Artificial Intelligence in Physical Sciences: Symbolic Regression Trends and Perspectives

Symbolic regression (SR) is a machine learning-based regression method based on genetic programming principles that integrates techniques and processes from heterogeneous scientific fields and is capable of providing analytical equations purely from data. This remarkable characteristic diminishes th...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Archives of computational methods in engineering Ročník 30; číslo 6; s. 3845 - 3865
Hlavní autoři: Angelis, Dimitrios, Sofos, Filippos, Karakasidis, Theodoros E.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Dordrecht Springer Netherlands 01.07.2023
Springer Nature B.V
Témata:
ISSN:1134-3060, 1886-1784, 1886-1784
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Symbolic regression (SR) is a machine learning-based regression method based on genetic programming principles that integrates techniques and processes from heterogeneous scientific fields and is capable of providing analytical equations purely from data. This remarkable characteristic diminishes the need to incorporate prior knowledge about the investigated system. SR can spot profound and elucidate ambiguous relations that can be generalizable, applicable, explainable and span over most scientific, technological, economical, and social principles. In this review, current state of the art is documented, technical and physical characteristics of SR are presented, the available programming techniques are investigated, fields of application are explored, and future perspectives are discussed.
AbstractList Symbolic regression (SR) is a machine learning-based regression method based on genetic programming principles that integrates techniques and processes from heterogeneous scientific fields and is capable of providing analytical equations purely from data. This remarkable characteristic diminishes the need to incorporate prior knowledge about the investigated system. SR can spot profound and elucidate ambiguous relations that can be generalizable, applicable, explainable and span over most scientific, technological, economical, and social principles. In this review, current state of the art is documented, technical and physical characteristics of SR are presented, the available programming techniques are investigated, fields of application are explored, and future perspectives are discussed.
Symbolic regression (SR) is a machine learning-based regression method based on genetic programming principles that integrates techniques and processes from heterogeneous scientific fields and is capable of providing analytical equations purely from data. This remarkable characteristic diminishes the need to incorporate prior knowledge about the investigated system. SR can spot profound and elucidate ambiguous relations that can be generalizable, applicable, explainable and span over most scientific, technological, economical, and social principles. In this review, current state of the art is documented, technical and physical characteristics of SR are presented, the available programming techniques are investigated, fields of application are explored, and future perspectives are discussed.
Symbolic regression (SR) is a machine learning-based regression method based on genetic programming principles that integrates techniques and processes from heterogeneous scientific fields and is capable of providing analytical equations purely from data. This remarkable characteristic diminishes the need to incorporate prior knowledge about the investigated system. SR can spot profound and elucidate ambiguous relations that can be generalizable, applicable, explainable and span over most scientific, technological, economical, and social principles. In this review, current state of the art is documented, technical and physical characteristics of SR are presented, the available programming techniques are investigated, fields of application are explored, and future perspectives are discussed.Symbolic regression (SR) is a machine learning-based regression method based on genetic programming principles that integrates techniques and processes from heterogeneous scientific fields and is capable of providing analytical equations purely from data. This remarkable characteristic diminishes the need to incorporate prior knowledge about the investigated system. SR can spot profound and elucidate ambiguous relations that can be generalizable, applicable, explainable and span over most scientific, technological, economical, and social principles. In this review, current state of the art is documented, technical and physical characteristics of SR are presented, the available programming techniques are investigated, fields of application are explored, and future perspectives are discussed.The online version contains supplementary material available at 10.1007/s11831-023-09922-z.Supplementary InformationThe online version contains supplementary material available at 10.1007/s11831-023-09922-z.
Symbolic regression (SR) is a machine learning-based regression method based on genetic programming principles that integrates techniques and processes from heterogeneous scientific fields and is capable of providing analytical equations purely from data. This remarkable characteristic diminishes the need to incorporate prior knowledge about the investigated system. SR can spot profound and elucidate ambiguous relations that can be generalizable, applicable, explainable and span over most scientific, technological, economical, and social principles. In this review, current state of the art is documented, technical and physical characteristics of SR are presented, the available programming techniques are investigated, fields of application are explored, and future perspectives are discussed. The online version contains supplementary material available at 10.1007/s11831-023-09922-z.
Author Sofos, Filippos
Angelis, Dimitrios
Karakasidis, Theodoros E.
Author_xml – sequence: 1
  givenname: Dimitrios
  surname: Angelis
  fullname: Angelis, Dimitrios
  organization: Condensed Matter Physics Laboratory, Department of Physics, University of Thessaly
– sequence: 2
  givenname: Filippos
  orcidid: 0000-0001-5036-2120
  surname: Sofos
  fullname: Sofos, Filippos
  email: fsofos@uth.gr
  organization: Condensed Matter Physics Laboratory, Department of Physics, University of Thessaly
– sequence: 3
  givenname: Theodoros E.
  surname: Karakasidis
  fullname: Karakasidis, Theodoros E.
  organization: Condensed Matter Physics Laboratory, Department of Physics, University of Thessaly
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37359747$$D View this record in MEDLINE/PubMed
BookMark eNp9UctuFDEQtKKgvMgPcEAjceEy4Od4hguKIh6RIhGRcOBkeT09G0ez9uKejbT5enrZBEIOOdnqripVVx2y3ZQTMPZK8HeCc_sehWiVqLlUNe86Keu7HXYg2raphW31Lv2F0rXiDd9nh4g3nBtNuD22r6wyndX2gP08KVMcYoh-rM7SBOMY55ACVDFVF9drjIEWlyFuZvihulwvZnmMofoO8wKIMafqqkDqsfKpry6g4BLCFG8BX7IXgx8Rju_fI_bj86er06_1-bcvZ6cn53XQ1kz1rO-kstxaacDMwAzSyKBl8H0A0Yaha_xm0nShp6PVoLk1vBt4r4Xyje7UEfu41V2uZgsgVpqKH92yxIUva5d9dP9vUrx283zrBKd8hFKk8PZeoeRfK8DJLSIGisInyCt0slVcSi6kJuibJ9CbvCqJ7nNKmqZphdGSUK8fW_rr5SF2ArRbQCgZscDgQpz8RGmSwziSNbdp2G0bdtSw-9OwuyOqfEJ9UH-WpLYkJHCaQ_ln-xnWb96DuXk
CitedBy_id crossref_primary_10_3390_fluids8070212
crossref_primary_10_1016_j_compbiomed_2024_109110
crossref_primary_10_1016_j_istruc_2025_109960
crossref_primary_10_1016_j_idm_2025_03_007
crossref_primary_10_1038_s42005_025_02023_2
crossref_primary_10_2355_isijinternational_ISIJINT_2024_359
crossref_primary_10_1016_j_jnucmat_2025_155980
crossref_primary_10_1051_0004_6361_202452432
crossref_primary_10_24857_rgsa_v18n11_242
crossref_primary_10_1016_j_cobme_2025_100612
crossref_primary_10_1103_PhysRevMaterials_8_115408
crossref_primary_10_3390_axioms12090850
crossref_primary_10_1088_2632_2153_ade7ca
crossref_primary_10_1016_j_ifacol_2024_08_325
crossref_primary_10_1016_j_ijfatigue_2024_108647
crossref_primary_10_1016_j_ces_2025_121739
crossref_primary_10_1038_s41598_025_05205_8
crossref_primary_10_1002_stvr_70000
crossref_primary_10_3847_1538_4357_ad014c
crossref_primary_10_3390_en18082019
crossref_primary_10_1007_s10994_025_06780_7
crossref_primary_10_3390_app15105603
crossref_primary_10_3390_ma17174346
crossref_primary_10_1007_s11090_023_10434_8
crossref_primary_10_1016_j_ijhydene_2024_07_318
crossref_primary_10_1021_acsengineeringau_5c00001
crossref_primary_10_1016_j_euromechflu_2025_204355
crossref_primary_10_3390_mi14071446
crossref_primary_10_1016_j_powtec_2025_121528
crossref_primary_10_1007_s11831_025_10301_z
crossref_primary_10_1039_D5CP02278A
crossref_primary_10_1002_idm2_12180
crossref_primary_10_1016_j_engstruct_2025_119702
crossref_primary_10_1016_j_compchemeng_2025_109265
crossref_primary_10_1515_nanoph_2025_0049
crossref_primary_10_1016_j_jobe_2024_111614
crossref_primary_10_1177_09544062251341151
crossref_primary_10_1103_w8jn_qs2z
crossref_primary_10_1063_5_0278196
crossref_primary_10_1016_j_oceaneng_2025_122512
crossref_primary_10_1139_cgj_2025_0201
crossref_primary_10_2514_1_J063411
crossref_primary_10_1016_j_actbio_2024_09_005
crossref_primary_10_1016_j_ijfatigue_2024_108432
crossref_primary_10_1016_j_ijthermalsci_2024_109641
crossref_primary_10_3934_era_2025231
crossref_primary_10_1016_j_jma_2025_08_005
crossref_primary_10_1016_j_ctta_2025_100181
crossref_primary_10_1051_0004_6361_202554355
crossref_primary_10_1088_1741_4326_adcbc2
crossref_primary_10_3390_axioms14050343
crossref_primary_10_3390_ijms26146748
crossref_primary_10_12677_csa_2025_156158
crossref_primary_10_1007_s10346_024_02340_7
crossref_primary_10_1016_j_watres_2024_122961
crossref_primary_10_1016_j_powtec_2025_121018
crossref_primary_10_1002_cphc_202400010
crossref_primary_10_1016_j_cnsns_2025_108751
crossref_primary_10_1145_3735634
crossref_primary_10_1016_j_dark_2025_102078
crossref_primary_10_1016_j_jobe_2025_113033
crossref_primary_10_1016_j_ijsolstr_2024_113024
crossref_primary_10_1016_j_rineng_2025_104159
crossref_primary_10_1063_5_0261456
crossref_primary_10_1016_j_asoc_2024_112239
crossref_primary_10_1007_s11433_023_2346_2
crossref_primary_10_1002_qj_4866
crossref_primary_10_1016_j_swevo_2024_101532
crossref_primary_10_1103_cv6n_xtsf
crossref_primary_10_32604_jpm_2024_053859
crossref_primary_10_1667_RADE_24_00213_1
crossref_primary_10_1063_5_0221611
crossref_primary_10_1016_j_compositesa_2025_108897
crossref_primary_10_1088_1361_6552_addea1
crossref_primary_10_1016_j_physd_2023_133988
crossref_primary_10_1088_1361_6587_ade33e
crossref_primary_10_2174_0115748936284044240108074937
crossref_primary_10_1007_s12293_025_00466_2
crossref_primary_10_1007_s12553_024_00886_z
crossref_primary_10_1016_j_compchemeng_2025_109281
crossref_primary_10_1016_j_procir_2025_02_124
crossref_primary_10_1093_petrology_egae036
crossref_primary_10_3847_2041_8213_ad5970
crossref_primary_10_1007_s11227_025_07132_x
crossref_primary_10_1016_j_engappai_2025_110614
crossref_primary_10_3389_fpls_2023_1299208
crossref_primary_10_1021_acs_iecr_5c00107
crossref_primary_10_1007_s13272_025_00886_3
crossref_primary_10_1016_j_tafmec_2025_105218
Cites_doi 10.1145/3205455.3205604
10.1016/j.actamat.2021.116980
10.1038/s41467-021-23479-0
10.3390/app12136661
10.1557/mrc.2020.2
10.1038/npjcompumats.2015.10
10.1016/j.commatsci.2021.110360
10.1002/eem2.12049
10.1038/s41467-020-17035-5
10.48550/ARXIV.1810.04119
10.1016/j.energy.2018.02.080
10.1016/j.cocom.2021.e00597
10.1016/j.asoc.2017.10.041
10.1007/s11837-020-04155-y
10.1145/3071178.3071287
10.1002/wcms.1558
10.1109/ICoIAS.2018.8494053
10.21203/rs.3.rs-1740481/v1
10.1016/j.eswa.2022.116712
10.1016/j.jngse.2014.11.006
10.3390/a14030076
10.1016/j.rser.2018.10.018
10.1162/evco_a_00278
10.1145/1830761.1830841
10.20517/jmi.2021.001
10.1016/j.asoc.2020.106432
10.1016/B978-0-12-407716-4.00006-5
10.1109/SSCI50451.2021.9659860
10.1107/S0108768102003890
10.1016/j.jmst.2021.12.052
10.1038/s41467-020-17263-9
10.1016/j.fbp.2022.05.009
10.1088/0004-637x/795/1/46
10.1103/PhysRevE.103.043307
10.48550/ARXIV.2206.10540
10.1016/j.econmod.2020.09.015
10.3390/nano12040633
10.1016/j.cie.2018.08.020
10.1016/j.enbuild.2021.111829
10.1007/s10404-018-2164-z
10.1002/aenm.201901891
10.1063/1.4946894
10.1063/5.0082147
10.1101/2022.06.29.22277072
10.1002/aic.14645
10.3390/ma14195764
10.3390/app11125468
10.1016/j.cmpb.2021.106104
10.1016/j.conbuildmat.2020.119889
10.1016/j.apples.2021.100080
10.3390/pr9071187
10.1016/j.asoc.2021.107198
10.1103/PhysRevLett.126.180604
10.1016/j.ins.2018.02.040
10.1038/s42256-021-00353-8
10.1016/j.enconman.2021.113960
10.1103/PhysRevLett.98.146401
10.1016/j.asoc.2017.06.050
10.1038/s41578-021-00340-w
10.1021/acs.jpca.0c08103
10.1007/BF00175355
10.1016/j.istruc.2021.12.058
10.48550/arXiv.1710.10720
10.1007/s10710-022-09435-x
10.1016/j.jcp.2017.07.050
10.1038/s41524-019-0249-1
10.1002/inf2.12028
10.1016/j.cma.2017.02.016
10.48550/ARXIV.1912.04871
10.48550/ARXIV.2205.09751
10.1016/j.petrol.2021.109736
10.1016/j.actamat.2022.117868
10.1016/j.jechem.2020.05.044
10.1016/j.advengsoft.2022.103174
10.1109/MSP.2012.2205597
10.1016/j.asoc.2019.04.001
10.1016/j.ijplas.2021.103182
10.1007/s11356-021-15648-x
10.1016/j.conbuildmat.2019.08.042
10.1063/1.5068697
10.1038/s41557-021-00716-z
10.48550/ARXIV.2103.15147
10.48550/ARXIV.1610.03295
10.1109/CEC48606.2020.9185621
10.3390/app12042040
10.3390/cryst12020168
10.3390/fluids7030116
10.1063/5.0096669
10.1007/s11431-020-1599-5
10.1016/j.autcon.2019.102916
10.1016/j.cej.2021.133032
10.1016/j.eng.2019.04.012
10.1021/acs.inorgchem.9b00109
10.1201/9780429029608
10.1109/TNNLS.2020.3017010
10.1016/j.ijfatigue.2022.106889
10.1016/j.petrol.2015.12.001
10.1016/j.enpol.2015.06.031
10.1016/j.commatsci.2012.02.002
10.1007/s10710-010-9124-z
10.1016/j.ymssp.2020.107348
10.48550/ARXIV.2012.00111
10.1016/j.conbuildmat.2021.122523
10.1016/j.renene.2020.11.089
10.1016/j.spc.2021.12.025
10.48550/ARXIV.1806.02502
10.1016/j.compstruc.2021.106557
10.1016/j.solener.2019.03.079
10.1016/j.bspc.2021.102478
10.3390/axioms11050198
10.1016/j.matpr.2021.01.357
10.1063/1.5136351
10.1007/s10409-021-01148-1
10.1016/j.ijfatigue.2022.106765
10.1016/j.apenergy.2019.114270
10.1016/j.apples.2021.100052
10.1016/j.jclepro.2019.02.195
10.1016/j.eswa.2021.115210
10.3847/1538-4357/ac610c
10.1016/j.enconman.2015.07.083
10.1016/j.coche.2022.100832
10.1016/j.jcp.2020.109913
10.1016/j.cej.2019.123412
10.1016/j.jmat.2017.08.002
10.1063/1.4850495
10.1016/j.ins.2017.11.041
10.1016/j.compchemeng.2021.107619
10.15308/Sinteza-2022-3-13
10.1002/aic.17457
10.1109/TPAMI.2017.2670560
10.1109/CVPR.2015.7298594
10.1126/science.1165893
10.1109/CEC.2013.6557774
10.1016/j.jmps.2021.104742
10.1016/j.jobe.2022.104509
10.48550/ARXIV.1910.10065
10.48550/ARXIV.1803.06226
10.1016/j.molliq.2017.08.045
10.48550/ARXIV.2110.05266
10.1007/978-3-319-01436-4_10
10.48550/ARXIV.2106.14131
10.1162/evco_a_00294
10.1002/stc.3024
10.1039/C8MH01135D
10.1093/bioinformatics/btu277
10.1557/mrc.2019.85
10.1145/3447404.3447414
10.48550/ARXIV.2107.09458
10.1088/2515-7639/ab077b
10.1186/s12911-022-01943-1
10.1007/s42979-022-01094-0
10.1016/j.conbuildmat.2020.120950
10.1016/j.cie.2018.11.033
10.48550/ARXIV.2204.02046
10.48550/ARXIV.2202.02306
10.48550/ARXIV.1905.11481
10.1016/j.eng.2019.02.011
10.48550/ARXIV.2111.00053
10.1016/S1514-0326(17)30015-6
10.1093/mnras/stac1951
10.3390/computation8010015
10.1016/j.matpr.2020.12.1149.
