A promoter interaction map for cardiovascular disease genetics

Over 500 genetic loci have been associated with risk of cardiovascular diseases (CVDs); however, most loci are located in gene-distal non-coding regions and their target genes are not known. Here, we generated high-resolution promoter capture Hi-C (PCHi-C) maps in human induced pluripotent stem cell...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:eLife Ročník 7
Hlavní autoři: Montefiori, Lindsey E, Sobreira, Debora R, Sakabe, Noboru J, Aneas, Ivy, Joslin, Amelia C, Hansen, Grace T, Bozek, Grazyna, Moskowitz, Ivan P, McNally, Elizabeth M, Nóbrega, Marcelo A
Médium: Journal Article
Jazyk:angličtina
Vydáno: England eLife Sciences Publications Ltd 10.07.2018
eLife Sciences Publications, Ltd
Témata:
ISSN:2050-084X, 2050-084X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Over 500 genetic loci have been associated with risk of cardiovascular diseases (CVDs); however, most loci are located in gene-distal non-coding regions and their target genes are not known. Here, we generated high-resolution promoter capture Hi-C (PCHi-C) maps in human induced pluripotent stem cells (iPSCs) and iPSC-derived cardiomyocytes (CMs) to provide a resource for identifying and prioritizing the functional targets of CVD associations. We validate these maps by demonstrating that promoters preferentially contact distal sequences enriched for tissue-specific transcription factor motifs and are enriched for chromatin marks that correlate with dynamic changes in gene expression. Using the CM PCHi-C map, we linked 1999 CVD-associated SNPs to 347 target genes. Remarkably, more than 90% of SNP-target gene interactions did not involve the nearest gene, while 40% of SNPs interacted with at least two genes, demonstrating the importance of considering long-range chromatin interactions when interpreting functional targets of disease loci. Our genomes contain around 20,000 different genes that code for instructions to create proteins and other important molecules. When changes, or mutations, occur within these genes, malfunctioning proteins that are damaging to the cell may be produced. Researchers of human genetics have tried to spot the genetic mutations that are associated with illnesses, for example heart diseases. However, they found that most of these mutations are actually located outside of genes, in the ‘non-coding’ areas that make up the majority of our genome. These mutations do not modify proteins directly, which makes it challenging to understand how they may be related to heart conditions. One possibility is that the genetic changes affect regions called enhancers, which control where, when and how much a gene is turned on by physically interacting with it. Mutations in enhancers could lead to a gene producing too much or too little of a protein, which might create problems in the cell. Yet, it is difficult to match an enhancer with the gene or genes it controls. One reason is that a non-coding region can influence a gene placed far away on the DNA strand. Indeed, the long DNA molecule precisely folds in on itself to fit inside its compartment in the cell, which can bring together distant sequences. Montefiori et al. take over 500 non-coding areas, which can carry mutations associated with heart diseases, and use a technique called Hi-C to try to identify which genes these regions may control. The tool can model the 3D organization of the genome, and it was further modified to capture only the regions of the genome that contain genes, and the DNA sequences that interact with them, in human heart cells. This helped to create a 3D map of 347 genes which come in contact with the non-coding areas that carry mutations associated with heart diseases. In fact, deleting those genes often causes heart disorders in mice. In addition, Montefiori et al. reveal that 90% of the non-coding regions examined were influencing genes that were far away. This shows that, despite a common assumption, enhancers often do not regulate the coding sequences they are nearest to on the DNA strand. Pinpointing the genes regulated by the non-coding regions involved in cardiovascular diseases could lead to new ways of treating or preventing these conditions. The 3D map created by Montefiori et al. may also help to visualize how the genetic information is organized in heart cells. This will contribute to the current effort to understand the role of the 3D structure of the genome, especially in different cell types.
AbstractList Over 500 genetic loci have been associated with risk of cardiovascular diseases (CVDs); however, most loci are located in gene-distal non-coding regions and their target genes are not known. Here, we generated high-resolution promoter capture Hi-C (PCHi-C) maps in human induced pluripotent stem cells (iPSCs) and iPSC-derived cardiomyocytes (CMs) to provide a resource for identifying and prioritizing the functional targets of CVD associations. We validate these maps by demonstrating that promoters preferentially contact distal sequences enriched for tissue-specific transcription factor motifs and are enriched for chromatin marks that correlate with dynamic changes in gene expression. Using the CM PCHi-C map, we linked 1999 CVD-associated SNPs to 347 target genes. Remarkably, more than 90% of SNP-target gene interactions did not involve the nearest gene, while 40% of SNPs interacted with at least two genes, demonstrating the importance of considering long-range chromatin interactions when interpreting functional targets of disease loci. Our genomes contain around 20,000 different genes that code for instructions to create proteins and other important molecules. When changes, or mutations, occur within these genes, malfunctioning proteins that are damaging to the cell may be produced. Researchers of human genetics have tried to spot the genetic mutations that are associated with illnesses, for example heart diseases. However, they found that most of these mutations are actually located outside of genes, in the ‘non-coding’ areas that make up the majority of our genome. These mutations do not modify proteins directly, which makes it challenging to understand how they may be related to heart conditions. One possibility is that the genetic changes affect regions called enhancers, which control where, when and how much a gene is turned on by physically interacting with it. Mutations in enhancers could lead to a gene producing too much or too little of a protein, which might create problems in the cell. Yet, it is difficult to match an enhancer with the gene or genes it controls. One reason is that a non-coding region can influence a gene placed far away on the DNA strand. Indeed, the long DNA molecule precisely folds in on itself to fit inside its compartment in the cell, which can bring together distant sequences. Montefiori et al. take over 500 non-coding areas, which can carry mutations associated with heart diseases, and use a technique called Hi-C to try to identify which genes these regions may control. The tool can model the 3D organization of the genome, and it was further modified to capture only the regions of the genome that contain genes, and the DNA sequences that interact with them, in human heart cells. This helped to create a 3D map of 347 genes which come in contact with the non-coding areas that carry mutations associated with heart diseases. In fact, deleting those genes often causes heart disorders in mice. In addition, Montefiori et al. reveal that 90% of the non-coding regions examined were influencing genes that were far away. This shows that, despite a common assumption, enhancers often do not regulate the coding sequences they are nearest to on the DNA strand. Pinpointing the genes regulated by the non-coding regions involved in cardiovascular diseases could lead to new ways of treating or preventing these conditions. The 3D map created by Montefiori et al. may also help to visualize how the genetic information is organized in heart cells. This will contribute to the current effort to understand the role of the 3D structure of the genome, especially in different cell types.
Over 500 genetic loci have been associated with risk of cardiovascular diseases (CVDs); however, most loci are located in gene-distal non-coding regions and their target genes are not known. Here, we generated high-resolution promoter capture Hi-C (PCHi-C) maps in human induced pluripotent stem cells (iPSCs) and iPSC-derived cardiomyocytes (CMs) to provide a resource for identifying and prioritizing the functional targets of CVD associations. We validate these maps by demonstrating that promoters preferentially contact distal sequences enriched for tissue-specific transcription factor motifs and are enriched for chromatin marks that correlate with dynamic changes in gene expression. Using the CM PCHi-C map, we linked 1999 CVD-associated SNPs to 347 target genes. Remarkably, more than 90% of SNP-target gene interactions did not involve the nearest gene, while 40% of SNPs interacted with at least two genes, demonstrating the importance of considering long-range chromatin interactions when interpreting functional targets of disease loci.
