A network control theory pipeline for studying the dynamics of the structural connectome
Network control theory (NCT) is a simple and powerful tool for studying how network topology informs and constrains the dynamics of a system. Compared to other structure–function coupling approaches, the strength of NCT lies in its capacity to predict the patterns of external control signals that ma...
Gespeichert in:
| Veröffentlicht in: | Nature protocols Jg. 19; H. 12; S. 3721 - 3749 |
|---|---|
| Hauptverfasser: | , , , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Nature Publishing Group UK
01.12.2024
Nature Publishing Group |
| Schlagworte: | |
| ISSN: | 1754-2189, 1750-2799, 1750-2799 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Network control theory (NCT) is a simple and powerful tool for studying how network topology informs and constrains the dynamics of a system. Compared to other structure–function coupling approaches, the strength of NCT lies in its capacity to predict the patterns of external control signals that may alter the dynamics of a system in a desired way. An interesting development for NCT in the neuroscience field is its application to study behavior and mental health symptoms. To date, NCT has been validated to study different aspects of the human structural connectome. NCT outputs can be monitored throughout developmental stages to study the effects of connectome topology on neural dynamics and, separately, to test the coherence of empirical datasets with brain function and stimulation. Here, we provide a comprehensive pipeline for applying NCT to structural connectomes by following two procedures. The main procedure focuses on computing the control energy associated with the transitions between specific neural activity states. The second procedure focuses on computing average controllability, which indexes nodes’ general capacity to control the dynamics of the system. We provide recommendations for comparing NCT outputs against null network models, and we further support this approach with a Python-based software package called ‘network control theory for python’. The procedures in this protocol are appropriate for users with a background in network neuroscience and experience in dynamical systems theory.
Key points
We present a protocol on how to model the dynamics of neural connectivity states using network control theory (NCT) via a software package written in Python to compute the control energy associated with the transitions between states and the average controllability of the network’s dynamics.
NCT complements biophysical models of neuronal communication and graph-theoretical measures of internodal communication.
This protocol describes a comprehensive framework for applying network control theory to the human structural connectome to study its topology and show how that topology affects the dynamics of neural activity states, using a software package written in Python. |
|---|---|
| AbstractList | Network control theory (NCT) is a simple and powerful tool for studying how network topology informs and constrains the dynamics of a system. Compared to other structure-function coupling approaches, the strength of NCT lies in its capacity to predict the patterns of external control signals that may alter the dynamics of a system in a desired way. An interesting development for NCT in the neuroscience field is its application to study behavior and mental health symptoms. To date, NCT has been validated to study different aspects of the human structural connectome. NCT outputs can be monitored throughout developmental stages to study the effects of connectome topology on neural dynamics and, separately, to test the coherence of empirical datasets with brain function and stimulation. Here, we provide a comprehensive pipeline for applying NCT to structural connectomes by following two procedures. The main procedure focuses on computing the control energy associated with the transitions between specific neural activity states. The second procedure focuses on computing average controllability, which indexes nodes' general capacity to control the dynamics of the system. We provide recommendations for comparing NCT outputs against null network models, and we further support this approach with a Python-based software package called 'network control theory for python'. The procedures in this protocol are appropriate for users with a background in network neuroscience and experience in dynamical systems theory.Network control theory (NCT) is a simple and powerful tool for studying how network topology informs and constrains the dynamics of a system. Compared to other structure-function coupling approaches, the strength of NCT lies in its capacity to predict the patterns of external control signals that may alter the dynamics of a system in a desired way. An interesting development for NCT in the neuroscience field is its application to study behavior and mental health symptoms. To date, NCT has been validated to study different aspects of the human structural connectome. NCT outputs can be monitored throughout developmental stages to study the effects of connectome topology on neural dynamics and, separately, to test the coherence of empirical datasets with brain function and stimulation. Here, we provide a comprehensive pipeline for applying NCT to structural connectomes by following two procedures. The main procedure focuses on computing the control energy associated with the transitions between specific neural activity states. The second procedure focuses on computing average controllability, which indexes nodes' general capacity to control the dynamics of the system. We provide recommendations for comparing NCT outputs against null network models, and we further support this approach with a Python-based software package called 'network control theory for python'. The procedures in this protocol are appropriate for users with a background in network neuroscience and experience in dynamical systems theory. Network control theory (NCT) is a simple and powerful tool for studying how network topology informs and constrains the dynamics of a system. Compared to other structure-function coupling approaches, the strength of NCT lies in its capacity to predict the patterns of external control signals that may alter the dynamics of a system in a desired way. An interesting development for NCT in the neuroscience field is its application to study behavior and mental health symptoms. To date, NCT has been validated to study different aspects of the human structural connectome. NCT outputs can be monitored throughout developmental stages to study the effects of connectome topology on neural dynamics and, separately, to test the coherence of empirical datasets with brain function and stimulation. Here, we provide a comprehensive pipeline for applying NCT to structural connectomes by following two procedures. The main procedure focuses on computing the control energy associated