10.1088/1361-6382/ac5ba1
10.1007/s00521-017-3208-0
10.1016/j.apples.2021.100049
10.1201/b14300
10.1063/1.5112747
10.1146/annurev-matsci-070218-010015
10.48550/ARXIV.2201.01305
10.1016/j.jngse.2016.02.026
10.3390/math11010236
10.1145/3520304.3528899
10.1177/0958305X18788820
10.3390/w10091175
10.1021/acs.jpclett.9b02772
10.1109/TPAMI.2012.231
10.1016/j.taml.2022.100334
10.1016/j.artmed.2019.06.005
10.3390/fluids7100321
10.1073/pnas.2026053118
10.1016/j.nanoen.2020.105380
10.1007/978-3-662-44874-8
10.1016/j.petrol.2017.12.040
10.1109/IVS.2019.8813817
10.1039/D0EE02838J
10.1016/j.rser.2020.110114
10.1093/oso/9780195099713.001.0001
10.48550/ARXIV.2107.14351
10.1016/j.addma.2020.101538
10.1016/j.jmst.2021.07.038
10.3847/1538-4357/ac4d30
10.1107/S0108768102006948
10.1007/s40192-018-0117-8
10.1111/j.2517-6161.1972.tb00899.x
10.1016/j.commatsci.2021.110578
10.1016/j.ces.2020.115469
10.1016/j.nima.2019.06.052
10.1515/ijcre-2016-0210
10.1016/j.swevo.2022.101061
10.1016/j.knosys.2021.107077
10.1038/s41524-020-00406-3
10.1016/j.cej.2022.136653
10.1038/s41524-021-00666-7
10.1007/978-981-10-7617-6_1
10.1016/B978-0-12-815261-4.00008-1
10.1101/2022.01.25.22269799
10.1039/D0MH01451F
10.1016/j.commatsci.2019.02.040
10.1016/j.asoc.2019.105621
10.1063/5.0093658
10.1016/j.jmsy.2021.11.003
10.1016/j.enpol.2015.02.016
10.1103/PhysRevD.103.103513
10.1016/j.jastp.2017.02.002
10.1016/j.molliq.2015.12.103
10.3389/fmats.2019.00181
10.1007/s10663-017-9395-1
10.1103/PhysRevMaterials.2.083802
10.1016/j.apenergy.2021.118300
10.1016/j.enconman.2019.111780
10.1016/j.ces.2022.118195
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023.
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023.
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7WY
7WZ
7XB
87Z
8AL
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
M0C
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYYUZ
Q9U
7X8
5PM
DOI 10.1007/s11831-023-09922-z
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ABI/INFORM Global
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ABI/INFORM Collection China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
Engineering Database
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ABI/INFORM China
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
MEDLINE - Academic
DatabaseTitleList ABI/INFORM Global (Corporate)
CrossRef

MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
EISSN 1886-1784
EndPage 3865
ExternalDocumentID PMC10113133
37359747
10_1007_s11831_023_09922_z
Genre Journal Article
Review
GrantInformation_xml – fundername: University of Thessaly, Special Account for Research Grants
  grantid: 5600.03.08.03
– fundername: University of Thessaly Central Library
– fundername: ;
– fundername: ;
  grantid: 5600.03.08.03
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
23M
28-
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
406
408
40D
40E
5GY
5VS
67Z
6NX
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCEE
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GROUPED_ABI_INFORM_COMPLETE
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HRMNR
HVGLF
HZ~
I-F
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
K60
K6V
K6~
K7-
KDC
KOV
L6V
LLZTM
M0C
M0N
M4Y
M7S
MA-
MK~
N2Q
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9P
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z83
Z88
ZMTXR
_50
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JZLTJ
PHGZM
PHGZT
PQGLB
NPM
7XB
8AL
8FK
JQ2
L.-
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c475t-bd923707725e5be5f252c42cadce18cf96a252c69cd1003f407509f0d413a6493
IEDL.DBID K7-
ISICitedReferencesCount 115
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000971237800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1134-3060
1886-1784
IngestDate Tue Nov 04 02:06:36 EST 2025
Thu Oct 02 05:45:18 EDT 2025
Sun Nov 30 04:07:43 EST 2025
Mon Jul 21 06:17:35 EDT 2025
Sat Nov 29 06:21:50 EST 2025
Tue Nov 18 21:16:33 EST 2025
Fri Feb 21 02:43:18 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License The Author(s) 2023.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c475t-bd923707725e5be5f252c42cadce18cf96a252c69cd1003f407509f0d413a6493
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-5036-2120
OpenAccessLink https://link.springer.com/10.1007/s11831-023-09922-z
PMID 37359747
PQID 3256681542
PQPubID 1486352
PageCount 21
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10113133
proquest_miscellaneous_2830220124
proquest_journals_3256681542
pubmed_primary_37359747
crossref_citationtrail_10_1007_s11831_023_09922_z
crossref_primary_10_1007_s11831_023_09922_z
springer_journals_10_1007_s11831_023_09922_z
PublicationCentury 2000
PublicationDate 2023-07-01
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
– name: Netherlands
PublicationSubtitle State of the Art Reviews
PublicationTitle Archives of computational methods in engineering
PublicationTitleAbbrev Arch Computat Methods Eng
PublicationTitleAlternate Arch Comput Methods Eng
PublicationYear 2023
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References KamariAGharagheiziFMohammadiAHRamjugernathDA corresponding states-based method for the estimation of natural gas compressibility factorsJ Mol Liq2016216253410.1016/j.molliq.2015.12.103
Ben ChaabeneWNehdiMLGenetic programming based symbolic regression for shear capacity prediction of sfrc beamsConstr Build Mater202128012252310.1016/j.conbuildmat.2021.122523
FengYGongDZhangQJiangSZhaoLCuiNEvaluation of temperature-based machine learning and empirical models for predicting daily global solar radiationEnergy Convers Manag201919811178010.1016/j.enconman.2019.111780
ArtrithNButlerKTCoudertF-XHanSIsayevOJainAWalshABest practices in machine learning for chemistryNat Chem202113650550810.1038/s41557-021-00716-z
Lemos, P., Jeffrey, N., Cranmer, M., Ho, S., Battaglia, P.: Rediscovering orbital mechanics with machine learning. arXiv (2022). https://doi.org/10.48550/ARXIV.2202.02306
GolapMA-URajuSMTUHaqueMRHashemMMAHemoglobin and glucose level estimation from ppg characteristics features of fingertip video using mggp-based modelBiomed Signal Process Control20216710247810.1016/j.bspc.2021.102478
WagnerSKronbergerGBehamAKommendaMScheibenpflugAPitzerEVonolfenSKoflerMWinklerSDorferVAffenzellerMKlempousRNikodemJJacakWChaczkoZArchitecture and design of the HeuristicLab optimization environment2014HeidelbergSpringer19726110.1007/978-3-319-01436-4_10
WeiJChuXSunX-YXuKDengH-XChenJWeiZLeiMMachine learning in materials scienceInfoMat20191333835810.1002/inf2.12028
GongCBryanJFurcoiuASuQGrobeREvolutionary symbolic regression from a probabilistic perspectiveSN Comput Sci20223311510.1007/s42979-022-01094-0
NembhardDASunYA symbolic genetic programming approach for identifying models of learning-by-doingComput Ind Eng201913152453310.1016/j.cie.2018.08.020
SonolikarRRPatilMPMankarRBTambeSSKulkarniBDGenetic programming based drag model with improved prediction accuracy for fluidization systemsInt J Chem React Eng20171522016021010.1515/ijcre-2016-0210
ŽegklitzJPošíkPSymbolic regression in dynamic scenarios with gradually changing targetsAppl Soft Comput20198310562110.1016/j.asoc.2019.105621
Manzi, M., Vasile, M.: Orbital anomaly reconstruction using deep symbolic regression. In: 71st International Astronautical Congress (2020)
ZhongSYapBKZhongZYingLReview on y6-based semiconductor materials and their future development via machine learningCrystals202210.3390/cryst12020168
FarizhandiAAKZhaoHChenTLauREvaluation of material properties using planetary ball milling for modeling the change of particle size distribution in a gas-solid fluidized bed using a hybrid artificial neural network-genetic algorithm approachChem Eng Sci202021511546910.1016/j.ces.2020.115469
YangGLiXWangJLianLMaTModeling oil production based on symbolic regressionEnergy Policy201582486110.1016/j.enpol.2015.02.016
BehlerJParrinelloMGeneralized neural-network representation of high-dimensional potential-energy surfacesPhys Rev Lett20079814640110.1103/PhysRevLett.98.146401
Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Pereira F, Burges CJ, Bottou L, Weinberger KQ (eds.) Advances in neural information processing systems, vol. 25. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
Amir HaeriMEbadzadehMMFolinoGStatistical genetic programming for symbolic regressionAppl Soft Comput20176044746910.1016/j.asoc.2017.06.050
Virgolin, M., Alderliesten, T., Witteveen, C., Bosman, P.A.N.: Scalable genetic programming by gene-pool optimal mixing and input-space entropy-based building-block learning. In: Proceedings of the Genetic and Evolutionary Computation Conference. GECCO ’17, pp. 1041–1048. Association for Computing Machinery, New York, NY, USA (2017). https://doi.org/10.1145/3071178.3071287
JeongHKimJHChoiS-HLeeSHeoIKimKSSemantic cluster operator for symbolic regression and its applicationsAdv Eng Softw202217210317410.1016/j.advengsoft.2022.103174
Hashemizadeh A, Bahonar E, Chahardowli M, Kheirollahi H, Simjoo M (2022) A data-driven approach to estimate the rate of penetration in drilling of hydrocarbon reservoirs. PREPRINT (version 1), available at Research Square. https://doi.org/10.21203/rs.3.rs-1740481/v1
BomaritoGFLeserPEStraussNCMGarbrechtKMHochhalterJDBayesian model selection for reducing bloat and overfitting in genetic programming for symbolic regression2022New York, NY, USAAssociation for Computing Machinery52652910.1145/3520304.3528899
BomaritoGFTownsendTSStewartKMEshamKVEmeryJMHochhalterJDDevelopment of interpretable, data-driven plasticity models with symbolic regressionComput Struct202125210655710.1016/j.compstruc.2021.106557
LiJPradhanBGaurSThomasJPredictions and strategies learned from machine learning to develop high-performing perovskite solar cellsAdv Energy Mater2019946190189110.1002/aenm.201901891
NeumannPCaoLRussoDVassiliadisVSLapkinAAA new formulation for symbolic regression to identify physico-chemical laws from experimental dataChem Eng J202038712341210.1016/j.cej.2019.123412
WenningerSKaymakciCWietheCExplainable long-term building energy consumption prediction using qlatticeAppl Energy202230811830010.1016/j.apenergy.2021.118300
Icke, I., Bongard, J.C.: Improving genetic programming based symbolic regression using deterministic machine learning. In: 2013 IEEE Congress on Evolutionary Computation, pp. 1763–1770 (2013). https://doi.org/10.1109/CEC.2013.6557774
SamboASAzadRMAKovalchukYIndramohanVPShahHEvolving simple and accurate symbolic regression models via asynchronous parallel computingAppl Soft Comput202110410719810.1016/j.asoc.2021.107198
MansourdehghanSDolatshahiKMAsjodiAHData-driven damage assessment of reinforced concrete shear walls using visual features of damageJ Build Eng20225310450910.1016/j.jobe.2022.104509
KarakasidisTESofosFTsonosCThe electrical conductivity of ionic liquids: numerical and analytical machine learning approachesFluids202210.3390/fluids7100321
ZhangHZhouAQianHZhangHPs-tree: a piecewise symbolic regression treeSwarm Evolut Comput20227110106110.1016/j.swevo.2022.101061
PanXZhangJLiCPanXSongJAnalysis of China’s regional wind power generation efficiency and its influencing factorsEnergy Environ201930225427110.1177/0958305X18788820
AlaaAMGurdasaniDHarrisALRashbassJvan der SchaarMMachine learning to guide the use of adjuvant therapies for breast cancerNat Mach Intell20213871672610.1038/s42256-021-00353-8
Okuyama T, Gonsalves T, Upadhay J (2018) Autonomous driving system based on deep q learnig. In: 2018 International Conference on Intelligent Autonomous Systems (ICoIAS), pp. 201–205. https://doi.org/10.1109/ICoIAS.2018.8494053
BelskyAHellenbrandtMKarenVLLukschPNew developments in the inorganic crystal structure database (ICSD): accessibility in support of materials research and designActa Crystallogr Sect B2002583 Part 136436910.1107/S0108768102006948
QiXChenGLiYChengXLiCApplying neural-network-based machine learning to additive manufacturing: Current applications, challenges, and future perspectivesEngineering20195472172910.1016/j.eng.2019.04.012
VázquezDGuimeráRSales-PardoMGuillén-GosálbezGAutomatic modeling of socioeconomic drivers of energy consumption and pollution using bayesian symbolic regressionSustain Prod Consum20223059660710.1016/j.spc.2021.12.025
StephensonDKermodeJRLockerbyDAAccelerating multiscale modelling of fluids with on-the-fly Gaussian process regressionMicrofluidics and Nanofluidics2018221211210.1007/s10404-018-2164-z
RaissiMPerdikarisPKarniadakisGEMachine learning of linear differential equations using gaussian processesJ Comput Phys2017348683693368965310.1016/j.jcp.2017.07.0501380.68339
RostamiAShokrollahiAAccurate prediction of water dewpoint temperature in natural gas dehydrators using gene expression programming approachJ Mol Liq201724319620410.1016/j.molliq.2017.08.045
ÜmitAǧbulutGürelAEBiçenYPrediction of daily global solar radiation using different machine learning algorithms: Evaluation and comparisonRenew Sustain Energy Rev202113511011410.1016/j.rser.2020.110114
RenJZhangLZhaoHZhaoZWangSDetermination of the fatigue equation for the cement-stabilized cold recycled mixtures with road construction waste materials based on data-drivenInt J Fatigue202215810676510.1016/j.ijfatigue.2022.106765
VaddireddyHRasheedAStaplesAESanOFeature engineering and symbolic regression methods for detecting hidden physics from sparse sensor observation dataPhys Fluids202032101511310.1063/1.5136351
ShaoHVillaescusa-NavarroFGenelSSpergelDNAnglés-AlcázarDHernquistLDavéRNarayananDContardoGVogelsbergerMFinding universal relations in subhalo properties with artificial intelligenceAstrophys J202292718510.3847/1538-4357/ac4d30
AldeiaGSIde FrançaFOInterpretability in symbolic regression: a benchmark of explanatory methods using the Feynman data setGenetic Program Evol Mach202210.1007/s10710-022-09435-x
NaserMZHeuristic machine cognition to predict fire-induced spalling and fire resistance of concrete structuresAutom Constr201910610291610.1016/j.autcon.2019.102916
Raschka S (2015) Python machine learning. Packt publishing Ltd, Birmingham, UK.