Over 500 genetic loci have been associated with risk of cardiovascular diseases (CVDs); however, most loci are located in gene-distal non-coding regions and their target genes are not known. Here, we generated high-resolution promoter capture Hi-C (PCHi-C) maps in human induced pluripotent stem cells (iPSCs) and iPSC-derived cardiomyocytes (CMs) to provide a resource for identifying and prioritizing the functional targets of CVD associations. We validate these maps by demonstrating that promoters preferentially contact distal sequences enriched for tissue-specific transcription factor motifs and are enriched for chromatin marks that correlate with dynamic changes in gene expression. Using the CM PCHi-C map, we linked 1999 CVD-associated SNPs to 347 target genes. Remarkably, more than 90% of SNP-target gene interactions did not involve the nearest gene, while 40% of SNPs interacted with at least two genes, demonstrating the importance of considering long-range chromatin interactions when interpreting functional targets of disease loci.Over 500 genetic loci have been associated with risk of cardiovascular diseases (CVDs); however, most loci are located in gene-distal non-coding regions and their target genes are not known. Here, we generated high-resolution promoter capture Hi-C (PCHi-C) maps in human induced pluripotent stem cells (iPSCs) and iPSC-derived cardiomyocytes (CMs) to provide a resource for identifying and prioritizing the functional targets of CVD associations. We validate these maps by demonstrating that promoters preferentially contact distal sequences enriched for tissue-specific transcription factor motifs and are enriched for chromatin marks that correlate with dynamic changes in gene expression. Using the CM PCHi-C map, we linked 1999 CVD-associated SNPs to 347 target genes. Remarkably, more than 90% of SNP-target gene interactions did not involve the nearest gene, while 40% of SNPs interacted with at least two genes, demonstrating the importance of considering long-range chromatin interactions when interpreting functional targets of disease loci.
Over 500 genetic loci have been associated with risk of cardiovascular diseases (CVDs); however, most loci are located in gene-distal non-coding regions and their target genes are not known. Here, we generated high-resolution promoter capture Hi-C (PCHi-C) maps in human induced pluripotent stem cells (iPSCs) and iPSC-derived cardiomyocytes (CMs) to provide a resource for identifying and prioritizing the functional targets of CVD associations. We validate these maps by demonstrating that promoters preferentially contact distal sequences enriched for tissue-specific transcription factor motifs and are enriched for chromatin marks that correlate with dynamic changes in gene expression. Using the CM PCHi-C map, we linked 1999 CVD-associated SNPs to 347 target genes. Remarkably, more than 90% of SNP-target gene interactions did not involve the nearest gene, while 40% of SNPs interacted with at least two genes, demonstrating the importance of considering long-range chromatin interactions when interpreting functional targets of disease loci. Our genomes contain around 20,000 different genes that code for instructions to create proteins and other important molecules. When changes, or mutations, occur within these genes, malfunctioning proteins that are damaging to the cell may be produced. Researchers of human genetics have tried to spot the genetic mutations that are associated with illnesses, for example heart diseases. However, they found that most of these mutations are actually located outside of genes, in the ‘non-coding’ areas that make up the majority of our genome. These mutations do not modify proteins directly, which makes it challenging to understand how they may be related to heart conditions. One possibility is that the genetic changes affect regions called enhancers, which control where, when and how much a gene is turned on by physically interacting with it. Mutations in enhancers could lead to a gene producing too much or too little of a protein, which might create problems in the cell. Yet, it is difficult to match an enhancer with the gene or genes it controls. One reason is that a non-coding region can influence a gene placed far away on the DNA strand. Indeed, the long DNA molecule precisely folds in on itself to fit inside its compartment in the cell, which can bring together distant sequences. Montefiori et al. take over 500 non-coding areas, which can carry mutations associated with heart diseases, and use a technique called Hi-C to try to identify which genes these regions may control. The tool can model the 3D organization of the genome, and it was further modified to capture only the regions of the genome that contain genes, and the DNA sequences that interact with them, in human heart cells. This helped to create a 3D map of 347 genes which come in contact with the non-coding areas that carry mutations associated with heart diseases. In fact, deleting those genes often causes heart disorders in mice. In addition, Montefiori et al. reveal that 90% of the non-coding regions examined were influencing genes that were far away. This shows that, despite a common assumption, enhancers often do not regulate the coding sequences they are nearest to on the DNA strand. Pinpointing the genes regulated by the non-coding regions involved in cardiovascular diseases could lead to new ways of treating or preventing these conditions. The 3D map created by Montefiori et al. may also help to visualize how the genetic information is organized in heart cells. This will contribute to the current effort to understand the role of the 3D structure of the genome, especially in different cell types.
Author Montefiori, Lindsey E
Joslin, Amelia C
Sobreira, Debora R
Hansen, Grace T
Moskowitz, Ivan P
Aneas, Ivy
Nóbrega, Marcelo A
Sakabe, Noboru J
Bozek, Grazyna
McNally, Elizabeth M
Author_xml – sequence: 1
  givenname: Lindsey E
  orcidid: 0000-0003-2342-6349
  surname: Montefiori
  fullname: Montefiori, Lindsey E
  organization: Department of Human Genetics, The University of Chicago, Chicago, United States
– sequence: 2
  givenname: Debora R
  surname: Sobreira
  fullname: Sobreira, Debora R
  organization: Department of Human Genetics, The University of Chicago, Chicago, United States
– sequence: 3
  givenname: Noboru J
  surname: Sakabe
  fullname: Sakabe, Noboru J
  organization: Department of Human Genetics, The University of Chicago, Chicago, United States
– sequence: 4
  givenname: Ivy
  surname: Aneas
  fullname: Aneas, Ivy
  organization: Department of Human Genetics, The University of Chicago, Chicago, United States
– sequence: 5
  givenname: Amelia C
  surname: Joslin
  fullname: Joslin, Amelia C
  organization: Department of Human Genetics, The University of Chicago, Chicago, United States
– sequence: 6
  givenname: Grace T
  surname: Hansen
  fullname: Hansen, Grace T
  organization: Department of Human Genetics, The University of Chicago, Chicago, United States
– sequence: 7
  givenname: Grazyna
  surname: Bozek
  fullname: Bozek, Grazyna
  organization: Department of Human Genetics, The University of Chicago, Chicago, United States
