A network control theory pipeline for studying the dynamics of the structural connectome

Network control theory (NCT) is a simple and powerful tool for studying how network topology informs and constrains the dynamics of a system. Compared to other structure–function coupling approaches, the strength of NCT lies in its capacity to predict the patterns of external control signals that ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature protocols Jg. 19; H. 12; S. 3721 - 3749
Hauptverfasser: Parkes, Linden, Kim, Jason Z., Stiso, Jennifer, Brynildsen, Julia K., Cieslak, Matthew, Covitz, Sydney, Gur, Raquel E., Gur, Ruben C., Pasqualetti, Fabio, Shinohara, Russell T., Zhou, Dale, Satterthwaite, Theodore D., Bassett, Dani S.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 01.12.2024
Nature Publishing Group
Schlagworte:
ISSN:1754-2189, 1750-2799, 1750-2799
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Network control theory (NCT) is a simple and powerful tool for studying how network topology informs and constrains the dynamics of a system. Compared to other structure–function coupling approaches, the strength of NCT lies in its capacity to predict the patterns of external control signals that may alter the dynamics of a system in a desired way. An interesting development for NCT in the neuroscience field is its application to study behavior and mental health symptoms. To date, NCT has been validated to study different aspects of the human structural connectome. NCT outputs can be monitored throughout developmental stages to study the effects of connectome topology on neural dynamics and, separately, to test the coherence of empirical datasets with brain function and stimulation. Here, we provide a comprehensive pipeline for applying NCT to structural connectomes by following two procedures. The main procedure focuses on computing the control energy associated with the transitions between specific neural activity states. The second procedure focuses on computing average controllability, which indexes nodes’ general capacity to control the dynamics of the system. We provide recommendations for comparing NCT outputs against null network models, and we further support this approach with a Python-based software package called ‘network control theory for python’. The procedures in this protocol are appropriate for users with a background in network neuroscience and experience in dynamical systems theory. Key points We present a protocol on how to model the dynamics of neural connectivity states using network control theory (NCT) via a software package written in Python to compute the control energy associated with the transitions between states and the average controllability of the network’s dynamics. NCT complements biophysical models of neuronal communication and graph-theoretical measures of internodal communication. This protocol describes a comprehensive framework for applying network control theory to the human structural connectome to study its topology and show how that topology affects the dynamics of neural activity states, using a software package written in Python.
AbstractList Network control theory (NCT) is a simple and powerful tool for studying how network topology informs and constrains the dynamics of a system. Compared to other structure-function coupling approaches, the strength of NCT lies in its capacity to predict the patterns of external control signals that may alter the dynamics of a system in a desired way. An interesting development for NCT in the neuroscience field is its application to study behavior and mental health symptoms. To date, NCT has been validated to study different aspects of the human structural connectome. NCT outputs can be monitored throughout developmental stages to study the effects of connectome topology on neural dynamics and, separately, to test the coherence of empirical datasets with brain function and stimulation. Here, we provide a comprehensive pipeline for applying NCT to structural connectomes by following two procedures. The main procedure focuses on computing the control energy associated with the transitions between specific neural activity states. The second procedure focuses on computing average controllability, which indexes nodes' general capacity to control the dynamics of the system. We provide recommendations for comparing NCT outputs against null network models, and we further support this approach with a Python-based software package called 'network control theory for python'. The procedures in this protocol are appropriate for users with a background in network neuroscience and experience in dynamical systems theory.Network control theory (NCT) is a simple and powerful tool for studying how network topology informs and constrains the dynamics of a system. Compared to other structure-function coupling approaches, the strength of NCT lies in its capacity to predict the patterns of external control signals that may alter the dynamics of a system in a desired way. An interesting development for NCT in the neuroscience field is its application to study behavior and mental health symptoms. To date, NCT has been validated to study different aspects of the human structural connectome. NCT outputs can be monitored throughout developmental stages to study the effects of connectome topology on neural dynamics and, separately, to test the coherence of empirical datasets with brain function and stimulation. Here, we provide a comprehensive pipeline for applying NCT to structural connectomes by following two procedures. The main procedure focuses on computing the control energy associated with the transitions between specific neural activity states. The second procedure focuses on computing average controllability, which indexes nodes' general capacity to control the dynamics of the system. We provide recommendations for comparing NCT outputs against null network models, and we further support this approach with a Python-based software package called 'network control theory for python'. The procedures in this protocol are appropriate for users with a background in network neuroscience and experience in dynamical systems theory.
Network control theory (NCT) is a simple and powerful tool for studying how network topology informs and constrains the dynamics of a system. Compared to other structure-function coupling approaches, the strength of NCT lies in its capacity to predict the patterns of external control signals that may alter the dynamics of a system in a desired way. An interesting development for NCT in the neuroscience field is its application to study behavior and mental health symptoms. To date, NCT has been validated to study different aspects of the human structural connectome. NCT outputs can be monitored throughout developmental stages to study the effects of connectome topology on neural dynamics and, separately, to test the coherence of empirical datasets with brain function and stimulation. Here, we provide a comprehensive pipeline for applying NCT to structural connectomes by following two procedures. The main procedure focuses on computing the control energy associated with the transitions between specific neural activity states. The second procedure focuses on computing average controllability, which indexes nodes' general capacity to control the dynamics of the system. We provide recommendations for comparing NCT outputs against null network models, and we further support this approach with a Python-based software package called 'network control theory for python'. The procedures in this protocol are appropriate for users with a background in network neuroscience and experience in dynamical systems theory.
Network control theory (NCT) is a simple and powerful tool for studying how network topology informs and constrains the dynamics of a system. Compared to other structure-function coupling approaches, the strength of NCT lies in its capacity to predict the patterns of external control signals that may alter the dynamics of a system in a desired way. An interesting development for NCT in the neuroscience field is its application to study behavior and mental health symptoms. To date NCT has been validated to study different aspects of the human structural connectome. NCT outputs can be monitored throughout developmental stages to study the effects of connectome topology on neural dynamics and, separately, to test the coherence of empirical datasets with brain function and stimulation. Here, we provide a comprehensive pipeline for applying NCT to structural connectomes following two procedures. The main procedure focuses on computing the control energy associated with the transitions between specific neural activity states. The second procedure focuses on computing average controllability, which indexes nodes’ general capacity to control the dynamics of the system. We provide recommendations for comparing NCT outputs against null network models and, we further support this approach with a Python-based software package called network control theory for python (nctpy). The procedures are appropriate for users with a background in network neuroscience and experience in dynamical systems theory.
Network control theory (NCT) is a simple and powerful tool for studying how network topology informs and constrains the dynamics of a system. Compared to other structure–function coupling approaches, the strength of NCT lies in its capacity to predict the patterns of external control signals that may alter the dynamics of a system in a desired way. An interesting development for NCT in the neuroscience field is its application to study behavior and mental health symptoms. To date, NCT has been validated to study different aspects of the human structural connectome. NCT outputs can be monitored throughout developmental stages to study the effects of connectome topology on neural dynamics and, separately, to test the coherence of empirical datasets with brain function and stimulation. Here, we provide a comprehensive pipeline for applying NCT to structural connectomes by following two procedures. The main procedure focuses on computing the control energy associated with the transitions between specific neural activity states. The second procedure focuses on computing average controllability, which indexes nodes’ general capacity to control the dynamics of the system. We provide recommendations for comparing NCT outputs against null network models, and we further support this approach with a Python-based software package called ‘network control theory for python’. The procedures in this protocol are appropriate for users with a background in network neuroscience and experience in dynamical systems theory. Key points We present a protocol on how to model the dynamics of neural connectivity states using network control theory (NCT) via a software package written in Python to compute the control energy associated with the transitions between states and the average controllability of the network’s dynamics. NCT complements biophysical models of neuronal communication and graph-theoretical measures of internodal communication. This protocol describes a comprehensive framework for applying network control theory to the human structural connectome to study its topology and show how that topology affects the dynamics of neural activity states, using a software package written in Python.