VersinoDTondaABronkhorstCAData driven modeling of plastic deformationComput Methods Appl Mech Eng2017318981100410.1016/j.cma.2017.02.0161439.74005
MoradiDowlatabadMJamiolahmadyMNew approach for predicting multiple fractured horizontal wells performance in tight reservoirsJ Pet Sci Eng201816223324310.1016/j.petrol.2017.12.040
La Cava, W., Orzechowski, P., Burlacu, B., de França, F.O., Virgolin, M., Jin, Y., Kommenda, M., Moore, J.H.: Contemporary Symbolic Regression Methods and their Relative Performance. arXiv (2021). https://doi.org/10.48550/ARXIV.2107.14351
KeferKHanghoferRKeferPStögerMHoferBAffenzellerMWinklerSSimulation-based optimization of residential energy flows using white box modeling by genetic programmingEnergy Build202225811182910.1016/j.enbuild.2021.111829
GuoKYangZYuC-HBuehlerMJArtificial intelligence and machine learning in design of mechanical materialsMater. Horiz.202181153117210.1039/D0MH01451F
El HasadiYMFPa
T McConaghy (9922_CR73) 2011
F Li (9922_CR35) 2019; 2
L Ma (9922_CR167) 2022; 445
C Farabet (9922_CR68) 2013; 35
M Amir Haeri (9922_CR192) 2017; 60
QBA Imran Latif (9922_CR160) 2022
J Ren (9922_CR164) 2022; 158
G Pilania (9922_CR20) 2021; 193
SJ Shepherd (9922_CR204) 2014; 795
G Hautier (9922_CR153) 2019; 163
G Hinton (9922_CR71) 2012; 29
9922_CR174
WT Hale (9922_CR189) 2022; 157
C Wilstrup (9922_CR224) 2022; 22
D Abooali (9922_CR180) 2014; 21
X Zhang (9922_CR141) 2017
K Frydrych (9922_CR3) 2021
X Xu (9922_CR12) 2022
H Zhang (9922_CR97) 2022; 71
X Geng (9922_CR185) 2022; 107
DR Cox (9922_CR225) 1972; 34
H Rezaei (9922_CR162) 2022; 38
C Gong (9922_CR88) 2022; 3
X Qi (9922_CR17) 2019; 5
D Reimann (9922_CR139) 2019
E Derner (9922_CR195) 2020; 94
J Kubalík (9922_CR94) 2021; 182
9922_CR168
D Morgan (9922_CR25) 2020; 50
M Raissi (9922_CR53) 2017; 348
Y Zhou (9922_CR48) 2021; 235
A Seko (9922_CR151) 2018
D Barsotti (9922_CR202) 2022; 39
O Claveria (9922_CR230) 2017; 20
FH Allen (9922_CR7) 2002; 58
9922_CR11
P Neumann (9922_CR171) 2020; 387
X Pan (9922_CR211) 2019; 30
S-M Udrescu (9922_CR82) 2021; 103
C Wang (9922_CR18) 2020; 36
J Wei (9922_CR22) 2019; 1
GF Bomarito (9922_CR142) 2021; 252
MZ Naser (9922_CR161) 2019; 106
A Lopez-Bezanilla (9922_CR4) 2020; 10
KT Matchev (9922_CR200) 2022; 930
K Guo (9922_CR23) 2021; 8
G Yang (9922_CR205) 2015; 86
9922_CR24
M Schmidt (9922_CR121) 2009; 324
MKK Leung (9922_CR72) 2014; 30
V de Veloso Melo (9922_CR106) 2018; 430-431
R Arjona (9922_CR203) 2021; 103
F de Olivetti França (9922_CR58) 2018; 442-443
9922_CR30
YMF El Hasadi (9922_CR169) 2023; 265
L Yang (9922_CR54) 2021; 425
G Kronberger (9922_CR228) 2011
9922_CR32
9922_CR31
K Poulinakis (9922_CR66) 2023
S Mansourdehghan (9922_CR159) 2022; 53
Y Mishin (9922_CR135) 2021; 214
A Agrawal (9922_CR2) 2016; 4
J Shen (9922_CR186) 2022; 151
R Rueda (9922_CR212) 2019; 80
JR Koza (9922_CR74) 1994; 4
G Narvaez (9922_CR49) 2021; 167
Z Liu (9922_CR123) 2021; 126
F Sofos (9922_CR63) 2022
9922_CR43
H Liu (9922_CR187) 2019; 127
Y Wang (9922_CR154) 2019; 9
H Vaddireddy (9922_CR120) 2020; 32
I Pan (9922_CR206) 2013; 5
E Lucena-Sánchez (9922_CR91) 2021
C Loftis (9922_CR147) 2021; 125
AM Delgado (9922_CR199) 2022; 515
9922_CR55
R Ouyang (9922_CR118) 2018; 2
9922_CR59
J Behler (9922_CR133) 2007; 98
GL Hart (9922_CR26) 2021; 6
M Izadmehr (9922_CR179) 2016; 30
MA Chowdhury (9922_CR14) 2021; 29
P Praks (9922_CR156) 2018
9922_CR197
A Alexiadis (9922_CR61) 2019; 98
AAK Farizhandi (9922_CR172) 2020; 215
R Al-Hajj (9922_CR207) 2021
9922_CR1
L Meng (9922_CR16) 2020; 72
T Back (9922_CR75) 1996
9922_CR60
S Li (9922_CR9) 2022; 12
9922_CR67
L Gan (9922_CR163) 2022; 161
9922_CR69
J Xiong (9922_CR150) 2020; 63
E Shmalko (9922_CR184) 2021
O Claveria (9922_CR227) 2022
MA DeRousseau (9922_CR27) 2019; 228
E Nazemi (9922_CR64) 2019; 940
Y Liu (9922_CR19) 2017; 3
J Žegklitz (9922_CR194) 2019; 83
9922_CR78
T Zhou (9922_CR10) 2019; 5
F Hu (9922_CR62) 2012
9922_CR77
H Narayanan (9922_CR104) 2022; 430
B Weng (9922_CR155) 2020; 11
9922_CR218
D Padula (9922_CR38) 2019; 6
D Stephenson (9922_CR137) 2018; 22
TW Kerlin (9922_CR183) 2019
K Danai (9922_CR128) 2021; 151
SS Mousavi Astarabadi (9922_CR193) 2018; 62
AS Sambo (9922_CR196) 2021; 104
MZ Asadzadeh (9922_CR57) 2021; 6
J Fan (9922_CR50) 2019; 100
9922_CR81
9922_CR80
M Virgolin (9922_CR116) 2021; 29
K Papastamatiou (9922_CR56) 2022; 12
9922_CR85
9922_CR83
9922_CR87
D Abooali (9922_CR181) 2019; 31
N Artrith (9922_CR40) 2021; 13
G Kronberger (9922_CR100) 2022; 30
9922_CR209
MA-U Golap (9922_CR221) 2021; 67
9922_CR208
S Wagner (9922_CR114) 2014
9922_CR201
W Cao (9922_CR126) 2022; 12
DM Dimiduk (9922_CR21) 2018; 7
9922_CR96
9922_CR95
F Sofos (9922_CR145) 2022; 34
S Cai (9922_CR52) 2022
T Ye (9922_CR134) 2019; 31
L Jiang (9922_CR149) 2022; 231
9922_CR93
9922_CR98
J Townsend (9922_CR42) 2020; 11
AM Alaa (9922_CR219) 2021; 3
J Li (9922_CR37) 2019; 9
Y Kang (9922_CR29) 2021; 54
G Kronberger (9922_CR140) 2022; 9
MAM Ramli (9922_CR45) 2015; 105
M He (9922_CR152) 2021; 196
S Kirklin (9922_CR6) 2015; 1
AE Eiben (9922_CR76) 2003
K Kefer (9922_CR214) 2022; 258
MR Engle (9922_CR86) 2022; 68
A Kamari (9922_CR178) 2016; 216
VH Quej (9922_CR44) 2017; 155
W Ben Chaabene (9922_CR65) 2020; 260
O Claveria (9922_CR231) 2019; 46
S Kim (9922_CR109) 2021; 32
L Cornejo-Bueno (9922_CR46) 2019; 183
G Yang (9922_CR176) 2015; 82
A Domínguez-Sáez (9922_CR217) 2018; 149
A Dunn (9922_CR132) 2020; 6
P Dasgupta (9922_CR223) 2021; 206
M Milošević (9922_CR157) 2022
S Xie (9922_CR148) 2022; 8
H Nguyen (9922_CR28) 2021; 266
Y Feng (9922_CR47) 2019; 198
A Belsky (9922_CR5) 2002; 58
GF Bomarito (9922_CR131) 2022
C-Y Liu (9922_CR79) 2022; 37
R Dubčáková (9922_CR113) 2011
Y Yang (9922_CR136) 2021; 1
Y-G Jiang (9922_CR70) 2018; 40
9922_CR129
A Rostami (9922_CR182) 2017; 243
PA Reinbold (9922_CR99) 2021; 12
9922_CR127
DA Nembhard (9922_CR190) 2019; 131
S Curtarolo (9922_CR8) 2012; 58
H Sahu (9922_CR39) 2019; 10
9922_CR122
R Thorat (9922_CR175) 2016; 141
9922_CR125
9922_CR124
E Bahonar (9922_CR173) 2022; 208
TE Karakasidis (9922_CR101) 2022
H Liu (9922_CR216) 2022; 29
H Shao (9922_CR198) 2022; 927
S Guo (9922_CR15) 2022; 62
C Wang (9922_CR92) 2022; 122
M Hamidia (9922_CR158) 2022
S Alhuthali (9922_CR170) 2022; 134
D Vázquez (9922_CR90) 2022; 30
P Valsaraj (9922_CR210) 2020; 260
H Jeong (9922_CR191) 2022; 172
9922_CR110
GSI Aldeia (9922_CR130) 2022
D Versino (9922_CR143) 2017; 318
9922_CR115
RR Sonolikar (9922_CR166) 2017; 15
S Wenninger (9922_CR213) 2022; 308
E Kabliman (9922_CR119) 2019; 2113
Aǧbulut Ümit (9922_CR51) 2021; 135
M Cranmer (9922_CR111) 2021; 118
9922_CR112
9922_CR233
D Rivero (9922_CR84) 2022; 198
X Pan (9922_CR215) 2019; 220
JP Janet (9922_CR41) 2019; 58
S Zhong (9922_CR33) 2022
TM Alam (9922_CR146) 2022; 15
J Brence (9922_CR89) 2021; 224
M MoradiDowlatabad (9922_CR177) 2018; 162
M Frank (9922_CR13) 2020
A Mahmood (9922_CR36) 2021; 14
9922_CR108
9922_CR229
9922_CR107
L Zhang (9922_CR34) 2020; 78
9922_CR105
9922_CR226
R Ouyang (9922_CR117) 2019; 2
W Ben Chaabene (9922_CR165) 2021; 280
9922_CR220
O Claveria (9922_CR232) 2020; 93
A Hernandez (9922_CR138) 2019; 5
M Wang (9922_CR144) 2022; 159
9922_CR103
E Kabliman (9922_CR188) 2021; 6
9922_CR102
9922_CR222
References_xml – reference: KimSLuPYMukherjeeSGilbertMJingLČeperićVSoljačićMIntegration of neural network-based symbolic regression in deep learning for scientific discoveryIEEE Trans Neural Netw Learn Syst20213294166417710.1109/TNNLS.2020.3017010
– reference: BomaritoGFLeserPEStraussNCMGarbrechtKMHochhalterJDBayesian model selection for reducing bloat and overfitting in genetic programming for symbolic regression2022New York, NY, USAAssociation for Computing Machinery52652910.1145/3520304.3528899
– reference: ChowdhuryMAHossainNAhmed ShuvhoMBFotouhiMIslamMSAliMRKashemMARecent machine learning guided material research—a reviewComput Condens Matter2021290059710.1016/j.cocom.2021.e00597
– reference: AlhuthaliSDelaplaceGMacchiettoSBouvierLWhey protein fouling prediction in plate heat exchanger by combining dynamic modelling, dimensional analysis, and symbolic regressionFood Bioprod Process202213416318010.1016/j.fbp.2022.05.009
– reference: He, B., Lu, Q., Yang, Q., Luo, J., Wang, Z.: Taylor Genetic Programming for Symbolic Regression. arXiv (2022). https://doi.org/10.48550/ARXIV.2205.09751
– reference: AsadzadehMZGänserH-PMückeMSymbolic regression based hybrid semiparametric modelling of processes: an example case of a bending processAppl Eng Sci2021610004910.1016/j.apples.2021.100049
– reference: DubčákováREureqa: software review2011New YorkSpringer10.1007/s10710-010-9124-z
– reference: BehlerJParrinelloMGeneralized neural-network representation of high-dimensional potential-energy surfacesPhys Rev Lett20079814640110.1103/PhysRevLett.98.146401
– reference: BackTEvolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms1996OxfordOxford University Press10.1093/oso/9780195099713.001.00010877.68060
– reference: PraksPBrkićDSymbolic regression-based genetic approximations of the colebrook equation for flow frictionWater201810.3390/w10091175
– reference: MatchevKTMatchevaKRomanAAnalytical modeling of exoplanet transit spectroscopy with dimensional analysis and symbolic regressionAstrophys J202293013310.3847/1538-4357/ac610c
– reference: Gilpin W (2021). Chaos as an interpretable benchmark for forecasting and data-driven modelling. https://doi.org/10.48550/ARXIV.2110.05266
– reference: PoulinakisKDrikakisDKokkinakisIWSpottswoodSMMachine-learning methods on noisy and sparse dataMathematics202310.3390/math11010236
– reference: RiveroDFernandez-BlancoEPazosADome: a deterministic technique for equation development and symbolic regressionExp Syst Appl202219811671210.1016/j.eswa.2022.116712
– reference: AbooaliDKhamehchiENew predictive method for estimation of natural gas hydrate formation temperature using genetic programmingNeural Comput Appl20193172485249410.1007/s00521-017-3208-0
– reference: SahuHMaHUnraveling correlations between molecular properties and device parameters of organic solar cells using machine learningJ Phys Chem Lett201910227277728410.1021/acs.jpclett.9b02772
– reference: YangGSunTWangJLiXModeling the nexus between carbon dioxide emissions and economic growthEnergy Policy20158610411710.1016/j.enpol.2015.06.031
– reference: Valipour, M., You, B., Panju, M., Ghodsi, A.: SymbolicGPT: a generative transformer model for symbolic regression. arXiv (2021). https://doi.org/10.48550/ARXIV.2106.14131
– reference: FanJWuLZhangFCaiHZengWWangXZouHEmpirical and machine learning models for predicting daily global solar radiation from sunshine duration: a review and case study in ChinaRenew Sustain Energy Rev201910018621210.1016/j.rser.2018.10.018
– reference: KozaJRGenetic programming as a means for programming computers by natural selectionStat Comput1994428711210.1007/BF00175355
– reference: VázquezDGuimeráRSales-PardoMGuillén-GosálbezGAutomatic modeling of socioeconomic drivers of energy consumption and pollution using bayesian symbolic regressionSustain Prod Consum20223059660710.1016/j.spc.2021.12.025
– reference: WangYWagnerNRondinelliJMSymbolic regression in materials scienceMRS Commun20199379380510.1557/mrc.2019.85
– reference: GolapMA-URajuSMTUHaqueMRHashemMMAHemoglobin and glucose level estimation from ppg characteristics features of fingertip video using mggp-based modelBiomed Signal Process Control20216710247810.1016/j.bspc.2021.102478
– reference: HintonGDengLYuDDahlGEMohamedA-RJaitlyNSeniorAVanhouckeVNguyenPSainathTNKingsburyBDeep neural networks for acoustic modeling in speech recognition: the shared views of four research groupsIEEE Signal Processing Mag2012296829710.1109/MSP.2012.2205597
– reference: FengYGongDZhangQJiangSZhaoLCuiNEvaluation of temperature-based machine learning and empirical models for predicting daily global solar radiationEnergy Convers Manag201919811178010.1016/j.enconman.2019.111780
– reference: Wilstrup, C., Kasak, J.: Symbolic regression outperforms other models for small data sets. arXiv (2021). https://doi.org/10.48550/ARXIV.2103.15147
– reference: YangLMengXKarniadakisGEB-pinns: Bayesian physics-informed neural networks for forward and inverse pde problems with noisy dataJ Comput Phys2021425109913416606610.1016/j.jcp.2020.10991307508507
– reference: AgrawalAChoudharyAPerspective: materials informatics and big data: realization of the “fourth paradigm’’ of science in materials scienceAPL Mater20164505320810.1063/1.4946894
– reference: BelskyAHellenbrandtMKarenVLLukschPNew developments in the inorganic crystal structure database (ICSD): accessibility in support of materials research and designActa Crystallogr Sect B2002583 Part 136436910.1107/S0108768102006948
– reference: ArjonaRLinH-NNesserisSTangLMachine learning forecasts of the cosmic distance duality relation with strongly lensed gravitational wave eventsPhys Rev D202110310351310.1103/PhysRevD.103.103513
– reference: VirgolinMAlderliestenTWitteveenCBosmanPANImproving model-based genetic programming for symbolic regression of small expressionsEvolut Comput202129221123710.1162/evco_a_00278
– reference: XuXAggarwalDShankarKInstantaneous property prediction and inverse design of plasmonic nanostructures using machine learning: current applications and future directionsNanomaterials202210.3390/nano12040633
– reference: VaddireddyHRasheedAStaplesAESanOFeature engineering and symbolic regression methods for detecting hidden physics from sparse sensor observation dataPhys Fluids202032101511310.1063/1.5136351
– reference: Raschka S (2015) Python machine learning. Packt publishing Ltd, Birmingham, UK.
