High-throughput microbial culturomics using automation and machine learning

Pure bacterial cultures remain essential for detailed experimental and mechanistic studies in microbiome research, and traditional methods to isolate individual bacteria from complex microbial ecosystems are labor-intensive, difficult-to-scale and lack phenotype–genotype integration. Here we describ...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nature biotechnology Ročník 41; číslo 10; s. 1424 - 1433
Hlavní autoři: Huang, Yiming, Sheth, Ravi U., Zhao, Shijie, Cohen, Lucas A., Dabaghi, Kendall, Moody, Thomas, Sun, Yiwei, Ricaurte, Deirdre, Richardson, Miles, Velez-Cortes, Florencia, Blazejewski, Tomasz, Kaufman, Andrew, Ronda, Carlotta, Wang, Harris H.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Nature Publishing Group US 01.10.2023
Nature Publishing Group
Témata:
ISSN:1087-0156, 1546-1696, 1546-1696
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Pure bacterial cultures remain essential for detailed experimental and mechanistic studies in microbiome research, and traditional methods to isolate individual bacteria from complex microbial ecosystems are labor-intensive, difficult-to-scale and lack phenotype–genotype integration. Here we describe an open-source high-throughput robotic strain isolation platform for the rapid generation of isolates on demand. We develop a machine learning approach that leverages colony morphology and genomic data to maximize the diversity of microbes isolated and enable targeted picking of specific genera. Application of this platform on fecal samples from 20 humans yields personalized gut microbiome biobanks totaling 26,997 isolates that represented >80% of all abundant taxa. Spatial analysis on >100,000 visually captured colonies reveals cogrowth patterns between Ruminococcaceae , Bacteroidaceae , Coriobacteriaceae and Bifidobacteriaceae families that suggest important microbial interactions. Comparative analysis of 1,197 high-quality genomes from these biobanks shows interesting intra- and interpersonal strain evolution, selection and horizontal gene transfer. This culturomics framework should empower new research efforts to systematize the collection and quantitative analysis of imaging-based phenotypes with high-resolution genomics data for many emerging microbiome studies. A machine learning isolation and genotyping platform enable high-throughput bacterial culture generation.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1087-0156
1546-1696
1546-1696
DOI:10.1038/s41587-023-01674-2