A Novel Evolutionary Swarm Fuzzy Clustering Approach for Hyperspectral Imagery

In land cover assessment, classes often gradually change from one to another. Therefore, it is difficult to allocate sharp boundaries between different classes of interest. To overcome this issue and model such conditions, fuzzy techniques that resemble human reasoning have been proposed as alternat...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE journal of selected topics in applied earth observations and remote sensing Ročník 8; číslo 6; s. 2447 - 2456
Hlavní autoři: Ghamisi, Pedram, Ali, Abder-Rahman, Couceiro, Micael S., Benediktsson, Jon Atli
Médium: Journal Article
Jazyk:angličtina
Vydáno: IEEE 01.06.2015
Témata:
ISSN:1939-1404, 2151-1535
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In land cover assessment, classes often gradually change from one to another. Therefore, it is difficult to allocate sharp boundaries between different classes of interest. To overcome this issue and model such conditions, fuzzy techniques that resemble human reasoning have been proposed as alternatives. Fuzzy C-means is the most common fuzzy clustering technique, but its concept is based on a local search mechanism and its convergence rate is rather slow, especially considering high-dimensional problems (e.g., in processing of hyperspectral images). Here, in order to address those shortcomings of hard approaches, a new approach is proposed, i.e., fuzzy C-means which is optimized by fractional order Darwinian particle swarm optimization. In addition, to speed up the clustering process, the histogram of image intensities is used during the clustering process instead of the raw image data. Furthermore, the proposed clustering approach is combined with support vector machine classification to accurately classify hyperspectral images. The new classification framework is applied on two well-known hyperspectral data sets; Indian Pines and Salinas. Experimental results confirm that the proposed swarm-based clustering approach can group hyperspectral images accurately in a time-efficient manner compared to other existing clustering techniques.
AbstractList In land cover assessment, classes often gradually change from one to another. Therefore, it is difficult to allocate sharp boundaries between different classes of interest. To overcome this issue and model such conditions, fuzzy techniques that resemble human reasoning have been proposed as alternatives. Fuzzy C-means is the most common fuzzy clustering technique, but its concept is based on a local search mechanism and its convergence rate is rather slow, especially considering high-dimensional problems (e.g., in processing of hyperspectral images). Here, in order to address those shortcomings of hard approaches, a new approach is proposed, i.e., fuzzy C-means which is optimized by fractional order Darwinian particle swarm optimization. In addition, to speed up the clustering process, the histogram of image intensities is used during the clustering process instead of the raw image data. Furthermore, the proposed clustering approach is combined with support vector machine classification to accurately classify hyperspectral images. The new classification framework is applied on two well-known hyperspectral data sets; Indian Pines and Salinas. Experimental results confirm that the proposed swarm-based clustering approach can group hyperspectral images accurately in a time-efficient manner compared to other existing clustering techniques.
Author Benediktsson, Jon Atli
Ghamisi, Pedram
Couceiro, Micael S.
Ali, Abder-Rahman
Author_xml – sequence: 1
  givenname: Pedram
  surname: Ghamisi
  fullname: Ghamisi, Pedram
  organization: Faculty of Electrical and Computer Engineering, University of Iceland, Reykjavik, Iceland
– sequence: 2
  givenname: Abder-Rahman
  surname: Ali
  fullname: Ali, Abder-Rahman
  email: abder-rahman.a.ali@ieee.org
  organization: ISIT, Clermont Universite, Universite d’Auvergne, Clermont-Ferrand, France
– sequence: 3
  givenname: Micael S.
  surname: Couceiro
  fullname: Couceiro, Micael S.