Network control theory (NCT) is a simple and powerful tool for studying how network topology informs and constrains the dynamics of a system. Compared to other structure–function coupling approaches, the strength of NCT lies in its capacity to predict the patterns of external control signals that may alter the dynamics of a system in a desired way. An interesting development for NCT in the neuroscience field is its application to study behavior and mental health symptoms. To date, NCT has been validated to study different aspects of the human structural connectome. NCT outputs can be monitored throughout developmental stages to study the effects of connectome topology on neural dynamics and, separately, to test the coherence of empirical datasets with brain function and stimulation. Here, we provide a comprehensive pipeline for applying NCT to structural connectomes by following two procedures. The main procedure focuses on computing the control energy associated with the transitions between specific neural activity states. The second procedure focuses on computing average controllability, which indexes nodes’ general capacity to control the dynamics of the system. We provide recommendations for comparing NCT outputs against null network models, and we further support this approach with a Python-based software package called ‘network control theory for python’. The procedures in this protocol are appropriate for users with a background in network neuroscience and experience in dynamical systems theory.Key pointsWe present a protocol on how to model the dynamics of neural connectivity states using network control theory (NCT) via a software package written in Python to compute the control energy associated with the transitions between states and the average controllability of the network’s dynamics.NCT complements biophysical models of neuronal communication and graph-theoretical measures of internodal communication.
Author Bassett, Dani S.
Cieslak, Matthew
Parkes, Linden
Zhou, Dale
Satterthwaite, Theodore D.
Kim, Jason Z.
Shinohara, Russell T.
Gur, Raquel E.
Stiso, Jennifer
Covitz, Sydney
Gur, Ruben C.
Pasqualetti, Fabio
Brynildsen, Julia K.
AuthorAffiliation 8 Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, Philadelphia, PA 19104, USA
14 Santa Fe Institute, Santa Fe, NM 87501, USA
11 Department of Neurology, Perelman School of Medicine, Philadelphia, PA 19104, USA
12 Department of Electrical and Systems Engineering, University of Pennsylvania, PA 19104, USA
13 Department of Physics and Astronomy, University of Pennsylvania, PA 19104, USA
6 Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
9 Center for Biomedical Image Computation and Analytics, University of Pennsylvania, Philadelphia, PA 19104, USA
2 Department of Bioengineering, University of Pennsylvania, PA 19104, USA
1 Department of Psychiatry, Rutgers University, Piscataway, NJ 08854, USA
10 Penn Statistics in Imaging and Visualization Endeavor (PennSIVE), Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
5
AuthorAffiliation_xml – name: 1 Department of Psychiatry, Rutgers University, Piscataway, NJ 08854, USA
– name: 6 Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
– name: 11 Department of Neurology, Perelman School of Medicine, Philadelphia, PA 19104, USA
– name: 14 Santa Fe Institute, Santa Fe, NM 87501, USA
– name: 5 Penn/CHOP Lifespan Brain Institute, Perelman School of Medicine, Children’s Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
– name: 13 Department of Physics and Astronomy, University of Pennsylvania, PA 19104, USA
– name: 7 Department of Mechanical Engineering, University of California, Riverside, Riverside, CA 92521, USA
– name: 9 Center for Biomedical Image Computation and Analytics, University of Pennsylvania, Philadelphia, PA 19104, USA
– name: 2 Department of Bioengineering, University of Pennsylvania, PA 19104, USA
– name: 4 Department of Physics, Cornell University, Ithaca, NY 14853, USA
– name: 12 Department of Electrical and Systems Engineering, University of Pennsylvania, PA 19104, USA
– name: 10 Penn Statistics in Imaging and Visualization Endeavor (PennSIVE), Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
– name: 3 Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
– name: 8 Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, Philadelphia, PA 19104, USA
Author_xml – sequence: 1
  givenname: Linden
  orcidid: 0000-0002-9329-7207
  surname: Parkes
  fullname: Parkes, Linden
  email: linden.parkes@rutgers.edu
  organization: Department of Psychiatry, Rutgers University, Department of Bioengineering, University of Pennsylvania, Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania
– sequence: 2
  givenname: Jason Z.
  orcidid: 0000-0002-3970-4561
  surname: Kim
  fullname: Kim, Jason Z.
  organization: Department of Physics, Cornell University
– sequence: 3
  givenname: Jennifer
  surname: Stiso
  fullname: Stiso, Jennifer
  organization: Department of Bioengineering, University of Pennsylvania
– sequence: 4
  givenname: Julia K.
  surname: Brynildsen
  fullname: Brynildsen, Julia K.
  organization: Department of Bioengineering, University of Pennsylvania
– sequence: 5
  givenname: Matthew
  orcidid: 0000-0002-1931-4734
  surname: Cieslak
  fullname: Cieslak, Matthew
  organization: Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Penn/CHOP Lifespan Brain Institute, Perelman School of Medicine, Children’s Hospital of Philadelphia Research Institute, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania
– sequence: 6
  givenname: Sydney
  surname: Covitz
  fullname: Covitz, Sydney
  organization: Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Penn/CHOP Lifespan Brain Institute, Perelman School of Medicine, Children’s Hospital of Philadelphia Research Institute, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania
– sequence: 7
  givenname: Raquel E.
  surname: Gur
  fullname: Gur, Raquel E.
  organization: Penn/CHOP Lifespan Brain Institute, Perelman School of Medicine, Children’s Hospital of Philadelphia Research Institute, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania
– sequence: 8
  givenname: Ruben C.
  orcidid: 0000-0002-4082-8502
  surname: Gur
  fullname: Gur, Ruben C.
  organization: Penn/CHOP Lifespan Brain Institute, Perelman School of Medicine, Children’s Hospital of Philadelphia Research Institute, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania
– sequence: 9
  givenname: Fabio
  surname: Pasqualetti
  fullname: Pasqualetti, Fabio
  organization: Department of Mechanical Engineering, University of California, Riverside
– sequence: 10
  givenname: Russell T.
  surname: Shinohara
  fullname: Shinohara, Russell T.
  organization: Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, Center for Biomedical Image Computation and Analytics, University of Pennsylvania, Penn Statistics in Imaging and Visualization Endeavor (PennSIVE), Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania
– sequence: 11
  givenname: Dale
  surname: Zhou
  fullname: Zhou, Dale
  organization: Department of Bioengineering, University of Pennsylvania
– sequence: 12
  givenname: Theodore D.
  surname: Satterthwaite
  fullname: Satterthwaite, Theodore D.
  organization: Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Penn/CHOP Lifespan Brain Institute, Perelman School of Medicine, Children’s Hospital of Philadelphia Research Institute, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Center for Biomedical Image Computation and Analytics, University of Pennsylvania
– sequence: 13
  givenname: Dani S.
  surname: Bassett
  fullname: Bassett, Dani S.