– reference: KronbergerGFinkSKommendaMAffenzellerMDi ChioCBrabazonADi CaroGADrechslerRFarooqMGrahlJGreenfieldGPrinsCRomeroJSquilleroGTarantinoETettamanziAGBUrquhartNUyarAŞMacro-economic time series modeling and interaction networksAppl Evol Comput2011Berlin, HeidelbergSpringer101110
– reference: Imran LatifQBAMemonZAMahmoodZQureshiMUMiladAA machine learning model for the prediction of concrete penetration by the ogive nose rigid projectileAppl Sci202210.3390/app12042040
– reference: Tohme T, Liu D, Youcef-Toumi K (2022) GSR: a generalized symbolic regression approach. arXiv. doi:1048550/ARXIV.2205.15569
– reference: Bolte J-A, Bar A, Lipinski D, Fingscheidt T (2019) Towards corner case detection for autonomous driving. In: 2019 IEEE Intelligent Vehicles Symposium (IV), pp. 438–445. https://doi.org/10.1109/IVS.2019.8813817
– reference: LiFPengXWangZZhouYWuYJiangMXuMMachine learning (ml)-assisted design and fabrication for solar cellsEnergy Environ Mater20192428029110.1002/eem2.12049
– reference: Drachal, K.: Analysis of Bayesian Symbolic Regression Applied to Crude Oil Price. In: Sinteza 2022 - International Scientific Conference on Information Technology and Data Related Research, pp. 3–13 (2022). https://doi.org/10.15308/Sinteza-2022-3-13
– reference: CranmerMTamayoDReinHBattagliaPHaddenSArmitagePJHoSSpergelDNA bayesian neural network predicts the dissolution of compact planetary systemsProc Natl Acad Sci2021118402026053118438914310.1073/pnas.2026053118
– reference: Koza, J.R.: A genetic approach to econometric modeling. In: Sixth World Congress of the Econometric Society, Barcelona, Spain, vol. 27 (1990)
– reference: ZhouTSongZSundmacherKBig data creates new opportunities for materials research: a review on methods and applications of machine learning for materials designEngineering2019561017102610.1016/j.eng.2019.02.011
– reference: StephensonDKermodeJRLockerbyDAAccelerating multiscale modelling of fluids with on-the-fly Gaussian process regressionMicrofluidics and Nanofluidics2018221211210.1007/s10404-018-2164-z
– reference: ThoratRBruiningHDetermination of the most significant variables affecting the steady state pressure drop in selected foam flow experimentsJ Pet Sci Eng201614114415610.1016/j.petrol.2015.12.001
– reference: HuFHaoQIntelligent sensor networks: the integration of sensor networks, signal processing and machine learningTaylor & Francis201210.1201/b14300
– reference: ReimannDNidadavoluKul HassanHVajraguptaNGlasmachersTJunkerPHartmaierAModeling macroscopic material behavior with machine learning algorithms trained by micromechanical simulationsFront Mater201910.3389/fmats.2019.00181
– reference: Wilstrup, C., Hedley, P.L., Rode, L., Placing, S., Wøjdemann, K.R., Shalmi, A.-C., Sundberg, K., Christiansen, M.: Symbolic regression analysis of interactions between first trimester maternal serum adipokines in pregnancies which develop pre-eclampsia. medRxiv (2022). https://doi.org/10.1101/2022.06.29.22277072
– reference: LiuZTegmarkMMachine learning conservation laws from trajectoriesPhys Rev Lett2021126180604426471410.1103/PhysRevLett.126.180604
– reference: HernandezABalasubramanianAYuanFMasonSAMuellerTFast, accurate, and transferable many-body interatomic potentials by symbolic regressionNpj Comput Mater20195111110.1038/s41524-019-0249-1
– reference: KablimanEKolodyAHKronsteinerJKommendaMKronbergerGApplication of symbolic regression for constitutive modeling of plastic deformationAppl Eng Sci2021610005210.1016/j.apples.2021.100052
– reference: Shalev-Shwartz S, Shammah S, Shashua A (2016) Safe, multi-agent. reinforcement learning for autonomous driving arXiv. https://doi.org/10.48550/ARXIV.1610.03295
– reference: Lopez-BezanillaALittlewoodPBGrowing field of materials informatics: databases and artificial intelligenceMRS Communications202010111010.1557/mrc.2020.2
– reference: CaiSMaoZWangZYinMKarniadakisGEPhysics-informed neural networks (pinns) for fluid mechanics: a reviewActa Mech Sin202210.1007/s10409-021-01148-1
– reference: EibenAESmithJEIntroduction to evolutionary computing2003New YorkSpringer10.1007/978-3-662-44874-81028.68022
– reference: AlexiadisADeep multiphysics: coupling discrete multiphysics with machine learning to attain self-learning in-silico models replicating human physiologyArtif Intell Med201998273410.1016/j.artmed.2019.06.005
– reference: GanLWuHZhongZIntegration of symbolic regression and domain knowledge for interpretable modeling of remaining fatigue life under multistep loadingInt J Fatigue202216110688910.1016/j.ijfatigue.2022.106889
– reference: ShaoHVillaescusa-NavarroFGenelSSpergelDNAnglés-AlcázarDHernquistLDavéRNarayananDContardoGVogelsbergerMFinding universal relations in subhalo properties with artificial intelligenceAstrophys J202292718510.3847/1538-4357/ac4d30
– reference: AllenFHThe Cambridge structural database: a quarter of a million crystal structures and risingActa Crystallogr Sect B2002583 Part 138038810.1107/S0108768102003890
– reference: GongCBryanJFurcoiuASuQGrobeREvolutionary symbolic regression from a probabilistic perspectiveSN Comput Sci20223311510.1007/s42979-022-01094-0
– reference: Mundhenk, T.N., Landajuela, M., Glatt, R., Santiago, C.P., Faissol, D.M., Petersen, B.K.: Symbolic regression via neural-guided genetic programming population seeding. arXiv (2021). https://doi.org/10.48550/ARXIV.2111.00053
– reference: HeMZhangLMachine learning and symbolic regression investigation on stability of mxene materialsComput Mater Sci202119611057810.1016/j.commatsci.2021.110578
– reference: Virgolin, M., Alderliesten, T., Bel, A., Witteveen, C., Bosman, P.A.N.: Symbolic regression and feature construction with gp-gomea applied to radiotherapy dose reconstruction of childhood cancer survivors. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1395–1402. Association for Computing Machinery, (2018). https://doi.org/10.1145/3205455.3205604
– reference: Okuyama T, Gonsalves T, Upadhay J (2018) Autonomous driving system based on deep q learnig. In: 2018 International Conference on Intelligent Autonomous Systems (ICoIAS), pp. 201–205. https://doi.org/10.1109/ICoIAS.2018.8494053
– reference: LeungMKKXiongHYLeeLJFreyBJDeep learning of the tissue-regulated splicing codeBioinformatics2014301212112910.1093/bioinformatics/btu277
– reference: ClaveriaOMonteETorraSEconomic forecasting with evolved confidence indicatorsEcon Modell20209357658510.1016/j.econmod.2020.09.015
– reference: MansourdehghanSDolatshahiKMAsjodiAHData-driven damage assessment of reinforced concrete shear walls using visual features of damageJ Build Eng20225310450910.1016/j.jobe.2022.104509
– reference: Udrescu S-M, Tegmark M (2019). Ai feynman: a physics-inspired method for symbolic regression. https://doi.org/10.48550/ARXIV.1905.11481
– reference: NeumannPCaoLRussoDVassiliadisVSLapkinAAA new formulation for symbolic regression to identify physico-chemical laws from experimental dataChem Eng J202038712341210.1016/j.cej.2019.123412
– reference: Ben ChaabeneWNehdiMLGenetic programming based symbolic regression for shear capacity prediction of sfrc beamsConstr Build Mater202128012252310.1016/j.conbuildmat.2021.122523
– reference: NarvaezGGiraldoLFBressanMPantojaAMachine learning for site-adaptation and solar radiation forecastingRenew Energy202116733334210.1016/j.renene.2020.11.089
– reference: JeongHKimJHChoiS-HLeeSHeoIKimKSSemantic cluster operator for symbolic regression and its applicationsAdv Eng Softw202217210317410.1016/j.advengsoft.2022.103174
– reference: PanXUddinMKAiBPanXSaimaUInfluential factors of carbon emissions intensity in oecd countries: evidence from symbolic regressionJ Clean Prod20192201194120110.1016/j.jclepro.2019.02.195
– reference: PanXZhangJLiCPanXSongJAnalysis of China’s regional wind power generation efficiency and its influencing factorsEnergy Environ201930225427110.1177/0958305X18788820
– reference: ZhangXChenZLiuYZhangXChenZLiuYChapter 6—constitutive modelsThe material point method2017OxfordAcademic Press17521910.1016/B978-0-12-407716-4.00006-5
– reference: Rad, H.I., Feng, J., Iba, H.: GP-RVM: Genetic Programing-based Symbolic Regression Using Relevance Vector Machine. arXiv (2018). https://doi.org/10.48550/ARXIV.1806.02502
– reference: SonolikarRRPatilMPMankarRBTambeSSKulkarniBDGenetic programming based drag model with improved prediction accuracy for fluidization systemsInt J Chem React Eng20171522016021010.1515/ijcre-2016-0210
– reference: BarsottiDCerinoFTiglioMVillanuevaAGravitational wave surrogates through automated machine learningClass Quantum Grav2022398085011441206010.1088/1361-6382/ac5ba1
– reference: GuoSAgarwalMCooperCTianQGaoRXGuoWGuoYBMachine learning for metal additive manufacturing: towards a physics-informed data-driven paradigmJ Manufact Syst20226214516310.1016/j.jmsy.2021.11.003
– reference: DasguptaPHughesJADaleyMSejdićEIs human walking a network medicine problem? An analysis using symbolic regression models with genetic programmingComput Methods Progr Biomed202120610610410.1016/j.cmpb.2021.106104
– reference: FrydrychKKarimiKPecelerowiczMAlvarezRDominguez-GutiérrezFJRovarisFPapanikolaouSMaterials informatics for mechanical deformation: a review of applications and challengesMaterials202110.3390/ma14195764
– reference: ZhangLHeMShaoSMachine learning for halide perovskite materialsNano Energy2020781053810.1016/j.nanoen.2020.105380
– reference: NaserMZHeuristic machine cognition to predict fire-induced spalling and fire resistance of concrete structuresAutom Constr201910610291610.1016/j.autcon.2019.102916
– reference: KronbergerGde FrancaFOBurlacuBHaiderCKommendaMShape-constrained symbolic regression-improving extrapolation with prior knowledgeEvolut Comput2022301759810.1162/evco_a_00294
– reference: Matsubara, Y., Chiba, N., Igarashi, R., Taniai, T., Ushiku, Y.: Rethinking symbolic regression datasets and benchmarks for scientific discovery. arXiv (2022). https://doi.org/10.48550/ARXIV.2206.10540
– reference: KirklinSSaalJEMeredigBThompsonADoakJWAykolMRühlSWolvertonCThe open quantum materials database (oqmd): assessing the accuracy of dft formation energiesNpj Comput Mater20151111510.1038/npjcompumats.2015.10
– reference: PapastamatiouKSofosFKarakasidisTEMachine learning symbolic equations for diffusion with physics-based descriptionsAIP Adv202212202500410.1063/5.0082147
– reference: AldeiaGSIde FrançaFOInterpretability in symbolic regression: a benchmark of explanatory methods using the Feynman data setGenetic Program Evol Mach202210.1007/s10710-022-09435-x
– reference: CoxDRRegression models and life-tablesJ R Statistical Soc: Ser B (Methodol)197234218720234175810.1111/j.2517-6161.1972.tb00899.x0243.62041
– reference: WangCTanXPTorSBLimCSMachine learning in additive manufacturing: state-of-the-art and perspectivesAddit Manuf20203610153810.1016/j.addma.2020.101538
– reference: ZhouYLiuYWangDLiuXWangYA review on global solar radiation prediction with machine learning models in a comprehensive perspectiveEnergy Convers Manag202123511396010.1016/j.enconman.2021.113960
– reference: YangGLiXWangJLianLMaTModeling oil production based on symbolic regressionEnergy Policy201582486110.1016/j.enpol.2015.02.016
– reference: ShenJKothaSNoraasRVenkateshVGhoshSDeveloping parametrically upscaled constitutive and crack nucleation models for the ti64 alloyInt J Plast202215110318210.1016/j.ijplas.2021.103182
– reference: MengLMcWilliamsBJarosinskiWParkH-YJungY-GLeeJZhangJMachine learning in additive manufacturing: a reviewJom20207262363237710.1007/s11837-020-04155-y
– reference: KarakasidisTESofosFTsonosCThe electrical conductivity of ionic liquids: numerical and analytical machine learning approachesFluids202210.3390/fluids7100321
– reference: AbooaliDKhamehchiEEstimation of dynamic viscosity of natural gas based on genetic programming methodologyJ Nat Gas Sci Eng2014211025103110.1016/j.jngse.2014.11.006
– reference: FrankMDrikakisDCharissisVMachine-learning methods for computational science and engineeringComputation202010.3390/computation8010015
– reference: WeiJChuXSunX-YXuKDengH-XChenJWeiZLeiMMachine learning in materials scienceInfoMat20191333835810.1002/inf2.12028
– reference: SekoATogoATanaka, I..TanakaIDescriptors for machine learning of materials data2018SingaporeSpringer32310.1007/978-981-10-7617-6_1
– reference: YeTPanDHuangCLiuMSmoothed particle hydrodynamics (sph) for complex fluid flows: recent developments in methodology and applicationsPhys Fluids201931101130110.1063/1.5068697
– reference: Austel V, Dash S, Gunluk O, Horesh L, Liberti L, Nannicini G, Schieber B (2017). Globally Optimal Symbolic Regression arXiv. https://doi.org/10.48550/arXiv.1710.10720
– reference: Petersen BK, Landajuela M, Mundhenk TN, Santiago CP, Kim SK, Kim JT (2019). Deep symbolic regression: recovering mathematical expressions from data via risk-seeking policy gradients. https://doi.org/10.48550/ARXIV.1912.04871
– reference: ŽegklitzJPošíkPSymbolic regression in dynamic scenarios with gradually changing targetsAppl Soft Comput20198310562110.1016/j.asoc.2019.105621
– reference: Goyal, R.: A symbolic regression approach to hepatocellular carcinoma diagnosis using hypermethylated cpg islands in circulating cell-free dna. medRxiv (2022). https://doi.org/10.1101/2022.01.25.22269799
– reference: KamariAGharagheiziFMohammadiAHRamjugernathDA corresponding states-based method for the estimation of natural gas compressibility factorsJ Mol Liq2016216253410.1016/j.molliq.2015.12.103
– reference: WenningerSKaymakciCWietheCExplainable long-term building energy consumption prediction using qlatticeAppl Energy202230811830010.1016/j.apenergy.2021.118300
– reference: Al-HajjRAssiAFouadMMabroukEA hybrid lstm-based genetic programming approach for short-term prediction of global solar radiation using weather dataProcesses202110.3390/pr9071187
– reference: McRee, R.K.: Symbolic regression using nearest neighbor indexing. In: Proceedings of the 12th Annual Conference Companion on Genetic and Evolutionary Computation, pp. 1983–1990. Association for Computing Machinery, New York, NY, USA (2010). https://doi.org/10.1145/1830761.1830841
– reference: LiJPradhanBGaurSThomasJPredictions and strategies learned from machine learning to develop high-performing perovskite solar cellsAdv Energy Mater2019946190189110.1002/aenm.201901891
– reference: DanaiKLa CavaWGController design by symbolic regressionMechan Syst Signal Process202115110734810.1016/j.ymssp.2020.107348
– reference: RostamiAShokrollahiAAccurate prediction of water dewpoint temperature in natural gas dehydrators using gene expression programming approachJ Mol Liq201724319620410.1016/j.molliq.2017.08.045