– sequence: 8
  givenname: Ivan P
  orcidid: 0000-0003-0014-4963
  surname: Moskowitz
  fullname: Moskowitz, Ivan P
  organization: Department of Human Genetics, The University of Chicago, Chicago, United States, Department of Pediatrics and Pathology, The University of Chicago, Chicago, United States
– sequence: 9
  givenname: Elizabeth M
  surname: McNally
  fullname: McNally, Elizabeth M
  organization: Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, United States
– sequence: 10
  givenname: Marcelo A
  orcidid: 0000-0002-0451-7846
  surname: Nóbrega
  fullname: Nóbrega, Marcelo A
  organization: Department of Human Genetics, The University of Chicago, Chicago, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29988018$$D View this record in MEDLINE/PubMed
BookMark eNptkk1r3DAQhkVIyfcp92LopRA2lSxLli6BEPoRWOilhd7EWB5ttdjSVrID-ffV7iYlCdVBGqRnXl7NzCk5DDEgIZeMXrdCNJ9w6R1ec9EqdUBOairogqrm1-GL-Jhc5LymZbWNUkwfkeNaa6UoUyfk5rbapDjGCVPlQ9nBTj6GaoRN5WKqLKTexwfIdh4gVb3PCBmrFQacvM3n5J2DIePF03lGfn75_OPu22L5_ev93e1yYZtWTAuF3AE6DYLrTncSUHJGueOoGaMOmUNBa2m7um8FNJ0QtWJdj8h4SWo5PyP3e90-wtpskh8hPZoI3uwuYloZSMXQgKb80joHpTraNSCs6mRdC7SidQ5RqqJ1s9fazN2IvcUwJRheib5-Cf63WcUHI6ngnMoi8PFJIMU_M-bJjD5bHAYIGOdsaipbpQWTW_TDG3Qd5xRKqQqlqCygEIV6_9LRPyvPbSoA2wM2xZwTOmP9BNtGFYN-MIya7TSY3TSY3TSUnKs3Oc-y_6P_AgC7tw0
CitedBy_id crossref_primary_10_1002_ajmg_b_32824
crossref_primary_10_1002_advs_202104786
crossref_primary_10_1093_bib_bbad072
crossref_primary_10_1016_j_ebiom_2024_105027
crossref_primary_10_1371_journal_pcbi_1009908
crossref_primary_10_1038_s41467_023_40505_5
crossref_primary_10_1161_CIRCRESAHA_119_316006
crossref_primary_10_1038_s41596_021_00567_5
crossref_primary_10_1093_eurheartj_ehaf213
crossref_primary_10_1186_s12864_018_5376_4
crossref_primary_10_1038_s41467_022_27953_1
crossref_primary_10_1038_s41588_024_01669_y
crossref_primary_10_1161_CIRCGEN_118_002353
crossref_primary_10_1161_CIRCRESAHA_120_317112
crossref_primary_10_1186_s13072_021_00417_4
crossref_primary_10_7554_eLife_80317
crossref_primary_10_1038_s41467_019_12721_5
crossref_primary_10_1161_CIRCRESAHA_120_316704
crossref_primary_10_1186_s13059_021_02450_8
crossref_primary_10_1016_j_pneurobio_2021_102000
crossref_primary_10_21541_apjess_1659716
crossref_primary_10_1038_s41467_019_08940_5
crossref_primary_10_1038_s41598_020_72496_4
crossref_primary_10_1098_rsob_200088
crossref_primary_10_3389_fphys_2020_00557
crossref_primary_10_1007_s11886_021_01467_6
crossref_primary_10_1126_science_aaw0635
crossref_primary_10_1016_j_ajhg_2021_02_006
crossref_primary_10_1007_s00421_022_04945_z
crossref_primary_10_1038_s41467_021_25614_3
crossref_primary_10_1038_s41569_021_00587_4
crossref_primary_10_1101_gr_275723_121
crossref_primary_10_1002_j_2040_4603_2022_tb00197_x
crossref_primary_10_1093_nar_gkab547
crossref_primary_10_1093_rheumatology_keaa283
crossref_primary_10_1016_j_diff_2019_05_001
crossref_primary_10_3390_genes12101564
crossref_primary_10_3389_fgene_2025_1515010
crossref_primary_10_3389_fphys_2019_00433
crossref_primary_10_1161_CIRCRESAHA_123_322676
crossref_primary_10_1016_j_stemcr_2025_102467
crossref_primary_10_1038_s41569_021_00608_2
crossref_primary_10_1161_CIRCRESAHA_120_316574
crossref_primary_10_1016_j_ydbio_2020_07_003
crossref_primary_10_1016_j_ajhg_2018_10_001
crossref_primary_10_1161_CIRCRESAHA_120_317107
crossref_primary_10_1038_s41569_021_00597_2
crossref_primary_10_1016_j_omtn_2023_07_033
crossref_primary_10_1016_j_isci_2024_111218
crossref_primary_10_1371_journal_pgen_1010594
crossref_primary_10_4103_ajim_ajim_46_24
crossref_primary_10_1038_s41467_020_16482_4
crossref_primary_10_1016_j_cell_2019_07_011
crossref_primary_10_1186_s13073_020_00816_4
crossref_primary_10_3389_fcell_2022_1062403
crossref_primary_10_1186_s13059_024_03176_z
crossref_primary_10_1038_s41467_024_48124_4
crossref_primary_10_1172_JCI165663
crossref_primary_10_1097_HCO_0000000000000728
crossref_primary_10_1016_j_isci_2022_104269
crossref_primary_10_1002_mco2_326
crossref_primary_10_1172_JCI153635
crossref_primary_10_1038_s41467_019_12856_5
crossref_primary_10_1038_s41467_019_09483_5
crossref_primary_10_1038_s42003_020_01411_4
crossref_primary_10_3389_fimmu_2021_624632
crossref_primary_10_1038_s41380_021_01125_x
crossref_primary_10_1161_CIRCULATIONAHA_120_050432
crossref_primary_10_1007_s00439_021_02326_8
crossref_primary_10_1016_j_isci_2024_110660
crossref_primary_10_3389_fgene_2025_1553469
crossref_primary_10_1161_CIRCRESAHA_119_315863
crossref_primary_10_1093_cvr_cvaa045
crossref_primary_10_1093_cvr_cvaa166
crossref_primary_10_1126_science_abf1008
crossref_primary_10_1002_alz_12719
crossref_primary_10_1016_j_devcel_2020_07_006
crossref_primary_10_1161_CIRCRESAHA_120_317045
crossref_primary_10_3389_fgene_2021_642975
crossref_primary_10_1007_s00018_021_03903_w
crossref_primary_10_1016_j_yjmcc_2020_11_008
crossref_primary_10_1155_2021_6664453
crossref_primary_10_1161_CIRCRESAHA_120_318495
crossref_primary_10_1038_s41576_021_00409_w
crossref_primary_10_1083_jcb_202211125
crossref_primary_10_3389_fonc_2019_00600
crossref_primary_10_1016_j_molcel_2025_06_026
crossref_primary_10_1016_j_semcdb_2021_06_002
crossref_primary_10_1016_j_yjmcc_2021_04_003
crossref_primary_10_1161_CIRCULATIONAHA_122_061955
Cites_doi 10.1038/ng.3935
10.1093/nar/gkw1040
10.1186/s13059-014-0550-8
10.1016/j.cell.2009.06.001
10.1093/nar/gkv1189
10.1086/519795
10.1038/ng.3396
10.1172/JCI62617
10.7554/eLife.21926
10.1038/ng.3884
10.1093/bioinformatics/btq033
10.1073/pnas.0909344107
10.1016/j.cell.2015.04.004
10.1016/j.molcel.2017.04.010
10.1038/nbt.1523
10.1172/JCI59472
10.1093/hmg/dds165
10.1056/NEJMoa1502214
10.1038/nature12054
10.1016/j.cardiores.2004.03.025
10.1101/gr.185272.114
10.1093/hmg/dds034
10.1038/nrg3458
10.1016/j.ajhg.2009.04.007
10.1038/ng.3014
10.1093/nar/gkv1505
10.1016/j.cell.2013.04.053
10.1242/dev.01832
10.1093/bioinformatics/btq671
10.1038/nature09266
10.1038/nature21429
10.1038/nmeth.2999
10.1016/j.molcel.2017.08.006
10.1371/journal.pgen.1004897
10.1089/bio.2015.0032
10.1096/fasebj.31.1_supplement.686.3
10.1101/gad.292870.116
10.1038/nature13138
10.1073/pnas.1530509100
10.1016/j.molcel.2013.01.038
10.1016/j.molcel.2010.05.004
10.1038/nature12644
10.1016/j.cell.2012.03.051
10.1038/nature14222
10.1101/gr.224436.117
10.1038/nmeth.1923
10.1038/ng.3286
10.1128/MCB.01384-09
10.1038/75556
10.1016/j.cell.2017.05.004
10.1038/ng.3963
10.1073/pnas.0400752101
10.12688/f1000research.7334.1
10.1016/j.celrep.2016.10.061
10.1016/j.devcel.2016.10.015
10.1038/nmeth.4264
10.1093/eurheartj/eht251
10.1038/nature19800
10.1038/nature11049
10.1111/j.1582-4934.2011.01417.x
10.1073/pnas.1016071107
10.12688/f1000research.7563.1
10.1126/science.1222794
10.1039/b803580f
10.1038/nature09692
10.1126/science.1181369
10.1038/nature13417
10.1016/j.cell.2014.11.021
10.1038/nature07829
10.1016/j.cell.2017.02.007
10.1038/ng.2416
10.1161/CIRCRESAHA.117.305365
10.1038/nrg3207
10.1038/nmeth.4197
10.1038/nature11247
10.1016/j.cell.2016.09.037
10.1074/jbc.272.6.3599
10.1161/CIRCGENETICS.109.895763
10.1093/nar/gkv1275
10.1038/nature14248
10.1038/nbt.3158
10.1016/j.cell.2004.08.011
10.1093/nar/gkl822
10.1016/j.cell.2016.02.007
10.1186/s13059-016-0992-2
10.1038/nature11082
ContentType Journal Article
Copyright 2018, Montefiori et al.
