On the rectangular knapsack problem: approximation of a specific quadratic knapsack problem
In this article, we introduce the rectangular knapsack problem as a special case of the quadratic knapsack problem consisting in the maximization of the product of two separate knapsack profits subject to a cardinality constraint. We propose a polynomial time algorithm for this problem that provides...
Uloženo v:
| Vydáno v: | Mathematical methods of operations research (Heidelberg, Germany) Ročník 92; číslo 1; s. 107 - 132 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin, Heidelberg
Springer
01.08.2020
Springer Berlin Heidelberg Springer Nature B.V |
| Témata: | |
| ISSN: | 1432-5217, 1432-2994, 1432-5217 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this article, we introduce the rectangular knapsack problem as a special case of the quadratic knapsack problem consisting in the maximization of the product of two separate knapsack profits subject to a cardinality constraint. We propose a polynomial time algorithm for this problem that provides a constant approximation ratio of 4.5. Our experimental results on a large number of artificially generated problem instances show that the average ratio is far from theoretical guarantee. In addition, we suggest refined versions of this approximation algorithm with the same time complexity and approximation ratio that lead to even better experimental results. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1432-5217 1432-2994 1432-5217 |
| DOI: | 10.1007/s00186-020-00702-0 |