with the transitions between specific neural activity states. The second procedure focuses on computing average controllability, which indexes nodes' general capacity to control the dynamics of the system. We provide recommendations for comparing NCT outputs against null network models, and we further support this approach with a Python-based software package called 'network control theory for python'. The procedures in this protocol are appropriate for users with a background in network neuroscience and experience in dynamical systems theory. Network control theory (NCT) is a simple and powerful tool for studying how network topology informs and constrains the dynamics of a system. Compared to other structure-function coupling approaches, the strength of NCT lies in its capacity to predict the patterns of external control signals that may alter the dynamics of a system in a desired way. An interesting development for NCT in the neuroscience field is its application to study behavior and mental health symptoms. To date NCT has been validated to study different aspects of the human structural connectome. NCT outputs can be monitored throughout developmental stages to study the effects of connectome topology on neural dynamics and, separately, to test the coherence of empirical datasets with brain function and stimulation. Here, we provide a comprehensive pipeline for applying NCT to structural connectomes following two procedures. The main procedure focuses on computing the control energy associated with the transitions between specific neural activity states. The second procedure focuses on computing average controllability, which indexes nodes’ general capacity to control the dynamics of the system. We provide recommendations for comparing NCT outputs against null network models and, we further support this approach with a Python-based software package called network control theory for python (nctpy). The procedures are appropriate for users with a background in network neuroscience and experience in dynamical systems theory. Network control theory (NCT) is a simple and powerful tool for studying how network topology informs and constrains the dynamics of a system. Compared to other structure–function coupling approaches, the strength of NCT lies in its capacity to predict the patterns of external control signals that may alter the dynamics of a system in a desired way. An interesting development for NCT in the neuroscience field is its application to study behavior and mental health symptoms. To date, NCT has been validated to study different aspects of the human structural connectome. NCT outputs can be monitored throughout developmental stages to study the effects of connectome topology on neural dynamics and, separately, to test the coherence of empirical datasets with brain function and stimulation. Here, we provide a comprehensive pipeline for applying NCT to structural connectomes by following two procedures. The main procedure focuses on computing the control energy associated with the transitions between specific neural activity states. The second procedure focuses on computing average controllability, which indexes nodes’ general capacity to control the dynamics of the system. We provide recommendations for comparing NCT outputs against null network models, and we further support this approach with a Python-based software package called ‘network control theory for python’. The procedures in this protocol are appropriate for users with a background in network neuroscience and experience in dynamical systems theory. Key points We present a protocol on how to model the dynamics of neural connectivity states using network control theory (NCT) via a software package written in Python to compute the control energy associated with the transitions between states and the average controllability of the network’s dynamics. NCT complements biophysical models of neuronal communication and graph-theoretical measures of internodal communication. This protocol describes a comprehensive framework for applying network control theory to the human structural connectome to study its topology and show how that topology affects the dynamics of neural activity states, using a software package written in Python. Network control theory (NCT) is a simple and powerful tool for studying how network topology informs and constrains the dynamics of a system. Compared to other structure–function coupling approaches, the strength of NCT lies in its capacity to predict the patterns of external control signals that may alter the dynamics of a system in a desired way. An interesting development for NCT in the neuroscience field is its application to study behavior and mental health symptoms. To date, NCT has been validated to study different aspects of the human structural connectome. NCT outputs can be monitored throughout developmental stages to study the effects of connectome topology on neural dynamics and, separately, to test the coherence of empirical datasets with brain function and stimulation. Here, we provide a comprehensive pipeline for applying NCT to structural connectomes by following two procedures. The main procedure focuses on computing the control energy associated with the transitions between specific neural activity states. The second procedure focuses on computing average controllability, which indexes nodes’ general capacity to control the dynamics of the system. We provide recommendations for comparing NCT outputs against null network models, and we further support this approach with a Python-based software package called ‘network control theory for python’. The procedures in this protocol are appropriate for users with a background in network neuroscience and experience in dynamical systems theory.Key pointsWe present a protocol on how to model the dynamics of neural connectivity states using network control theory (NCT) via a software package written in Python to compute the control energy associated with the transitions between states and the average controllability of the network’s dynamics.NCT complements biophysical models of neuronal communication and graph-theoretical measures of internodal communication. |
| Author | Bassett, Dani S. Cieslak, Matthew Parkes, Linden Zhou, Dale Satterthwaite, Theodore D. Kim, Jason Z. Shinohara, Russell T. Gur, Raquel E. Stiso, Jennifer Covitz, Sydney Gur, Ruben C. Pasqualetti, Fabio Brynildsen, Julia K. |
| AuthorAffiliation | 8 Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, Philadelphia, PA 19104, USA 14 Santa Fe Institute, Santa Fe, NM 87501, USA 11 Department of Neurology, Perelman School of Medicine, Philadelphia, PA 19104, USA 12 Department of Electrical and Systems Engineering, University of Pennsylvania, PA 19104, USA 13 Department of Physics and Astronomy, University of Pennsylvania, PA 19104, USA 6 Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA 9 Center for Biomedical Image Computation and Analytics, University of Pennsylvania, Philadelphia, PA 19104, USA 2 Department of Bioengineering, University of Pennsylvania, PA 19104, USA 1 Department of Psychiatry, Rutgers University, Piscataway, NJ 08854, USA 10 Penn Statistics in Imaging and Visualization Endeavor (PennSIVE), Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA 5 |