2018, Montefiori et al. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2018, Montefiori et al 2018 Montefiori et al
Copyright_xml – notice: 2018, Montefiori et al.
– notice: 2018, Montefiori et al. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2018, Montefiori et al 2018 Montefiori et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.7554/eLife.35788
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
Publicly Available Content Database

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2050-084X
ExternalDocumentID oai_doaj_org_article_074cffa7559f4a5c8b6225ec57ffee68
PMC6053306
29988018
10_7554_eLife_35788
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States--US
Chicago Illinois
GeographicLocations_xml – name: United States--US
– name: Chicago Illinois
GrantInformation_xml – fundername: NIH HHS
  grantid: HL128075
– fundername: NHLBI NIH HHS
  grantid: T32 HL007381
– fundername: NIH HHS
  grantid: T32GMOO7197
– fundername: NIH HHS
  grantid: HL123857
– fundername: NIGMS NIH HHS
  grantid: T32 GM007281
– fundername: NIH HHS
  grantid: HL137307-01
– fundername: NIAMS NIH HHS
  grantid: U54 AR052646
– fundername: NHLBI NIH HHS
  grantid: R01 HL128075
– fundername: NHLBI NIH HHS
  grantid: R33 HL123857
– fundername: NIH HHS
  grantid: HL119967
– fundername: ;
  grantid: HL118758
– fundername: ;
  grantid: HL128075
– fundername: ;
  grantid: HL119967
– fundername: ;
  grantid: 17PRE33410726
– fundername: ;
  grantid: HL123857
– fundername: ;
  grantid: HL137307-01
– fundername: ;
  grantid: T32GMOO7197
GroupedDBID 53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAKDD
AAYXX
ABUWG
ACGFO
ACGOD
ACPRK
ADBBV
ADRAZ
AENEX
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
DIK
DWQXO
EMOBN
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IEA
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M2P
M48
M7P
M~E
NQS
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RHI
RNS
RPM
UKHRP
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c475t-8e3faef9a539b9b6ae63103f3e9110fe1fe5026cb2d75a4b55281bdee13f9a733
IEDL.DBID M7P
ISICitedReferencesCount 103
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000439106000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2050-084X
IngestDate Fri Oct 03 12:35:42 EDT 2025
Tue Nov 04 01:35:57 EST 2025
Sun Nov 09 12:48:45 EST 2025
Tue Oct 07 07:16:52 EDT 2025
Mon Jul 21 06:04:27 EDT 2025
Tue Nov 18 22:41:35 EST 2025
Sat Nov 29 02:57:30 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords cardiomyocytes
human biology
cardiovascular disease
GWAS
gene regulation
chromosomes
medicine
capture Hi-C
human
gene expression
Language English
License 2018, Montefiori et al.
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c475t-8e3faef9a539b9b6ae63103f3e9110fe1fe5026cb2d75a4b55281bdee13f9a733
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2342-6349
0000-0002-0451-7846
0000-0003-0014-4963
OpenAccessLink https://www.proquest.com/docview/2080667855?pq-origsite=%requestingapplication%
PMID 29988018
PQID 2080667855
PQPubID 2045579
ParticipantIDs doaj_primary_oai_doaj_org_article_074cffa7559f4a5c8b6225ec57ffee68
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6053306
proquest_miscellaneous_2067895166
proquest_journals_2080667855
pubmed_primary_29988018
crossref_citationtrail_10_7554_eLife_35788
crossref_primary_10_7554_eLife_35788
PublicationCentury 2000
PublicationDate 2018-07-10
PublicationDateYYYYMMDD 2018-07-10
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-10
  day: 10
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle eLife
PublicationTitleAlternate Elife
PublicationYear 2018
Publisher eLife Sciences Publications Ltd
eLife Sciences Publications, Ltd
Publisher_xml – name: eLife Sciences Publications Ltd
– name: eLife Sciences Publications, Ltd
References Deng (bib16) 2012; 149
Quinlan (bib62) 2010; 26
Ghavi-Helm (bib24) 2014; 512
Phillips-Cremins (bib59) 2013; 153
Erceg (bib21) 2017; 31
Freire-Pritchett (bib23) 2017; 6
Cowper-Sal lari (bib12) 2012; 44
Mahmoud (bib42) 2013; 497
Li (bib38) 2011; 27
Mumbach (bib48) 2017; 49
Blake (bib5) 2017; 45
Nikpay (bib50) 2015; 47
Nora (bib52) 2012; 485
Karlić (bib35) 2010; 107
Dixon (bib18) 2015; 518
Pikkarainen (bib60) 2004; 63
Smith (bib74) 2010; 3
Arking (bib1) 2014; 46
Calo (bib9) 2013; 49
O'Leary (bib53) 2016; 44
Siersbæk (bib71) 2017; 66
Gherghiceanu (bib25) 2011; 15
Nora (bib51) 2017; 169
Petersen (bib56) 1997; 272
Jin (bib33) 2013; 503
Rada-Iglesias (bib63) 2011; 470
Banovich (bib4) 2018; 28
Franke (bib22) 2016; 538
Gilbert (bib26) 2004; 118
Visel (bib82) 2007; 35
Maurano (bib43) 2012; 337
Meder (bib44) 2014; 35
Musunuru (bib49) 2010; 466
Speir (bib76) 2016; 44
Shin (bib70) 2016; 44
Soneson (bib75) 2015; 4
Dao (bib14) 2017; 49
Dixon (bib19) 2012; 485
Javierre (bib32) 2016; 167
Shen (bib69) 2011; 121
Patro (bib54) 2017; 14
Schmitt (bib67) 2016; 17
Cairns (bib8) 2016; 17
Langmead (bib37) 2012; 9
Stevens (bib78) 2017; 544
Cai (bib7) 2005; 132
Kundaje (bib36) 2015; 518
Rubin (bib65) 2017; 49
Heintzman (bib29) 2009; 459
Wright (bib85) 2010; 30
Storey (bib79) 2003; 100
Ashburner (bib3) 2000; 25
Tsujimura (bib81) 2015; 11
Smemo (bib73) 2014; 507
Mifsud (bib46) 2015; 47
Rao (bib64) 2014; 159
ENCODE Project Consortium (bib20) 2012; 489
Lupiáñez (bib41) 2015; 161
Phillips (bib58) 2009; 137
Watt (bib83) 2004; 101
Phanstiel (bib57) 2017; 67
Purcell (bib61) 2007; 81
Lieberman-Aiden (bib39) 2009; 326
Sakabe (bib66) 2012; 21
Dekker (bib15) 2016; 164
Smemo (bib72) 2012; 21
Diao (bib17) 2017; 14
Moshal (bib47) 2017; 31
Spitz (bib77) 2012; 13
Arnolds (bib2) 2012; 122
Carithers (bib10) 2015; 13
Hnisz (bib31) 2017; 169
Heinz (bib30) 2010; 38
Schoenfelder (bib68) 2015; 25
Claussnitzer (bib11) 2015; 373
Guo (bib28) 2009; 84
Love (bib40) 2014; 15
Zhou (bib86) 2015; 33
Gnirke (bib27) 2009; 27
Creyghton (bib13) 2010; 107
Miele (bib45) 2008; 4
Burridge (bib6) 2014; 11
Karakikes (bib34) 2015; 117
Symmons (bib80) 2016; 39
Wingett (bib84) 2015; 4
Pennacchio (bib55) 2013; 14
References_xml – volume: 49
  start-page: 1522
  year: 2017
