Design and Application of Vague Set Theory and Adaptive Grid Particle Swarm Optimization Algorithm in Resource Scheduling Optimization Design and Application of Vague Set Theory and Adaptive Grid Particle Swarm Optimization Algorithm in Resource Scheduling Optimization

The purpose of resource scheduling is to deal with all kinds of unexpected events that may occur in life, such as fire, traffic jam, earthquake and other emergencies, and the scheduling algorithm is one of the key factors affecting the intelligent scheduling system. In the traditional resource sched...

Full description

Saved in:
Bibliographic Details
Published in:Journal of grid computing Vol. 21; no. 2; p. 24
Main Authors: Han, Yibo, Han, Pu, Yuan, Bo, Zhang, Zheng, Liu, Lu, Panneerselvam, John
Format: Journal Article
Language:English
Published: Dordrecht Springer Netherlands 01.06.2023
Springer Nature B.V
Subjects:
ISSN:1570-7873, 1572-9184, 1572-9184
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The purpose of resource scheduling is to deal with all kinds of unexpected events that may occur in life, such as fire, traffic jam, earthquake and other emergencies, and the scheduling algorithm is one of the key factors affecting the intelligent scheduling system. In the traditional resource scheduling system, because of the slow decision-making, it is difficult to meet the needs of the actual situation, especially in the face of emergencies, the traditional resource scheduling methods have great disadvantages. In order to solve the above problems, this paper takes emergency resource scheduling, a prominent scheduling problem, as an example. Based on Vague set theory and adaptive grid particle swarm optimization algorithm, a multi-objective emergency resource scheduling model is constructed under different conditions. This model can not only integrate the advantages of Vague set theory in dealing with uncertain problems, but also retain the advantages of adaptive grid particle swarm optimization that can solve multi-objective optimization problems and can quickly converge. The research results show that compared with the traditional resource scheduling optimization algorithm, the emergency resource scheduling model has higher resolution accuracy, more reasonable resource allocation, higher efficiency and faster speed in dealing with emergency events than the traditional resource scheduling model. Compared with the conventional fuzzy theory emergency resource scheduling model, its handling speed has increased by more than 3.82 times.
AbstractList The purpose of resource scheduling is to deal with all kinds of unexpected events that may occur in life, such as fire, traffic jam, earthquake and other emergencies, and the scheduling algorithm is one of the key factors affecting the intelligent scheduling system. In the traditional resource scheduling system, because of the slow decision-making, it is difficult to meet the needs of the actual situation, especially in the face of emergencies, the traditional resource scheduling methods have great disadvantages. In order to solve the above problems, this paper takes emergency resource scheduling, a prominent scheduling problem, as an example. Based on Vague set theory and adaptive grid particle swarm optimization algorithm, a multi-objective emergency resource scheduling model is constructed under different conditions. This model can not only integrate the advantages of Vague set theory in dealing with uncertain problems, but also retain the advantages of adaptive grid particle swarm optimization that can solve multi-objective optimization problems and can quickly converge. The research results show that compared with the traditional resource scheduling optimization algorithm, the emergency resource scheduling model has higher resolution accuracy, more reasonable resource allocation, higher efficiency and faster speed in dealing with emergency events than the traditional resource scheduling model. Compared with the conventional fuzzy theory emergency resource scheduling model, its handling speed has increased by more than 3.82 times.
