Segmentation metric misinterpretations in bioimage analysis

Quantitative evaluation of image segmentation algorithms is crucial in the field of bioimage analysis. The most common assessment scores, however, are often misinterpreted and multiple definitions coexist with the same name. Here we present the ambiguities of evaluation metrics for segmentation algo...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nature methods Ročník 21; číslo 2; s. 213 - 216
Hlavní autoři: Hirling, Dominik, Tasnadi, Ervin, Caicedo, Juan, Caroprese, Maria V., Sjögren, Rickard, Aubreville, Marc, Koos, Krisztian, Horvath, Peter
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Nature Publishing Group US 01.02.2024
Nature Publishing Group
Témata:
ISSN:1548-7091, 1548-7105, 1548-7105
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Quantitative evaluation of image segmentation algorithms is crucial in the field of bioimage analysis. The most common assessment scores, however, are often misinterpreted and multiple definitions coexist with the same name. Here we present the ambiguities of evaluation metrics for segmentation algorithms and show how these misinterpretations can alter leaderboards of influential competitions. We also propose guidelines for how the currently existing problems could be tackled. This study shows the importance of proper metrics for comparing algorithms for bioimage segmentation and object detection by exploring the impact of metrics on the relative performance of algorithms in three image analysis competitions.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1548-7091
1548-7105
1548-7105
DOI:10.1038/s41592-023-01942-8