  organization: Department of Bioengineering, University of Pennsylvania, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Department of Neurology, Perelman School of Medicine, Department of Electrical and Systems Engineering, University of Pennsylvania, Department of Physics and Astronomy, University of Pennsylvania, Santa Fe Institute
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39075309$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtv1DAUhS1URB_wB1igSGzYBPyKHytUVdAiVWIDEjvLcW6mLok92E5H8-_xzJQCXXRlW_c7597rc4qOQgyA0GuC3xPM1IfMSadFiylvMcGUtZtn6ITIDrdUan20v_OWEqWP0WnOtxhzyYR8gY6ZxrJjWJ-gH-dNgLKJ6WfjYigpTk25gZi2zdqvYfIBmjGmJpdl2Pqw2hWbYRvs7F1u4rh_55IWV5Zkp51HAFfiDC_R89FOGV7dn2fo--dP3y6u2uuvl18uzq9bx2VXWslBUq1AEaY7RXo2aCKY65zEvWWW28ESq7oehOt60WNClOjFKCxYPXJF2Rn6ePBdL_0Mg4O6hJ3MOvnZpq2J1pv_K8HfmFW8M4Rippng1eHdvUOKvxbIxcw-O5gmGyAu2TCsBBaUalnRt4_Q27ikUPczjDClNVFMVerNvyM9zPLn1ytAD4BLMecE4wNCsNlFaw7Rmhqt2UdrNlWkHomcL7b4XWrWT09L2UGaa5-wgvR37CdUvwHGmrpG
CitedBy_id crossref_primary_10_1016_j_bspc_2025_108355
crossref_primary_10_1007_s11126_025_10146_6
crossref_primary_10_1088_1741_2552_ad731f
crossref_primary_10_1186_s10194_025_02122_z
crossref_primary_10_1038_s42003_025_08439_4
crossref_primary_10_1088_2057_1976_adea7e
crossref_primary_10_1109_OJCSYS_2025_3599371
crossref_primary_10_1016_j_neuroimage_2025_121023
crossref_primary_10_1155_cplx_5780747
crossref_primary_10_1162_netn_a_00425
crossref_primary_10_1038_s42003_025_08078_9
crossref_primary_10_1016_j_nbd_2025_107089
crossref_primary_10_1016_j_bpsc_2024_05_006
crossref_primary_10_1093_psyrad_kkae028
crossref_primary_10_1088_1741_2552_ad9958
Cites_doi 10.1016/j.biopsych.2020.05.033
10.1098/rstb.2017.0372
10.1007/978-3-319-30169-3
10.1016/j.neuroimage.2012.08.052
10.1523/JNEUROSCI.1091-13.2013
10.1088/1741-2552/ab6e8b
10.1016/j.neuroimage.2019.01.011
10.1371/journal.pcbi.1005989
10.1038/s41596-018-0065-y
10.1038/nn.4497
10.1371/journal.pone.0150171
10.1016/j.neuroimage.2022.119323
10.1038/s41467-021-23694-9
10.1126/science.1235381
10.1103/PhysRevLett.115.098101
10.1038/ncomms8522
10.1137/15M1013857
10.1016/j.neuroimage.2013.05.041
10.3389/fnsys.2015.00175
10.1126/sciadv.add2185
10.1038/81460
10.1101/2023.05.11.540409
10.1016/j.neuroimage.2018.02.041
10.3758/s13415-011-0083-5
10.1113/jphysiol.1952.sp004764
10.1038/s41467-019-12765-7
10.1073/pnas.1903403116
10.1038/nrn3901
10.1038/s41467-021-24306-2
10.1093/cercor/bhx179
10.1162/netn_a_00161
10.1002/hbm.25780
10.1016/j.neuroimage.2016.11.006
10.1101/2023.03.16.532981
10.1162/netn_a_00192
10.1016/j.nicl.2018.03.032
10.1016/j.neuroimage.2013.07.064
10.1002/nbm.3752
10.1016/j.proeng.2013.09.088
10.1038/nature13186
10.1098/rspb.1952.0054
10.1073/pnas.1513302113
10.1038/s41467-020-20371-1
10.1371/journal.pcbi.1005076
10.1002/mrm.27471
10.1007/s10827-016-0596-6
10.1016/j.neuroimage.2017.12.059
10.1016/j.dcn.2018.03.001
10.1038/nature11405
10.1038/370615a0
10.1038/nature24056
10.1038/nature12742
10.1038/s41551-023-01117-y
10.1016/j.biopsych.2021.02.922
10.1016/j.celrep.2019.08.008
10.1162/netn_a_00066
10.3389/fnhum.2014.00647
10.1038/s41562-018-0420-6
10.23919/ACC.2018.8431724
10.1016/j.tics.2013.09.012
10.1523/JNEUROSCI.1929-08.2008
10.1038/s41467-019-08999-0
10.1038/s41592-021-01185-5
10.1038/nn.3839
10.1073/pnas.1510619112
10.1371/journal.pbio.3000284
10.1016/j.tics.2021.11.007
10.1523/JNEUROSCI.2128-13.2013
10.3389/fninf.2011.00013
10.1016/j.neuroimage.2011.12.051
10.1038/nn.4502
10.1016/j.neuroimage.2020.117252
10.1523/JNEUROSCI.0092-17.2018
10.1093/cercor/1.1.1
10.1038/s41586-019-1716-z
10.1063/1.4994819
10.1038/sdata.2017.181
10.1038/nmeth.1635
10.1162/netn_a_00153
10.1016/j.neuron.2015.05.035
10.1073/pnas.2006436118
10.1109/41.982254
10.1038/s41467-018-03811-x
10.1038/srep30770
10.1038/s41592-018-0235-4
10.1093/cercor/bhaa127
10.1038/nphys4268
10.1523/JNEUROSCI.3539-11.2011
10.1038/s41593-023-01282-y
10.1007/978-3-030-43395-6_17
10.1016/S0006-3495(72)86068-5
10.1016/j.neuroimage.2017.01.003
10.1007/s00429-019-01841-9
10.1073/pnas.1608282113
10.1016/j.neuroimage.2018.11.048
10.1038/nrn1055
10.1152/jn.00338.2011
10.1073/pnas.1814144116
10.1016/j.neuroimage.2015.03.056
10.1038/s41583-018-0038-8
10.1093/brain/awu132
10.1038/nature05523
10.1073/pnas.1617387114
10.1038/s41583-023-00718-5
10.1126/sciadv.abn2293
10.1137/0308033
10.1111/gbb.12386
10.1038/s41467-017-01254-4
10.1016/j.neuroimage.2015.10.068
10.1038/s42256-021-00376-1
10.1111/tops.12504
10.7554/eLife.62116
10.1063/5.0004344
10.1016/j.tics.2020.01.008
10.1038/s41467-019-12201-w
10.1101/2022.05.08.490752
10.1073/pnas.1912034117
10.1038/s41586-023-05964-2
10.1016/j.neuroimage.2021.118546
10.1016/j.neuroimage.2012.12.066
10.1098/rstb.2009.0292
10.1038/nmeth.2451
10.1016/j.neuroimage.2013.04.087
10.1016/j.neuroimage.2011.10.002
10.1016/j.neuropsychologia.2018.01.001
10.1162/netn_a_00151
10.1089/brain.2018.0587
10.23943/9781400890088
10.1126/sciadv.abf4752
10.1016/j.neuroimage.2016.04.050
10.7554/eLife.53060
10.1103/PhysRevE.101.062301
10.1038/s41593-021-00824-6
10.1371/journal.pcbi.1000092
10.1073/pnas.2008004117
10.1109/TCNS.2014.2310254
10.1038/ncomms9414
10.1016/j.neuroimage.2011.12.090
10.1016/j.neuroimage.2013.11.027
10.1016/j.neuron.2019.01.017
10.1523/ENEURO.0382-20.2021
10.1038/s41467-022-33578-1
10.1038/s42003-020-0961-x
ContentType Journal Article
Copyright Springer Nature Limited 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2024. Springer Nature Limited.