| AuthorAffiliation_xml | – name: 1 Department of Psychiatry, Rutgers University, Piscataway, NJ 08854, USA – name: 6 Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA – name: 11 Department of Neurology, Perelman School of Medicine, Philadelphia, PA 19104, USA – name: 14 Santa Fe Institute, Santa Fe, NM 87501, USA – name: 5 Penn/CHOP Lifespan Brain Institute, Perelman School of Medicine, Children’s Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA – name: 13 Department of Physics and Astronomy, University of Pennsylvania, PA 19104, USA – name: 7 Department of Mechanical Engineering, University of California, Riverside, Riverside, CA 92521, USA – name: 9 Center for Biomedical Image Computation and Analytics, University of Pennsylvania, Philadelphia, PA 19104, USA – name: 2 Department of Bioengineering, University of Pennsylvania, PA 19104, USA – name: 4 Department of Physics, Cornell University, Ithaca, NY 14853, USA – name: 12 Department of Electrical and Systems Engineering, University of Pennsylvania, PA 19104, USA – name: 10 Penn Statistics in Imaging and Visualization Endeavor (PennSIVE), Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA – name: 3 Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA – name: 8 Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, Philadelphia, PA 19104, USA |
| Author_xml | – sequence: 1 givenname: Linden orcidid: 0000-0002-9329-7207 surname: Parkes fullname: Parkes, Linden email: linden.parkes@rutgers.edu organization: Department of Psychiatry, Rutgers University, Department of Bioengineering, University of Pennsylvania, Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania – sequence: 2 givenname: Jason Z. orcidid: 0000-0002-3970-4561 surname: Kim fullname: Kim, Jason Z. organization: Department of Physics, Cornell University – sequence: 3 givenname: Jennifer surname: Stiso fullname: Stiso, Jennifer organization: Department of Bioengineering, University of Pennsylvania – sequence: 4 givenname: Julia K. surname: Brynildsen fullname: Brynildsen, Julia K. organization: Department of Bioengineering, University of Pennsylvania – sequence: 5 givenname: Matthew orcidid: 0000-0002-1931-4734 surname: Cieslak fullname: Cieslak, Matthew organization: Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Penn/CHOP Lifespan Brain Institute, Perelman School of Medicine, Children’s Hospital of Philadelphia Research Institute, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania – sequence: 6 givenname: Sydney surname: Covitz fullname: Covitz, Sydney organization: Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Penn/CHOP Lifespan Brain Institute, Perelman School of Medicine, Children’s Hospital of Philadelphia Research Institute, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania – sequence: 7 givenname: Raquel E. surname: Gur fullname: Gur, Raquel E. organization: Penn/CHOP Lifespan Brain Institute, Perelman School of Medicine, Children’s Hospital of Philadelphia Research Institute, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania – sequence: 8 givenname: Ruben C. orcidid: 0000-0002-4082-8502 surname: Gur fullname: Gur, Ruben C. organization: Penn/CHOP Lifespan Brain Institute, Perelman School of Medicine, Children’s Hospital of Philadelphia Research Institute, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania – sequence: 9 givenname: Fabio surname: Pasqualetti fullname: Pasqualetti, Fabio organization: Department of Mechanical Engineering, University of California, Riverside – sequence: 10 givenname: Russell T. surname: Shinohara fullname: Shinohara, Russell T. organization: Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, Center for Biomedical Image Computation and Analytics, University of Pennsylvania, Penn Statistics in Imaging and Visualization Endeavor (PennSIVE), Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania – sequence: 11 givenname: Dale surname: Zhou fullname: Zhou, Dale organization: Department of Bioengineering, University of Pennsylvania – sequence: 12 givenname: Theodore D. surname: Satterthwaite fullname: Satterthwaite, Theodore D. organization: Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Penn/CHOP Lifespan Brain Institute, Perelman School of Medicine, Children’s Hospital of Philadelphia Research Institute, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Center for Biomedical Image Computation and Analytics, University of Pennsylvania – sequence: 13 givenname: Dani S. surname: Bassett fullname: Bassett, Dani S. organization: Department of Bioengineering, University of Pennsylvania, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Department of Neurology, Perelman School of Medicine, Department of Electrical and Systems Engineering, University of Pennsylvania, Department of Physics and Astronomy, University of Pennsylvania, Santa Fe Institute |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39075309$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUtv1DAUhS1URB_wB1igSGzYBPyKHytUVdAiVWIDEjvLcW6mLok92E5H8-_xzJQCXXRlW_c7597rc4qOQgyA0GuC3xPM1IfMSadFiylvMcGUtZtn6ITIDrdUan20v_OWEqWP0WnOtxhzyYR8gY6ZxrJjWJ-gH-dNgLKJ6WfjYigpTk25gZi2zdqvYfIBmjGmJpdl2Pqw2hWbYRvs7F1u4rh_55IWV5Zkp51HAFfiDC_R89FOGV7dn2fo--dP3y6u2uuvl18uzq9bx2VXWslBUq1AEaY7RXo2aCKY65zEvWWW28ESq7oehOt60WNClOjFKCxYPXJF2Rn6ePBdL_0Mg4O6hJ3MOvnZpq2J1pv_K8HfmFW8M4Rippng1eHdvUOKvxbIxcw-O5gmGyAu2TCsBBaUalnRt4_Q27ikUPczjDClNVFMVerNvyM9zPLn1ytAD4BLMecE4wNCsNlFaw7Rmhqt2UdrNlWkHomcL7b4XWrWT09L2UGaa5-wgvR37CdUvwHGmrpG |
| CitedBy_id | crossref_primary_10_1016_j_bspc_2025_108355 crossref_primary_10_1007_s11126_025_10146_6 crossref_primary_10_1088_1741_2552_ad731f crossref_primary_10_1186_s10194_025_02122_z crossref_primary_10_1038_s42003_025_08439_4 crossref_primary_10_1088_2057_1976_adea7e crossref_primary_10_1109_OJCSYS_2025_3599371 crossref_primary_10_1016_j_neuroimage_2025_121023 crossref_primary_10_1155_cplx_5780747 crossref_primary_10_1162_netn_a_00425 crossref_primary_10_1038_s42003_025_08078_9 crossref_primary_10_1016_j_nbd_2025_107089 crossref_primary_10_1016_j_bpsc_2024_05_006 crossref_primary_10_1093_psyrad_kkae028 crossref_primary_10_1088_1741_2552_ad9958 |