The purpose of resource scheduling is to deal with all kinds of unexpected events that may occur in life, such as fire, traffic jam, earthquake and other emergencies, and the scheduling algorithm is one of the key factors affecting the intelligent scheduling system. In the traditional resource scheduling system, because of the slow decision-making, it is difficult to meet the needs of the actual situation, especially in the face of emergencies, the traditional resource scheduling methods have great disadvantages. In order to solve the above problems, this paper takes emergency resource scheduling, a prominent scheduling problem, as an example. Based on Vague set theory and adaptive grid particle swarm optimization algorithm, a multi-objective emergency resource scheduling model is constructed under different conditions. This model can not only integrate the advantages of Vague set theory in dealing with uncertain problems, but also retain the advantages of adaptive grid particle swarm optimization that can solve multi-objective optimization problems and can quickly converge. The research results show that compared with the traditional resource scheduling optimization algorithm, the emergency resource scheduling model has higher resolution accuracy, more reasonable resource allocation, higher efficiency and faster speed in dealing with emergency events than the traditional resource scheduling model. Compared with the conventional fuzzy theory emergency resource scheduling model, its handling speed has increased by more than 3.82 times.The purpose of resource scheduling is to deal with all kinds of unexpected events that may occur in life, such as fire, traffic jam, earthquake and other emergencies, and the scheduling algorithm is one of the key factors affecting the intelligent scheduling system. In the traditional resource scheduling system, because of the slow decision-making, it is difficult to meet the needs of the actual situation, especially in the face of emergencies, the traditional resource scheduling methods have great disadvantages. In order to solve the above problems, this paper takes emergency resource scheduling, a prominent scheduling problem, as an example. Based on Vague set theory and adaptive grid particle swarm optimization algorithm, a multi-objective emergency resource scheduling model is constructed under different conditions. This model can not only integrate the advantages of Vague set theory in dealing with uncertain problems, but also retain the advantages of adaptive grid particle swarm optimization that can solve multi-objective optimization problems and can quickly converge. The research results show that compared with the traditional resource scheduling optimization algorithm, the emergency resource scheduling model has higher resolution accuracy, more reasonable resource allocation, higher efficiency and faster speed in dealing with emergency events than the traditional resource scheduling model. Compared with the conventional fuzzy theory emergency resource scheduling model, its handling speed has increased by more than 3.82 times.
ArticleNumber 24
Author Yuan, Bo
Zhang, Zheng
Panneerselvam, John
Han, Yibo
Liu, Lu
Han, Pu
Author_xml – sequence: 1
  givenname: Yibo
  surname: Han
  fullname: Han, Yibo
  organization: Nanyang Institute of Big Data Research, Nanyang Institute of Technology
– sequence: 2
  givenname: Pu
  surname: Han
  fullname: Han, Pu
  organization: School of Information Engineering, Nanyang Institute of Technology
– sequence: 3
  givenname: Bo
  surname: Yuan
  fullname: Yuan, Bo
  organization: Department of Informatics, University of Leicester
– sequence: 4
  givenname: Zheng
  surname: Zhang
  fullname: Zhang, Zheng
  email: zhangzheng@nyist.edu.cn
  organization: School of Computer and Software, Nanyang Institute of Technology
– sequence: 5
  givenname: Lu
  surname: Liu
  fullname: Liu, Lu
  organization: Department of Informatics, University of Leicester
– sequence: 6
  givenname: John
  surname: Panneerselvam
  fullname: Panneerselvam, John
  organization: Department of Informatics, University of Leicester
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37089625$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1u1TAQhS1URH_gBVggS2zYBOz4Nyt0VaAgVSqCwtbytZ1cV4kd7KSoPADPjdO0QLvoYmRL852j4_Ecgr0QgwPgOUavMULiTcZI1KRCSzWco4o8AgeYibpqsKR713dUCSnIPjjM-QKhmklUPwH7RCDZ8JodgN_vXPZdgDpYuBnH3hs9-RhgbOF33c0OfnUTPN-5mK5Wxupx8pcOniRv4WedJm_6Qv3UaYBnpTX4X6vDpu9i8tNugD7ALy7HOZkCmp2zc-9Dd4d-Ch63us_u2c15BL59eH9-_LE6PTv5dLw5rQwVbKoEbRmmUlPLOJOWbqkhqNWIE-6oZtxY0xCOxRZbxA2lVtLaYd04KllDmCVH4O3qO87bwVnjwpR0r8bkB52uVNRe3e0Ev1NdvFQYYURQjYvDqxuHFH_MLk9q8Nm4vtfBxTmrWiLGMJOcFvTlPfSiDCGU9y2UaDgVXBTqxf-R_ma5_aMCyBUwKeacXKuMn66nVhL6vkRTyzqodR0UWmpZB0WKtL4nvXV_UERWUS5w6Fz6F_sB1R9sYMij