Copyright Nature Publishing Group Dec 2024
Copyright_xml – notice: Springer Nature Limited 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2024. Springer Nature Limited.
– notice: Copyright Nature Publishing Group Dec 2024
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QG
7T5
7T7
7TM
7X7
7XB
88E
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7N
M7P
P64
PATMY
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYCSY
RC3
7X8
5PM
DOI 10.1038/s41596-024-01023-w
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Animal Behavior Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central (ProQuest)
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Biotechnology and BioEngineering Abstracts
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
ProQuest Medical Library
Animal Behavior Abstracts
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE


ProQuest Central Student
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1750-2799
EndPage 3749
ExternalDocumentID PMC12039364
39075309
10_1038_s41596_024_01023_w
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: John D. and Catherine T. MacArthur Foundation (MacArthur Foundation)
  funderid: https://doi.org/10.13039/100000870
– fundername: Brain and Behavior Research Foundation (Brain & Behavior Research Foundation)
  grantid: 28995
  funderid: https://doi.org/10.13039/100000874
– fundername: National Science Foundation (NSF)
  grantid: DGE-1321851
  funderid: https://doi.org/10.13039/100000001
– fundername: U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
– fundername: U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
  grantid: R00MH127296; R01MH119219; RC2MH089983; RC2MH089924; R01MH112847; R21MH106799; R01MH113550; RF1MH116920; R01MH120482; R01MH107703; R01MH112847; R37MH125829; R01EB022573; R21MH106799; RF1MH116920
  funderid: https://doi.org/10.13039/100000025
– fundername: NIMH NIH HHS
  grantid: RC2 MH089924
– fundername: U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
  grantid: R01MH120482
– fundername: NIMH NIH HHS
  grantid: R01 MH119219
– fundername: U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
  grantid: R01MH113550
– fundername: NIBIB NIH HHS
  grantid: R01 EB022573
– fundername: U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
  grantid: R37MH125829
– fundername: U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
  grantid: R01MH107703
– fundername: NIMH NIH HHS
  grantid: R01 MH120482
– fundername: NIMH NIH HHS
  grantid: R01 MH112847
– fundername: U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
  grantid: R21MH106799
GroupedDBID ---
0R~
123
29M
39C
3TQ
3V.
4.4
53G
5BI
5M7
70F
7X7
7XC
88E
8FE
8FH
8FI
8FJ
AAEEF
AARCD
AAWYQ
AAYZH
AAZLF
ABAWZ
ABJNI
ABLJU
ABUWG
ACGFO
ACGFS
ACMJI
ACPRK
ADBBV
ADFRT
AENEX
AEUYN
AFBBN
AFKRA
AFRAH
AFSHS
AGAYW
AHBCP
AHMBA
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARMCB
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BHPHI
BKKNO
BPHCQ
BVXVI
CAG
CCPQU
COF
DB5
DU5
EBS
EE.
EJD
EMOBN
F5P
FEDTE
FSGXE
FYUFA
FZEXT
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IGS
IHR
INH
INR
ISR
ITC
LGEZI
LK8
LOTEE
M1P
M7P
NADUK
NNMJJ
NXXTH
O9-
ODYON
P2P
PATMY
PQQKQ
PROAC
PSQYO
PYCSY
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
UKHRP
AAYXX
AFANA
AFFHD
AGSTI
AIEIU
ATHPR
CITATION
NFIDA
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7T5
7T7
7TM
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
ID FETCH-LOGICAL-c475t-74e7298e8139581b3d9163c5c70ba3a4ada1a85be6c5b6b01186b6f6aea9f4823
IEDL.DBID M7P
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001280260600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1754-2189
1750-2799
IngestDate Tue Nov 04 02:03:49 EST 2025
Thu Oct 02 15:40:55 EDT 2025
Tue Dec 02 09:51:07 EST 2025
Fri Aug 15 02:01:13 EDT 2025
Sat Nov 29 01:32:58 EST 2025
Tue Nov 18 21:49:25 EST 2025
Fri Feb 21 02:35:54 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License 2024. Springer Nature Limited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c475t-74e7298e8139581b3d9163c5c70ba3a4ada1a85be6c5b6b01186b6f6aea9f4823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Writing—reviewing and editing: L.P., J.Z.K, J.S., J.K.B., M.C., S.C., R.E.G., R.C.G., F.P., R.T.S., D.Z., T.D.S, and D.S.B.
Data curation: J.K.B., M.C., S.C., R.E.G., R.C.G., R.T.S., D.Z., and T.D.S.
Software: L.P., J.Z.K., and J.S. Formal analysis: L.P., and J.Z.K. Visualization: L.P., and J.Z.K.
These authors contributed equally
Methodology: L.P., J.Z.K., J.S., and D.S.B.
Conceptualization: L.P., J.Z.K., T.D.S., and D.S.B.
Writing—original draft: L.P., and J.Z.K.
Author contributions
ORCID 0000-0002-9329-7207
0000-0002-4082-8502
0000-0002-1931-4734
0000-0002-3970-4561
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/12039364
PMID 39075309
PQID 3138991838
PQPubID 536306
PageCount 29
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_12039364
proquest_miscellaneous_3086062297
proquest_journals_3138991838
pubmed_primary_39075309
crossref_primary_10_1038_s41596_024_01023_w
crossref_citationtrail_10_1038_s41596_024_01023_w
springer_journals_10_1038_s41596_024_01023_w
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle Recipes for Researchers
PublicationTitle Nature protocols
PublicationTitleAbbrev Nat Protoc
PublicationTitleAlternate Nat Protoc
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References García-Cabezas (1023_CR85) 2019; 224
GL Baum (1023_CR133) 2018; 173
KM Anderson (1023_CR82) 2018; 9
K Amunts (1023_CR67) 2013; 340
DR Roalf (1023_CR136) 2016; 125
N Luo (1023_CR46) 2020; 30
JD Medaglia (1023_CR16) 2018; 38
DS Bassett (1023_CR104) 2012; 59
C Seguin (1023_CR106) 2022; 257
1023_CR5
1023_CR4
TD Satterthwaite (1023_CR24) 2016; 124
K Gorgolewski (1023_CR143) 2011; 5
1023_CR7
C Seguin (1023_CR9) 2023; 24
JE Knox (1023_CR27) 2019; 3
RF Betzel (1023_CR3) 2017; 160
L Parkes (1023_CR21) 2021; 89
LE Suárez (1023_CR91) 2021; 3
SG Hu (1023_CR119) 2015; 6
C Seguin (1023_CR105) 2019; 10
SP Singleton (1023_CR32) 2022; 13
1023_CR50
G Deco (1023_CR114) 2008; 4
E Nozari (1023_CR108) 2023; 8
A Arnatkeviciute (1023_CR80) 2021; 12
E Tang (1023_CR13) 2020; 101