| Cites_doi | 10.1016/j.biopsych.2020.05.033 10.1098/rstb.2017.0372 10.1007/978-3-319-30169-3 10.1016/j.neuroimage.2012.08.052 10.1523/JNEUROSCI.1091-13.2013 10.1088/1741-2552/ab6e8b 10.1016/j.neuroimage.2019.01.011 10.1371/journal.pcbi.1005989 10.1038/s41596-018-0065-y 10.1038/nn.4497 10.1371/journal.pone.0150171 10.1016/j.neuroimage.2022.119323 10.1038/s41467-021-23694-9 10.1126/science.1235381 10.1103/PhysRevLett.115.098101 10.1038/ncomms8522 10.1137/15M1013857 10.1016/j.neuroimage.2013.05.041 10.3389/fnsys.2015.00175 10.1126/sciadv.add2185 10.1038/81460 10.1101/2023.05.11.540409 10.1016/j.neuroimage.2018.02.041 10.3758/s13415-011-0083-5 10.1113/jphysiol.1952.sp004764 10.1038/s41467-019-12765-7 10.1073/pnas.1903403116 10.1038/nrn3901 10.1038/s41467-021-24306-2 10.1093/cercor/bhx179 10.1162/netn_a_00161 10.1002/hbm.25780 10.1016/j.neuroimage.2016.11.006 10.1101/2023.03.16.532981 10.1162/netn_a_00192 10.1016/j.nicl.2018.03.032 10.1016/j.neuroimage.2013.07.064 10.1002/nbm.3752 10.1016/j.proeng.2013.09.088 10.1038/nature13186 10.1098/rspb.1952.0054 10.1073/pnas.1513302113 10.1038/s41467-020-20371-1 10.1371/journal.pcbi.1005076 10.1002/mrm.27471 10.1007/s10827-016-0596-6 10.1016/j.neuroimage.2017.12.059 10.1016/j.dcn.2018.03.001 10.1038/nature11405 10.1038/370615a0 10.1038/nature24056 10.1038/nature12742 10.1038/s41551-023-01117-y 10.1016/j.biopsych.2021.02.922 10.1016/j.celrep.2019.08.008 10.1162/netn_a_00066 10.3389/fnhum.2014.00647 10.1038/s41562-018-0420-6 10.23919/ACC.2018.8431724 10.1016/j.tics.2013.09.012 10.1523/JNEUROSCI.1929-08.2008 10.1038/s41467-019-08999-0 10.1038/s41592-021-01185-5 10.1038/nn.3839 10.1073/pnas.1510619112 10.1371/journal.pbio.3000284 10.1016/j.tics.2021.11.007 10.1523/JNEUROSCI.2128-13.2013 10.3389/fninf.2011.00013 10.1016/j.neuroimage.2011.12.051 10.1038/nn.4502 10.1016/j.neuroimage.2020.117252 10.1523/JNEUROSCI.0092-17.2018 10.1093/cercor/1.1.1 10.1038/s41586-019-1716-z 10.1063/1.4994819 10.1038/sdata.2017.181 10.1038/nmeth.1635 10.1162/netn_a_00153 10.1016/j.neuron.2015.05.035 10.1073/pnas.2006436118 10.1109/41.982254 10.1038/s41467-018-03811-x 10.1038/srep30770 10.1038/s41592-018-0235-4 10.1093/cercor/bhaa127 10.1038/nphys4268 10.1523/JNEUROSCI.3539-11.2011 10.1038/s41593-023-01282-y 10.1007/978-3-030-43395-6_17 10.1016/S0006-3495(72)86068-5 10.1016/j.neuroimage.2017.01.003 10.1007/s00429-019-01841-9 10.1073/pnas.1608282113 10.1016/j.neuroimage.2018.11.048 10.1038/nrn1055 10.1152/jn.00338.2011 10.1073/pnas.1814144116 10.1016/j.neuroimage.2015.03.056 10.1038/s41583-018-0038-8 10.1093/brain/awu132 10.1038/nature05523 10.1073/pnas.1617387114 10.1038/s41583-023-00718-5 10.1126/sciadv.abn2293 10.1137/0308033 10.1111/gbb.12386 10.1038/s41467-017-01254-4 10.1016/j.neuroimage.2015.10.068 10.1038/s42256-021-00376-1 10.1111/tops.12504 10.7554/eLife.62116 10.1063/5.0004344 10.1016/j.tics.2020.01.008 10.1038/s41467-019-12201-w 10.1101/2022.05.08.490752 10.1073/pnas.1912034117 10.1038/s41586-023-05964-2 10.1016/j.neuroimage.2021.118546 10.1016/j.neuroimage.2012.12.066 10.1098/rstb.2009.0292 10.1038/nmeth.2451 10.1016/j.neuroimage.2013.04.087 10.1016/j.neuroimage.2011.10.002 10.1016/j.neuropsychologia.2018.01.001 10.1162/netn_a_00151 10.1089/brain.2018.0587 10.23943/9781400890088 10.1126/sciadv.abf4752 10.1016/j.neuroimage.2016.04.050 10.7554/eLife.53060 10.1103/PhysRevE.101.062301 10.1038/s41593-021-00824-6 10.1371/journal.pcbi.1000092 10.1073/pnas.2008004117 10.1109/TCNS.2014.2310254 10.1038/ncomms9414 10.1016/j.neuroimage.2011.12.090 10.1016/j.neuroimage.2013.11.027 10.1016/j.neuron.2019.01.017 10.1523/ENEURO.0382-20.2021 10.1038/s41467-022-33578-1 10.1038/s42003-020-0961-x |
| ContentType | Journal Article |
| Copyright | Springer Nature Limited 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2024. Springer Nature Limited. Copyright Nature Publishing Group Dec 2024 |
| Copyright_xml | – notice: Springer Nature Limited 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2024. Springer Nature Limited. – notice: Copyright Nature Publishing Group Dec 2024 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QG 7T5 7T7 7TM 7X7 7XB 88E 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7N M7P P64 PATMY PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PYCSY RC3 7X8 5PM |
| DOI | 10.1038/s41596-024-01023-w |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Animal Behavior Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central (ProQuest) Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts ProQuest SciTech Collection ProQuest Medical Library Animal Behavior Abstracts Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE ProQuest Central Student |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1750-2799 |
| EndPage | 3749 |
| ExternalDocumentID | PMC12039364 39075309 10_1038_s41596_024_01023_w |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: John D. and Catherine T. MacArthur Foundation (MacArthur Foundation) funderid: https://doi.org/10.13039/100000870 – fundername: Brain and Behavior Research Foundation (Brain & Behavior Research Foundation) grantid: 28995 funderid: https://doi.org/10.13039/100000874 – fundername: National Science Foundation (NSF) grantid: DGE-1321851 funderid: https://doi.org/10.13039/100000001 – fundername: U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH) – fundername: U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH) grantid: R00MH127296; R01MH119219; RC2MH089983; RC2MH089924; R01MH112847; R21MH106799; R01MH113550; RF1MH116920; R01MH120482; R01MH107703; R01MH112847; R37MH125829; R01EB022573; R21MH106799; RF1MH116920 funderid: https://doi.org/10.13039/100000025 – fundername: NIMH NIH HHS grantid: RC2 MH089924 – fundername: U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH) grantid: R01MH120482 – fundername: NIMH NIH HHS grantid: R01 MH119219 – fundername: U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH) grantid: R01MH113550 – fundername: NIBIB NIH HHS grantid: R01 EB022573 – fundername: U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH) grantid: R37MH125829 – fundername: U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH) grantid: R01MH107703 – fundername: NIMH NIH HHS grantid: R01 MH120482 – fundername: NIMH NIH HHS grantid: R01 MH112847 – fundername: U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH) grantid: R21MH106799 |
| GroupedDBID | --- 0R~ 123 29M 39C 3TQ 3V. 4.4 53G 5BI 5M7 70F 7X7 7XC 88E 8FE 8FH 8FI 8FJ AAEEF AARCD AAWYQ AAYZH AAZLF ABAWZ ABJNI ABLJU ABUWG ACGFO ACGFS ACMJI ACPRK ADBBV ADFRT AENEX AEUYN AFBBN AFKRA AFRAH AFSHS AGAYW AHBCP AHMBA AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARMCB ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI CAG CCPQU COF DB5 DU5 EBS EE. EJD EMOBN F5P FEDTE FSGXE FYUFA FZEXT HCIFZ HMCUK HVGLF HZ~ IAO IGS IHR INH INR ISR ITC LGEZI LK8 LOTEE M1P M7P NADUK NNMJJ NXXTH O9- ODYON P2P PATMY PQQKQ PROAC PSQYO PYCSY RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG UKHRP AAYXX AFANA AFFHD AGSTI AIEIU ATHPR CITATION NFIDA PHGZM PHGZT PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 7QG 7T5 7T7 7TM 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM |
| ID | FETCH-LOGICAL-c475t-74e7298e8139581b3d9163c5c70ba3a4ada1a85be6c5b6b01186b6f6aea9f4823 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 20 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001280260600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1754-2189 1750-2799 |