CitedBy_id crossref_primary_10_1038_s41598_025_14417_x
crossref_primary_10_3390_math13121970
crossref_primary_10_1007_s42417_025_01869_8
crossref_primary_10_1038_s41598_025_86478_x
Cites_doi 10.1126/science.1087139
10.1109/ICLSIM.2010.5461242
10.1145/3321619.3321642
10.1016/j.tre.2016.12.011
10.1111/j.1467-7717.1984.tb00853.x
10.1109/ACCESS.2022.3175317
10.2112/JCR-SI107-097.1
10.1155/2021/9950198
10.1016/S0140-6736(03)13412-5
10.1080/02331934.2022.2048381
10.1016/j.iswa.2022.200157
10.1002/emp2.12034
10.1016/j.neucom.2017.09.086
10.1016/j.future.2017.11.031
10.1002/int.22183
10.1016/j.cor.2013.01.016
10.1016/j.knosys.2010.02.005
10.1016/j.jhin.2020.02.005
10.1061/41186(421)188
10.3390/ijgi6050142
10.1016/S0165-0114(98)00271-1
10.1109/TITS.2016.2515663
10.1016/j.procs.2018.03.043
10.1016/j.energy.2016.07.123
10.5055/jem.2020.0478
10.9746/jcmsi.10.77
10.1061/JHTRCQ.0000587
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. 2023 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Nature B.V. 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. Jun 2023
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2023 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Nature B.V. 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. Jun 2023
DBID AAYXX
CITATION
NPM
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1007/s10723-023-09660-3
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
PubMed

Advanced Technologies & Aerospace Collection
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1572-9184
ExternalDocumentID PMC10103021
37089625
10_1007_s10723_023_09660_3
Genre Journal Article
GroupedDBID -D3
-D4
-D8
-DT
-Y2
-~X
.86
.VR
06D
0R~
0VY
1N0
203
29K
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
8FE
8FG
8TC
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHFT
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KZ1
LAK
LLZTM
LMP
M4Y
MA-
N2Q
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P62
P9O
PF0
PHGZM
PHGZT
PQGLB
PT4
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
AAYXX
AFFHD
CITATION
-59
-5G
-BR
-EM
-~C
AAAVM
ADINQ
GQ6
NPM
Z7X
Z81
Z83
Z88
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c475t-74f5148a4d5658d4b4c30fa0636e4a56cdc93617b1d06c44d842e1a9e485935d3
IEDL.DBID RSV
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000969743200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1570-7873
1572-9184
IngestDate Tue Nov 04 02:06:43 EST 2025
Thu Oct 02 10:58:13 EDT 2025
Wed Nov 05 01:06:04 EST 2025
Wed Feb 19 02:24:10 EST 2025
Sat Nov 29 08:07:43 EST 2025
Tue Nov 18 22:32:03 EST 2025
Mon Jul 21 06:06:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 2
Keywords Vague set theory
Model
Multi objective
Resource scheduling
Particle swarm optimization algorithm
Language English
License The Author(s), under exclusive licence to Springer Nature B.V. 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c475t-74f5148a4d5658d4b4c30fa0636e4a56cdc93617b1d06c44d842e1a9e485935d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC10103021
PMID 37089625
PQID 2807964767
PQPubID 2043852
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10103021
proquest_miscellaneous_2805515864
proquest_journals_2807964767
pubmed_primary_37089625
crossref_citationtrail_10_1007_s10723_023_09660_3
crossref_primary_10_1007_s10723_023_09660_3
springer_journals_10_1007_s10723_023_09660_3
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
– name: Netherlands
PublicationSubtitle From Grids to Cloud Federations
PublicationTitle Journal of grid computing
PublicationTitleAbbrev J Grid Computing
PublicationTitleAlternate J Grid Comput
PublicationYear 2023
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References HM Wang (9660_CR14) 2018; 129
M Rostami (9660_CR33) 2022; 10
9660_CR28
9660_CR27
MS Kadhim (9660_CR30) 2022; 20
S Singh (9660_CR23) 2013; 2
9660_CR26
9660_CR6
N Perrier (9660_CR16) 2013; 40
X Huang (9660_CR17) 2020; 107
9660_CR24
9660_CR5
JS Peiris (9660_CR3) 2003; 361
F Heydarpoor (9660_CR10) 2020; 21
MJ Ebadi (9660_CR20) 2010; 23
K Renken (9660_CR7) 2020; 18
C Shang (9660_CR32) 2016; 114
K Guan (9660_CR1) 2016; 17
DH Hong (9660_CR35) 2000; 114
S Chang (9660_CR22) 2017; 10
9660_CR9
FY Yu (9660_CR25) 2017; 11
9660_CR19
CJ Jiang (9660_CR13) 2017; 6
9660_CR18
Y Zhou (9660_CR21) 2017; 99
D Kembull-cook (9660_CR8) 1984; 8
9660_CR15
R Wen (9660_CR29) 2013; 50
9660_CR36
9660_CR12
9660_CR34
9660_CR11
Y Guan (9660_CR2) 2003; 302
9660_CR31
J Yin (9660_CR4) 2010; 26
References_xml – ident: 9660_CR26
– volume: 302
  start-page: 276
  issue: 5643
  year: 2003
  ident: 9660_CR2
  publication-title: Science
  doi: 10.1126/science.1087139
– ident: 9660_CR24
– volume: 50
  start-page: 1464
  issue: 7
  year: 2013
  ident: 9660_CR29
  publication-title: J. Comput. Res. Dev.