DS Bassett (1023_CR2) 2018; 19
F Grasser (1023_CR36) 2002; 49
F Pasqualetti (1023_CR6) 2014; 1
TA Niendam (1023_CR74) 2012; 12
A Arnatkevičiūtė (1023_CR81) 2018; 14
MA Bertolero (1023_CR58) 2015; 112
A Yendiki (1023_CR132) 2014; 88
Y Park (1023_CR124) 2016; 40
JGT Zañudo (1023_CR127) 2017; 114
KV Shenoy (1023_CR115) 2021; 12
S Larivière (1023_CR78) 2019; 9
PA Robinson (1023_CR113) 2016; 142
T Sarwar (1023_CR112) 2019; 81
MP van den Heuvel (1023_CR61) 2011; 31
JC Maxwell (1023_CR35) 1867; 16
VJ Sydnor (1023_CR140) 2023; 26
S Oldham (1023_CR111) 2020; 222
V Mante (1023_CR97) 2013; 503
A Wolff (1023_CR139) 2022; 26
A Arnatkevičiūtė (1023_CR79) 2019; 189
O Esteban (1023_CR145) 2019; 16
RFH Cash (1023_CR41) 2021; 90
G Deco (1023_CR95) 2021; 7
B Mišić (1023_CR107) 2015; 86
MA Bertolero (1023_CR99) 2020; 12
AL Hodgkin (1023_CR37) 1952; 117
J Stiso (1023_CR14) 2019; 28
B Vázquez-Rodríguez (1023_CR100) 2020; 4
YN Kenett (1023_CR30) 2018; 118
BJ Casey (1023_CR65) 2018; 32
PT Fox (1023_CR49) 2012; 61
Z Lu (1023_CR90) 2020; 30
G Yan (1023_CR51) 2017; 550
DS Bassett (1023_CR1) 2017; 20
BD Fulcher (1023_CR76) 2019; 116
G Shafiei (1023_CR138) 2020; 9
SN Sotiropoulos (1023_CR134) 2019; 32
L Parkes (1023_CR22) 2022; 8
V Bazinet (1023_CR101) 2021; 243
CI Bargmann (1023_CR109) 2013; 10
JA Roberts (1023_CR92) 2019; 10
DJ Felleman (1023_CR130) 1991; 1
R Monasson (1023_CR96) 2015; 115
LM Alexander (1023_CR66) 2017; 4
BD Fulcher (1023_CR77) 2016; 113
TM Karrer (1023_CR8) 2020; 17
DS Bassett (1023_CR103) 2008; 28
J Yuan (1023_CR31) 2022; 43
A Fornito (1023_CR62) 2015; 16
MJ Hawrylycz (1023_CR68) 2012; 489
SF Muldoon (1023_CR18) 2016; 12
EM Gordon (1023_CR57) 2023; 617
J Fallon (1023_CR137) 2020; 4
X He (1023_CR116) 2022; 8
BH Scheid (1023_CR15) 2021; 118
M Cieslak (1023_CR135) 2021; 18
MA de Reus (1023_CR70) 2014; 8
M Demirtaş (1023_CR93) 2019; 101
G Deco (1023_CR94) 2013; 33
E Vinodh Kumar (1023_CR121) 2013; 64
MG Preti (1023_CR45) 2019; 10
A Fornito (1023_CR98) 2013; 80
Z Cui (1023_CR73) 2020; 9
HR Wilson (1023_CR39) 1972; 12
RM Smeal (1023_CR123) 2010; 365
D Durstewitz (1023_CR118) 2000; 3
LE Suárez (1023_CR42) 2020; 24
MP van den Heuvel (1023_CR71) 2013; 33
A Fornito (1023_CR102) 2012; 62
MP van den Heuvel (1023_CR60) 2013; 17
GL Baum (1023_CR44) 2020; 117
TD Satterthwaite (1023_CR23) 2014; 86
S Gu (1023_CR11) 2017; 148
1023_CR120
DA McCormick (1023_CR117) 2007; 445
DC Van Essen (1023_CR64) 2013; 80
SJ Schiff (1023_CR40) 1994; 370
C Paquola (1023_CR84) 2019; 17
E Tang (1023_CR12) 2017; 8
SL Brunton (1023_CR125) 2016; 11
MA de Reus (1023_CR131) 2013; 70
KM Anderson (1023_CR83) 2020; 117
AFG Rosen (1023_CR141) 2018; 169
L Papadopoulos (1023_CR38) 2017; 27
BT Thomas Yeo (1023_CR69) 2011; 106
AM Bastos (1023_CR122) 2016; 9
L Parkes (1023_CR75) 2017; 16
JD Medaglia (1023_CR17) 2021; 8
C Seguin (1023_CR47) 2020; 4
EJ Cornblath (1023_CR19) 2019; 188
B Chiêm (1023_CR28) 2021; 5
RF Betzel (1023_CR52) 2016; 6
S Gu (1023_CR10) 2015; 6
EJ Cornblath (1023_CR20) 2020; 3
JA Harris (1023_CR26) 2019; 575
B Vázquez-Rodríguez (1023_CR43) 2019; 116
1023_CR48
JL Proctor (1023_CR126) 2016; 15
JM Shine (1023_CR89) 2021; 24
R Ciric (1023_CR142) 2018; 13
J Jeganathan (1023_CR29) 2018; 19
F Tong (1023_CR56) 2003; 4
1023_CR33
1023_CR34
A Schaefer (1023_CR110) 2018; 28
SW Oh (1023_CR25) 2014; 508
MA Bertolero (1023_CR59) 2018; 2
JZ Kim (1023_CR53) 2018; 14
DS Margulies (1023_CR72) 2016; 113
T Yarkoni (1023_CR86) 2011; 8
U Braun (1023_CR55) 2021; 12
AL Hodgkin (1023_CR87) 1952; 140
GW Haynes (1023_CR128) 1970; 8
EK Towlson (1023_CR129) 2018; 373
NA Crossley (1023_CR63) 2014; 137
TD Satterthwaite (1023_CR144) 2013; 64
M Breakspear (1023_CR88) 2017; 20
TJ Sejnowski (1023_CR54) 2014; 17
37662395 - bioRxiv. 2023 Aug 24:2023.08.23.554519. doi: 10.1101/2023.08.23.554519.
References_xml – volume: 90
  start-page: 689
  year: 2021
  ident: 1023_CR41
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2020.05.033
– volume: 373
  start-page: 20170372
  year: 2018
  ident: 1023_CR129
  publication-title: Philos. Trans. R. Soc. B Biol. Sci.
  doi: 10.1098/rstb.2017.0372
– ident: 1023_CR120
  doi: 10.1007/978-3-319-30169-3
– volume: 64
  start-page: 240
  year: 2013
  ident: 1023_CR144
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.08.052
– volume: 33
  start-page: 11239
  year: 2013
  ident: 1023_CR94
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1091-13.2013
– ident: 1023_CR4
– volume: 17
  start-page: 026031
  year: 2020
  ident: 1023_CR8
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ab6e8b
– volume: 189
  start-page: 353
  year: 2019
  ident: 1023_CR79
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.01.011
– volume: 14
  start-page: e1005989
  year: 2018
  ident: 1023_CR81
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1005989
– volume: 13
  start-page: 2801
  year: 2018
  ident: 1023_CR142
  publication-title: Nat. Protoc.
  doi: 10.1038/s41596-018-0065-y
– volume: 20
  start-page: 340
  year: 2017
  ident: 1023_CR88
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4497
– volume: 11
  start-page: e0150171
  year: 2016
  ident: 1023_CR125
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0150171
– volume: 257
  start-page: 119323
  year: 2022
  ident: 1023_CR106
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2022.119323
– volume: 12
  year: 2021
  ident: 1023_CR55
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-23694-9
– volume: 340
  start-page: 1472
  year: 2013
  ident: 1023_CR67
  publication-title: Science
  doi: 10.1126/science.1235381
– volume: 115
  start-page: 098101
  year: 2015
  ident: 1023_CR96
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.115.098101
– volume: 6
  year: 2015
  ident: 1023_CR119
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8522
– volume: 15
  start-page: 142
  year: 2016
  ident: 1023_CR126
  publication-title: SIAM J. Appl. Dyn. Syst.
  doi: 10.1137/15M1013857
– volume: 80
  start-page: 62
  year: 2013
  ident: 1023_CR64
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.041
– volume: 16
  start-page: 270
  year: 1867
  ident: 1023_CR35
  publication-title: Proc. R. Soc. Lond.