  email: micaelcouceiro@isr.uc.pt
  organization: Artificial Perception for Intelligent Systems and Robotics (AP4ISR), Institute of Systems and Robotics (ISR), University of Coimbra, Coimbra, Portugal
– sequence: 4
  givenname: Jon Atli
  surname: Benediktsson
  fullname: Benediktsson, Jon Atli
  email: benedikt@hi.is
  organization: Faculty of Electrical and Computer Engineering, University of Iceland, Reykjavik, Iceland
BookMark eNqFkNFqwjAUhsNwMHV7Am_yAnU5Sdoml0V0OsTBdNclponrqG1JqqM-_VqUXexmVwcOfP85_zdCg7IqDUITIFMAIp9ft7vkfTulBMIpZVIIFt6hIYUQAghZOEBDkEwGwAl_QCPvvwiJaCzZEG0SvKnOpsDzc1WcmrwqlWvx9lu5I16cLpcWz4qTb4zLywNO6tpVSn9iWzm8bGvjfG1041SBV0d1MK59RPdWFd483eYYfSzmu9kyWL-9rGbJOtA8DptAKplBaLimVjKhRCajaG8F1XtuswwIAGRWRIIZKmKr90KRbiuMEFySjBI2Ruyaq13lvTM2rV1-7F5PgaS9kvSqJO2VpDclHSX_UDpvVF-665AX_7CTK5sbY36vxSRiknD2A4vvcuI
CODEN IJSTHZ
CitedBy_id crossref_primary_10_1109_JBHI_2018_2803020
crossref_primary_10_1109_TMM_2024_3394975
crossref_primary_10_1016_j_infrared_2022_104241
crossref_primary_10_1109_ACCESS_2020_3014211
crossref_primary_10_1016_j_ins_2019_02_008
crossref_primary_10_1109_LGRS_2017_2786732
crossref_primary_10_3233_JIFS_230511
crossref_primary_10_1080_02564602_2020_1740615
crossref_primary_10_1080_01431161_2019_1601284
crossref_primary_10_1109_TCYB_2018_2856269
crossref_primary_10_1016_j_jocs_2018_01_003
crossref_primary_10_3390_rs13112125
crossref_primary_10_1007_s11227_021_04278_2
crossref_primary_10_1080_00207179_2019_1613561
crossref_primary_10_1109_JSTARS_2017_2788426
crossref_primary_10_1109_MGRS_2016_2616418
crossref_primary_10_1109_ACCESS_2023_3283274
crossref_primary_10_1109_MGRS_2017_2762087
crossref_primary_10_1016_j_engappai_2019_04_007
crossref_primary_10_1080_10106049_2021_1945149
crossref_primary_10_1080_10106049_2021_1944453
crossref_primary_10_1007_s12517_017_3196_5
Cites_doi 10.1016/j.eswa.2010.07.112
10.1101/gr.9.11.1093
10.1109/LGRS.2013.2257675
10.1016/j.ipl.2006.10.005
10.1109/TGRS.2013.2292544
10.1109/TGRS.2013.2260552
10.1016/0098-3004(84)90020-7
10.1093/mnras/202.3.615
10.1007/978-3-642-14880-4_60
10.1109/TGRS.2014.2367010
10.1117/12.2027641
10.1109/TIT.1982.1056489
10.1016/j.eswa.2012.04.078
10.1109/WCICA.2006.1713041
10.1109/IGARSS.2012.6351718
10.1007/978-3-540-89876-4_7
10.1145/1055558.1055581
10.4018/978-1-4666-6030-4.ch001
10.1109/JSTARS.2014.2298876
10.1109/JPROC.2012.2197589
10.1109/TGRS.2013.2263282
10.1016/j.patrec.2009.09.011
10.1109/LGRS.2014.2337320
10.1109/TEVC.2007.896686
10.1145/1137856.1137880
10.1063/1.4765496
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/JSTARS.2015.2398835
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2151-1535
EndPage 2456
ExternalDocumentID 10_1109_JSTARS_2015_2398835
7063904
Genre orig-research
GrantInformation_xml – fundername: Icelandic Research Fund for Graduate Students
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACIWK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
DU5
EBS
EJD
ESBDL
GROUPED_DOAJ
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
ID FETCH-LOGICAL-c475t-9a9d15e4c2f938a8d966bf82cb4fdd10111df8683e287fcb8a0d108e88490d203
IEDL.DBID RIE
ISICitedReferencesCount 29
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000359264000012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1939-1404
IngestDate Sat Nov 29 06:38:23 EST 2025
Tue Nov 18 22:23:55 EST 2025
Wed Aug 27 02:22:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords fuzzy C-means (FCM)
fractional order Darwinian particle swarm optimization (FODPSO)