– volume: 20
  start-page: 8143
  issue: 6
  year: 2022
  ident: 9660_CR30
  publication-title: NeuroQuantology
– ident: 9660_CR31
  doi: 10.1109/ICLSIM.2010.5461242
– ident: 9660_CR12
  doi: 10.1145/3321619.3321642
– volume: 99
  start-page: 77
  year: 2017
  ident: 9660_CR21
  publication-title: Transp. Res. E Logist. Transp. Rev.
  doi: 10.1016/j.tre.2016.12.011
– ident: 9660_CR9
– volume: 8
  start-page: 57
  issue: 1
  year: 1984
  ident: 9660_CR8
  publication-title: Disaster
  doi: 10.1111/j.1467-7717.1984.tb00853.x
– volume: 10
  start-page: 52508
  year: 2022
  ident: 9660_CR33
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3175317
– volume: 107
  start-page: 437
  issue: sp1
  year: 2020
  ident: 9660_CR17
  publication-title: J. Coastal Res.
  doi: 10.2112/JCR-SI107-097.1
– ident: 9660_CR28
  doi: 10.1155/2021/9950198
– volume: 361
  start-page: 1767
  issue: 9371
  year: 2003
  ident: 9660_CR3
  publication-title: Lancet
  doi: 10.1016/S0140-6736(03)13412-5
– volume: 26
  start-page: 30
  issue: 2
  year: 2010
  ident: 9660_CR4
  publication-title: Environ. Monit. China
– ident: 9660_CR15
  doi: 10.1080/02331934.2022.2048381
– ident: 9660_CR34
  doi: 10.1016/j.iswa.2022.200157
– ident: 9660_CR6
  doi: 10.1002/emp2.12034
– ident: 9660_CR18
  doi: 10.1016/j.neucom.2017.09.086
– ident: 9660_CR27
  doi: 10.1016/j.future.2017.11.031
– ident: 9660_CR36
  doi: 10.1002/int.22183
– volume: 40
  start-page: 1895
  issue: 7
  year: 2013
  ident: 9660_CR16
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2013.01.016
– volume: 23
  start-page: 434
  issue: 5
  year: 2010
  ident: 9660_CR20
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2010.02.005
– ident: 9660_CR5
  doi: 10.1016/j.jhin.2020.02.005
– ident: 9660_CR19
  doi: 10.1061/41186(421)188
– volume: 6
  start-page: 142
  issue: 5
  year: 2017
  ident: 9660_CR13
  publication-title: ISPRS Int. J. Geo-Inf.
  doi: 10.3390/ijgi6050142
– volume: 114
  start-page: 103
  issue: 1
  year: 2000
  ident: 9660_CR35
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/S0165-0114(98)00271-1
– volume: 17
  start-page: 2171
  issue: 8
  year: 2016
  ident: 9660_CR1
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2016.2515663
– volume: 2
  start-page: 225
  issue: 6
  year: 2013
  ident: 9660_CR23
  publication-title: Int. J. Adv. Res. Comput. Eng. Technol.
– volume: 129
  start-page: 208
  year: 2018
  ident: 9660_CR14
  publication-title: Pro-cedia Comp. Sci.
  doi: 10.1016/j.procs.2018.03.043
– ident: 9660_CR11
– volume: 114
  start-page: 671
  year: 2016
  ident: 9660_CR32
  publication-title: Energy
  doi: 10.1016/j.energy.2016.07.123
– volume: 18
  start-page: 341
  issue: 4
  year: 2020
  ident: 9660_CR7
  publication-title: J. Emerg. Manag.
  doi: 10.5055/jem.2020.0478
– volume: 10
  start-page: 77
  issue: 2
  year: 2017
  ident: 9660_CR22
  publication-title: Sice J. Control Meas. Syst. Integr.