– volume: 9
  start-page: 175
  year: 2016
  ident: 1023_CR122
  publication-title: Front. Syst. Neurosci.
  doi: 10.3389/fnsys.2015.00175
– volume: 8
  start-page: eadd2185
  year: 2022
  ident: 1023_CR22
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.add2185
– volume: 3
  start-page: 1184
  year: 2000
  ident: 1023_CR118
  publication-title: Nat. Neurosci.
  doi: 10.1038/81460
– ident: 1023_CR33
  doi: 10.1101/2023.05.11.540409
– volume: 173
  start-page: 275
  year: 2018
  ident: 1023_CR133
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.02.041
– volume: 12
  start-page: 241
  year: 2012
  ident: 1023_CR74
  publication-title: Cogn. Affect. Behav. Neurosci.
  doi: 10.3758/s13415-011-0083-5
– volume: 117
  start-page: 500
  year: 1952
  ident: 1023_CR37
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1952.sp004764
– volume: 10
  year: 2019
  ident: 1023_CR45
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12765-7
– volume: 116
  start-page: 21219
  year: 2019
  ident: 1023_CR43
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1903403116
– volume: 16
  start-page: 159
  year: 2015
  ident: 1023_CR62
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn3901
– volume: 12
  year: 2021
  ident: 1023_CR80
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-24306-2
– volume: 28
  start-page: 3095
  year: 2018
  ident: 1023_CR110
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhx179
– volume: 4
  start-page: 980
  year: 2020
  ident: 1023_CR47
  publication-title: Netw. Neurosci.
  doi: 10.1162/netn_a_00161
– volume: 43
  start-page: 2181
  year: 2022
  ident: 1023_CR31
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.25780
– volume: 160
  start-page: 73
  year: 2017
  ident: 1023_CR3
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.11.006
– ident: 1023_CR34
  doi: 10.1101/2023.03.16.532981
– volume: 5
  start-page: 591
  year: 2021
  ident: 1023_CR28
  publication-title: Netw. Neurosci.
  doi: 10.1162/netn_a_00192
– volume: 19
  start-page: 71
  year: 2018
  ident: 1023_CR29
  publication-title: NeuroImage Clin.
  doi: 10.1016/j.nicl.2018.03.032
– volume: 86
  start-page: 544
  year: 2014
  ident: 1023_CR23
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.07.064
– volume: 32
  start-page: e3752
  year: 2019
  ident: 1023_CR134
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.3752
– volume: 64
  start-page: 169
  year: 2013
  ident: 1023_CR121
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2013.09.088
– volume: 508
  start-page: 207
  year: 2014
  ident: 1023_CR25
  publication-title: Nature
  doi: 10.1038/nature13186
– volume: 140
  start-page: 177
  year: 1952
  ident: 1023_CR87
  publication-title: Proc. R. Soc. Lond. B Biol. Sci.
  doi: 10.1098/rspb.1952.0054
– volume: 113
  start-page: 1435
  year: 2016
  ident: 1023_CR77
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1513302113
– volume: 12
  year: 2021
  ident: 1023_CR115
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20371-1
– volume: 12
  start-page: e1005076
  year: 2016
  ident: 1023_CR18
  publication-title: PLOS Comput. Biol.
  doi: 10.1371/journal.pcbi.1005076
– volume: 81
  start-page: 1368
  year: 2019
  ident: 1023_CR112
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.27471
– volume: 40
  start-page: 269
  year: 2016
  ident: 1023_CR124
  publication-title: J. Comput. Neurosci.
  doi: 10.1007/s10827-016-0596-6
– volume: 169
  start-page: 407
  year: 2018
  ident: 1023_CR141
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.12.059
– volume: 32
  start-page: 43
  year: 2018
  ident: 1023_CR65
  publication-title: Dev. Cogn. Neurosci.
  doi: 10.1016/j.dcn.2018.03.001
– volume: 489
  start-page: 391
  year: 2012
  ident: 1023_CR68
  publication-title: Nature
  doi: 10.1038/nature11405
– volume: 370
  start-page: 615
  year: 1994
  ident: 1023_CR40
  publication-title: Nature
  doi: 10.1038/370615a0
– volume: 550
  start-page: 519
  year: 2017
  ident: 1023_CR51
  publication-title: Nature
  doi: 10.1038/nature24056
– volume: 503
  start-page: 78
  year: 2013
  ident: 1023_CR97
  publication-title: Nature
  doi: 10.1038/nature12742
– volume: 8
  start-page: 68
  year: 2023
  ident: 1023_CR108
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-023-01117-y
– volume: 89
  start-page: S370
  year: 2021
  ident: 1023_CR21
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2021.02.922
– volume: 28
  start-page: 2554
  year: 2019
  ident: 1023_CR14
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2019.08.008
– volume: 3
  start-page: 217
  year: 2019
  ident: 1023_CR27
  publication-title: Netw. Neurosci.
  doi: 10.1162/netn_a_00066
– volume: 8
  start-page: 647
  year: 2014
  ident: 1023_CR70
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2014.00647
– volume: 2
  start-page: 765
  year: 2018
  ident: 1023_CR59
  publication-title: Nat. Hum. Behav.
  doi: 10.1038/s41562-018-0420-6
– ident: 1023_CR5
  doi: 10.23919/ACC.2018.8431724
– volume: 17
  start-page: 683
  year: 2013
  ident: 1023_CR60
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2013.09.012
– volume: 28
  start-page: 9239
  year: 2008
  ident: 1023_CR103
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1929-08.2008
– volume: 10
  year: 2019
  ident: 1023_CR92
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08999-0
– volume: 18
  start-page: 775
  year: 2021
  ident: 1023_CR135
  publication-title: Nat. Methods
  doi: 10.1038/s41592-021-01185-5
– volume: 17
  start-page: 1440
  year: 2014
  ident: 1023_CR54
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3839
– volume: 112
  start-page: E6798
  year: 2015
  ident: 1023_CR58
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1510619112
– volume: 17
  start-page: e3000284
  year: 2019
  ident: 1023_CR84
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.3000284
– volume: 26
  start-page: 159
  year: 2022
  ident: 1023_CR139
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2021.11.007
– volume: 33
  start-page: 14489
  year: 2013
  ident: 1023_CR71
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2128-13.2013
– volume: 5
  start-page: 13
  year: 2011
  ident: 1023_CR143
  publication-title: Front. Neuroinform.
  doi: 10.3389/fninf.2011.00013
– volume: 61
  start-page: 407
  year: 2012
  ident: 1023_CR49
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.12.051
– volume: 20
  start-page: 353
  year: 2017
  ident: 1023_CR1
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4502
– volume: 222
  start-page: 117252
  year: 2020
  ident: 1023_CR111
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.117252
– volume: 38
  start-page: 6399
  year: 2018
  ident: 1023_CR16
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0092-17.2018
– volume: 1
  start-page: 1
  year: 1991
  ident: 1023_CR130
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/1.1.1
– volume: 575
  start-page: 195
  year: 2019
  ident: 1023_CR26
  publication-title: Nature
  doi: 10.1038/s41586-019-1716-z
– volume: 27
  start-page: 073115
  year: 2017
  ident: 1023_CR38
  publication-title: Chaos
  doi: 10.1063/1.4994819
– volume: 4
  year: 2017
  ident: 1023_CR66
  publication-title: Sci. Data
  doi: 10.1038/sdata.2017.181
– volume: 8
  start-page: 665
  year: 2011
  ident: 1023_CR86
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1635
– volume: 4
  start-page: 1072
  year: 2020
  ident: 1023_CR100
  publication-title: Netw. Neurosci.