| IngestDate | Tue Nov 04 02:03:49 EST 2025 Thu Oct 02 15:40:55 EDT 2025 Tue Dec 02 09:51:07 EST 2025 Fri Aug 15 02:01:13 EDT 2025 Sat Nov 29 01:32:58 EST 2025 Tue Nov 18 21:49:25 EST 2025 Fri Feb 21 02:35:54 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | 2024. Springer Nature Limited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c475t-74e7298e8139581b3d9163c5c70ba3a4ada1a85be6c5b6b01186b6f6aea9f4823 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Writing—reviewing and editing: L.P., J.Z.K, J.S., J.K.B., M.C., S.C., R.E.G., R.C.G., F.P., R.T.S., D.Z., T.D.S, and D.S.B. Data curation: J.K.B., M.C., S.C., R.E.G., R.C.G., R.T.S., D.Z., and T.D.S. Software: L.P., J.Z.K., and J.S. Formal analysis: L.P., and J.Z.K. Visualization: L.P., and J.Z.K. These authors contributed equally Methodology: L.P., J.Z.K., J.S., and D.S.B. Conceptualization: L.P., J.Z.K., T.D.S., and D.S.B. Writing—original draft: L.P., and J.Z.K. Author contributions |
| ORCID | 0000-0002-9329-7207 0000-0002-4082-8502 0000-0002-1931-4734 0000-0002-3970-4561 |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/12039364 |
| PMID | 39075309 |
| PQID | 3138991838 |
| PQPubID | 536306 |
| PageCount | 29 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_12039364 proquest_miscellaneous_3086062297 proquest_journals_3138991838 pubmed_primary_39075309 crossref_primary_10_1038_s41596_024_01023_w crossref_citationtrail_10_1038_s41596_024_01023_w springer_journals_10_1038_s41596_024_01023_w |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-01 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationSubtitle | Recipes for Researchers |
| PublicationTitle | Nature protocols |
| PublicationTitleAbbrev | Nat Protoc |
| PublicationTitleAlternate | Nat Protoc |
| PublicationYear | 2024 |
| Publisher | Nature Publishing Group UK Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
| References | García-Cabezas (1023_CR85) 2019; 224 GL Baum (1023_CR133) 2018; 173 KM Anderson (1023_CR82) 2018; 9 K Amunts (1023_CR67) 2013; 340 DR Roalf (1023_CR136) 2016; 125 N Luo (1023_CR46) 2020; 30 JD Medaglia (1023_CR16) 2018; 38 DS Bassett (1023_CR104) 2012; 59 C Seguin (1023_CR106) 2022; 257 1023_CR5 1023_CR4 TD Satterthwaite (1023_CR24) 2016; 124 K Gorgolewski (1023_CR143) 2011; 5 1023_CR7 C Seguin (1023_CR9) 2023; 24 JE Knox (1023_CR27) 2019; 3 RF Betzel (1023_CR3) 2017; 160 L Parkes (1023_CR21) 2021; 89 LE Suárez (1023_CR91) 2021; 3 SG Hu (1023_CR119) 2015; 6 C Seguin (1023_CR105) 2019; 10 SP Singleton (1023_CR32) 2022; 13 1023_CR50 G Deco (1023_CR114) 2008; 4 E Nozari (1023_CR108) 2023; 8 A Arnatkeviciute (1023_CR80) 2021; 12 E Tang (1023_CR13) 2020; 101 DS Bassett (1023_CR2) 2018; 19 F Grasser (1023_CR36) 2002; 49 F Pasqualetti (1023_CR6) 2014; 1 TA Niendam (1023_CR74) 2012; 12 A Arnatkevičiūtė (1023_CR81) 2018; 14 MA Bertolero (1023_CR58) 2015; 112 A Yendiki (1023_CR132) 2014; 88 Y Park (1023_CR124) 2016; 40 JGT Zañudo (1023_CR127) 2017; 114 KV Shenoy (1023_CR115) 2021; 12 S Larivière (1023_CR78) 2019; 9 PA Robinson (1023_CR113) 2016; 142 T Sarwar (1023_CR112) 2019; 81 MP van den Heuvel (1023_CR61) 2011; 31 JC Maxwell (1023_CR35) 1867; 16 VJ Sydnor (1023_CR140) 2023; 26 S Oldham (1023_CR111) 2020; 222 V Mante (1023_CR97) 2013; 503 A Wolff (1023_CR139) 2022; 26 A Arnatkevičiūtė (1023_CR79) 2019; 189 O Esteban (1023_CR145) 2019; 16 RFH Cash (1023_CR41) 2021; 90 G Deco (1023_CR95) 2021; 7 B Mišić (1023_CR107) 2015; 86 MA Bertolero (1023_CR99) 2020; 12 AL Hodgkin (1023_CR37) 1952; 117 J Stiso (1023_CR14) 2019; 28 B Vázquez-Rodríguez (1023_CR100) 2020; 4 YN Kenett (1023_CR30) 2018; 118 BJ Casey (1023_CR65) 2018; 32 PT Fox (1023_CR49) 2012; 61 Z Lu (1023_CR90) 2020; 30 G Yan (1023_CR51) 2017; 550 DS Bassett (1023_CR1) 2017; 20 BD Fulcher (1023_CR76) 2019; 116 G Shafiei (1023_CR138) 2020; 9 SN Sotiropoulos (1023_CR134) 2019; 32 L Parkes (1023_CR22) 2022; 8 V Bazinet (1023_CR101) 2021; 243 CI Bargmann (1023_CR109) 2013; 10 JA Roberts (1023_CR92) 2019; 10 DJ Felleman (1023_CR130) 1991; 1 R Monasson (1023_CR96) 2015; 115 LM Alexander (1023_CR66) 2017; 4 BD Fulcher (1023_CR77) 2016; 113 TM Karrer (1023_CR8) 2020; 17 DS Bassett (1023_CR103) 2008; 28 J Yuan (1023_CR31) 2022; 43 A Fornito (1023_CR62) 2015; 16 MJ Hawrylycz (1023_CR68) 2012; 489 SF Muldoon (1023_CR18) 2016; 12 EM Gordon (1023_CR57) 2023; 617 J Fallon (1023_CR137) 2020; 4 X He (1023_CR116) 2022; 8 BH Scheid (1023_CR15) 2021; 118 M Cieslak (1023_CR135) 2021; 18 MA de Reus (1023_CR70) 2014; 8 M Demirtaş (1023_CR93) 2019; 101 G Deco (1023_CR94) 2013; 33 E Vinodh Kumar (1023_CR121) 2013; 64 MG Preti (1023_CR45) 2019; 10 A Fornito (1023_CR98) 2013; 80 Z Cui (1023_CR73) 2020; 9 HR Wilson (1023_CR39) 1972; 12 RM Smeal (1023_CR123) 2010; 365 D Durstewitz (1023_CR118) 2000; 3 LE Suárez (1023_CR42) 2020; 24 MP van den Heuvel (1023_CR71) 2013; 33 A Fornito (1023_CR102) 2012; 62 MP van den Heuvel (1023_CR60) 2013; 17 GL Baum (1023_CR44) 2020; 117 TD Satterthwaite (1023_CR23) 2014; 86 S Gu (1023_CR11) 2017; 148 1023_CR120 DA McCormick (1023_CR117) 2007; 445 DC Van Essen (1023_CR64) 2013; 80 SJ Schiff (1023_CR40) 1994; 370 C Paquola (1023_CR84) 2019; 17 E Tang (1023_CR12) 2017; 8 SL Brunton (1023_CR125) 2016; 11 MA de Reus (1023_CR131) 2013; 70 KM Anderson (1023_CR83) 2020; 117 AFG Rosen (1023_CR141) 2018; 169 L Papadopoulos (1023_CR38) 2017; 27 BT Thomas Yeo (1023_CR69) 2011; 106 AM Bastos (1023_CR122) 2016; 9 L Parkes (1023_CR75) 2017; 16 JD Medaglia (1023_CR17) 2021; 8 C Seguin (1023_CR47) 2020; 4 EJ Cornblath (1023_CR19) 2019; 188 B Chiêm (1023_CR28) 2021; 5 RF Betzel (1023_CR52) 2016; 6 S Gu (1023_CR10) 2015; 6 EJ Cornblath (1023_CR20) 2020; 3 JA Harris (1023_CR26) 2019; 575 B Vázquez-Rodríguez (1023_CR43) 2019; 116 1023_CR48 JL Proctor (1023_CR126) 2016; 15 JM Shine (1023_CR89) 2021; 24 R Ciric (1023_CR142) 2018; 13 J Jeganathan (1023_CR29) 2018; 19 F Tong (1023_CR56) 2003; 4 1023_CR33 1023_CR34 A Schaefer (1023_CR110) 2018; 28 SW Oh (1023_CR25) 2014; 508 MA Bertolero (1023_CR59) 2018; 2 JZ Kim (1023_CR53) 2018; 14 DS Margulies (1023_CR72) 2016; 113 T Yarkoni (1023_CR86) 2011; 8 U Braun (1023_CR55) 2021; 12 AL Hodgkin (1023_CR87) 1952; 140 GW Haynes (1023_CR128) 1970; 8 EK Towlson (1023_CR129) 2018; 373 NA Crossley (1023_CR63) 2014; 137 TD Satterthwaite (1023_CR144) 2013; 64 M Breakspear (1023_CR88) 2017; 20 TJ Sejnowski (1023_CR54) 2014; 17 37662395 - bioRxiv. 2023 Aug 24:2023.08.23.554519. doi: 10.1101/2023.08.23.554519. |