support vector machine (SVM) classifier
Clustering
hyperspectral image analysis
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c475t-9a9d15e4c2f938a8d966bf82cb4fdd10111df8683e287fcb8a0d108e88490d203
PageCount 10
ParticipantIDs crossref_primary_10_1109_JSTARS_2015_2398835
crossref_citationtrail_10_1109_JSTARS_2015_2398835
ieee_primary_7063904
PublicationCentury 2000
PublicationDate 2015-06-01
PublicationDateYYYYMMDD 2015-06-01
PublicationDate_xml – month: 06
  year: 2015
  text: 2015-06-01
  day: 01
PublicationDecade 2010
PublicationTitle IEEE journal of selected topics in applied earth observations and remote sensing
PublicationTitleAbbrev JSTARS
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
References ref35
ref12
ref34
ref15
ref37
ref14
ref30
kennedy (ref5) 0; 34
ref11
ref33
ref10
ref32
gibou (ref17) 0
ray (ref19) 0
tou (ref20) 1974
ref16
ref38
ref18
xian-cheng (ref25) 0
bezdek (ref3) 1973
pallant (ref36) 2011
ref24
ref26
duda (ref1) 2001
ref22
ref21
ref28
ref27
tillett (ref31) 0
dutta (ref2) 2009
ref29
hastie (ref13) 2009
ref8
ref7
ref9
ref4
couceiro (ref6) 2007; 102
bezdek (ref23) 1981; 10
References_xml – ident: ref26
  doi: 10.1016/j.eswa.2010.07.112
– year: 2001
  ident: ref1
  publication-title: Pattern Classification
– ident: ref18
  doi: 10.1101/gr.9.11.1093
– ident: ref9
  doi: 10.1109/LGRS.2013.2257675
– year: 1973
  ident: ref3
  publication-title: Fuzzy mathematics in pattern classification
– year: 2009
  ident: ref13
  publication-title: The Elements of Statistical Learning Data Mining Inference and Prediction
– ident: ref34
  doi: 10.1016/j.ipl.2006.10.005
– year: 1974
  ident: ref20
  publication-title: Pattern Recognition Principles
– ident: ref12
  doi: 10.1109/TGRS.2013.2292544
– start-page: 785
  year: 0
  ident: ref19
  article-title: Determination of number of clusters in k-means clustering and application in colour image segmentation
  publication-title: Proc 4th Int Conf Adv Pattern Recog Digital Tech
– ident: ref8
  doi: 10.1109/TGRS.2013.2260552
– volume: 10
  start-page: 191
  year: 1981
  ident: ref23
  article-title: FCM: The fuzzy c-means clustering algorithm
  publication-title: Comput Geosci
  doi: 10.1016/0098-3004(84)90020-7
– ident: ref35
  doi: 10.1093/mnras/202.3.615
– ident: ref22
  doi: 10.1007/978-3-642-14880-4_60
– ident: ref29
  doi: 10.1109/TGRS.2014.2367010
– ident: ref10
  doi: 10.1117/12.2027641
– volume: 102
  start-page: 8
  year: 2007
  ident: ref6
  article-title: Introducing the fractional order darwinian PSO
  publication-title: Signal Image Video Process
– ident: ref15
  doi: 10.1109/TIT.1982.1056489
– ident: ref7
  doi: 10.1016/j.eswa.2012.04.078
– ident: ref4
  doi: 10.1109/WCICA.2006.1713041
– start-page: 281
  year: 0
  ident: ref17
  article-title: A fast hybrid k-means level set algorithm for segmentation
  publication-title: Proc 4th Annu Hawaii Int Conf Stat Math
– ident: ref32
  doi: 10.1109/IGARSS.2012.6351718
– ident: ref24
  doi: 10.1007/978-3-540-89876-4_7
– start-page: 611
  year: 0
  ident: ref25
  article-title: Image segmentation based on modified particle swarm optimization and fuzzy c-means clustering algorithm
  publication-title: Proc 2nd Int Conf Intell Comput Technol Autom
– ident: ref16
  doi: 10.1145/1055558.1055581
– ident: ref30
  doi: 10.4018/978-1-4666-6030-4.ch001
– ident: ref11
  doi: 10.1109/JSTARS.2014.2298876
– start-page: 1474
  year: 0
  ident: ref31
  article-title: Darwinian particle swarm optimization