  doi: 10.1162/netn_a_00153
– volume: 86
  start-page: 1518
  year: 2015
  ident: 1023_CR107
  publication-title: Neuron
  doi: 10.1016/j.neuron.2015.05.035
– volume: 118
  start-page: e2006436118
  year: 2021
  ident: 1023_CR15
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2006436118
– volume: 49
  start-page: 107
  year: 2002
  ident: 1023_CR36
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/41.982254
– volume: 9
  year: 2018
  ident: 1023_CR82
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03811-x
– volume: 6
  year: 2016
  ident: 1023_CR52
  publication-title: Sci. Rep.
  doi: 10.1038/srep30770
– volume: 16
  start-page: 111
  year: 2019
  ident: 1023_CR145
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0235-4
– volume: 30
  start-page: 5460
  year: 2020
  ident: 1023_CR46
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhaa127
– volume: 14
  start-page: 91
  year: 2018
  ident: 1023_CR53
  publication-title: Nat. Phys.
  doi: 10.1038/nphys4268
– volume: 31
  start-page: 15775
  year: 2011
  ident: 1023_CR61
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3539-11.2011
– volume: 26
  start-page: 638
  year: 2023
  ident: 1023_CR140
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-023-01282-y
– ident: 1023_CR7
  doi: 10.1007/978-3-030-43395-6_17
– volume: 12
  start-page: 1
  year: 1972
  ident: 1023_CR39
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(72)86068-5
– volume: 148
  start-page: 305
  year: 2017
  ident: 1023_CR11
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.01.003
– volume: 224
  start-page: 985
  year: 2019
  ident: 1023_CR85
  publication-title: Brain Struct. Funct.
  doi: 10.1007/s00429-019-01841-9
– volume: 113
  start-page: 12574
  year: 2016
  ident: 1023_CR72
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1608282113
– volume: 188
  start-page: 122
  year: 2019
  ident: 1023_CR19
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.11.048
– volume: 4
  start-page: 219
  year: 2003
  ident: 1023_CR56
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn1055
– volume: 106
  start-page: 1125
  year: 2011
  ident: 1023_CR69
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00338.2011
– volume: 116
  start-page: 4689
  year: 2019
  ident: 1023_CR76
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1814144116
– volume: 124
  start-page: 1115
  year: 2016
  ident: 1023_CR24
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.03.056
– volume: 19
  start-page: 566
  year: 2018
  ident: 1023_CR2
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/s41583-018-0038-8
– volume: 137
  start-page: 2382
  year: 2014
  ident: 1023_CR63
  publication-title: Brain
  doi: 10.1093/brain/awu132
– volume: 445
  start-page: E1
  year: 2007
  ident: 1023_CR117
  publication-title: Nature
  doi: 10.1038/nature05523
– volume: 114
  start-page: 7234
  year: 2017
  ident: 1023_CR127
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1617387114
– volume: 24
  start-page: 557
  year: 2023
  ident: 1023_CR9
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/s41583-023-00718-5
– volume: 8
  start-page: eabn2293
  year: 2022
  ident: 1023_CR116
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abn2293
– volume: 8
  start-page: 450
  year: 1970
  ident: 1023_CR128
  publication-title: SIAM J. Control
  doi: 10.1137/0308033
– volume: 16
  start-page: 647
  year: 2017
  ident: 1023_CR75
  publication-title: Genes Brain Behav.
  doi: 10.1111/gbb.12386
– volume: 8
  year: 2017
  ident: 1023_CR12
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01254-4
– volume: 125
  start-page: 903
  year: 2016
  ident: 1023_CR136
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.10.068
– volume: 3
  start-page: 771
  year: 2021
  ident: 1023_CR91
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-021-00376-1
– volume: 12
  start-page: 1272
  year: 2020
  ident: 1023_CR99
  publication-title: Top. Cogn. Sci.
  doi: 10.1111/tops.12504
– volume: 9
  start-page: e62116
  year: 2020
  ident: 1023_CR138
  publication-title: eLife
  doi: 10.7554/eLife.62116
– volume: 30
  start-page: 063133
  year: 2020
  ident: 1023_CR90
  publication-title: Chaos
  doi: 10.1063/5.0004344
– volume: 24
  start-page: 302
  year: 2020
  ident: 1023_CR42
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2020.01.008
– volume: 10
  year: 2019
  ident: 1023_CR105
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12201-w
– ident: 1023_CR48
  doi: 10.1101/2022.05.08.490752
– volume: 117
  start-page: 771
  year: 2020
  ident: 1023_CR44
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1912034117
– volume: 617
  start-page: 351
  year: 2023
  ident: 1023_CR57
  publication-title: Nature
  doi: 10.1038/s41586-023-05964-2
– volume: 243
  start-page: 118546
  year: 2021
  ident: 1023_CR101
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2021.118546
– volume: 70
  start-page: 402
  year: 2013
  ident: 1023_CR131
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.12.066
– volume: 365
  start-page: 2407
  year: 2010
  ident: 1023_CR123
  publication-title: Philos. Trans. R. Soc. B Biol. Sci.
  doi: 10.1098/rstb.2009.0292
– volume: 10
  start-page: 483
  year: 2013
  ident: 1023_CR109
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2451
– volume: 80
  start-page: 426
  year: 2013
  ident: 1023_CR98
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.04.087
– volume: 59
  start-page: 2196
  year: 2012
  ident: 1023_CR104
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.10.002
– volume: 118
  start-page: 79
  year: 2018
  ident: 1023_CR30
  publication-title: Neuropsychologia
  doi: 10.1016/j.neuropsychologia.2018.01.001
– volume: 4
  start-page: 788
  year: 2020
  ident: 1023_CR137
  publication-title: Netw. Neurosci.
  doi: 10.1162/netn_a_00151
– volume: 9
  start-page: 113
  year: 2019
  ident: 1023_CR78
  publication-title: Brain Connect.
  doi: 10.1089/brain.2018.0587
– ident: 1023_CR50
  doi: 10.23943/9781400890088
– volume: 7
  start-page: eabf4752
  year: 2021
  ident: 1023_CR95
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abf4752
– volume: 142
  start-page: 79
  year: 2016
  ident: 1023_CR113
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.04.050
– volume: 9
  start-page: e53060
  year: 2020
  ident: 1023_CR73
  publication-title: eLife
  doi: 10.7554/eLife.53060
– volume: 101
  start-page: 062301
  year: 2020
  ident: 1023_CR13
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.101.062301
– volume: 24
  start-page: 765
  year: 2021
  ident: 1023_CR89
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-021-00824-6
– volume: 4
  start-page: e1000092
  year: 2008
  ident: 1023_CR114
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1000092
– volume: 117
  start-page: 25138
  year: 2020
  ident: 1023_CR83
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2008004117
– volume: 1
  start-page: 40
  year: 2014
  ident: 1023_CR6
  publication-title: IEEE Trans. Control Netw. Syst.
  doi: 10.1109/TCNS.2014.2310254
– volume: 6
  year: 2015
  ident: 1023_CR10
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9414
– volume: 62
  start-page: 2296
  year: 2012
  ident: 1023_CR102
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.12.090
– volume: 88
  start-page: 79
  year: 2014
  ident: 1023_CR132
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.11.027
– volume: 101
  start-page: 1181
  year: 2019
  ident: 1023_CR93
  publication-title: Neuron
  doi: 10.1016/j.neuron.2019.01.017
– volume: 8
  start-page: ENEURO.0382-20.
  year: 2021
  ident: 1023_CR17
  publication-title: eneuro
  doi: 10.1523/ENEURO.0382-20.2021
– volume: 13
  year: 2022
  ident: 1023_CR32
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-33578-1
– volume: 3
  start-page: 261
  year: 2020
  ident: 1023_CR20
  publication-title: Commun. Biol.
  doi: 10.1038/s42003-020-0961-x
– reference: 37662395 - bioRxiv. 2023 Aug 24:2023.08.23.554519. doi: 10.1101/2023.08.23.554519.