  doi: 10.9746/jcmsi.10.77
– volume: 21
  start-page: 22
  year: 2020
  ident: 9660_CR10
  publication-title: Algorithms
– volume: 11
  start-page: 100
  issue: 3
  year: 2017
  ident: 9660_CR25
  publication-title: J. Highway Transp. Res. Dev. (English Edition)
  doi: 10.1061/JHTRCQ.0000587
SSID ssj0025802
Score 2.3724089
Snippet The purpose of resource scheduling is to deal with all kinds of unexpected events that may occur in life, such as fire, traffic jam, earthquake and other...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 24
SubjectTerms Algorithms
Computer Science
Decision making
Emergencies
Management of Computing and Information Systems
Multiple objective analysis
Optimization algorithms
Particle swarm optimization
Processor Architectures
Resource allocation
Resource scheduling
Scheduling
Set theory
Traffic congestion
Traffic jams
User Interfaces and Human Computer Interaction
Subtitle Design and Application of Vague Set Theory and Adaptive Grid Particle Swarm Optimization Algorithm in Resource Scheduling Optimization
SummonAdditionalLinks – databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5B4cCl5U1KQUbiBhHJ2omdE1oBhVNZqYAqLpFf6a7UzW53s_AP-ruZSZyslopeOOTkiWJrZuwvnplvAF6b1Cc2lzJ23mSxqAT6nKp4bKxDfF0Vnsuu2YQ8OVFnZ8UkXLitQ1plvye2G7VbWLojf0esLVQ1mcv3y8uYukZRdDW00LgNd4glgVo3TLKfww9Xprqcw0xS1pzkoWgmlM7JEUUw8SGCypjvHkzX0Ob1pMm_IqftgXR88L9LuQ_7AYqycWc7D-CWrx_CQd_mgQWvfwRXH9ssD6Zrx8bbeDdbVOyHPt94duob1tX4dzJOL2kTZZ9XM8cmwTbZ6W-9mrOvODQPtZ9sfHGO82qmczarWR9IwA9P8fyjMvkd6cfw_fjTtw9f4tC-IbZCZk0sRYVoTGnhEDQqJ4ywPKk0YqLcC53l1tmCI4AyqUtyK4RTYuRTXXhBHGyZ409gr17U_hmwhJsiM8Yo3J2EL0yhEZfkWqQS0Qu-G0Ha6660gducWmxclFtWZtJ3mdBD-i55BG-Gd5Yds8eN0ke9Lsvg5etyq8gIXg3D6J8UdNG1X2xaGQSlmcpxkk87Cxo-x2WiCvwBjUDt2NYgQNzfuyP1bNpygKfUnwPxWQRvezPczuvfyzi8eRnP4d6odQm6ZTqCvWa18S_grv3VzNarl61z_QFfOisG
  priority: 102
  providerName: ProQuest
Title Design and Application of Vague Set Theory and Adaptive Grid Particle Swarm Optimization Algorithm in Resource Scheduling Optimization
URI https://link.springer.com/article/10.1007/s10723-023-09660-3
https://www.ncbi.nlm.nih.gov/pubmed/37089625
https://www.proquest.com/docview/2807964767
https://www.proquest.com/docview/2805515864
https://pubmed.ncbi.nlm.nih.gov/PMC10103021
Volume 21
WOSCitedRecordID wos000969743200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1572-9184
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0025802
  issn: 1570-7873
  databaseCode: P5Z
  dateStart: 20030301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1572-9184
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0025802
  issn: 1570-7873
  databaseCode: BENPR
  dateStart: 20030301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1572-9184
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025802
  issn: 1570-7873
  databaseCode: RSV
