing analytical equations purely from data. This remarkable characteristic diminishes th...
Uloženo v:
| Vydáno v: | Archives of computational methods in engineering Ročník 30; číslo 6; s. 3845 - 3865 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Dordrecht
Springer Netherlands
01.07.2023
Springer Nature B.V |
| Témata: | |
| ISSN: | 1134-3060, 1886-1784, 1886-1784 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Symbolic regression (SR) is a machine learning-based regression method based on genetic programming principles that integrates techniques and processes from heterogeneous scientific fields and is capable of providing analytical equations purely from data. This remarkable characteristic diminishes the need to incorporate prior knowledge about the investigated system. SR can spot profound and elucidate ambiguous relations that can be generalizable, applicable, explainable and span over most scientific, technological, economical, and social principles. In this review, current state of the art is documented, technical and physical characteristics of SR are presented, the available programming techniques are investigated, fields of application are explored, and future perspectives are discussed. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ISSN: | 1134-3060 1886-1784 1886-1784 |
| DOI: | 10.1007/s11831-023-09922-z |