| References_xml | – volume: 90 start-page: 689 year: 2021 ident: 1023_CR41 publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2020.05.033 – volume: 373 start-page: 20170372 year: 2018 ident: 1023_CR129 publication-title: Philos. Trans. R. Soc. B Biol. Sci. doi: 10.1098/rstb.2017.0372 – ident: 1023_CR120 doi: 10.1007/978-3-319-30169-3 – volume: 64 start-page: 240 year: 2013 ident: 1023_CR144 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.08.052 – volume: 33 start-page: 11239 year: 2013 ident: 1023_CR94 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1091-13.2013 – ident: 1023_CR4 – volume: 17 start-page: 026031 year: 2020 ident: 1023_CR8 publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ab6e8b – volume: 189 start-page: 353 year: 2019 ident: 1023_CR79 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.01.011 – volume: 14 start-page: e1005989 year: 2018 ident: 1023_CR81 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1005989 – volume: 13 start-page: 2801 year: 2018 ident: 1023_CR142 publication-title: Nat. Protoc. doi: 10.1038/s41596-018-0065-y – volume: 20 start-page: 340 year: 2017 ident: 1023_CR88 publication-title: Nat. Neurosci. doi: 10.1038/nn.4497 – volume: 11 start-page: e0150171 year: 2016 ident: 1023_CR125 publication-title: PLoS One doi: 10.1371/journal.pone.0150171 – volume: 257 start-page: 119323 year: 2022 ident: 1023_CR106 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2022.119323 – volume: 12 year: 2021 ident: 1023_CR55 publication-title: Nat. Commun. doi: 10.1038/s41467-021-23694-9 – volume: 340 start-page: 1472 year: 2013 ident: 1023_CR67 publication-title: Science doi: 10.1126/science.1235381 – volume: 115 start-page: 098101 year: 2015 ident: 1023_CR96 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.115.098101 – volume: 6 year: 2015 ident: 1023_CR119 publication-title: Nat. Commun. doi: 10.1038/ncomms8522 – volume: 15 start-page: 142 year: 2016 ident: 1023_CR126 publication-title: SIAM J. Appl. Dyn. Syst. doi: 10.1137/15M1013857 – volume: 80 start-page: 62 year: 2013 ident: 1023_CR64 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.041 – volume: 16 start-page: 270 year: 1867 ident: 1023_CR35 publication-title: Proc. R. Soc. Lond. – volume: 9 start-page: 175 year: 2016 ident: 1023_CR122 publication-title: Front. Syst. Neurosci. doi: 10.3389/fnsys.2015.00175 – volume: 8 start-page: eadd2185 year: 2022 ident: 1023_CR22 publication-title: Sci. Adv. doi: 10.1126/sciadv.add2185 – volume: 3 start-page: 1184 year: 2000 ident: 1023_CR118 publication-title: Nat. Neurosci. doi: 10.1038/81460 – ident: 1023_CR33 doi: 10.1101/2023.05.11.540409 – volume: 173 start-page: 275 year: 2018 ident: 1023_CR133 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.02.041 – volume: 12 start-page: 241 year: 2012 ident: 1023_CR74 publication-title: Cogn. Affect. Behav. Neurosci. doi: 10.3758/s13415-011-0083-5 – volume: 117 start-page: 500 year: 1952 ident: 1023_CR37 publication-title: J. Physiol. doi: 10.1113/jphysiol.1952.sp004764 – volume: 10 year: 2019 ident: 1023_CR45 publication-title: Nat. Commun. doi: 10.1038/s41467-019-12765-7 – volume: 116 start-page: 21219 year: 2019 ident: 1023_CR43 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1903403116 – volume: 16 start-page: 159 year: 2015 ident: 1023_CR62 publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn3901 – volume: 12 year: 2021 ident: 1023_CR80 publication-title: Nat. Commun. doi: 10.1038/s41467-021-24306-2 – volume: 28 start-page: 3095 year: 2018 ident: 1023_CR110 publication-title: Cereb. Cortex doi: 10.1093/cercor/bhx179 – volume: 4 start-page: 980 year: 2020 ident: 1023_CR47 publication-title: Netw. Neurosci. doi: 10.1162/netn_a_00161 – volume: 43 start-page: 2181 year: 2022 ident: 1023_CR31 publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.25780 – volume: 160 start-page: 73 year: 2017 ident: 1023_CR3 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.11.006 – ident: 1023_CR34 doi: 10.1101/2023.03.16.532981 – volume: 5 start-page: 591 year: 2021 ident: 1023_CR28 publication-title: Netw. Neurosci. doi: 10.1162/netn_a_00192 – volume: 19 start-page: 71 year: 2018 ident: 1023_CR29 publication-title: NeuroImage Clin. doi: 10.1016/j.nicl.2018.03.032 – volume: 86 start-page: 544 year: 2014 ident: 1023_CR23 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.07.064 – volume: 32 start-page: e3752 year: 2019 ident: 1023_CR134 publication-title: NMR Biomed. doi: 10.1002/nbm.3752 – volume: 64 start-page: 169 year: 2013 ident: 1023_CR121 publication-title: Procedia Eng. doi: 10.1016/j.proeng.2013.09.088 – volume: 508 start-page: 207 year: 2014 ident: 1023_CR25 publication-title: Nature doi: 10.1038/nature13186 – volume: 140 start-page: 177 year: 1952 ident: 1023_CR87 publication-title: Proc. R. Soc. Lond. B Biol. Sci. doi: 10.1098/rspb.1952.0054 – volume: 113 start-page: 1435 year: 2016 ident: 1023_CR77 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1513302113 – volume: 12 year: 2021 ident: 1023_CR115 publication-title: Nat. Commun. doi: 10.1038/s41467-020-20371-1 – volume: 12 start-page: e1005076 year: 2016 ident: 1023_CR18 publication-title: PLOS Comput. Biol. doi: 10.1371/journal.pcbi.1005076 – volume: 81 start-page: 1368 year: 2019 ident: 1023_CR112 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.27471 – volume: 40 start-page: 269 year: 2016 ident: 1023_CR124 publication-title: J. Comput. Neurosci. doi: 10.1007/s10827-016-0596-6 – volume: 169 start-page: 407 year: 2018 ident: 1023_CR141 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.12.059 – volume: 32 start-page: 43 year: 2018 ident: 1023_CR65 publication-title: Dev. Cogn. Neurosci. doi: 10.1016/j.dcn.2018.03.001 – volume: 489 start-page: 391 year: 2012 ident: 1023_CR68 publication-title: Nature doi: 10.1038/nature11405 – volume: 370 start-page: 615 year: 1994 ident: 1023_CR40 publication-title: Nature doi: 10.1038/370615a0 – volume: 550 start-page: 519 year: 2017 ident: 1023_CR51 publication-title: Nature doi: 10.1038/nature24056 – volume: 503 start-page: 78 year: 2013 ident: 1023_CR97 publication-title: Nature doi: 10.1038/nature12742 – volume: 8 start-page: 68 year: 2023 ident: 1023_CR108 publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-023-01117-y – volume: 89 start-page: S370 year: 2021 ident: 1023_CR21 publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2021.02.922 – volume: 28 start-page: 2554 year: 2019 ident: 1023_CR14 publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.08.008 – volume: 3 start-page: 217 year: 2019 ident: 1023_CR27 publication-title: Netw. Neurosci. doi: 10.1162/netn_a_00066 – volume: 8 start-page: 647 year: 2014 ident: 1023_CR70 publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2014.00647 – volume: 2 start-page: 765 year: 2018 ident: 1023_CR59 publication-title: Nat. Hum. Behav. doi: 10.1038/s41562-018-0420-6 – ident: 1023_CR5 doi: 10.23919/ACC.2018.8431724 – volume: 17 start-page: 683 year: 2013 ident: 1023_CR60 publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2013.09.012 – volume: 28 start-page: 9239 year: 2008 ident: 1023_CR103 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1929-08.2008 – volume: 10 year: 2019 ident: 1023_CR92 publication-title: Nat. Commun. doi: 10.1038/s41467-019-08999-0 – volume: 18 start-page: 775 year: 2021 ident: 1023_CR135 publication-title: Nat. Methods doi: 10.1038/s41592-021-01185-5 – volume: 17 start-page: 1440 year: 2014 ident: 1023_CR54 publication-title: Nat. Neurosci. doi: 10.1038/nn.3839 – volume: 112 start-page: E6798 year: 2015 ident: 1023_CR58 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1510619112 – volume: 17 start-page: e3000284 year: 2019 ident: 1023_CR84 publication-title: PLoS