  ident: bib65
  article-title: Lineage-specific dynamic and pre-established enhancer-promoter contacts cooperate in terminal differentiation
  publication-title: Nature Genetics
  doi: 10.1038/ng.3935
– volume: 45
  start-page: D723
  year: 2017
  ident: bib5
  article-title: Mouse Genome Database (MGD)-2017: community knowledge resource for the laboratory mouse
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkw1040
– volume: 15
  year: 2014
  ident: bib40
  article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
  publication-title: Genome Biology
  doi: 10.1186/s13059-014-0550-8
– volume: 137
  start-page: 1194
  year: 2009
  ident: bib58
  article-title: CTCF: master weaver of the genome
  publication-title: Cell
  doi: 10.1016/j.cell.2009.06.001
– volume: 44
  start-page: D733
  year: 2016
  ident: bib53
  article-title: Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkv1189
– volume: 81
  start-page: 559
  year: 2007
  ident: bib61
  article-title: PLINK: a tool set for whole-genome association and population-based linkage analyses
  publication-title: The American Journal of Human Genetics
  doi: 10.1086/519795
– volume: 47
  start-page: 1121
  year: 2015
  ident: bib50
  article-title: A comprehensive 1,000 Genomes-based genome-wide association meta-analysis of coronary artery disease
  publication-title: Nature Genetics
  doi: 10.1038/ng.3396
– volume: 122
  start-page: 2509
  year: 2012
  ident: bib2
  article-title: TBX5 drives Scn5a expression to regulate cardiac conduction system function
  publication-title: Journal of Clinical Investigation
  doi: 10.1172/JCI62617
– volume: 6
  year: 2017
  ident: bib23
  article-title: Global reorganisation of cis-regulatory units upon lineage commitment of human embryonic stem cells
  publication-title: eLife
  doi: 10.7554/eLife.21926
– volume: 49
  start-page: 1073
  year: 2017
  ident: bib14
  article-title: Genome-wide characterization of mammalian promoters with distal enhancer functions
  publication-title: Nature Genetics
  doi: 10.1038/ng.3884
– volume: 26
  start-page: 841
  year: 2010
  ident: bib62
  article-title: BEDTools: a flexible suite of utilities for comparing genomic features
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq033
– volume: 107
  start-page: 2926
  year: 2010
  ident: bib35
  article-title: Histone modification levels are predictive for gene expression
  publication-title: PNAS
  doi: 10.1073/pnas.0909344107
– volume: 161
  start-page: 1012
  year: 2015
  ident: bib41
  article-title: Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions
  publication-title: Cell
  doi: 10.1016/j.cell.2015.04.004
– volume: 66
  start-page: 420
  year: 2017
  ident: bib71
  article-title: Dynamic rewiring of Promoter-Anchored chromatin loops during adipocyte differentiation
  publication-title: Molecular Cell
  doi: 10.1016/j.molcel.2017.04.010
– volume: 27
  start-page: 182
  year: 2009
  ident: bib27
  article-title: Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing
  publication-title: Nature Biotechnology
  doi: 10.1038/nbt.1523
– volume: 121
  start-page: 4640
  year: 2011
  ident: bib69
  article-title: Tbx20 regulates a genetic program essential to adult mouse cardiomyocyte function
  publication-title: Journal of Clinical Investigation
  doi: 10.1172/JCI59472
– volume: 21
  start-page: 3255
  year: 2012
  ident: bib72
  article-title: Regulatory variation in a TBX5 enhancer leads to isolated congenital heart disease
  publication-title: Human Molecular Genetics
  doi: 10.1093/hmg/dds165
– volume: 373
  start-page: 895
  year: 2015
  ident: bib11
  article-title: FTO obesity variant circuitry and Adipocyte Browning in humans
  publication-title: New England Journal of Medicine
  doi: 10.1056/NEJMoa1502214
– volume: 497
  start-page: 249
  year: 2013
  ident: bib42
  article-title: Meis1 regulates postnatal cardiomyocyte cell cycle arrest
  publication-title: Nature
  doi: 10.1038/nature12054
– volume: 63
  start-page: 196
  year: 2004
  ident: bib60
  article-title: GATA transcription factors in the developing and adult heart
  publication-title: Cardiovascular Research
  doi: 10.1016/j.cardiores.2004.03.025
– volume: 25
  start-page: 582
  year: 2015
  ident: bib68
  article-title: The pluripotent regulatory circuitry connecting promoters to their long-range interacting elements
  publication-title: Genome Research
  doi: 10.1101/gr.185272.114
– volume: 21
  start-page: 2194
  year: 2012
  ident: bib66
  article-title: Dual transcriptional activator and repressor roles of TBX20 regulate adult cardiac structure and function
  publication-title: Human Molecular Genetics
  doi: 10.1093/hmg/dds034
– volume: 14
  start-page: 288
  year: 2013
  ident: bib55
  article-title: Enhancers: five essential questions
  publication-title: Nature Reviews Genetics
  doi: 10.1038/nrg3458
– volume: 84
  start-page: 617
  year: 2009
  ident: bib28
  article-title: Mutations in smooth muscle alpha-actin (ACTA2) cause coronary artery disease, stroke, and Moyamoya disease, along with thoracic aortic disease
  publication-title: The American Journal of Human Genetics
  doi: 10.1016/j.ajhg.2009.04.007
– volume: 46
  start-page: 826
  year: 2014
  ident: bib1
  article-title: Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization
  publication-title: Nature Genetics
  doi: 10.1038/ng.3014
– volume: 44
  year: 2016
  ident: bib70
  article-title: TopDom: an efficient and deterministic method for identifying topological domains in genomes
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkv1505
– volume: 153
  start-page: 1281
  year: 2013
  ident: bib59
  article-title: Architectural protein subclasses shape 3D organization of genomes during lineage commitment
  publication-title: Cell
  doi: 10.1016/j.cell.2013.04.053
– volume: 132
  start-page: 2475
  year: 2005
  ident: bib7
  article-title: T-box genes coordinate regional rates of proliferation and regional specification during cardiogenesis
  publication-title: Development
  doi: 10.1242/dev.01832