– reference: ArtrithNButlerKTCoudertF-XHanSIsayevOJainAWalshABest practices in machine learning for chemistryNat Chem202113650550810.1038/s41557-021-00716-z
– reference: LiuHLinHJiangXMaoXLiuQLiBEstimation of mass matrix in machine tool’s weak components research by using symbolic regressionComput Ind Eng2019127998101110.1016/j.cie.2018.11.033
– reference: El HasadiYMFPaddingJTDo logarithmic terms exist in the drag coefficient of a single sphere at high Reynolds numbers?Chem Eng Sci202326511819510.1016/j.ces.2022.118195
– reference: de Olivetti França,FA greedy search tree heuristic for symbolic regressionInf Sci2018442-4431832377180310.1016/j.ins.2018.02.0401447.62080
– reference: Wilson D, Miller JF, Cussat-Blanc S, Luga H (2018). Positional Cartesian genetic programming arXiv. https://doi.org/10.48550/ARXIV.1810.04119
– reference: WangCZhangYWenCYangMLookmanTSuYZhangT-YSymbolic regression in materials science via dimension-synchronous-computationJ Mater Sci Technol2022122778310.1016/j.jmst.2021.12.052
– reference: DunnAWangQGanoseADoppDJainABenchmarking materials property prediction methods: the matbench test set and automatminer reference algorithmNpj Comput Mater20206111010.1038/s41524-020-00406-3
– reference: LiuC-YSenftleTPFinding physical insights in catalysis with machine learningCurr Opin Chem Eng20223710083210.1016/j.coche.2022.100832
– reference: MiloševićMBrkićDPraksPLitričinDStajićZHydraulic losses in systems of conduits with flow from laminar to fully turbulent: a new symbolic regression formulationAxioms202210.3390/axioms11050198
– reference: SchmidtMLipsonHDistilling free-form natural laws from experimental dataScience20093245923818510.1126/science.1165893
– reference: Mousavi AstarabadiSSEbadzadehMMA decomposition method for symbolic regression problemsAppl Soft Comput20186251452310.1016/j.asoc.2017.10.041
– reference: Manzi, M., Vasile, M.: Orbital anomaly reconstruction using deep symbolic regression. In: 71st International Astronautical Congress (2020)
– reference: SofosFStavrogiannisCExarchou-KouveliKKAkabuaDCharilasGKarakasidisTECurrent trends in fluid research in the era of artificial intelligence: a reviewFluids202210.3390/fluids7030116
– reference: Wadekar, D., Thiele, L., Villaescusa-Navarro, F., Hill, J.C., Cranmer, M., Spergel, D.N., Battaglia, N., Anglés-Alcázar, D., Hernquist, L., Ho, S.: Augmenting astrophysical scaling relations with machine learning : application to reducing the SZ flux-mass scatter. arXiv (2022). https://doi.org/10.48550/ARXIV.2201.01305
– reference: HartGLMuellerTToherCCurtaroloSMachine learning for alloysNat Rev Mater20216873075510.1038/s41578-021-00340-w
– reference: Lucena-SánchezESciaviccoGStanIEFeature and language selection in temporal symbolic regression for interpretable air quality modellingAlgorithms202110.3390/a14030076
– reference: RezaeiHZarfamPGolafshaniEMAmiriGGSeismic fragility analysis of rc box-girder bridges based on symbolic regression methodStructures20223830632210.1016/j.istruc.2021.12.058
– reference: ClaveriaOMonteETorraSEmpirical modelling of survey-based expectations for the design of economic indicators in five european regionsEmpirica201946220522710.1007/s10663-017-9395-1
– reference: ÜmitAǧbulutGürelAEBiçenYPrediction of daily global solar radiation using different machine learning algorithms: Evaluation and comparisonRenew Sustain Energy Rev202113511011410.1016/j.rser.2020.110114
– reference: RaissiMPerdikarisPKarniadakisGEMachine learning of linear differential equations using gaussian processesJ Comput Phys2017348683693368965310.1016/j.jcp.2017.07.0501380.68339
– reference: PanIPandeyDSDasSGlobal solar irradiation prediction using a multi-gene genetic programming approachJ Renew Sustain Energy20135606312910.1063/1.4850495
– reference: Wadekar, D., Villaescusa-Navarro, F., Ho, S., Perreault-Levasseur, L.: Modeling assembly bias with machine learning and symbolic regression. arXiv (2020). https://doi.org/10.48550/ARXIV.2012.00111
– reference: KerlinTWUpadhyayaBRKerlinTWUpadhyayaBRChapter 8—reactor controlDynamics and control of nuclear reactors2019CambridgeAcademic Press8910410.1016/B978-0-12-815261-4.00008-1
– reference: GuoKYangZYuC-HBuehlerMJArtificial intelligence and machine learning in design of mechanical materialsMater. Horiz.202181153117210.1039/D0MH01451F
– reference: Lemos, P., Jeffrey, N., Cranmer, M., Ho, S., Battaglia, P.: Rediscovering orbital mechanics with machine learning. arXiv (2022). https://doi.org/10.48550/ARXIV.2202.02306
– reference: Haider, C., de França, F.O., Burlacu, B., Kronberger, G.: Using shape constraints for improving symbolic regression models. arXiv (2021). https://doi.org/10.48550/ARXIV.2107.09458
– reference: PilaniaGMachine learning in materials science: from explainable predictions to autonomous designComput Mater Sci202119311036010.1016/j.commatsci.2021.110360
– reference: RamliMAMTwahaSAl-TurkiYAInvestigating the performance of support vector machine and artificial neural networks in predicting solar radiation on a tilted surface: Saudi Arabia case studyEnergy Convers Manag201510544245210.1016/j.enconman.2015.07.083
– reference: Virgolin, M., Alderliesten, T., Witteveen, C., Bosman, P.A.N.: Scalable genetic programming by gene-pool optimal mixing and input-space entropy-based building-block learning. In: Proceedings of the Genetic and Evolutionary Computation Conference. GECCO ’17, pp. 1041–1048. Association for Computing Machinery, New York, NY, USA (2017). https://doi.org/10.1145/3071178.3071287
– reference: FarizhandiAAKZhaoHChenTLauREvaluation of material properties using planetary ball milling for modeling the change of particle size distribution in a gas-solid fluidized bed using a hybrid artificial neural network-genetic algorithm approachChem Eng Sci202021511546910.1016/j.ces.2020.115469
– reference: DimidukDMHolmEANiezgodaSRPerspectives on the impact of machine learning, deep learning, and artificial intelligence on materials, processes, and structures engineeringIntegr Mater Manuf Innov20187315717210.1007/s40192-018-0117-8
– reference: MahmoodAWangJ-LMachine learning for high performance organic solar cells: current scenario and future prospectsEnergy Environ Sci20211419010510.1039/D0EE02838J
– reference: Abdellaoui, I.A., Mehrkanoon, S.: Symbolic regression for scientific discovery: an application to wind speed forecasting. In: 2021 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 01–08 (2021). https://doi.org/10.1109/SSCI50451.2021.9659860
– reference: YangYZhaoLHanC-XDingX-DLookmanTSunJZongH-XTaking materials dynamics to new extremes using machine learning interatomic potentialsJ Mater Inform2021121010.20517/jmi.2021.001
– reference: VersinoDTondaABronkhorstCAData driven modeling of plastic deformationComput Methods Appl Mech Eng2017318981100410.1016/j.cma.2017.02.0161439.74005
– reference: IzadmehrMShamsRGhazanfariMHNew correlations for predicting pure and impure natural gas viscosityJ Nat Gas Sci Eng20163036437810.1016/j.jngse.2016.02.026
– reference: Hughes, J.A., Houghten, S., Brown, J.A.: Gait model analysis of parkinson’s disease patients under cognitive load. In: 2020 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8 (2020). https://doi.org/10.1109/CEC48606.2020.9185621
– reference: Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Pereira F, Burges CJ, Bottou L, Weinberger KQ (eds.) Advances in neural information processing systems, vol. 25. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
– reference: MoradiDowlatabadMJamiolahmadyMNew approach for predicting multiple fractured horizontal wells performance in tight reservoirsJ Pet Sci Eng201816223324310.1016/j.petrol.2017.12.040
– reference: ValsarajPThumbaDAAsokanKKumarKSSymbolic regression-based improved method for wind speed extrapolation from lower to higher altitudes for wind energy applicationsAppl Energy202026011427010.1016/j.apenergy.2019.114270
– reference: JanetJPLiuFNandyADuanCYangTLinSKulikHJDesigning in the face of uncertainty: exploiting electronic structure and machine learning models for discovery in inorganic chemistryInorg Chem20195816105921060610.1021/acs.inorgchem.9b00109
– reference: RenJZhangLZhaoHZhaoZWangSDetermination of the fatigue equation for the cement-stabilized cold recycled mixtures with road construction waste materials based on data-drivenInt J Fatigue202215810676510.1016/j.ijfatigue.2022.106765
– reference: ZhongSYapBKZhongZYingLReview on y6-based semiconductor materials and their future development via machine learningCrystals202210.3390/cryst12020168
– reference: OuyangRAhmetcikECarbognoCSchefflerMGhiringhelliLMSimultaneous learning of several materials properties from incomplete databases with multi-task SISSOJ Phys: Mater20192202400210.1088/2515-7639/ab077b
– reference: La Cava, W., Orzechowski, P., Burlacu, B., de França, F.O., Virgolin, M., Jin, Y., Kommenda, M., Moore, J.H.: Contemporary Symbolic Regression Methods and their Relative Performance. arXiv (2021). https://doi.org/10.48550/ARXIV.2107.14351
– reference: McConaghyTRioloRVladislavlevaEMooreJHFFX: fast, scalable, deterministic symbolic regression technology2011New York, NYSpringer235260
– reference: Patrick H (1992) Winston. Artificial Intelligence. Addison-Wesley (now 3rd Edition)
– reference: LiuYZhaoTJuWShiSMaterials discovery and design using machine learningJ Materiomics20173315917710.1016/j.jmat.2017.08.002
– reference: MaLGuoQLiXXuSZhouJYeMLiuZDrag correlations for flow past monodisperse arrays of spheres and porous spheres based on symbolic regression: effects of permeabilityChem Eng J202244513665310.1016/j.cej.2022.136653
– reference: Massaoudi, M., Chihi, I., Sidhom, L., Trabelsi, M., Refaat, S.S., Oueslati, F.S.: Enhanced Evolutionary Symbolic regression via genetic programming for PV power forecasting. arXiv (2019). https://doi.org/10.48550/ARXIV.1910.10065
– reference: KronbergerGKablimanEKronsteinerJKommendaMExtending a physics-based constitutive model using genetic programmingAppl Eng Sci2022910008010.1016/j.apples.2021.100080
– reference: AlamTMAllersJPLeverantCJHarveyJASymbolic regression development of empirical equations for diffusion in Lennard-Jones fluidsJ Chem Phys202215101450310.1063/5.0093658
– reference: BahonarEChahardowliMGhalenoeiYSimjooMNew correlations to predict oil viscosity using data mining techniquesJ Pet Sci Eng202220810973610.1016/j.petrol.2021.109736
– reference: ReinboldPAKageorgeLMSchatzMFGrigorievRORobust learning from noisy, incomplete, high-dimensional experimental data via physically constrained symbolic regressionNat Commun20211211810.1038/s41467-021-23479-0
– reference: Cornejo-BuenoLCasanova-MateoCSanz-JustoJSalcedo-SanzSMachine learning regressors for solar radiation estimation from satellite dataSolar Energy201918376877510.1016/j.solener.2019.03.079
– reference: LiuHZhangZProbing the carbon emissions in 30 regions of china based on symbolic regression and tapio decouplingEnviron Sci Pollut Res20222922650266310.1007/s11356-021-15648-x
– reference: UdrescuS-MTegmarkMSymbolic pregression: discovering physical laws from distorted videoPhys Rev E202110304330710.1103/PhysRevE.103.043307
– reference: Icke, I., Bongard, J.C.: Improving genetic programming based symbolic regression using deterministic machine learning. In: 2013 IEEE Congress on Evolutionary Computation, pp. 1763–1770 (2013). https://doi.org/10.1109/CEC.2013.6557774
– reference: DeRousseauMALaftchievEKasprzykJRRajagopalanBSrubarWVA comparison of machine learning methods for predicting the compressive strength of field-placed concreteConstr Build Mater201922811666110.1016/j.conbuildmat.2019.08.042
– reference: DernerEKubalíkJAnconaNBabuškaRConstructing parsimonious analytic models for dynamic systems via symbolic regressionAppl Soft Comput20209410643210.1016/j.asoc.2020.106432
– reference: WengBSongZZhuRYanQSunQGriceCGYanYYinW-JSimple descriptor derived from symbolic regression accelerating the discovery of new perovskite catalystsNat Commun20201111810.1038/s41467-020-17263-9
– reference: KablimanEKolodyAHKommendaMKronbergerGPrediction of stress-strain curves for aluminium alloys using symbolic regressionAIP Conf Proc20192113118000910.1063/1.5112747
– reference: ZhangHZhouAQianHZhangHPs-tree: a piecewise symbolic regression treeSwarm Evolut Comput20227110106110.1016/j.swevo.2022.101061
– reference: WagnerSKronbergerGBehamAKommendaMScheibenpflugAPitzerEVonolfenSKoflerMWinklerSDorferVAffenzellerMKlempousRNikodemJJacakWChaczkoZArchitecture and design of the HeuristicLab optimization environment2014HeidelbergSpringer19726110.1007/978-3-319-01436-4_10
– reference: McElreath R (2020) Statistical rethinking: A bayesian course with examples in R and STAN. Chapman and Hall, CRC texts in statistical science. https://doi.org/10.1201/9780429029608
– reference: Tang Y, Peters EAJF, Kuipers JAM, Kriebitzsch SHL, van der Hoef MA (2015) A new drag correlation from fully resolved simulations of flow past monodisperse static arrays of spheres. AIChE J 61(2): 688–698. https://doi.org/10.1002/aic.14645
– reference: DelgadoAMWadekarDHadzhiyskaBBoseSHernquistLHoSModelling the galaxy-halo connection with machine learningMon Not R Astron Soc202251522733274610.1093/mnras/stac1951
– reference: HaleWTSafikouEBollasGMInference of faults through symbolic regression of system dataComput Chem Eng202215710761910.1016/j.compchemeng.2021.107619
– reference: LiSLiuYChenDJiangYNieZPanFEncoding the atomic structure for machine learning in materials scienceWiley Interdiscip Rev: Comput Mol Sci2022121155810.1002/wcms.1558
– reference: Sajid S, Haleem A, Bahl S, Javaid M, Goyal T, Mittal M (2021) Data science applications for predictive maintenance and materials science in context to industry 4.0. Mater Today 45, 4898–4905. https://doi.org/10.1016/j.matpr.2021.01.357. Second International Conference on Aspects of Materials Science and Engineering (ICAMSE 2021)
– reference: WangMChenCLiuWEstablish algebraic data-driven constitutive models for elastic solids with a tensorial sparse symbolic regression method and a hybrid feature selection techniqueJ Mech Phys Solids2022159104742435736910.1016/j.jmps.2021.104742
– reference: ClaveriaOMonteETorraSA genetic programming approach for economic forecasting with survey expectationsAppl Sci202210.3390/app12136661
– reference: KangYLiLLiBRecent progress on discovery and properties prediction of energy materials: simple machine learning meets complex quantum chemistryJ Energy Chem202154728810.1016/j.jechem.2020.05.044