Biol. doi: 10.1371/journal.pbio.3000284 – volume: 26 start-page: 159 year: 2022 ident: 1023_CR139 publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2021.11.007 – volume: 33 start-page: 14489 year: 2013 ident: 1023_CR71 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2128-13.2013 – volume: 5 start-page: 13 year: 2011 ident: 1023_CR143 publication-title: Front. Neuroinform. doi: 10.3389/fninf.2011.00013 – volume: 61 start-page: 407 year: 2012 ident: 1023_CR49 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.12.051 – volume: 20 start-page: 353 year: 2017 ident: 1023_CR1 publication-title: Nat. Neurosci. doi: 10.1038/nn.4502 – volume: 222 start-page: 117252 year: 2020 ident: 1023_CR111 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2020.117252 – volume: 38 start-page: 6399 year: 2018 ident: 1023_CR16 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0092-17.2018 – volume: 1 start-page: 1 year: 1991 ident: 1023_CR130 publication-title: Cereb. Cortex doi: 10.1093/cercor/1.1.1 – volume: 575 start-page: 195 year: 2019 ident: 1023_CR26 publication-title: Nature doi: 10.1038/s41586-019-1716-z – volume: 27 start-page: 073115 year: 2017 ident: 1023_CR38 publication-title: Chaos doi: 10.1063/1.4994819 – volume: 4 year: 2017 ident: 1023_CR66 publication-title: Sci. Data doi: 10.1038/sdata.2017.181 – volume: 8 start-page: 665 year: 2011 ident: 1023_CR86 publication-title: Nat. Methods doi: 10.1038/nmeth.1635 – volume: 4 start-page: 1072 year: 2020 ident: 1023_CR100 publication-title: Netw. Neurosci. doi: 10.1162/netn_a_00153 – volume: 86 start-page: 1518 year: 2015 ident: 1023_CR107 publication-title: Neuron doi: 10.1016/j.neuron.2015.05.035 – volume: 118 start-page: e2006436118 year: 2021 ident: 1023_CR15 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2006436118 – volume: 49 start-page: 107 year: 2002 ident: 1023_CR36 publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/41.982254 – volume: 9 year: 2018 ident: 1023_CR82 publication-title: Nat. Commun. doi: 10.1038/s41467-018-03811-x – volume: 6 year: 2016 ident: 1023_CR52 publication-title: Sci. Rep. doi: 10.1038/srep30770 – volume: 16 start-page: 111 year: 2019 ident: 1023_CR145 publication-title: Nat. Methods doi: 10.1038/s41592-018-0235-4 – volume: 30 start-page: 5460 year: 2020 ident: 1023_CR46 publication-title: Cereb. Cortex doi: 10.1093/cercor/bhaa127 – volume: 14 start-page: 91 year: 2018 ident: 1023_CR53 publication-title: Nat. Phys. doi: 10.1038/nphys4268 – volume: 31 start-page: 15775 year: 2011 ident: 1023_CR61 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3539-11.2011 – volume: 26 start-page: 638 year: 2023 ident: 1023_CR140 publication-title: Nat. Neurosci. doi: 10.1038/s41593-023-01282-y – ident: 1023_CR7 doi: 10.1007/978-3-030-43395-6_17 – volume: 12 start-page: 1 year: 1972 ident: 1023_CR39 publication-title: Biophys. J. doi: 10.1016/S0006-3495(72)86068-5 – volume: 148 start-page: 305 year: 2017 ident: 1023_CR11 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.01.003 – volume: 224 start-page: 985 year: 2019 ident: 1023_CR85 publication-title: Brain Struct. Funct. doi: 10.1007/s00429-019-01841-9 – volume: 113 start-page: 12574 year: 2016 ident: 1023_CR72 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1608282113 – volume: 188 start-page: 122 year: 2019 ident: 1023_CR19 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.11.048 – volume: 4 start-page: 219 year: 2003 ident: 1023_CR56 publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn1055 – volume: 106 start-page: 1125 year: 2011 ident: 1023_CR69 publication-title: J. Neurophysiol. doi: 10.1152/jn.00338.2011 – volume: 116 start-page: 4689 year: 2019 ident: 1023_CR76 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1814144116 – volume: 124 start-page: 1115 year: 2016 ident: 1023_CR24 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.03.056 – volume: 19 start-page: 566 year: 2018 ident: 1023_CR2 publication-title: Nat. Rev. Neurosci. doi: 10.1038/s41583-018-0038-8 – volume: 137 start-page: 2382 year: 2014 ident: 1023_CR63 publication-title: Brain doi: 10.1093/brain/awu132 – volume: 445 start-page: E1 year: 2007 ident: 1023_CR117 publication-title: Nature doi: 10.1038/nature05523 – volume: 114 start-page: 7234 year: 2017 ident: 1023_CR127 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1617387114 – volume: 24 start-page: 557 year: 2023 ident: 1023_CR9 publication-title: Nat. Rev. Neurosci. doi: 10.1038/s41583-023-00718-5 – volume: 8 start-page: eabn2293 year: 2022 ident: 1023_CR116 publication-title: Sci. Adv. doi: 10.1126/sciadv.abn2293 – volume: 8 start-page: 450 year: 1970 ident: 1023_CR128 publication-title: SIAM J. Control doi: 10.1137/0308033 – volume: 16 start-page: 647 year: 2017 ident: 1023_CR75 publication-title: Genes Brain Behav. doi: 10.1111/gbb.12386 – volume: 8 year: 2017 ident: 1023_CR12 publication-title: Nat. Commun. doi: 10.1038/s41467-017-01254-4 – volume: 125 start-page: 903 year: 2016 ident: 1023_CR136 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.10.068 – volume: 3 start-page: 771 year: 2021 ident: 1023_CR91 publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-021-00376-1 – volume: 12 start-page: 1272 year: 2020 ident: 1023_CR99 publication-title: Top. Cogn. Sci. doi: 10.1111/tops.12504 – volume: 9 start-page: e62116 year: 2020 ident: 1023_CR138 publication-title: eLife doi: 10.7554/eLife.62116 – volume: 30 start-page: 063133 year: 2020 ident: 1023_CR90 publication-title: Chaos doi: 10.1063/5.0004344 – volume: 24 start-page: 302 year: 2020 ident: 1023_CR42 publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2020.01.008 – volume: 10 year: 2019 ident: 1023_CR105 publication-title: Nat. Commun. doi: 10.1038/s41467-019-12201-w – ident: 1023_CR48 doi: 10.1101/2022.05.08.490752 – volume: 117 start-page: 771 year: 2020 ident: 1023_CR44 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1912034117 – volume: 617 start-page: 351 year: 2023 ident: 1023_CR57 publication-title: Nature doi: 10.1038/s41586-023-05964-2 – volume: 243 start-page: 118546 year: 2021 ident: 1023_CR101 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2021.118546 – volume: 70 start-page: 402 year: 2013 ident: 1023_CR131 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.12.066 – volume: 365 start-page: 2407 year: 2010 ident: 1023_CR123 publication-title: Philos. Trans. R. Soc. B Biol. Sci. doi: 10.1098/rstb.2009.0292 – volume: 10 start-page: 483 year: 2013 ident: 1023_CR109 publication-title: Nat. Methods doi: 10.1038/nmeth.2451 – volume: 80 start-page: 426 year: 2013 ident: 1023_CR98 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.04.087 – volume: 59 start-page: 2196 year: 2012 ident: 1023_CR104 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.10.002 – volume: 118 start-page: 79 year: 2018 ident: 1023_CR30 publication-title: Neuropsychologia doi: 10.1016/j.neuropsychologia.2018.01.001 – volume: 4 start-page: 788 year: 2020 ident: 1023_CR137 publication-title: Netw. Neurosci. doi: 10.1162/netn_a_00151 – volume: 9 start-page: 113 year: 2019 ident: 1023_CR78 publication-title: Brain Connect. doi: 10.1089/brain.2018.0587 – ident: 1023_CR50 doi: 10.23943/9781400890088 – volume: 7 start-page: eabf4752 year: 2021 ident: 1023_CR95 publication-title: Sci. Adv. doi: 10.1126/sciadv.abf4752 – volume: 142 start-page: 79 year: 2016 ident: 1023_CR113 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.04.050 – volume: 9 start-page: e53060 year: 2020 ident: 1023_CR73 publication-title: eLife doi: 10.7554/eLife.53060 – volume: 101 start-page: 062301 year: 2020 ident: 1023_CR13 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.101.062301 – volume: 24 start-page: 765 year: 2021 ident: 1023_CR89 publication-title: Nat. Neurosci. doi: 10.1038/s41593-021-00824-6 – volume: 4 start-page: e1000092 year: 2008 ident: 1023_CR114 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1000092 – volume: 117 start-page: 25138 year: 2020 ident: 1023_CR83 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2008004117 – volume: 1 start-page: 40 year: 2014 ident: 1023_CR6 publication-title: IEEE Trans. Control Netw. Syst. doi: 10.1109/TCNS.2014.2310254 – volume: 6 year: 2015 ident: 1023_CR10 publication-title: Nat. Commun. doi: 10.1038/ncomms9414 – volume: 62 start-page: 2296 year: 2012 ident: 1023_CR102 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.12.090 – volume: 88 start-page: 79 year: 2014 ident: 1023_CR132 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.11.027 – volume: 101 start-page: 1181 year: 2019 ident: 1023_CR93 publication-title: Neuron doi: 10.1016/j.neuron.2019.01.017 – volume: 8 start-page: ENEURO.0382-20. year: 2021 ident: 1023_CR17 publication-title: eneuro doi: 10.1523/ENEURO.0382-20.2021 – volume: 13 year: 2022 ident: 1023_CR32 publication-title: Nat. Commun. doi: 10.1038/s41467-022-33578-1 – volume: 3 start-page: 261 year: 2020 ident: 1023_CR20 publication-title: Commun. Biol. doi: 10.1038/s42003-020-0961-x – reference: 37662395 - bioRxiv. 2023 Aug 24:2023.08.23.554519. doi: 10.1101/2023.08.23.554519. |
| SSID | ssj0047367 |
| Score | 2.5489125 |
| SecondaryResourceType | review_article |
| Snippet | Network control theory (NCT) is a simple and powerful tool for studying how network topology informs and constrains the dynamics of a system. Compared to other... |
| SourceID | pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 3721 |
| SubjectTerms | 631/378/116/1925 631/378/116/2392 631/378/116/2393 Analytical Chemistry Biological Techniques Biomedical and Life Sciences Brain - diagnostic imaging Brain - physiology Cognitive ability Computation Computational Biology/Bioinformatics Connectome - methods Control systems Control theory Controllability Developmental stages Dynamic systems theory Dynamical systems Dynamics Graph theory Humans Life Sciences Microarrays Models, Neurological Nerve Net - physiology Network control Network topologies Neural networks Neurosciences Organic Chemistry Protocol Software Software packages Structure-function relationships System theory Topology |
| Title | A network control theory pipeline for studying the dynamics of the structural connectome |
| URI | https://link.springer.com/article/10.1038/s41596-024-01023-w https://www.ncbi.nlm.nih.gov/pubmed/39075309 https://www.proquest.com/docview/3138991838 https://www.proquest.com/docview/3086062297 https://pubmed.ncbi.nlm.nih.gov/PMC12039364 |
| Volume | 19 |
| WOSCitedRecordID | wos001280260600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1750-2799 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0047367 issn: 1754-2189 databaseCode: M7P dateStart: 20230101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database (ProQuest) customDbUrl: eissn: 1750-2799 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0047367 issn: 1754-2189 databaseCode: PATMY dateStart: 20230101 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1750-2799 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0047367 issn: 1754-2189 databaseCode: 7X7 dateStart: 20230101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1750-2799 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0047367 issn: 1754-2189 databaseCode: BENPR dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RFiQuvB-BsjISN7CaxElsn1BBrTig1QqBtLfIT7ESZBdSqPrvmXGSrZaKXrhEiuwktmbs-eKZ-QbgVSSSqKKw3OY28srhxcZK8FyU3kWnjIyJxPWjnM_VcqkX44FbP4ZVTnti2qj92tEZ-ZEgj5pGBVRvNz84VY0i7-pYQmMPDogloUyhe4tpJ66kSBVk0UJWHE2ZHpNmcqGOejRcKfyWYjDQbvHzXcN0BW1eDZr8y3OaDNLp3f-dyj24M0JRdjzozn24EboHcGsoTnnxEJbHrBtixNkYz85S1uMF26w2lMUeGAJelvhpcYDUyPxQ375n65juB3ZaYvagd3TkIfgeHsGX05PP7z_wsQ4Dd5Wsz7isAkJwFRSixRphrvCIKYWrncytEaYy3hRG1TY0rraNpVzWxjaxMcHoWKlSPIb9bt2Fp8BE43NP_D_aK4Ru0cSaclS8Ka3OvfYZFJMQWjeSlFOtjG9tcpYL1Q6Ca1FwbRJce57B6-0zm4Gi49reh5NQ2nG59u2lRDJ4uW3GhUbeE9OF9S_sgz9_eVOWWmbwZFCF7eeERuQlcp2B2lGSbQci8d5t6VZfE5l3UVJ2dFNl8GbSp8tx_Xsaz66fxnO4XZJup7ibQ9hHaYcXcNP9Plv1P2ewJ5cyXdUMDt6dzBefZmnl_AFBYx2A |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VBUQvlFdLaAEjwQmiJnEezgGhqlC16rLiUKS9BT_FSjS7kMJq_xS_kRnnUW0reuuBS6TIzsPx55lxZuYbgFeOSKLiWIUqUi5MNR6US3kY8cRop4UsnCdxHRXjsZhMys9r8KfPhaGwyl4mekFtZpr-ke9x8qiVCEDxfv4jpKpR5F3tS2i0sDixywVu2Zp3xx9wfl8nyeHH04OjsKsqEOq0yM7DIrVoUAor0PbJ0GjjBi0krjNdREpymUojYykyZXOdqVxRZmaucpdLK0uXCiI6QJF_C-V4QZu9YjJs8NKC-4q1qJHTEFVn2SXpRFzsNagofbgvxXygngwXq4rwinV7NUjzkqfWK8DDzf_t092He52pzfbbtfEA1mz9EO60xTeXj2Cyz-o2Bp518frMZ3Uu2Xw6pyx9y9CgZ55_Fz8INTKzrOXZVDds5vx5y75LzCV0j5o8IGf2MXy5kWFtwXo9q-0TYDw3kSF-o9IINE2ddBnl4BiZqDIypQkg7ie90h0JO9UC-V75YAAuqhYoFQKl8kCpFgG8Ga6ZtxQk1_be7UFQdeKoqS4QEMDLoRkFCXmHZG1nv7APbm6jPEFYB7DdQm94HC_RsuRRGYBYAeXQgUjKV1vq6TdPVh4nlP2dpwG87fF78V7_HsbT64fxAu4enX4aVaPj8ckObCS0rnyM0S6s48zbZ3Bb_z6fNj-f-xXK4OtN4_ovym52uA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VKSAuvKGGAosEJ7Bqe_3YPSAUUSKqliiHIoWTWe9DRGqdgAtR_hq_jpm1nSpU9NYDl0jWbhyv_e3M58zMNwAvHYlExXEVVlHlwlTjR-VSHkY8MdppoQrnRVyPivFYTKdysgW_-1oYSqvsbaI31Gau6T_yPU4RNYkAFHuuS4uY7I_eLb6H1EGKIq19O40WIod2tcTXt-btwT4-61dJMvpw_P5j2HUYCHVaZGdhkVokl8IK5EEZEjhukC1xnekiqhRXqTIqViKrbK6zKq-oSjOvcpcrq6RLBYkeoPnfFnkRiQFsT4bHn770fiAtuO9fi_45DdGRyq5kJ8IVNOg2ffIvZYCg1wyXm27xAte9mLL5V9zWu8PR7f_5Rt6BWx0JZ8N219yFLVvfg-ttW87VfZgOWd1mx7Muk5_5es8VW8wWVL9vGVJ95pV58ebQIDOrWp3OdMPmzh-3urykaULnqCk2cmofwOcrWdZDGNTz2u4A47mJDCkfSSOQtDrlMqrOMSqpZGSkCSDuAVDqTp6duoSclD5NgIuyBU2JoCk9aMplAK_X31m04iSXzt7tAVF2hqopz9EQwIv1MJoYihup2s5_4hx87Y3yJJFFAI9aGK5_jkvknDySAYgNgK4nkHz55kg9--ZlzOOE6sLzNIA3PZbPr-vfy3h8-TKeww2Ec3l0MD58AjcT2mI--WgXBvjg7VO4pn-dzZofz7rtyuDrVQP7D2wagQQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+network+control+theory+pipeline+for+studying+the+dynamics+of+the+structural+connectome&rft.jtitle=Nature+protocols&rft.date=2024-12-01&rft.pub=Nature+Publishing+Group&rft.issn=1754-2189&rft.eissn=1750-2799&rft.volume=19&rft.issue=12&rft.spage=3721&rft.epage=3749&rft_id=info:doi/10.1038%2Fs41596-024-01023-w&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-2189&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-2189&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-2189&client=summon |