– volume: 27
  start-page: 718
  year: 2011
  ident: bib38
  article-title: Tabix: fast retrieval of sequence features from generic TAB-delimited files
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq671
– volume: 466
  start-page: 714
  year: 2010
  ident: bib49
  article-title: From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus
  publication-title: Nature
  doi: 10.1038/nature09266
– volume: 544
  start-page: 59
  year: 2017
  ident: bib78
  article-title: 3D structures of individual mammalian genomes studied by single-cell Hi-C
  publication-title: Nature
  doi: 10.1038/nature21429
– volume: 11
  start-page: 855
  year: 2014
  ident: bib6
  article-title: Chemically defined generation of human cardiomyocytes
  publication-title: Nature Methods
  doi: 10.1038/nmeth.2999
– volume: 67
  start-page: 1037
  year: 2017
  ident: bib57
  article-title: Static and dynamic DNA loops form AP-1-Bound activation hubs during macrophage development
  publication-title: Molecular Cell
  doi: 10.1016/j.molcel.2017.08.006
– volume: 11
  year: 2015
  ident: bib81
  article-title: A discrete transition zone organizes the topological and regulatory autonomy of the adjacent tfap2c and bmp7 genes
  publication-title: PLoS Genetics
  doi: 10.1371/journal.pgen.1004897
– volume: 13
  start-page: 311
  year: 2015
  ident: bib10
  article-title: A novel approach to high-quality postmortem tissue procurement: The GTEx project
  publication-title: Biopreservation and Biobanking
  doi: 10.1089/bio.2015.0032
– volume: 31
  year: 2017
  ident: bib47
  article-title: LITAF, A novel regulator of cardiac excitation
  publication-title: FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology
  doi: 10.1096/fasebj.31.1_supplement.686.3
– volume: 31
  start-page: 590
  year: 2017
  ident: bib21
  article-title: Dual functionality of cis-regulatory elements as developmental enhancers and Polycomb response elements
  publication-title: Genes & Development
  doi: 10.1101/gad.292870.116
– volume: 507
  start-page: 371
  year: 2014
  ident: bib73
  article-title: Obesity-associated variants within FTO form long-range functional connections with IRX3
  publication-title: Nature
  doi: 10.1038/nature13138
– volume: 100
  start-page: 9440
  year: 2003
  ident: bib79
  article-title: Statistical significance for genomewide studies
  publication-title: PNAS
  doi: 10.1073/pnas.1530509100
– volume: 49
  start-page: 825
  year: 2013
  ident: bib9
  article-title: Modification of enhancer chromatin: what, how, and why?
  publication-title: Molecular Cell
  doi: 10.1016/j.molcel.2013.01.038
– volume: 38
  start-page: 576
  year: 2010
  ident: bib30
  article-title: Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities
  publication-title: Molecular Cell
  doi: 10.1016/j.molcel.2010.05.004
– volume: 503
  start-page: 290
  year: 2013
  ident: bib33
  article-title: A high-resolution map of the three-dimensional chromatin interactome in human cells
  publication-title: Nature
  doi: 10.1038/nature12644
– volume: 149
  start-page: 1233
  year: 2012
  ident: bib16
  article-title: Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor
  publication-title: Cell
  doi: 10.1016/j.cell.2012.03.051
– volume: 518
  start-page: 331
  year: 2015
  ident: bib18
  article-title: Chromatin architecture reorganization during stem cell differentiation
  publication-title: Nature
  doi: 10.1038/nature14222
– volume: 28
  start-page: 122
  year: 2018
  ident: bib4
  article-title: Impact of regulatory variation across human iPSCs and differentiated cells
  publication-title: Genome Research
  doi: 10.1101/gr.224436.117
– volume: 9
  start-page: 357
  year: 2012
  ident: bib37
  article-title: Fast gapped-read alignment with Bowtie 2
  publication-title: Nature Methods
  doi: 10.1038/nmeth.1923
– volume: 47
  start-page: 598
  year: 2015
  ident: bib46
  article-title: Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C
  publication-title: Nature Genetics
  doi: 10.1038/ng.3286
– volume: 30
  start-page: 1411
  year: 2010
  ident: bib85
  article-title: Upregulation of c-MYC in cis through a large chromatin loop linked to a cancer risk-associated single-nucleotide polymorphism in colorectal cancer cells
  publication-title: Molecular and Cellular Biology
  doi: 10.1128/MCB.01384-09
– volume: 25
  start-page: 25
  year: 2000
  ident: bib3
  article-title: Gene ontology: tool for the unification of biology. the gene ontology consortium
  publication-title: Nature Genetics
  doi: 10.1038/75556
– volume: 169
  start-page: 930
  year: 2017
  ident: bib51
  article-title: Targeted degradation of CTCF decouples local insulation of chromosome domains from genomic compartmentalization
  publication-title: Cell
  doi: 10.1016/j.cell.2017.05.004
– volume: 49
  start-page: 1602
  year: 2017
  ident: bib48
  article-title: Enhancer connectome in primary human cells identifies target genes of disease-associated DNA elements
  publication-title: Nature Genetics
  doi: 10.1038/ng.3963
– volume: 101
  start-page: 12573
  year: 2004
  ident: bib83
  article-title: GATA4 is essential for formation of the proepicardium and regulates cardiogenesis
  publication-title: PNAS
  doi: 10.1073/pnas.0400752101
– volume: 4
  year: 2015
  ident: bib84
  article-title: HiCUP: pipeline for mapping and processing Hi-C data
  publication-title: F1000Research
  doi: 10.12688/f1000research.7334.1
– volume: 17
  start-page: 2042
  year: 2016
  ident: bib67
  article-title: A compendium of chromatin contact maps reveals spatially active regions in the human genome
  publication-title: Cell Reports
  doi: 10.1016/j.celrep.2016.10.061
– volume: 39
  start-page: 529
  year: 2016
  ident: bib80
  article-title: The shh topological domain facilitates the action of remote enhancers by reducing the effects of genomic distances
  publication-title: Developmental Cell
  doi: 10.1016/j.devcel.2016.10.015
– volume: 14
  start-page: 629
  year: 2017
  ident: bib17