– reference: ClaveriaOMonteETorraSUsing survey data to forecast real activity with evolutionary algorithms. a cross-country analysisJ Appl Econ201720232934910.1016/S1514-0326(17)30015-6
– reference: RuedaRCuéllarMPPegalajarMCDelgadoMStraight line programs for energy consumption modellingAppl Soft Comput20198031032810.1016/j.asoc.2019.04.001
– reference: WilstrupCCaveCCombining symbolic regression with the cox proportional hazards model improves prediction of heart failure deathsBMC Med Inform Decis Mak20222211710.1186/s12911-022-01943-1
– reference: Hashemizadeh A, Bahonar E, Chahardowli M, Kheirollahi H, Simjoo M (2022) A data-driven approach to estimate the rate of penetration in drilling of hydrocarbon reservoirs. PREPRINT (version 1), available at Research Square. https://doi.org/10.21203/rs.3.rs-1740481/v1
– reference: NguyenHVuTVoTPThaiH-TEfficient machine learning models for prediction of concrete strengthsConstr Build Mater202126612095010.1016/j.conbuildmat.2020.120950
– reference: SofosFCharakopoulosAPapastamatiouKKarakasidisTEA combined clustering/symbolic regression framework for fluid property predictionPhys Fluids202234606200410.1063/5.0096669
– reference: HamidiaMGanjizadehAPost-earthquake damage evaluation of non-ductile rc moment frames using surface crack patternsStruct Control Health Monitor202210.1002/stc.3024
– reference: Virgolin, M., Medvet, E., Alderliesten, T., Bosman, P.A.N.: Less is More: A call to focus on simpler models in genetic programming for interpretable machine learning. arXiv (2022). https://doi.org/10.48550/ARXIV.2204.02046
– reference: BomaritoGFTownsendTSStewartKMEshamKVEmeryJMHochhalterJDDevelopment of interpretable, data-driven plasticity models with symbolic regressionComput Struct202125210655710.1016/j.compstruc.2021.106557
– reference: AlaaAMGurdasaniDHarrisALRashbassJvan der SchaarMMachine learning to guide the use of adjuvant therapies for breast cancerNat Mach Intell20213871672610.1038/s42256-021-00353-8
– reference: Chatzilygeroudis K, Hatzilygeroudis I, Perikos I (2021) Machine learning basics. In: Intelligent computing for interactive system design: Statistics, digital signal processing, and machine learning in practice (1st ed.) Association for Computing Machinery, New York, NY, USA, pp. 143–193. https://doi.org/10.1145/3447404.3447414
– reference: NembhardDASunYA symbolic genetic programming approach for identifying models of learning-by-doingComput Ind Eng201913152453310.1016/j.cie.2018.08.020
– reference: XieSQuanYHireADengBDeStefanoJSalinasIShahUFanfarilloLLimJKimJMachine learning of superconducting critical temperature from Eliashberg theoryNpj Comput Mater2022811810.1038/s41524-021-00666-7
– reference: ShmalkoEDiveevAControl synthesis as machine learning control by symbolic regression methodsAppl Sci202110.3390/app111254681475.68005
– reference: BrenceJTodorovskiLDžeroskiSProbabilistic grammars for equation discoveryKnowl-Based Syst202122410707710.1016/j.knosys.2021.107077
– reference: Udrescu, S.-M., Tan, A., Feng, J., Neto, O., Wu, T., Tegmark, M.: Ai feynman 2.0: pareto-optimal symbolic regression exploiting graph modularity. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 4860–4871. Curran Associates, Inc.,  (2020). https://proceedings.neurips.cc/paper/2020/file/33a854e247155d590883b93bca53848a-Paper.pdf
– reference: NarayananHCruz BournazouMNGuillén GosálbezGButtéAFunctional-hybrid modeling through automated adaptive symbolic regression for interpretable mathematical expressionsChem Eng J202243013303210.1016/j.cej.2021.133032
– reference: KeferKHanghoferRKeferPStögerMHoferBAffenzellerMWinklerSSimulation-based optimization of residential energy flows using white box modeling by genetic programmingEnergy Build202225811182910.1016/j.enbuild.2021.111829
– reference: NazemiEDincaMMovafeghiARokrokBChoopan DastjerdiMHEstimation of volumetric water content during imbibition in porous building material using real time neutron radiography and artificial neural networkNucl Instrum Methods Phys Res Sect A201994034435010.1016/j.nima.2019.06.052
– reference: Biggio, L., Bendinelli, T., Neitz, A., Lucchi, A., Parascandolo, G.: Neural symbolic regression that scales. In: Meila, M., Zhang, T. (eds.) Proceedings of the 38th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 139, pp. 936–945. PMLR (2021). https://proceedings.mlr.press/v139/biggio21a.html
– reference: Searson, D.P., Leahy, D.E., Willis, M.J.: Gptips: an open source genetic programming toolbox for multigene symbolic regression. In: Proceedings of the International Multiconference of Engineers and Computer Scientists, vol. 1, pp. 77–80 (2010). Citeseer
– reference: TownsendJMicucciCPHymelJHMaroulasVVogiatzisKDRepresentation of molecular structures with persistent homology for machine learning applications in chemistryNat Commun20201111910.1038/s41467-020-17035-5
– reference: Domínguez-SáezARattáGABarriosCCPrediction of exhaust emission in transient conditions of a diesel engine fueled with animal fat using artificial neural network and symbolic regressionEnergy201814967568310.1016/j.energy.2018.02.080
– reference: KubalíkJDernerEBabuškaRMulti-objective symbolic regression for physics-aware dynamic modelingExp Syst Appl202118211521010.1016/j.eswa.2021.115210
– reference: Rydning DR-JG-J, Reinsel J, Gantz J (2018) The digitization of the world from edge to core. Framingham: International Data Corporation 16
– reference: XiongJZhangTShiSMachine learning of mechanical properties of steelsSci China Technol Sci20206371247125510.1007/s11431-020-1599-5
– reference: SamboASAzadRMAKovalchukYIndramohanVPShahHEvolving simple and accurate symbolic regression models via asynchronous parallel computingAppl Soft Comput202110410719810.1016/j.asoc.2021.107198
– reference: ShepherdSJZharkovSIZharkovaVVPrediction of solar activity from solar background magnetic field variations in cycles 21–23Astrophys J201479514610.1088/0004-637x/795/1/46
– reference: FarabetCCouprieCNajmanLLeCunYLearning hierarchical features for scene labelingIEEE Trans Pattern Anal Mach Intell20133581915192910.1109/TPAMI.2012.231
– reference: Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)
– reference: OuyangRCurtaroloSAhmetcikESchefflerMGhiringhelliLMSisso: a compressed-sensing method for identifying the best low-dimensional descriptor in an immensity of offered candidatesPhys Rev Mater2018208380210.1103/PhysRevMaterials.2.083802
– reference: JiangLFuHZhangHXieJPhysical mechanism interpretation of polycrystalline metals’ yield strength via a data-driven method: a novel Hall-Petch relationshipActa Mater202223111786810.1016/j.actamat.2022.117868
– reference: Quade, M., Gout, J., Abel, M.: Glyph: Symbolic Regression Tools. arXiv (2018). https://doi.org/10.48550/ARXIV.1803.06226
– reference: CurtaroloSSetyawanWWangSXueJYangKTaylorRHNelsonLJHartGLWSanvitoSBuongiorno-NardelliMMingoNLevyOAflowlib.org: a distributed materials properties repository from high-throughput ab initio calculationsComput Mater Sci20125822723510.1016/j.commatsci.2012.02.002
– reference: MorganDJacobsROpportunities and challenges for machine learning in materials scienceAnnu Rev Mater Res20205017110310.1146/annurev-matsci-070218-010015
– reference: JiangY-GWuZWangJXueXChangS-FExploiting feature and class relationships in video categorization with regularized deep neural networksIEEE Trans Pattern Anal Mach Intell201840235236410.1109/TPAMI.2017.2670560
– reference: LoftisCYuanKZhaoYHuMHuJLattice thermal conductivity prediction using symbolic regression and machine learningJ Phys Chem A2021125143545010.1021/acs.jpca.0c08103
– reference: EngleMRSahinidisNVDeterministic symbolic regression with derivative information: General methodology and application to equations of stateAIChE Journal20226861745710.1002/aic.17457
– reference: CaoWZhangWData-driven and physical-based identification of partial differential equations for multivariable systemTheor Appl Mech Lett202212210033410.1016/j.taml.2022.100334
– reference: QiXChenGLiYChengXLiCApplying neural-network-based machine learning to additive manufacturing: Current applications, challenges, and future perspectivesEngineering20195472172910.1016/j.eng.2019.04.012
– reference: HautierGFinding the needle in the haystack: materials discovery and design through computational ab initio high-throughput screeningComput Mater Sci201916310811610.1016/j.commatsci.2019.02.040
– reference: Amir HaeriMEbadzadehMMFolinoGStatistical genetic programming for symbolic regressionAppl Soft Comput20176044746910.1016/j.asoc.2017.06.050
– reference: Ben ChaabeneWFlahMNehdiMLMachine learning prediction of mechanical properties of concrete: critical reviewConstr Build Mater202026011988910.1016/j.conbuildmat.2020.119889
– reference: de Veloso MeloVBanzhafWAutomatic feature engineering for regression models with machine learning: an evolutionary computation and statistics hybridInf Sci2018430-431287313374549110.1016/j.ins.2017.11.041
– reference: R RM, Jagan A, Pavithran L, Shrivastava A, Selvaraj SK (2021) Intelligent welding by using machine learning techniques. Mater Today 46, 7402–7410. https://doi.org/10.1016/j.matpr.2020.12.1149.3rd International Conference on Materials, Manufacturing and Modelling
– reference: PadulaDSimpsonJDTroisiACombining electronic and structural features in machine learning models to predict organic solar cells propertiesMater Horiz20196234334910.1039/C8MH01135D
– reference: GengXMaoXWuH-HWangSXueWZhangGUllahAWangHA hybrid machine learning model for predicting continuous cooling transformation diagrams in welding heat-affected zone of low alloy steelsJ Mater Sci Technol202210720721510.1016/j.jmst.2021.07.038
– reference: QuejVHAlmoroxJArnaldoJASaitoLAnfis, svm and ann soft-computing techniques to estimate daily global solar radiation in a warm sub-humid environmentJ Atmos Solar-Terr Phys2017155627010.1016/j.jastp.2017.02.002
– reference: MishinYMachine-learning interatomic potentials for materials scienceActa Mater202121411698010.1016/j.actamat.2021.116980
– ident: 9922_CR222
  doi: 10.1145/3205455.3205604
– volume: 214
  start-page: 116980
  year: 2021
  ident: 9922_CR135
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2021.116980
– volume: 12
  start-page: 1
  issue: 1
  year: 2021
  ident: 9922_CR99
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-23479-0
– year: 2022
  ident: 9922_CR227
  publication-title: Appl Sci
  doi: 10.3390/app12136661
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  ident: 9922_CR4
  publication-title: MRS Communications
  doi: 10.1557/mrc.2020.2
– volume: 1
  start-page: 1
  issue: 1
  year: 2015
  ident: 9922_CR6
  publication-title: Npj Comput Mater
  doi: 10.1038/npjcompumats.2015.10
– volume: 193
  start-page: 110360
  year: 2021
  ident: 9922_CR20
  publication-title: Comput Mater Sci
  doi: 10.1016/j.commatsci.2021.110360
– volume: 2
  start-page: 280
  issue: 4
  year: 2019
  ident: 9922_CR35
  publication-title: Energy Environ Mater
  doi: 10.1002/eem2.12049
– volume: 11
  start-page: 1
  issue: 1
  year: 2020
  ident: 9922_CR42
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-17035-5
– ident: 9922_CR95
  doi: 10.48550/ARXIV.1810.04119
– volume: 149
  start-page: 675
  year: 2018
  ident: 9922_CR217
  publication-title: Energy
  doi: 10.1016/j.energy.2018.02.080
– volume: 29
  start-page: 00597
  year: 2021
  ident: 9922_CR14
  publication-title: Comput Condens Matter
  doi: 10.1016/j.cocom.2021.e00597
– volume: 62
  start-page: 514
  year: 2018
  ident: 9922_CR193
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2017.10.041
– volume: 72
  start-page: 2363
  issue: 6
  year: 2020
  ident: 9922_CR16
  publication-title: Jom
  doi: 10.1007/s11837-020-04155-y
– ident: 9922_CR59
– ident: 9922_CR98
  doi: 10.1145/3071178.3071287
– volume: 12
  start-page: 1558
  issue: 1
  year: 2022
  ident: 9922_CR9
  publication-title: Wiley Interdiscip Rev: Comput Mol Sci
  doi: 10.1002/wcms.1558
– ident: 9922_CR32
  doi: 10.1109/ICoIAS.2018.8494053
– ident: 9922_CR174
  doi: 10.21203/rs.3.rs-1740481/v1
– volume: 198
  start-page: 116712
  year: 2022
  ident: 9922_CR84
  publication-title: Exp Syst Appl
  doi: 10.1016/j.eswa.2022.116712
– volume: 21
  start-page: 1025
  year: 2014
  ident: 9922_CR180
  publication-title: J Nat Gas Sci Eng
  doi: 10.1016/j.jngse.2014.11.006
– year: 2021
  ident: 9922_CR91
  publication-title: Algorithms
  doi: 10.3390/a14030076
– volume: 100
  start-page: 186
  year: 2019
  ident: 9922_CR50
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2018.10.018
– volume: 29
  start-page: 211
  issue: 2
  year: 2021
  ident: 9922_CR116
  publication-title: Evolut Comput
  doi: 10.1162/evco_a_00278
– ident: 9922_CR233
– ident: 9922_CR83
  doi: 10.1145/1830761.1830841
– volume: 1
  start-page: 10
  issue: 2
  year: 2021
  ident: 9922_CR136
  publication-title: J Mater Inform
  doi: 10.20517/jmi.2021.001
– volume: 94
  start-page: 106432
  year: 2020
  ident: 9922_CR195
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2020.106432
– start-page: 175
  volume-title: The material point method
  year: 2017
  ident: 9922_CR141
  doi: 10.1016/B978-0-12-407716-4.00006-5
– ident: 9922_CR209
  doi: 10.1109/SSCI50451.2021.9659860
– volume: 58
  start-page: 380
  issue: 3 Part 1
  year: 2002
  ident: 9922_CR7
  publication-title: Acta Crystallogr Sect B
  doi: 10.1107/S0108768102003890
– volume: 122
  start-page: 77
  year: 2022
  ident: 9922_CR92
  publication-title: J Mater Sci Technol
  doi: 10.1016/j.jmst.2021.12.052
– volume: 11
  start-page: 1
  issue: 1
  year: 2020
  ident: 9922_CR155
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-17263-9
– volume: 134
  start-page: 163
  year: 2022
  ident: 9922_CR170
  publication-title: Food Bioprod Process
  doi: 10.1016/j.fbp.2022.05.009
– volume: 795
  start-page: 46
  issue: 1
  year: 2014
  ident: 9922_CR204
  publication-title: Astrophys J
  doi: 10.1088/0004-637x/795/1/46
– volume: 103
  start-page: 043307
  year: 2021
  ident: 9922_CR82
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.103.043307
– ident: 9922_CR124
  doi: 10.48550/ARXIV.2206.10540
– volume: 93
  start-page: 576
  year: 2020
  ident: 9922_CR232
  publication-title: Econ Modell
  doi: 10.1016/j.econmod.2020.09.015
– year: 2022
  ident: 9922_CR12
  publication-title: Nanomaterials
  doi: 10.3390/nano12040633
– volume: 131
  start-page: 524
  year: 2019
  ident: 9922_CR190
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2018.08.020
– volume: 258
  start-page: 111829
  year: 2022
  ident: 9922_CR214