  dateStart: 20030301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB6xuxy4sLwJLJWRuEGkpLZj51hgF06lorCquER27GwjbdNVmsI_4HczTpyUsoAEhxwij_NwZuzPmZlvAF7o2EZ5IkRorOYhKxjanCxoqHOD-LpILRVdsQkxncrFIp35pLBNH-3euyTbmfqnZDcxdj5HPBylZEgP4Ig7thm3R5-fD9ssLrtIQy5crJygPlXm99fYX46uYczroZK_-EvbZejs-P9e4A7c9rCTTDo9uQs3bHUPjvuSDsRb-H34_raN6CCqMmSy822TdUHO1cXWkrltSJfP38kYdeUmTPKuLg2ZeT0k82-qXpEP2LTyeZ5kcnmxrstmuSJlRXqnAd54iWudS4nfk34An89OP715H_pSDWHOBG9CwQpEXlIxgwBRGqZZTqNCIf5JLFM8yU2eUgRLOjZRkjNmJBvbWKWWOb41buhDOKzWlX0MJKI65VpriTMRs6lOFWKQRLFYIFLBvgHE_RfLcs9j7sppXGY7BmY30FnkDjfQGQ3g5dDnqmPx-Kv0Sa8ImbfoTeZYg1zWbiICeD40oy06B4uq7HrbyiAA5TLBh3zU6c1wOyoimeJmMwC5p1GDgOP53m-pymXL9x27WhyIxQJ41SvW7rn-_BpP_k38Kdwat7rp_jCdwGFTb-0zuJl_bcpNPYIDsZAjOHp9Op19xLMZ_zJqze4HdiQkQQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRJcKG8CBYwEJ4hIYidODggttKVVy7KiBfUW_Ep3pW522QcVf4Cfw29knDhZLRW99cAhJ09ix5mXMzPfADyXoQlUwrmvjYx9VjCUubSgvlQa_esiM5TXzSZ4r5ceH2f9Nfjd1MLYtMpGJ1aKWo-V_Uf-2qK22KrJhL-dfPdt1ygbXW1aaNRssW9-nuGRbfZmbwu_74so2tk-er_ru64CvmI8nvucFegkpIJp9GVSzSRTNCgEmurEMBEnSquMol2XoQ4SxZhOWWRCkRlmocFiTfG5V2CdUZbEHVh_t93rf26PeHFaZznG3ObpcerKdFyxHo9szBQvC4np01VTeM6_PZ-m-VestjKBOxv_2-bdhBvO2SbdWjpuwZopb8NG08iCOL12B35tVXksRJSadJcRfTIuyFdxsjDk0MxJjWJQ02gxsWaCfJgONek76SOHZ2I6Ip9waOSqW0n39AT3YT4YkWFJmlAJTjxAC2-BAFao78KXS9mNe9Apx6V5ACSgMoullCnqX2YymQn0vBLBQo7-Gd7rQdjwSq4certtInKaL3GnLX_lgb0sf-XUg5ftPZMau-RC6s2Gd3Knx2b5knE8eNYOowayYSVRmvGiokG3O04TXOT9mmPb6SgP0gyP2B6kK7zcElh089WRcjioUM5D24EEPVAPXjVsv1zXv1_j4cWv8RSu7R59PMgP9nr7j-B6VImj_ae2CZ35dGEew1X1Yz6cTZ840Sbw7bIF4g_83YdR
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BQYgL5VUIbcFI3CBqsnZi57iiLCDQsmKh6i3yK91I3ewqzbb_gN_dcV7bbQEJccglHiexM2N_ycx8A_BGhTbQMee-sSryWcbQ5kRGfaUN4usssZQ3xSb4eCyOj5PJlSz-Otq9c0k2OQ2OpamoDpYmO7iS-MYHzv-Ih6OX9OltuMPwpAvq-j496j-5ItFEHUbcxc1x2qbN_P4am1vTDbx5M2zymu-03pJG2_8_mIfwoIWjZNjozyO4ZYvHsN2VeiCt5T-BX4d1pAeRhSHDtc-bLDJyJE9WlkxtRZo8_0bGyKVbSMnHMjdk0uonmV7Ick6-YdO8zf8kw9OTRZlXsznJC9I5E_DGM9wDXar8hvRT-Dn68OP9J78t4eBrxqPK5yxDRCYkMwgchWGKaRpkEnFRbJmMYm10QhFEqdAEsWbMCDawoUwsczxskaE7sFUsCvscSEBVEimlBK5QzCYqkYhNYslCjggG-3oQdm8v1S2_uSuzcZqumZndRKeBO9xEp9SDt32fZcPu8VfpvU4p0tbSz1LHJuSyeWPuweu-GW3UOV5kYRerWgaBaSRifMhnjQ71t6M8EAl-hHogNrSrF3D835stRT6recBDV6MDMZoH7zolWz_Xn4fx4t_EX8G9yeEo_fp5_GUX7g9qNXU_ofZgqypXdh_u6vMqPytf1pZ3CakCLIc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+and+Application+of+Vague+Set+Theory+and+Adaptive+Grid+Particle+Swarm+Optimization+Algorithm+in+Resource+Scheduling+Optimization&rft.jtitle=Journal+of+grid+computing&rft.au=Han%2C+Yibo&rft.au=Han%2C+Pu&rft.au=Yuan%2C+Bo&rft.au=Zhang%2C+Zheng&rft.date=2023-06-01&rft.eissn=1572-9184&rft.volume=21&rft.issue=2&rft.spage=24&rft_id=info:doi/10.1007%2Fs10723-023-09660-3&rft_id=info%3Apmid%2F37089625&rft.externalDocID=37089625
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1570-7873&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1570-7873&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1570-7873&client=summon