  article-title: A tiling-deletion-based genetic screen for cis-regulatory element identification in mammalian cells
  publication-title: Nature Methods
  doi: 10.1038/nmeth.4264
– volume: 35
  start-page: 1069
  year: 2014
  ident: bib44
  article-title: A genome-wide association study identifies 6p21 as novel risk locus for dilated cardiomyopathy
  publication-title: European Heart Journal
  doi: 10.1093/eurheartj/eht251
– volume: 538
  start-page: 265
  year: 2016
  ident: bib22
  article-title: Formation of new chromatin domains determines pathogenicity of genomic duplications
  publication-title: Nature
  doi: 10.1038/nature19800
– volume: 485
  start-page: 381
  year: 2012
  ident: bib52
  article-title: Spatial partitioning of the regulatory landscape of the X-inactivation centre
  publication-title: Nature
  doi: 10.1038/nature11049
– volume: 15
  start-page: 2539
  year: 2011
  ident: bib25
  article-title: Cardiomyocytes derived from human embryonic and induced pluripotent stem cells: comparative ultrastructure
  publication-title: Journal of Cellular and Molecular Medicine
  doi: 10.1111/j.1582-4934.2011.01417.x
– volume: 107
  start-page: 21931
  year: 2010
  ident: bib13
  article-title: Histone H3K27ac separates active from poised enhancers and predicts developmental state
  publication-title: PNAS
  doi: 10.1073/pnas.1016071107
– volume: 4
  year: 2015
  ident: bib75
  article-title: Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences
  publication-title: F1000Research
  doi: 10.12688/f1000research.7563.1
– volume: 337
  start-page: 1190
  year: 2012
  ident: bib43
  article-title: Systematic localization of common disease-associated variation in regulatory DNA
  publication-title: Science
  doi: 10.1126/science.1222794
– volume: 4
  year: 2008
  ident: bib45
  article-title: Long-range chromosomal interactions and gene regulation
  publication-title: Molecular BioSystems
  doi: 10.1039/b803580f
– volume: 470
  start-page: 279
  year: 2011
  ident: bib63
  article-title: A unique chromatin signature uncovers early developmental enhancers in humans
  publication-title: Nature
  doi: 10.1038/nature09692
– volume: 326
  start-page: 289
  year: 2009
  ident: bib39
  article-title: Comprehensive mapping of long-range interactions reveals folding principles of the human genome
  publication-title: Science
  doi: 10.1126/science.1181369
– volume: 512
  year: 2014
  ident: bib24
  article-title: Enhancer loops appear stable during development and are associated with paused polymerase
  publication-title: Nature
  doi: 10.1038/nature13417
– volume: 159
  start-page: 1665
  year: 2014
  ident: bib64
  article-title: A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping
  publication-title: Cell
  doi: 10.1016/j.cell.2014.11.021
– volume: 459
  start-page: 108
  year: 2009
  ident: bib29
  article-title: Histone modifications at human enhancers reflect global cell-type-specific gene expression
  publication-title: Nature
  doi: 10.1038/nature07829
– volume: 169
  start-page: 13
  year: 2017
  ident: bib31
  article-title: A phase separation model for transcriptional control
  publication-title: Cell
  doi: 10.1016/j.cell.2017.02.007
– volume: 44
  start-page: 1191
  year: 2012
  ident: bib12
  article-title: Breast cancer risk-associated SNPs modulate the affinity of chromatin for FOXA1 and alter gene expression
  publication-title: Nature Genetics
  doi: 10.1038/ng.2416
– volume: 117
  start-page: 80
  year: 2015
  ident: bib34
  article-title: Human induced pluripotent stem cell-derived cardiomyocytes: insights into molecular, cellular, and functional phenotypes
  publication-title: Circulation Research
  doi: 10.1161/CIRCRESAHA.117.305365
– volume: 13
  start-page: 613
  year: 2012
  ident: bib77
  article-title: Transcription factors: from enhancer binding to developmental control
  publication-title: Nature Reviews Genetics
  doi: 10.1038/nrg3207
– volume: 14
  start-page: 417
  year: 2017
  ident: bib54
  article-title: Salmon provides fast and bias-aware quantification of transcript expression
  publication-title: Nature Methods
  doi: 10.1038/nmeth.4197
– volume: 489
  start-page: 57
  year: 2012
  ident: bib20
  article-title: An integrated encyclopedia of DNA elements in the human genome
  publication-title: Nature
  doi: 10.1038/nature11247
– volume: 167
  start-page: 1369
  year: 2016
  ident: bib32
  article-title: Lineage-Specific genome architecture links enhancers and Non-coding disease variants to target gene promoters
  publication-title: Cell
  doi: 10.1016/j.cell.2016.09.037
– volume: 272
  start-page: 3599
  year: 1997
  ident: bib56
  article-title: Molecular identification of a novel candidate sorting receptor purified from human brain by receptor-associated protein affinity chromatography
  publication-title: Journal of Biological Chemistry
  doi: 10.1074/jbc.272.6.3599
– volume: 3
  start-page: 256
  year: 2010
  ident: bib74
  article-title: Association of genome-wide variation with the risk of incident heart failure in adults of European and African ancestry: a prospective meta-analysis from the cohorts for heart and aging research in genomic epidemiology (CHARGE) consortium
  publication-title: Circulation: Cardiovascular Genetics
  doi: 10.1161/CIRCGENETICS.109.895763
– volume: 44
  start-page: D717
  year: 2016
  ident: bib76
  article-title: The UCSC genome browser database: 2016 update
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkv1275
– volume: 518
  start-page: 317
  year: 2015
  ident: bib36
  article-title: Integrative analysis of 111 reference human epigenomes
  publication-title: Nature
  doi: 10.1038/nature14248
– volume: 33
  start-page: 345
  year: 2015
  ident: bib86
  article-title: Epigenomic annotation of genetic variants using the roadmap epigenome browser
  publication-title: Nature Biotechnology
  doi: 10.1038/nbt.3158
– volume: 118
  start-page: 555
  year: 2004
  ident: bib26
  article-title: Chromatin architecture of the human genome: gene-rich domains are enriched in open chromatin fibers