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2021.111829
– volume: 22
  start-page: 1
  issue: 12
  year: 2018
  ident: 9922_CR137
  publication-title: Microfluidics and Nanofluidics
  doi: 10.1007/s10404-018-2164-z
– volume: 9
  start-page: 1901891
  issue: 46
  year: 2019
  ident: 9922_CR37
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201901891
– volume: 4
  start-page: 053208
  issue: 5
  year: 2016
  ident: 9922_CR2
  publication-title: APL Mater
  doi: 10.1063/1.4946894
– volume: 12
  start-page: 025004
  issue: 2
  year: 2022
  ident: 9922_CR56
  publication-title: AIP Adv
  doi: 10.1063/5.0082147
– ident: 9922_CR226
  doi: 10.1101/2022.06.29.22277072
– ident: 9922_CR168
  doi: 10.1002/aic.14645
– year: 2021
  ident: 9922_CR3
  publication-title: Materials
  doi: 10.3390/ma14195764
– year: 2021
  ident: 9922_CR184
  publication-title: Appl Sci
  doi: 10.3390/app11125468
– volume: 206
  start-page: 106104
  year: 2021
  ident: 9922_CR223
  publication-title: Comput Methods Progr Biomed
  doi: 10.1016/j.cmpb.2021.106104
– volume: 260
  start-page: 119889
  year: 2020
  ident: 9922_CR65
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2020.119889
– volume: 9
  start-page: 100080
  year: 2022
  ident: 9922_CR140
  publication-title: Appl Eng Sci
  doi: 10.1016/j.apples.2021.100080
– year: 2021
  ident: 9922_CR207
  publication-title: Processes
  doi: 10.3390/pr9071187
– volume: 104
  start-page: 107198
  year: 2021
  ident: 9922_CR196
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2021.107198
– ident: 9922_CR108
– volume: 126
  start-page: 180604
  year: 2021
  ident: 9922_CR123
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.126.180604
– volume: 442-443
  start-page: 18
  year: 2018
  ident: 9922_CR58
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2018.02.040
– volume: 3
  start-page: 716
  issue: 8
  year: 2021
  ident: 9922_CR219
  publication-title: Nat Mach Intell
  doi: 10.1038/s42256-021-00353-8
– volume: 235
  start-page: 113960
  year: 2021
  ident: 9922_CR48
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2021.113960
– volume: 98
  start-page: 146401
  year: 2007
  ident: 9922_CR133
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.98.146401
– volume: 60
  start-page: 447
  year: 2017
  ident: 9922_CR192
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2017.06.050
– ident: 9922_CR55
– volume: 6
  start-page: 730
  issue: 8
  year: 2021
  ident: 9922_CR26
  publication-title: Nat Rev Mater
  doi: 10.1038/s41578-021-00340-w
– volume: 125
  start-page: 435
  issue: 1
  year: 2021
  ident: 9922_CR147
  publication-title: J Phys Chem A
  doi: 10.1021/acs.jpca.0c08103
– volume: 4
  start-page: 87
  issue: 2
  year: 1994
  ident: 9922_CR74
  publication-title: Stat Comput
  doi: 10.1007/BF00175355
– volume: 38
  start-page: 306
  year: 2022
  ident: 9922_CR162
  publication-title: Structures
  doi: 10.1016/j.istruc.2021.12.058
– ident: 9922_CR85
  doi: 10.48550/arXiv.1710.10720
– year: 2022
  ident: 9922_CR130
  publication-title: Genetic Program Evol Mach
  doi: 10.1007/s10710-022-09435-x
– volume: 348
  start-page: 683
  year: 2017
  ident: 9922_CR53
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2017.07.050
– volume: 5
  start-page: 1
  issue: 1
  year: 2019
  ident: 9922_CR138
  publication-title: Npj Comput Mater
  doi: 10.1038/s41524-019-0249-1
– volume: 1
  start-page: 338
  issue: 3
  year: 2019
  ident: 9922_CR22
  publication-title: InfoMat
  doi: 10.1002/inf2.12028
– volume: 318
  start-page: 981
  year: 2017
  ident: 9922_CR143
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2017.02.016
– ident: 9922_CR110
  doi: 10.48550/ARXIV.1912.04871
– ident: 9922_CR96
  doi: 10.48550/ARXIV.2205.09751
– volume: 208
  start-page: 109736
  year: 2022
  ident: 9922_CR173
  publication-title: J Pet Sci Eng
  doi: 10.1016/j.petrol.2021.109736
– volume: 231
  start-page: 117868
  year: 2022
  ident: 9922_CR149
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2022.117868
– volume: 54
  start-page: 72
  year: 2021
  ident: 9922_CR29
  publication-title: J Energy Chem
  doi: 10.1016/j.jechem.2020.05.044
– volume: 172
  start-page: 103174
  year: 2022
  ident: 9922_CR191
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2022.103174
– start-page: 101
  volume-title: Appl Evol Comput
  year: 2011
  ident: 9922_CR228
– volume: 29
  start-page: 82
  issue: 6
  year: 2012
  ident: 9922_CR71
  publication-title: IEEE Signal Processing Mag
  doi: 10.1109/MSP.2012.2205597
– volume: 80
  start-page: 310
  year: 2019
  ident: 9922_CR212
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2019.04.001
– volume: 151
  start-page: 103182
  year: 2022
  ident: 9922_CR186
  publication-title: Int J Plast
  doi: 10.1016/j.ijplas.2021.103182
– volume: 29
  start-page: 2650
  issue: 2
  year: 2022
  ident: 9922_CR216
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-021-15648-x
– volume: 228
  start-page: 116661
  year: 2019
  ident: 9922_CR27
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2019.08.042
– volume: 31
  start-page: 011301
  issue: 1
  year: 2019
  ident: 9922_CR134
  publication-title: Phys Fluids
  doi: 10.1063/1.5068697
– volume: 13
  start-page: 505
  issue: 6
  year: 2021
  ident: 9922_CR40
  publication-title: Nat Chem
  doi: 10.1038/s41557-021-00716-z
– ident: 9922_CR127
  doi: 10.48550/ARXIV.2103.15147
– ident: 9922_CR30
  doi: 10.48550/ARXIV.1610.03295
– ident: 9922_CR218
  doi: 10.1109/CEC48606.2020.9185621
– year: 2022
  ident: 9922_CR160
  publication-title: Appl Sci
  doi: 10.3390/app12042040
– year: 2022
  ident: 9922_CR33
  publication-title: Crystals
  doi: 10.3390/cryst12020168
– year: 2022
  ident: 9922_CR63
  publication-title: Fluids
  doi: 10.3390/fluids7030116
– start-page: 235
  volume-title: FFX: fast, scalable, deterministic symbolic regression technology
  year: 2011
  ident: 9922_CR73
– volume: 34
  start-page: 062004
  issue: 6
  year: 2022
  ident: 9922_CR145
  publication-title: Phys Fluids
  doi: 10.1063/5.0096669
– volume: 63
  start-page: 1247
  issue: 7
  year: 2020
  ident: 9922_CR150
  publication-title: Sci China Technol Sci
  doi: 10.1007/s11431-020-1599-5
– volume: 106
  start-page: 102916
  year: 2019
  ident: 9922_CR161
  publication-title: Autom Constr
  doi: 10.1016/j.autcon.2019.102916
– volume: 430
  start-page: 133032
  year: 2022
  ident: 9922_CR104
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2021.133032
– volume: 5
  start-page: 721
  issue: 4
  year: 2019
  ident: 9922_CR17
  publication-title: Engineering
  doi: 10.1016/j.eng.2019.04.012
– volume: 58
  start-page: 10592
  issue: 16
  year: 2019
  ident: 9922_CR41
  publication-title: Inorg Chem
  doi: 10.1021/acs.inorgchem.9b00109
– ident: 9922_CR112
  doi: 10.1201/9780429029608
– volume: 32
  start-page: 4166
  issue: 9
  year: 2021
  ident: 9922_CR109
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2020.3017010
– volume: 161
  start-page: 106889
  year: 2022
  ident: 9922_CR163
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2022.106889
– volume: 141
  start-page: 144
  year: 2016
  ident: 9922_CR175
  publication-title: J Pet Sci Eng
  doi: 10.1016/j.petrol.2015.12.001
– volume: 86
  start-page: 104
  year: 2015
  ident: 9922_CR205
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2015.06.031
– volume: 58
  start-page: 227
  year: 2012
  ident: 9922_CR8
  publication-title: Comput Mater Sci
  doi: 10.1016/j.commatsci.2012.02.002
– volume-title: Eureqa: software review
  year: 2011
  ident: 9922_CR113
  doi: 10.1007/s10710-010-9124-z
– volume: 151
  start-page: 107348
  year: 2021
  ident: 9922_CR128
  publication-title: Mechan Syst Signal Process
  doi: 10.1016/j.ymssp.2020.107348
– ident: 9922_CR129
  doi: 10.48550/ARXIV.2012.00111
– volume: 280
  start-page: 122523
  year: 2021
  ident: 9922_CR165
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2021.122523
– volume: 167
  start-page: 333
  year: 2021
  ident: 9922_CR49
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2020.11.089
– volume: 30
  start-page: 596
  year: 2022
  ident: 9922_CR90
  publication-title: Sustain Prod Consum
  doi: 10.1016/j.spc.2021.12.025
– ident: 9922_CR105
  doi: 10.48550/ARXIV.1806.02502
– volume: 252
  start-page: 106557
  year: 2021
  ident: 9922_CR142
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2021.106557
– volume: 183
  start-page: 768
  year: 2019
  ident: 9922_CR46
  publication-title: Solar Energy
  doi: 10.1016/j.solener.2019.03.079
– volume: 67
  start-page: 102478
  year: 2021
  ident: 9922_CR221
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2021.102478
– year: 2022
  ident: 9922_CR157
  publication-title: Axioms
  doi: 10.3390/axioms11050198
– ident: 9922_CR24
  doi: 10.1016/j.matpr.2021.01.357
– volume: 32
  start-page: 015113
  issue: 1
  year: 2020
  ident: 9922_CR120
  publication-title: Phys Fluids
  doi: 10.1063/1.5136351
– year: 2022
  ident: 9922_CR52
  publication-title: Acta Mech Sin
  doi: 10.1007/s10409-021-01148-1
– volume: 158
  start-page: 106765
  year: 2022
  ident: 9922_CR164
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2022.106765
– volume: 260
  start-page: 114270
  year: 2020
  ident: 9922_CR210
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.114270
– volume: 6
  start-page: 100052
  year: 2021
  ident: 9922_CR188
  publication-title: Appl Eng Sci
  doi: 10.1016/j.apples.2021.100052
– volume: 220
  start-page: 1194
  year: 2019
  ident: 9922_CR215
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2019.02.195
– volume: 182
  start-page: 115210
  year: 2021
  ident: 9922_CR94
  publication-title: Exp Syst Appl
  doi: 10.1016/j.eswa.2021.115210
– volume: 930
  start-page: 33
  issue: 1
  year: 2022
  ident: 9922_CR200
  publication-title: Astrophys J
  doi: 10.3847/1538-4357/ac610c
– volume: 105
  start-page: 442
  year: 2015
  ident: 9922_CR45
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2015.07.083
– volume: 37
  start-page: 100832
  year: 2022
  ident: 9922_CR79
  publication-title: Curr Opin Chem Eng
  doi: 10.1016/j.coche.2022.100832
– volume: 425
  start-page: 109913
  year: 2021
  ident: 9922_CR54
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2020.109913
– volume: 387
  start-page: 123412
  year: 2020
  ident: 9922_CR171
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2019.123412
– volume: 3
  start-page: 159
  issue: 3
  year: 2017
  ident: 9922_CR19
  publication-title: J Materiomics
  doi: 10.1016/j.jmat.2017.08.002
– volume: 5
  start-page: 063129
  issue: 6
  year: 2013
  ident: 9922_CR206
  publication-title: J Renew Sustain Energy
  doi: 10.1063/1.4850495
– volume: 430-431
  start-page: 287
  year: 2018
  ident: 9922_CR106
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2017.11.041
– volume: 157
  start-page: 107619
  year: 2022
  ident: 9922_CR189
  publication-title: Comput Chem Eng
  doi: 10.1016/j.compchemeng.2021.107619
– ident: 9922_CR229
  doi: 10.15308/Sinteza-2022-3-13
– ident: 9922_CR201
– volume: 68
  start-page: 17457
  issue: 6
  year: 2022
  ident: 9922_CR86
  publication-title: AIChE Journal
  doi: 10.1002/aic.17457
– volume: 40
  start-page: 352
  issue: 2
  year: 2018
  ident: 9922_CR70
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2017.2670560
– ident: 9922_CR69
  doi: 10.1109/CVPR.2015.7298594
– volume: 324
  start-page: 81
  issue: 5923
  year: 2009
  ident: 9922_CR121
  publication-title: Science
  doi: 10.1126/science.1165893
– ident: 9922_CR102
  doi: 10.1109/CEC.2013.6557774
– volume: 159
  start-page: 104742
  year: 2022
  ident: 9922_CR144
  publication-title: J Mech Phys Solids
  doi: 10.1016/j.jmps.2021.104742
– volume: 53
  start-page: 104509
  year: 2022
  ident: 9922_CR159
  publication-title: J Build Eng
  doi: 10.1016/j.jobe.2022.104509
– ident: 9922_CR208
  doi: 10.48550/ARXIV.1910.10065
– ident: 9922_CR77
  doi: 10.48550/ARXIV.1803.06226
– volume: 243
  start-page: 196
  year: 2017
  ident: 9922_CR182
  publication-title: J Mol Liq
  doi: 10.1016/j.molliq.2017.08.045
– ident: 9922_CR80
  doi: 10.48550/ARXIV.2110.05266
– start-page: 197
  volume-title: Architecture and design of the HeuristicLab optimization environment
  year: 2014
  ident: 9922_CR114
  doi: 10.1007/978-3-319-01436-4_10
– ident: 9922_CR87
  doi: 10.48550/ARXIV.2106.14131
– volume: 30
  start-page: 75
  issue: 1
  year: 2022
  ident: 9922_CR100
  publication-title: Evolut Comput
  doi: 10.1162/evco_a_00294
– year: 2022
  ident: 9922_CR158
  publication-title: Struct Control Health Monitor
  doi: 10.1002/stc.3024
– volume: 6
  start-page: 343
  issue: 2
  year: 2019
  ident: 9922_CR38
  publication-title: Mater Horiz
  doi: 10.1039/C8MH01135D
– volume: 30
  start-page: 121
  issue: 12
  year: 2014
  ident: 9922_CR72
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu277
– volume: 9
  start-page: 793
  issue: 3
  year: 2019
  ident: 9922_CR154
  publication-title: MRS Commun
  doi: 10.1557/mrc.2019.85
– ident: 9922_CR11
– ident: 9922_CR60
  doi: 10.1145/3447404.3447414
– ident: 9922_CR125
  doi: 10.48550/ARXIV.2107.09458
– volume: 2
  start-page: 024002
  issue: 2
  year: 2019
  ident: 9922_CR117
  publication-title: J Phys: Mater
  doi: 10.1088/2515-7639/ab077b
– volume: 22
  start-page: 1
  issue: 1
  year: 2022
  ident: 9922_CR224
  publication-title: BMC Med Inform Decis Mak
  doi: 10.1186/s12911-022-01943-1
– volume: 3
  start-page: 1
  issue: 3
  year: 2022
  ident: 9922_CR88
  publication-title: SN Comput Sci
  doi: 10.1007/s42979-022-01094-0
– volume: 266
  start-page: 120950
  year: 2021
  ident: 9922_CR28
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2020.120950
– volume: 127
  start-page: 998
  year: 2019
  ident: 9922_CR187
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2018.11.033
– ident: 9922_CR93
  doi: 10.48550/ARXIV.2204.02046
– ident: 9922_CR122
  doi: 10.48550/ARXIV.2202.02306
– ident: 9922_CR107
  doi: 10.48550/ARXIV.1905.11481
– ident: 9922_CR81
– volume: 5
  start-page: 1017
  issue: 6
  year: 2019
  ident: 9922_CR10
  publication-title: Engineering
  doi: 10.1016/j.eng.2019.02.011
– ident: 9922_CR103
  doi: 10.48550/ARXIV.2111.00053
– volume: 20
  start-page: 329
  issue: 2
  year: 2017
  ident: 9922_CR230
  publication-title: J Appl Econ
  doi: 10.1016/S1514-0326(17)30015-6
– volume: 515
  start-page: 2733
  issue: 2
  year: 2022
  ident: 9922_CR199
  publication-title: Mon Not R Astron Soc
  doi: 10.1093/mnras/stac1951
– year: 2020
  ident: 9922_CR13
  publication-title: Computation
  doi: 10.3390/computation8010015
– ident: 9922_CR43
  doi: 10.1016/j.matpr.2020.12.1149.