SSID ssj0047367
Score 2.5489125
SecondaryResourceType review_article
Snippet Network control theory (NCT) is a simple and powerful tool for studying how network topology informs and constrains the dynamics of a system. Compared to other...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3721
SubjectTerms 631/378/116/1925
631/378/116/2392
631/378/116/2393
Analytical Chemistry
Biological Techniques
Biomedical and Life Sciences
Brain - diagnostic imaging
Brain - physiology
Cognitive ability
Computation
Computational Biology/Bioinformatics
Connectome - methods
Control systems
Control theory
Controllability
Developmental stages
Dynamic systems theory
Dynamical systems
Dynamics
Graph theory
Humans
Life Sciences
Microarrays
Models, Neurological
Nerve Net - physiology
Network control
Network topologies
Neural networks
Neurosciences
Organic Chemistry
Protocol
Software
Software packages
Structure-function relationships
System theory
Topology
Title A network control theory pipeline for studying the dynamics of the structural connectome
URI https://link.springer.com/article/10.1038/s41596-024-01023-w
https://www.ncbi.nlm.nih.gov/pubmed/39075309
https://www.proquest.com/docview/3138991838
https://www.proquest.com/docview/3086062297
https://pubmed.ncbi.nlm.nih.gov/PMC12039364
Volume 19
WOSCitedRecordID wos001280260600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1750-2799
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0047367
  issn: 1754-2189
  databaseCode: M7P
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database (ProQuest)
  customDbUrl:
  eissn: 1750-2799
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0047367
  issn: 1754-2189
  databaseCode: PATMY
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1750-2799
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0047367
  issn: 1754-2189
  databaseCode: 7X7
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1750-2799
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0047367
  issn: 1754-2189
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RFiQuvB-BsjISN7CaxElsn1BBrTig1QqBtLfIT7ESZBdSqPrvmXGSrZaKXrhEiuwktmbs-eKZ-QbgVSSSqKKw3OY28srhxcZK8FyU3kWnjIyJxPWjnM_VcqkX44FbP4ZVTnti2qj92tEZ-ZEgj5pGBVRvNz84VY0i7-pYQmMPDogloUyhe4tpJ66kSBVk0UJWHE2ZHpNmcqGOejRcKfyWYjDQbvHzXcN0BW1eDZr8y3OaDNLp3f-dyj24M0JRdjzozn24EboHcGsoTnnxEJbHrBtixNkYz85S1uMF26w2lMUeGAJelvhpcYDUyPxQ375n65juB3ZaYvagd3TkIfgeHsGX05PP7z_wsQ4Dd5Wsz7isAkJwFRSixRphrvCIKYWrncytEaYy3hRG1TY0rraNpVzWxjaxMcHoWKlSPIb9bt2Fp8BE43NP_D_aK4Ru0cSaclS8Ka3OvfYZFJMQWjeSlFOtjG9tcpYL1Q6Ca1FwbRJce57B6-0zm4Gi49reh5NQ2nG59u2lRDJ4uW3GhUbeE9OF9S_sgz9_eVOWWmbwZFCF7eeERuQlcp2B2lGSbQci8d5t6VZfE5l3UVJ2dFNl8GbSp8tx_Xsaz66fxnO4XZJup7ibQ9hHaYcXcNP9Plv1P2ewJ5cyXdUMDt6dzBefZmnl_AFBYx2A
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VBUQvlFdLaAEjwQmiJnEezgGhqlC16rLiUKS9BT_FSjS7kMJq_xS_kRnnUW0reuuBS6TIzsPx55lxZuYbgFeOSKLiWIUqUi5MNR6US3kY8cRop4UsnCdxHRXjsZhMys9r8KfPhaGwyl4mekFtZpr-ke9x8qiVCEDxfv4jpKpR5F3tS2i0sDixywVu2Zp3xx9wfl8nyeHH04OjsKsqEOq0yM7DIrVoUAor0PbJ0GjjBi0krjNdREpymUojYykyZXOdqVxRZmaucpdLK0uXCiI6QJF_C-V4QZu9YjJs8NKC-4q1qJHTEFVn2SXpRFzsNagofbgvxXygngwXq4rwinV7NUjzkqfWK8DDzf_t092He52pzfbbtfEA1mz9EO60xTeXj2Cyz-o2Bp518frMZ3Uu2Xw6pyx9y9CgZ55_Fz8INTKzrOXZVDds5vx5y75LzCV0j5o8IGf2MXy5kWFtwXo9q-0TYDw3kSF-o9IINE2ddBnl4BiZqDIypQkg7ie90h0JO9UC-V75YAAuqhYoFQKl8kCpFgG8Ga6ZtxQk1_be7UFQdeKoqS4QEMDLoRkFCXmHZG1nv7APbm6jPEFYB7DdQm94HC_RsuRRGYBYAeXQgUjKV1vq6TdPVh4nlP2dpwG87fF78V7_HsbT64fxAu4enX4aVaPj8ckObCS0rnyM0S6s48zbZ3Bb_z6fNj-f-xXK4OtN4_ovym52uA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VKSAuvKGGAosEJ7Bqe_3YPSAUUSKqliiHIoWTWe9DRGqdgAtR_hq_jpm1nSpU9NYDl0jWbhyv_e3M58zMNwAvHYlExXEVVlHlwlTjR-VSHkY8MdppoQrnRVyPivFYTKdysgW_-1oYSqvsbaI31Gau6T_yPU4RNYkAFHuuS4uY7I_eLb6H1EGKIq19O40WIod2tcTXt-btwT4-61dJMvpw_P5j2HUYCHVaZGdhkVokl8IK5EEZEjhukC1xnekiqhRXqTIqViKrbK6zKq-oSjOvcpcrq6RLBYkeoPnfFnkRiQFsT4bHn770fiAtuO9fi_45DdGRyq5kJ8IVNOg2ffIvZYCg1wyXm27xAte9mLL5V9zWu8PR7f_5Rt6BWx0JZ8N219yFLVvfg-ttW87VfZgOWd1mx7Muk5_5es8VW8wWVL9vGVJ95pV58ebQIDOrWp3OdMPmzh-3urykaULnqCk2cmofwOcrWdZDGNTz2u4A47mJDCkfSSOQtDrlMqrOMSqpZGSkCSDuAVDqTp6duoSclD5NgIuyBU2JoCk9aMplAK_X31m04iSXzt7tAVF2hqopz9EQwIv1MJoYihup2s5_4hx87Y3yJJFFAI9aGK5_jkvknDySAYgNgK4nkHz55kg9--ZlzOOE6sLzNIA3PZbPr-vfy3h8-TKeww2Ec3l0MD58AjcT2mI--WgXBvjg7VO4pn-dzZofz7rtyuDrVQP7D2wagQQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+network+control+theory+pipeline+for+studying+the+dynamics+of+the+structural+connectome&rft.jtitle=Nature+protocols&rft.date=2024-12-01&rft.pub=Nature+Publishing+Group&rft.issn=1754-2189&rft.eissn=1750-2799&rft.volume=19&rft.issue=12&rft.spage=3721&rft.epage=3749&rft_id=info:doi/10.1038%2Fs41596-024-01023-w&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-2189&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-2189&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-2189&client=summon