  publication-title: Cell
  doi: 10.1016/j.cell.2004.08.011
– volume: 35
  start-page: D88
  year: 2007
  ident: bib82
  article-title: VISTA Enhancer Browser--a database of tissue-specific human enhancers
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkl822
– volume: 164
  start-page: 1110
  year: 2016
  ident: bib15
  article-title: The 3D genome as moderator of chromosomal communication
  publication-title: Cell
  doi: 10.1016/j.cell.2016.02.007
– volume: 17
  year: 2016
  ident: bib8
  article-title: CHiCAGO: robust detection of DNA looping interactions in Capture Hi-C data
  publication-title: Genome Biology
  doi: 10.1186/s13059-016-0992-2
– volume: 485
  start-page: 376
  year: 2012
  ident: bib19
  article-title: Topological domains in mammalian genomes identified by analysis of chromatin interactions
  publication-title: Nature
  doi: 10.1038/nature11082
SSID ssj0000748819
Score 2.5165422
Snippet Over 500 genetic loci have been associated with risk of cardiovascular diseases (CVDs); however, most loci are located in gene-distal non-coding regions and...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
SubjectTerms capture Hi-C
Cardiomyocytes
Cardiovascular disease
Cardiovascular diseases
Cardiovascular Diseases - genetics
Chromatin
Chromosomes and Gene Expression
Epigenetics
Gene expression
Gene Expression Regulation
Gene mapping
gene regulation
Gene Regulatory Networks
Genetic Loci
Genetics
Genome, Human
Genome-Wide Association Study
Genomes
Genomics
GWAS
Human Biology and Medicine
Humans
Induced Pluripotent Stem Cells - cytology
Induced Pluripotent Stem Cells - metabolism
Myocytes, Cardiac - cytology
Myocytes, Cardiac - metabolism
Pluripotency
Polymorphism, Single Nucleotide
Promoter Regions, Genetic
Regulatory Elements, Transcriptional
Single-nucleotide polymorphism
Stem cells
Tools and Resources
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB5EFLyIb-uLCHsS6m63TdJcBBXFgyweFLyVJJ3ggtZldxX8907SumxlwYvXZlLSmUnmS5P5BqDjSmGVQB1raXScZZmNc6R5VeaWohEmqE1g17-Xg0H-_Kwe5kp9-TthNT1wrbguhTjrnJaEfF2muc2NIBdEy6VziCKk-RLqmdtMhTVYkmMmqk7Io75ZF--HDs89t0veCkGBqX8RvPx9S3Iu7NxuwHqDF9llPc5NWMJqC1brCpJf23BxyUbhQh2OmWd-GNd5CuxNjxjBUWZb101ZcxzDyGt88uJkB55ubx6v7-KmJEJsM8mnXo9Oo1Oap8ooIzQKXyjMpUiLVs9h4pDTrsqafim5zgznfcKlJWKSUieZpruwXL1XuA-s7FnrNKGpJM0zbY2SJNDvW-qvjFR5BGc_Wipswxfuy1a8FrRv8CotgkqLoNIIOjPhUU2TsVjsyqt7JuK5rcMDsnjRWLz4y-IRHP0Yq2gm3KTwPiAo8HIewemsmaaKP__QFb5_eBkSIEQpRAR7tW1nI6GoTCtZQi-XLau3htpuqYYvgY5b-HTmnjj4j287hDVCZLn_eZz0jmB5Ov7AY1ixn9PhZHwSfPwbtTEF1A
  priority: 102
  providerName: Directory of Open Access Journals
Title A promoter interaction map for cardiovascular disease genetics
URI https://www.ncbi.nlm.nih.gov/pubmed/29988018
https://www.proquest.com/docview/2080667855
https://www.proquest.com/docview/2067895166
https://pubmed.ncbi.nlm.nih.gov/PMC6053306
https://doaj.org/article/074cffa7559f4a5c8b6225ec57ffee68
Volume 7
WOSCitedRecordID wos000439106000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: M7P
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: 7X7
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: PIMPY
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: M2P
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RFqReeFMWyipIPSEFNg-_LqAWtQKpXUUIpOUU2c64rNRml-wWqf--YycbCKq4cPEhHltWxvPwePwNwIGruFUcdayF0XGe5zaWSHJVSUvWCBPUJqDrn4rpVM5mqugCbqsurXKjE4OirhbWx8jpkC59PqZk7MPyZ-yrRvnb1a6ExhbseJSELKTuFX2MhcyjJIvXPssTZDjf4enc4VuP8CIHhijg9d_mZP6dK_mH8Tl58L_Lfgj3O7czOmz3ySO4g_VjuNcWorx-Au8Po2XIy8Mm8gASTfvcIbrUy4i82sgOslaj7lYnos3n30CunsK3k-OvHz_FXWWF2OaCrT07nEanNMuUUYZr5L7emMuQdN_EYeKQ0eHMmrQSTOeGsZTc2woxyWiQyLJnsF0vanwOUTWx1mlyypJM5toaJYggTS2NV0YoOYI3m99c2g523Fe_uCjp-OF5UgaelIEnIzjoiZct2sbtZEeeXz2Jh8gOHxbNedlJXEnMt85pGqtcrpmVhpPuQsuEc4icJtnfcKzs5HZV_mbXCF733SRx_hpF17i48jREQI4p5yPYazdHvxIy7qQQE5pcDLbNYKnDnnr-I6B6c_8qesJf_HtZL2GXXDbpo8vJZB-2180VvoK79td6vmrGsCVmIrRyDDtHx9PiyzhEGag9S4txEA_qKT6fFd9vAGXnGfY
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VBUQvvCmBAotULkiG2PE-fABUHlWrhqiHIvXmrtezEAmc4KSg_il-IzNrx2BUceuBazxrjeJvZr7dnQfAti-VyxTayOrCRmmausgg2VVpHEUjjNEWobv-WE8m5vg4O1yDn6taGE6rXPnE4KjLmeMzctqkG87HNFK-nn-LeGoU366uRmg0sDjAsx-0ZVu83H9H3_dpkuy-P3q7F7VTBSKXarlkVbxFn1k5yoqsUBYVz9ryIyS7H3qMPUramLgiKbW0aSFlQtSuRIxHtEjzASi5_EtEIxITUgUPuzMdCseGImxTBqgpUL_A8dTjc-4oY3qBL8wHOI_U_p2b-Uew273-v_1NN-BaS6vFTmMHN2ENq1twpRm0eXYbXu2Iecg7xFpwg4y6KecQX-1cEGsXrpeVK9pbK0HGxTWeizvw8UKUvwvr1azCeyDKoXPeEumMRya1rsg0CSSJo_VZoTMzgGerz5q7tq06T_f4ktP2ijGQBwzkAQMD2O6E5003kfPF3jA-OhFuAR5-mNWf8taj5AQ2572ltZlPrXSmUOSb0UntPaKil2ytEJK3fmmR_4bHAJ50j8mj8DWRrXB2yjIkQMRbqQFsNmDsNCHyQg4_ppfrHkx7qvafVNPPoWu54qrvobr_b7Uew9W9ow_jfLw_OXgAG0RPDZ-kx8MtWF_Wp_gQLrvvy-mifhRMT8DJRYP4F8kbcUY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5V5SEuvB8LBYxULkihm2z8yAFQoayoulrtAaTeguOMYSXYXbJbUP8av44Z5wFBFbceuMZjaxR_87A9D4BdXyqXKbSR1YWN0jR1kUGSq9I4skYYoy1Cdf2Jnk7N8XE224KfbS4Mh1W2OjEo6nLp-I6cDumG4zGNlHu-CYuYHYxfrb5F3EGKX1rbdho1RI7w9Acd39YvDg9or58myfjt-zfvoqbDQORSLTfMlrfoMytHWZEVyqLivlt-hKQDhh5jj5IOKa5ISi1tWkiZkJtXIsYjmqT5MpTU_wXNRctD2OCsu98h02zI2tYpgZqM9h5O5h6fc3UZ0zOCoVfAWQ7u33Gafxi-8bX_-Zddh6uNuy32a_m4AVu4uAmX6gacp7fg5b5YhXhErAQXzqjqNA_x1a4EefPC9aJ1RfOaJUjoOPdzfRs-nAvzd2B7sVzgPRDl0DlvyRmNRya1rsg0ESSJo_lZoTMzgGftFueuKbfOXT--5HTsYjzkAQ95wMMAdjviVV1l5Gyy14yVjoRLg4cPy-pT3mianIDnvLc0N_Oplc4UinQ2Oqm9R1S0yE6LlrzRV-v8N1QG8KQbJk3Dz0d2gcsTpiECcsiVGsDdGpgdJ-TUkCGIaXHdg2yP1f7IYv45VDNXnA0-VPf_zdZjuEzYzSeH06MHcIW8VsMX7PFwB7Y31Qk-hIvu-2a-rh4FKRTw8bwx_AtjR3oD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+promoter+interaction+map+for+cardiovascular+disease+genetics&rft.jtitle=eLife&rft.au=Montefiori%2C+Lindsey+E&rft.au=Sobreira%2C+Debora+R&rft.au=Sakabe%2C+Noboru+J&rft.au=Aneas%2C+Ivy&rft.date=2018-07-10&rft.pub=eLife+Sciences+Publications%2C+Ltd&rft.eissn=2050-084X&rft.volume=7&rft_id=info:doi/10.7554%2FeLife.35788&rft_id=info%3Apmid%2F29988018&rft.externalDocID=PMC6053306
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-084X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-084X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-084X&client=summon