– volume: 39
  start-page: 085011
  issue: 8
  year: 2022
  ident: 9922_CR202
  publication-title: Class Quantum Grav
  doi: 10.1088/1361-6382/ac5ba1
– volume: 31
  start-page: 2485
  issue: 7
  year: 2019
  ident: 9922_CR181
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-017-3208-0
– volume: 6
  start-page: 100049
  year: 2021
  ident: 9922_CR57
  publication-title: Appl Eng Sci
  doi: 10.1016/j.apples.2021.100049
– year: 2012
  ident: 9922_CR62
  publication-title: Taylor & Francis
  doi: 10.1201/b14300
– ident: 9922_CR78
– volume: 2113
  start-page: 180009
  issue: 1
  year: 2019
  ident: 9922_CR119
  publication-title: AIP Conf Proc
  doi: 10.1063/1.5112747
– volume: 50
  start-page: 71
  issue: 1
  year: 2020
  ident: 9922_CR25
  publication-title: Annu Rev Mater Res
  doi: 10.1146/annurev-matsci-070218-010015
– ident: 9922_CR197
  doi: 10.48550/ARXIV.2201.01305
– volume: 30
  start-page: 364
  year: 2016
  ident: 9922_CR179
  publication-title: J Nat Gas Sci Eng
  doi: 10.1016/j.jngse.2016.02.026
– year: 2023
  ident: 9922_CR66
  publication-title: Mathematics
  doi: 10.3390/math11010236
– start-page: 526
  volume-title: Bayesian model selection for reducing bloat and overfitting in genetic programming for symbolic regression
  year: 2022
  ident: 9922_CR131
  doi: 10.1145/3520304.3528899
– volume: 30
  start-page: 254
  issue: 2
  year: 2019
  ident: 9922_CR211
  publication-title: Energy Environ
  doi: 10.1177/0958305X18788820
– year: 2018
  ident: 9922_CR156
  publication-title: Water
  doi: 10.3390/w10091175
– volume: 10
  start-page: 7277
  issue: 22
  year: 2019
  ident: 9922_CR39
  publication-title: J Phys Chem Lett
  doi: 10.1021/acs.jpclett.9b02772
– volume: 35
  start-page: 1915
  issue: 8
  year: 2013
  ident: 9922_CR68
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2012.231
– ident: 9922_CR67
– volume: 12
  start-page: 100334
  issue: 2
  year: 2022
  ident: 9922_CR126
  publication-title: Theor Appl Mech Lett
  doi: 10.1016/j.taml.2022.100334
– volume: 98
  start-page: 27
  year: 2019
  ident: 9922_CR61
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2019.06.005
– year: 2022
  ident: 9922_CR101
  publication-title: Fluids
  doi: 10.3390/fluids7100321
– volume: 118
  start-page: 2026053118
  issue: 40
  year: 2021
  ident: 9922_CR111
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.2026053118
– volume: 78
  start-page: 10538
  year: 2020
  ident: 9922_CR34
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105380
– volume-title: Introduction to evolutionary computing
  year: 2003
  ident: 9922_CR76
  doi: 10.1007/978-3-662-44874-8
– volume: 162
  start-page: 233
  year: 2018
  ident: 9922_CR177
  publication-title: J Pet Sci Eng
  doi: 10.1016/j.petrol.2017.12.040
– ident: 9922_CR31
  doi: 10.1109/IVS.2019.8813817
– volume: 14
  start-page: 90
  issue: 1
  year: 2021
  ident: 9922_CR36
  publication-title: Energy Environ Sci
  doi: 10.1039/D0EE02838J
– volume: 135
  start-page: 110114
  year: 2021
  ident: 9922_CR51
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2020.110114
– volume-title: Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms
  year: 1996
  ident: 9922_CR75
  doi: 10.1093/oso/9780195099713.001.0001
– ident: 9922_CR115
  doi: 10.48550/ARXIV.2107.14351
– volume: 36
  start-page: 101538
  year: 2020
  ident: 9922_CR18
  publication-title: Addit Manuf
  doi: 10.1016/j.addma.2020.101538
– volume: 107
  start-page: 207
  year: 2022
  ident: 9922_CR185
  publication-title: J Mater Sci Technol
  doi: 10.1016/j.jmst.2021.07.038
– volume: 927
  start-page: 85
  issue: 1
  year: 2022
  ident: 9922_CR198
  publication-title: Astrophys J
  doi: 10.3847/1538-4357/ac4d30
– volume: 58
  start-page: 364
  issue: 3 Part 1
  year: 2002
  ident: 9922_CR5
  publication-title: Acta Crystallogr Sect B
  doi: 10.1107/S0108768102006948
– volume: 7
  start-page: 157
  issue: 3
  year: 2018
  ident: 9922_CR21
  publication-title: Integr Mater Manuf Innov
  doi: 10.1007/s40192-018-0117-8
– volume: 34
  start-page: 187
  issue: 2
  year: 1972
  ident: 9922_CR225
  publication-title: J R Statistical Soc: Ser B (Methodol)
  doi: 10.1111/j.2517-6161.1972.tb00899.x
– volume: 196
  start-page: 110578
  year: 2021
  ident: 9922_CR152
  publication-title: Comput Mater Sci
  doi: 10.1016/j.commatsci.2021.110578
– volume: 215
  start-page: 115469
  year: 2020
  ident: 9922_CR172
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2020.115469
– volume: 940
  start-page: 344
  year: 2019
  ident: 9922_CR64
  publication-title: Nucl Instrum Methods Phys Res Sect A
  doi: 10.1016/j.nima.2019.06.052
– volume: 15
  start-page: 20160210
  issue: 2
  year: 2017
  ident: 9922_CR166
  publication-title: Int J Chem React Eng
  doi: 10.1515/ijcre-2016-0210
– volume: 71
  start-page: 101061
  year: 2022
  ident: 9922_CR97
  publication-title: Swarm Evolut Comput
  doi: 10.1016/j.swevo.2022.101061
– ident: 9922_CR1
– volume: 224
  start-page: 107077
  year: 2021
  ident: 9922_CR89
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2021.107077
– volume: 6
  start-page: 1
  issue: 1
  year: 2020
  ident: 9922_CR132
  publication-title: Npj Comput Mater
  doi: 10.1038/s41524-020-00406-3
– volume: 445
  start-page: 136653
  year: 2022
  ident: 9922_CR167
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2022.136653
– volume: 8
  start-page: 1
  issue: 1
  year: 2022
  ident: 9922_CR148
  publication-title: Npj Comput Mater
  doi: 10.1038/s41524-021-00666-7
– start-page: 3
  volume-title: Descriptors for machine learning of materials data
  year: 2018
  ident: 9922_CR151
  doi: 10.1007/978-981-10-7617-6_1
– start-page: 89
  volume-title: Dynamics and control of nuclear reactors
  year: 2019
  ident: 9922_CR183
  doi: 10.1016/B978-0-12-815261-4.00008-1
– ident: 9922_CR220
  doi: 10.1101/2022.01.25.22269799
– volume: 8
  start-page: 1153
  year: 2021
  ident: 9922_CR23
  publication-title: Mater. Horiz.
  doi: 10.1039/D0MH01451F
– volume: 163
  start-page: 108
  year: 2019
  ident: 9922_CR153
  publication-title: Comput Mater Sci
  doi: 10.1016/j.commatsci.2019.02.040
– volume: 83
  start-page: 105621
  year: 2019
  ident: 9922_CR194
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2019.105621
– volume: 15
  start-page: 014503
  issue: 1
  year: 2022
  ident: 9922_CR146
  publication-title: J Chem Phys
  doi: 10.1063/5.0093658
– volume: 62
  start-page: 145
  year: 2022
  ident: 9922_CR15
  publication-title: J Manufact Syst
  doi: 10.1016/j.jmsy.2021.11.003
– volume: 82
  start-page: 48
  year: 2015
  ident: 9922_CR176
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2015.02.016
– volume: 103
  start-page: 103513
  year: 2021
  ident: 9922_CR203
  publication-title: Phys Rev D
  doi: 10.1103/PhysRevD.103.103513
– volume: 155
  start-page: 62
  year: 2017
  ident: 9922_CR44
  publication-title: J Atmos Solar-Terr Phys
  doi: 10.1016/j.jastp.2017.02.002
– volume: 216
  start-page: 25
  year: 2016
  ident: 9922_CR178
  publication-title: J Mol Liq
  doi: 10.1016/j.molliq.2015.12.103
– year: 2019
  ident: 9922_CR139
  publication-title: Front Mater
  doi: 10.3389/fmats.2019.00181
– volume: 46
  start-page: 205
  issue: 2
  year: 2019
  ident: 9922_CR231
  publication-title: Empirica
  doi: 10.1007/s10663-017-9395-1
– volume: 2
  start-page: 083802
  year: 2018
  ident: 9922_CR118
  publication-title: Phys Rev Mater
  doi: 10.1103/PhysRevMaterials.2.083802
– volume: 308
  start-page: 118300
  year: 2022
  ident: 9922_CR213
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2021.118300
– volume: 198
  start-page: 111780
  year: 2019
  ident: 9922_CR47
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2019.111780
– volume: 265
  start-page: 118195
  year: 2023
  ident: 9922_CR169
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2022.118195
SSID ssj0054992
Score 2.651991
SecondaryResourceType review_article
Snippet Symbolic regression (SR) is a machine learning-based regression method based on genetic programming principles that integrates techniques and processes from...
Symbolic regression (SR) is a machine learning-based regression method based on genetic programming principles that integrates techniques and processes from...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3845
SubjectTerms Algorithms
Approximation
Artificial intelligence
Big Data
Classification
Deep learning
Engineering
Genetic algorithms
Machine learning
Materials science
Mathematical and Computational Engineering
Neural networks
Partial differential equations
Physical properties
Physical sciences
Physics
Regression
Review
Review Article
Support vector machines
SummonAdditionalLinks – databaseName: Springer Journals
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JT4UwEJ64HfTgvuCWmnhTEqAFijdjNHoxL27RE6Gl6EuUZ-Rpor_eaSk8n1uiR2gLdDoz_UpnvgJsMyXQ5yFy830VuaxIclcUkcDLWIlMowSemcMm4tNTfn2ddGxSWNVEuzdbksZTD5LdUPtw6RtQ19Nkqu7bKIzjdMe1OZ6dXzX-Vy94zB6nT_U__8izqTLfP2N4OvqCMb-GSn7aLzXT0NHM_zowC9MWdpL9Wk_mYESV8zBjISixBl7Nw9QHfsIFuNH1a4oJcvKBu5N0S9KxA9w23iPnrw9C0wyTM3Vbh9eWpI65JVmZk84gr7NahMujw4uDY9eexeBKFod9V-SIBGMPsXioQqHCIggDyQKZoWR8LoskyvSdKJE5dpYWzECRwstxkswiltAlGCt7pVoBEiOikVQJIT3GCp29zSXnMosUroXiXDngN0OSSktUrs_LuE8HFMtakilKMjWSTN8c2GnbPNY0Hb_WXm9GOrUmW6UUwV_EEVEGDmy1xWhsegclK1XvuUoNWxpCpoA5sFwrRvs6GlOzOHOAD6lMW0ETeQ-XlN07Q-iNbtGnPqUO7DaaM_iun7ux-rfqazAZGOXTscbrMNZ_elYbMCFf-t3qadPY0DtKkhct
  priority: 102
  providerName: Springer Nature
Title Artificial Intelligence in Physical Sciences: Symbolic Regression Trends and Perspectives
URI https://link.springer.com/article/10.1007/s11831-023-09922-z
https://www.ncbi.nlm.nih.gov/pubmed/37359747
https://www.proquest.com/docview/3256681542
https://www.proquest.com/docview/2830220124
https://pubmed.ncbi.nlm.nih.gov/PMC10113133
Volume 30
WOSCitedRecordID wos000971237800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1886-1784
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0054992
  issn: 1134-3060
  databaseCode: 7WY
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1886-1784
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0054992
  issn: 1134-3060
  databaseCode: M0C
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1886-1784
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0054992
  issn: 1134-3060
  databaseCode: P5Z
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1886-1784
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0054992
  issn: 1134-3060
  databaseCode: K7-
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1886-1784
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0054992
  issn: 1134-3060
  databaseCode: M7S
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1886-1784
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0054992
  issn: 1134-3060
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Journals
  customDbUrl:
  eissn: 1886-1784
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0054992
  issn: 1134-3060
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6xDSReGAwGgVEZiTeISGIndnhBMG0CIaqo5UfHS5Q4DlTa0rF0SOyv585xUsrEXng5qYmj1Lnz3Wf7_B3AU2FK9HmI3MLQJL6o08ov66TEn9KUBaEEVdhiE3I8VrNZmrkFt9alVfY-0TrqaqFpjfwFx9icKAz40avTHz5VjaLdVVdCYwO2wigKyc7fS7_3xDT1sbudIafV_yRwh2a6o3NoyziRjrgfEDWrf7EemC6hzctJk3_tnNqAdLj9v125DbccFGWvO9u5A9dMswPbDpYyN-jbHbhhs0R1exeOqG1HOcHe_cHlyeYNy5zChwdfsumvk5Joh9nEfOvSbRvW5eCyoqlYtjrn2d6DT4cHH_ff-q42g6-FjJd-WSEylAFi89jEpYnrKI60iHSB3ydUuk6Tgq4kqa7we_NaWGhSBxUGzSIRKd-FzWbRmAfAJCIczU1Z6kCImk5zK62ULhKDcyNZGQ_CXjG5dsTlVD_jOF9RLpMyc1RmbpWZX3jwbHjmtKPtuLL1Xq-o3A3hNl9pyYMnw20cfLSjUjRmcd7mlj0NIVQkPLjfmcfwOi65nax5oNYMZ2hAxN7rd5r5d0vwjW4y5CHnHjzvbWz1v_7djYdXd-MR3IysvVOu8R5sLs_OzWO4rn8u5-3ZCDbklyOSMzWCrTcH42wysqMJ5Ydgn6Scoszirygn08-_Ac_tJgM
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dT9RAEJ8QxMiLIApUEddEn7Sx3d1-nIkxBiRcwMtFMYGntbvdwiXaQ3po4I_yb3Rm-3GeRN548LHX3Vz37jdfnZnfADyTVqPOQ88tDG3sy6KX-7qINV4mVmfkJaSZGzaRDAbp4WFvOAe_2l4YKqtsdaJT1PnY0DvyVwJtc5yiwedvT7_7NDWKsqvtCI0aFnv24ieGbNWb_jb-v88533l_sLXrN1MFfCOTaOLrHH2aJECvMrKRtlHBI24kN1lubJiaohdn9EncM3mIkC-kM6pFkKO6z2JJ5Euo8m9JieJApYLBVqv5KdRy2dVQULYhDpomnbpVD2UHA3cu_ICoYP3LWUN4xbu9WqT5V6bWGcCdpf_tp1uGu42rzd7VsnEP5my5AkuN280apVatwG1XBWuq-3BEa2tKDdb_g6uUjUo2bADdbXzNPl1800SrzD7a47qcuGR1jTHLypwNp32s1QP4fCNHXYX5clzadWAJenBGWK1NIGVB3eqpSVOTxRZjvyS3HoQtEJRpiNlpPshXNaWUJvAoBI9y4FGXHrzo9pzWtCTXrt5ogaEaFVWpKSo8eNrdRuVCGaOstOPzSjl2OHQRufRgrYZj93UiES4Y9SCdAWq3gIjLZ--UoxNHYI5mIBShEB68bDE9fa5_H-Ph9cd4And2Dz7sq_3-YO8RLHIna1RXvQHzk7Nz-xgWzI_JqDrbdFLL4MtNY_03PWV6EA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NDaHxQEeBkW2AkXiDaEnsfPE2bauYhqqKARpPVuw4UGnzqiabtP71OzsfbSlDQjwmtpPYvrN_F9_9DuAdUwLXPERuvq8ilxVp7ooiEngZK5EZlJBkNtlEPBwm5-fpaCGK33q7t0eSdUyDYWnS1f4kL_bngW8oiWgGB9T1DLGqO3sAG8wkDTL2-tn3di02xo897_Sp-f8feU3YzJ-fsbw1reDNVbfJ385O7ZY06P1_Z7bgSQNHyUEtP09hTek-9BpoShrFL_vweIG38Bn8MPVr6glyssDpScaajJqJ7xp_JGe3l8LQD5Mv6mftdqtJ7YtLMp2T0Tzes3wO3wbHXw8_uU2OBleyOKxckSNCjD3E6KEKhQqLIAwkC2SGo-QnskijzNyJUpljZ2nBLEQpvBw3zyxiKX0B6_pKq5dAYkQ6kiohpMdYYaK6E5kkMosU2khxrhzw2-nhsiEwN3k0LvicetmMJMeR5HYk-cyB912bSU3f8dfae-2s80aVS04RFEYJIs3AgbddMSqhOVnJtLq6LrllUUMoFTAHtmsh6V5HY2qNNgeSJfHpKhiC7-USPf5lib5xufSpT6kDH1opmn_X_d3Y-bfqb-DR6GjAP58MT3dhM7ByaNyR92C9ml6rV_BQ3lTjcvraqtYdo6ki9Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Intelligence+in+Physical+Sciences%3A+Symbolic+Regression+Trends+and+Perspectives&rft.jtitle=Archives+of+computational+methods+in+engineering&rft.au=Angelis%2C+Dimitrios&rft.au=Sofos%2C+Filippos&rft.au=Karakasidis%2C+Theodoros+E&rft.date=2023-07-01&rft.pub=Springer+Nature+B.V&rft.issn=1134-3060&rft.eissn=1886-1784&rft.volume=30&rft.issue=6&rft.spage=3845&rft.epage=3865&rft_id=info:doi/10.1007%2Fs11831-023-09922-z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1134-3060&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1134-3060&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1134-3060&client=summon