  publication-title: Proc 2nd Indian Int Conf Artif Intell
– ident: ref33
  doi: 10.1109/JPROC.2012.2197589
– year: 2009
  ident: ref2
  article-title: Fuzzy c-means classification of multispectral data incorporating spatial contextual information by using Markov random field
– ident: ref38
  doi: 10.1109/TGRS.2013.2263282
– year: 2011
  ident: ref36
  publication-title: SPSS Survival Manual
– ident: ref21
  doi: 10.1016/j.patrec.2009.09.011
– ident: ref28
  doi: 10.1109/LGRS.2014.2337320
– ident: ref27
  doi: 10.1109/TEVC.2007.896686
– volume: 34
  start-page: 39
  year: 0
  ident: ref5
  article-title: A new optimizer using particle swarm theory
  publication-title: Proc IEEE Int Symp Micro Mach Human Sci
– ident: ref14
  doi: 10.1145/1137856.1137880
– ident: ref37
  doi: 10.1063/1.4765496
SSID ssj0062793
Score 2.21514
Snippet In land cover assessment, classes often gradually change from one to another. Therefore, it is difficult to allocate sharp boundaries between different classes...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 2447
SubjectTerms Accuracy
Clustering
Clustering algorithms
Clustering methods
fractional order Darwinian particle swarm optimization (FODPSO)
fuzzy C-means (FCM)
hyperspectral image analysis
Hyperspectral imaging
support vector machine (SVM) classifier
Support vector machines
Training
Title A Novel Evolutionary Swarm Fuzzy Clustering Approach for Hyperspectral Imagery
URI https://ieeexplore.ieee.org/document/7063904
Volume 8
WOSCitedRecordID wos000359264000012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2151-1535
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062793
  issn: 1939-1404
  databaseCode: RIE
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5qUfDiq4r1xR48Nm0em2T2GEprBQliVXoLm90NCH1IbCrpr3d3k1YPInhbltkQvgyZmWTm-xC6DQQQh0Nq2anQEmacWCmExBI0UOWzAMmMHNDrQxjHMJnQxwbqbGdhpJSm-Ux29dL8yxcLXuhPZb1Qx1NN_rkThkE1q7V56wZuaAh2VT5CLU0ZUzMMOTbtKRePnsa6jcvvaro7MNpu31Hoh6yKiSrDw__dzxE6qLNHHFWP-xg15PwE7d0Zdd6yheIIx4uVnOLBqvYolpd4_MnyGR4W63WJ-9NCMyOoeIWjmk0cq7QVj1Q5Wk1d5ur69zPNbFGeopfh4Lk_smrBBIuT0F9alFHh-JJwN6MeMFCAB2kGLk9JJoSjZeVFBgF4UtVJGU-B2WoXJAChtnBt7ww154u5PEc4UBYe4So58nziSMF8ptYAWapiHufQRu4GwITXbOJa1GKamKrCpkmFeqJRT2rU26izPfRekWn8bd7SmG9Na7gvft--RPv6cNXGdYWay7yQ12iXr5ZvH_mNcZYvl9-7pA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6KD_Tiq4r1uQePTZvHJpk9ltLaYg1iq_QWkt0NCH1IbCrpr3d3k1YPInhblskSvgyZmWTm-xC68zgQi0FsmDFXEmaMGDH4xODUk-UzBxFpOaDXgR8EMB7Tpwqqb2ZhhBC6-Uw01FL_y-dzlqlPZU1fxVNF_rntEmKbxbTW-r3r2b6m2JUZCTUUaUzJMWSZtCmdvPU8VI1cbkMR3oFWd_uOQz-EVXRc6R7-746O0EGZP-JW8cCPUUXMTtDuvdbnzasoaOFgvhQT3FmWPhWlOR5-RukUd7PVKsftSaa4EWTEwq2STxzLxBX3ZEFazF2m8vz-VHFb5KfopdsZtXtGKZlgMOK7C4NGlFuuIMxOqAMRSMi9OAGbxSTh3FLC8jwBDxwhK6WExRCZchcEAKEmt03nDG3N5jNxjrAnLRzCZHrkuMQSPHIjuQZIYhn1GIMastcAhqzkE1eyFpNQ1xUmDQvUQ4V6WKJeQ_XNRe8Fncbf5lWF-ca0hPvi9-1btNcbPQ7CQT94uET76qCiqesKbS3STFyjHbZcvH2kN9pxvgCIeL7r
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Evolutionary+Swarm+Fuzzy+Clustering+Approach+for+Hyperspectral+Imagery&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Ghamisi%2C+Pedram&rft.au=Ali%2C+Abder-Rahman&rft.au=Couceiro%2C+Micael+S.&rft.au=Benediktsson%2C+J%C3%B3n+Atli&rft.date=2015-06-01&rft.issn=1939-1404&rft.eissn=2151-1535&rft.volume=8&rft.issue=6&rft.spage=2447&rft.epage=2456&rft_id=info:doi/10.1109%2FJSTARS.2015.2398835&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSTARS_2015_2398835
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon