Segmentation metric misinterpretations in bioimage analysis
Quantitative evaluation of image segmentation algorithms is crucial in the field of bioimage analysis. The most common assessment scores, however, are often misinterpreted and multiple definitions coexist with the same name. Here we present the ambiguities of evaluation metrics for segmentation algo...
Uložené v:
| Vydané v: | Nature methods Ročník 21; číslo 2; s. 213 - 216 |
|---|---|
| Hlavní autori: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Nature Publishing Group US
01.02.2024
Nature Publishing Group |
| Predmet: | |
| ISSN: | 1548-7091, 1548-7105, 1548-7105 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Quantitative evaluation of image segmentation algorithms is crucial in the field of bioimage analysis. The most common assessment scores, however, are often misinterpreted and multiple definitions coexist with the same name. Here we present the ambiguities of evaluation metrics for segmentation algorithms and show how these misinterpretations can alter leaderboards of influential competitions. We also propose guidelines for how the currently existing problems could be tackled.
This study shows the importance of proper metrics for comparing algorithms for bioimage segmentation and object detection by exploring the impact of metrics on the relative performance of algorithms in three image analysis competitions. |
|---|---|
| AbstractList | Quantitative evaluation of image segmentation algorithms is crucial in the field of bioimage analysis. The most common assessment scores, however, are often misinterpreted and multiple definitions coexist with the same name. Here we present the ambiguities of evaluation metrics for segmentation algorithms and show how these misinterpretations can alter leaderboards of influential competitions. We also propose guidelines for how the currently existing problems could be tackled. Quantitative evaluation of image segmentation algorithms is crucial in the field of bioimage analysis. The most common assessment scores, however, are often misinterpreted and multiple definitions coexist with the same name. Here we present the ambiguities of evaluation metrics for segmentation algorithms and show how these misinterpretations can alter leaderboards of influential competitions. We also propose guidelines for how the currently existing problems could be tackled. This study shows the importance of proper metrics for comparing algorithms for bioimage segmentation and object detection by exploring the impact of metrics on the relative performance of algorithms in three image analysis competitions. Quantitative evaluation of image segmentation algorithms is crucial in the field of bioimage analysis. The most common assessment scores, however, are often misinterpreted and multiple definitions coexist with the same name. Here we present the ambiguities of evaluation metrics for segmentation algorithms and show how these misinterpretations can alter leaderboards of influential competitions. We also propose guidelines for how the currently existing problems could be tackled. This study shows the importance of proper metrics for comparing algorithms for bioimage segmentation and object detection by exploring the impact of metrics on the relative performance of algorithms in three image analysis competitions. Quantitative evaluation of image segmentation algorithms is crucial in the field of bioimage analysis. The most common assessment scores, however, are often misinterpreted and multiple definitions coexist with the same name. Here we present the ambiguities of evaluation metrics for segmentation algorithms and show how these misinterpretations can alter leaderboards of influential competitions. We also propose guidelines for how the currently existing problems could be tackled.Quantitative evaluation of image segmentation algorithms is crucial in the field of bioimage analysis. The most common assessment scores, however, are often misinterpreted and multiple definitions coexist with the same name. Here we present the ambiguities of evaluation metrics for segmentation algorithms and show how these misinterpretations can alter leaderboards of influential competitions. We also propose guidelines for how the currently existing problems could be tackled. |
| Author | Horvath, Peter Hirling, Dominik Caicedo, Juan Sjögren, Rickard Koos, Krisztian Aubreville, Marc Tasnadi, Ervin Caroprese, Maria V. |
| Author_xml | – sequence: 1 givenname: Dominik orcidid: 0009-0009-4903-9188 surname: Hirling fullname: Hirling, Dominik organization: Biological Research Centre, Eötvös Loránd Research Network (ELKH), Doctoral School of Computer Science, University of Szeged – sequence: 2 givenname: Ervin surname: Tasnadi fullname: Tasnadi, Ervin organization: Biological Research Centre, Eötvös Loránd Research Network (ELKH), Doctoral School of Computer Science, University of Szeged – sequence: 3 givenname: Juan surname: Caicedo fullname: Caicedo, Juan organization: Broad Institute of Harvard and MIT – sequence: 4 givenname: Maria V. surname: Caroprese fullname: Caroprese, Maria V. organization: Sartorius, Corporate Research – sequence: 5 givenname: Rickard surname: Sjögren fullname: Sjögren, Rickard organization: Sartorius, Corporate Research, CellVoyant Technologies Ltd – sequence: 6 givenname: Marc orcidid: 0000-0002-5294-5247 surname: Aubreville fullname: Aubreville, Marc organization: Technische Hochschule Ingolstadt – sequence: 7 givenname: Krisztian orcidid: 0000-0003-3136-8978 surname: Koos fullname: Koos, Krisztian organization: Biological Research Centre, Eötvös Loránd Research Network (ELKH) – sequence: 8 givenname: Peter orcidid: 0000-0002-4492-1798 surname: Horvath fullname: Horvath, Peter email: horvath.peter@brc.hu organization: Biological Research Centre, Eötvös Loránd Research Network (ELKH), Single-Cell Technologies Ltd, Institute for Molecular Medicine Finland (FIMM), University of Helsinki |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37500758$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUtLxDAUhYOMOOPoH3AhBTduqnk2CS5ExBcILtR1yNTbMdImY9IR_PdG6_hauErgnnP47j2baOSDB4R2CD4gmKnDxInQtMSUlZhoTku1hiZEcFVKgsVo9ceajNFmSk8YM8ap2EBjJgXGUqgJOrqFeQe-t70Lvuigj64uOpec7yEuIgyDVDhfzFxwnZ1DYb1tX5NLW2i9sW2C7c93iu7Pz-5OL8vrm4ur05PrsuZS9KVkChM-E6AbTkBhTmijFWssMMBK6qYBIaWsgDFcE5BVLSqroWFMa0UpY1N0POQulrMOHuqMG21rFjHjxFcTrDO_J949mnl4MQSrihMpcsL-Z0IMz0tIvckr1tC21kNYJkOV4Jzlo8ks3fsjfQrLmDfOKk2FrJQUNKt2fyJ9sawOmwVqENQxpBShMbUbbpkJXZvRzHuHZujQ5A7NR4fm3Ur_WFfp_5rYYEpZ7OcQv7H_cb0Bhryt8A |
| CitedBy_id | crossref_primary_10_1038_s41592_024_02187_9 crossref_primary_10_1038_s41592_024_02580_4 crossref_primary_10_1038_s41467_025_60306_2 crossref_primary_10_1038_s44303_025_00099_7 crossref_primary_10_3390_electronics13040746 crossref_primary_10_3390_s25144436 crossref_primary_10_1038_s41592_023_02150_0 crossref_primary_10_1371_journal_pcbi_1012361 crossref_primary_10_1038_s41592_024_02513_1 crossref_primary_10_1186_s12859_023_05486_8 crossref_primary_10_1016_j_copbio_2023_103055 crossref_primary_10_1038_s41592_024_02241_6 crossref_primary_10_1016_j_ijpharm_2024_125018 crossref_primary_10_1038_s41592_024_02233_6 crossref_primary_10_7554_eLife_99848_4 crossref_primary_10_1242_dev_202800 crossref_primary_10_1016_j_mcpro_2024_100877 crossref_primary_10_7554_eLife_99848 crossref_primary_10_1242_dev_202817 crossref_primary_10_1016_j_ibmed_2025_100224 crossref_primary_10_3390_app131810286 |
| Cites_doi | 10.1007/s11263-014-0733-5 10.1038/s41592-019-0612-7 10.1016/j.cels.2020.04.003 10.1109/MLSP55214.2022.9943312 10.1016/j.compbiomed.2022.105792 10.1038/s41592-020-01018-x 10.1109/ISBI48211.2021.9433928 10.1016/j.media.2022.102371 10.1038/s41598-020-61808-3 10.1016/j.media.2022.102523 10.1016/j.media.2022.102699 10.1016/j.imu.2020.100297 10.1109/CVPR.2016.90 10.1007/978-3-030-00934-2_30 10.1038/s41598-021-94217-1 10.1038/s41592-020-01008-z 10.1109/IWSSIP48289.2020.9145130 10.1109/ICCV.2017.322 10.1038/s41592-021-01249-6 10.1007/978-3-319-10602-1_48 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2023 2023. The Author(s). The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QO 7SS 7TK 7U9 7X2 7X7 7XB 88E 88I 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. L6V LK8 M0K M0S M1P M2P M7N M7P M7S P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U RC3 7X8 5PM |
| DOI | 10.1038/s41592-023-01942-8 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Engineering Collection ProQuest Biological Science Collection Agricultural Science Database Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection Environmental Science Collection ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef Agricultural Science Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1548-7105 |
| EndPage | 216 |
| ExternalDocumentID | PMC10864175 37500758 10_1038_s41592_023_01942_8 |
| Genre | Journal Article |
| GroupedDBID | --- -~X 0R~ 123 29M 39C 3V. 4.4 53G 5BI 7X2 7X7 7XC 88E 88I 8AO 8CJ 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AAEEF AAHBH AARCD AAYZH AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABUWG ACBWK ACGFS ACGOD ACIWK ACPRK ACUHS ADBBV AENEX AEUYN AFANA AFBBN AFKRA AFRAH AFSHS AGAYW AHBCP AHMBA AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARAPS ARMCB ASPBG ATCPS AVWKF AXYYD AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKKNO BKSAR BPHCQ BVXVI C6C CCPQU CS3 D1I D1J D1K DB5 DU5 DWQXO EBS EE. EJD EMOBN ESX F5P FEDTE FSGXE FYUFA FZEXT GNUQQ HCIFZ HMCUK HVGLF HZ~ IAO IHR INH INR ITC K6- KB. L6V LK5 LK8 M0K M1P M2P M7P M7R M7S NNMJJ O9- ODYON P2P P62 PATMY PCBAR PDBOC PQQKQ PROAC PSQYO PTHSS PYCSY Q2X RNS RNT RNTTT SHXYY SIXXV SJN SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP ~8M AAYXX AFFHD AGSTI ATHPR CITATION NFIDA PHGZM PHGZT PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 7QL 7QO 7SS 7TK 7U9 7XB 8FD 8FK C1K FR3 H94 K9. M7N P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c475t-738014b5e9f41e80412f983fae3e0879ffe57776e330c1e76c56a9ef339982233 |
| IEDL.DBID | 7X7 |
| ISICitedReferencesCount | 25 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001037348700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1548-7091 1548-7105 |
| IngestDate | Tue Nov 04 02:05:50 EST 2025 Thu Oct 02 07:09:57 EDT 2025 Mon Oct 06 17:18:51 EDT 2025 Thu Jul 24 03:25:47 EDT 2025 Sat Nov 29 01:48:14 EST 2025 Tue Nov 18 22:35:36 EST 2025 Fri Feb 21 02:37:45 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | 2023. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c475t-738014b5e9f41e80412f983fae3e0879ffe57776e330c1e76c56a9ef339982233 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-5294-5247 0009-0009-4903-9188 0000-0003-3136-8978 0000-0002-4492-1798 |
| OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC10864175 |
| PMID | 37500758 |
| PQID | 2925768752 |
| PQPubID | 28015 |
| PageCount | 4 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10864175 proquest_miscellaneous_2854431057 proquest_journals_2925768752 pubmed_primary_37500758 crossref_citationtrail_10_1038_s41592_023_01942_8 crossref_primary_10_1038_s41592_023_01942_8 springer_journals_10_1038_s41592_023_01942_8 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-02-01 |
| PublicationDateYYYYMMDD | 2024-02-01 |
| PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: United States |
| PublicationSubtitle | Techniques for life scientists and chemists |
| PublicationTitle | Nature methods |
| PublicationTitleAbbrev | Nat Methods |
| PublicationTitleAlternate | Nat Methods |
| PublicationYear | 2024 |
| Publisher | Nature Publishing Group US Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group US – name: Nature Publishing Group |
| References | EdlundCLIVECell—a large-scale dataset for label-free live cell segmentationNat. Methods202118.91038104510.1038/s41592-021-01249-6 Lin, T. Y. et al. Microsoft COCO: common objects in context. Computer Vision – ECCV 2014, pp. 740–755 (Springer International Publishing, 2014). LalitMTomancakPJugFEmbedSeg: embedding-based instance segmentation for biomedical microscopy dataMed. Image Anal.20228110252310.1016/j.media.2022.10252335926335 CaicedoJCNucleus segmentation across imaging experiments: the 2018 Data Science BowlNat. Methods201916124712531:CAS:528:DC%2BC1MXitVSlsbrK10.1038/s41592-019-0612-7316364596919559. MoshkovNTest-time augmentation for deep learning-based cell segmentation on microscopy imagesSci. Rep.2020101:CAS:528:DC%2BB3cXlvFCrtb0%3D10.1038/s41598-020-61808-33219348570813142020NatSR..10.5068M HaqueIRizwanIJeremiahNDeep learning approaches to biomedical image segmentationInform. Med. Unlocked20201810029710.1016/j.imu.2020.100297 IsenseeFnnU-Net: a self-configuring method for deep learning-based biomedical image segmentationNat. Methods202118.220321110.1038/s41592-020-01008-z PangHA fully automatic segmentation pipeline of pulmonary lobes before and after lobectomy from computed tomography imagesComput. Biol. Med.202214710579210.1016/j.compbiomed.2022.10579235780601 Mabon, J., Ortner, M. & Zerubia, J. CNN-based energy learning for MPP object detection in satellite images. In 2022 IEEE 32nd International Workshop on Machine Learning for Signal Processing (MLSP) pp. 1–6 (IEEE, 2022). HollandiRnucleAIzer: a parameter-free deep learning framework for nucleus segmentation using image style transferCell Syst.202010.545345810.1016/j.cels.2020.04.003 Maier-Hein, L. et al. Metrics reloaded: pitfalls and recommendations for image analysis validation. Preprint at arXiv:2206.01653 (2022). He, K. et al. Mask R-CNN. In Proc. International Conference on Computer Vision (ICCV) pp. 2961–2969 (2017). StringerCCellpose: a generalist algorithm for cellular segmentationNat. Methods202118.110010610.1038/s41592-020-01018-x AubrevilleMMitosis domain generalization in histopathology images—the MIDOG challengeMed. Image Anal.20238410269910.1016/j.media.2022.10269936463832 Padilla, R., Netto, S. L. & Da Silva, E. A. A survey on performance metrics for object-detection algorithms. In 2020 International Conference on Systems, Signals and Image Processing (IWSSIP) pp. 237–242 (IEEE, 2020). Schmidt, U. et al. Cell detection with star-convex polygons. In Proc. 21st International Conference, Medical Image Computing and Computer Assisted Intervention (MICCAI) pp. 265–273 (Springer International Publishing, 2018). Common objects in context. COCO datasethttps://cocodataset.org/#detection-eval (n.d.). UpschulteEContour proposal networks for biomedical instance segmentationMed. Image Anal.20227710237110.1016/j.media.2022.10237135180674 He, K. et al. Deep residual learning for image recognition. In Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 770–778 (2016). GrexaISpheroidPicker for automated 3D cell culture manipulation using deep learningSci. Rep.202111148131:CAS:528:DC%2BB3MXhs1Clt73E10.1038/s41598-021-94217-13428529182924602021NatSR..1114813G Mandal, S. & Uhlmann, V. SplineDist: automated cell segmentation with spline curves. In IEEE 18th International Symposium on Biomedical Imaging (ISBI) pp. 1082–1086 (IEEE, 2021). EveringhamMThe pascal visual object classes challenge: a retrospectiveInt. J. Comput. Vis.2015111.19813610.1007/s11263-014-0733-5 Barker, J. S. P. Deep learning for object detection with DIGITS. NVIDIA Developer Technical Bloghttps://developer.nvidia.com/blog/deep-learning-object-detection-digits/ (2016). C Edlund (1942_CR7) 2021; 18.9 1942_CR15 C Stringer (1942_CR16) 2021; 18.1 R Hollandi (1942_CR19) 2020; 10.5 I Grexa (1942_CR17) 2021; 11 1942_CR22 1942_CR12 1942_CR23 E Upschulte (1942_CR9) 2022; 77 1942_CR13 1942_CR14 M Aubreville (1942_CR8) 2023; 84 1942_CR20 1942_CR10 1942_CR1 M Everingham (1942_CR11) 2015; 111.1 1942_CR2 H Pang (1942_CR5) 2022; 147 M Lalit (1942_CR21) 2022; 81 JC Caicedo (1942_CR6) 2019; 16 N Moshkov (1942_CR18) 2020; 10 I Haque (1942_CR3) 2020; 18 F Isensee (1942_CR4) 2021; 18.2 |
| References_xml | – reference: CaicedoJCNucleus segmentation across imaging experiments: the 2018 Data Science BowlNat. Methods201916124712531:CAS:528:DC%2BC1MXitVSlsbrK10.1038/s41592-019-0612-7316364596919559. – reference: AubrevilleMMitosis domain generalization in histopathology images—the MIDOG challengeMed. Image Anal.20238410269910.1016/j.media.2022.10269936463832 – reference: Mabon, J., Ortner, M. & Zerubia, J. CNN-based energy learning for MPP object detection in satellite images. In 2022 IEEE 32nd International Workshop on Machine Learning for Signal Processing (MLSP) pp. 1–6 (IEEE, 2022). – reference: LalitMTomancakPJugFEmbedSeg: embedding-based instance segmentation for biomedical microscopy dataMed. Image Anal.20228110252310.1016/j.media.2022.10252335926335 – reference: Lin, T. Y. et al. Microsoft COCO: common objects in context. Computer Vision – ECCV 2014, pp. 740–755 (Springer International Publishing, 2014). – reference: Mandal, S. & Uhlmann, V. SplineDist: automated cell segmentation with spline curves. In IEEE 18th International Symposium on Biomedical Imaging (ISBI) pp. 1082–1086 (IEEE, 2021). – reference: UpschulteEContour proposal networks for biomedical instance segmentationMed. Image Anal.20227710237110.1016/j.media.2022.10237135180674 – reference: HollandiRnucleAIzer: a parameter-free deep learning framework for nucleus segmentation using image style transferCell Syst.202010.545345810.1016/j.cels.2020.04.003 – reference: IsenseeFnnU-Net: a self-configuring method for deep learning-based biomedical image segmentationNat. Methods202118.220321110.1038/s41592-020-01008-z – reference: PangHA fully automatic segmentation pipeline of pulmonary lobes before and after lobectomy from computed tomography imagesComput. Biol. Med.202214710579210.1016/j.compbiomed.2022.10579235780601 – reference: He, K. et al. Deep residual learning for image recognition. In Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 770–778 (2016). – reference: Barker, J. S. P. Deep learning for object detection with DIGITS. NVIDIA Developer Technical Bloghttps://developer.nvidia.com/blog/deep-learning-object-detection-digits/ (2016). – reference: He, K. et al. Mask R-CNN. In Proc. International Conference on Computer Vision (ICCV) pp. 2961–2969 (2017). – reference: Padilla, R., Netto, S. L. & Da Silva, E. A. A survey on performance metrics for object-detection algorithms. In 2020 International Conference on Systems, Signals and Image Processing (IWSSIP) pp. 237–242 (IEEE, 2020). – reference: Schmidt, U. et al. Cell detection with star-convex polygons. In Proc. 21st International Conference, Medical Image Computing and Computer Assisted Intervention (MICCAI) pp. 265–273 (Springer International Publishing, 2018). – reference: Common objects in context. COCO datasethttps://cocodataset.org/#detection-eval (n.d.). – reference: Maier-Hein, L. et al. Metrics reloaded: pitfalls and recommendations for image analysis validation. Preprint at arXiv:2206.01653 (2022). – reference: StringerCCellpose: a generalist algorithm for cellular segmentationNat. Methods202118.110010610.1038/s41592-020-01018-x – reference: EveringhamMThe pascal visual object classes challenge: a retrospectiveInt. J. Comput. Vis.2015111.19813610.1007/s11263-014-0733-5 – reference: GrexaISpheroidPicker for automated 3D cell culture manipulation using deep learningSci. Rep.202111148131:CAS:528:DC%2BB3MXhs1Clt73E10.1038/s41598-021-94217-13428529182924602021NatSR..1114813G – reference: EdlundCLIVECell—a large-scale dataset for label-free live cell segmentationNat. Methods202118.91038104510.1038/s41592-021-01249-6 – reference: HaqueIRizwanIJeremiahNDeep learning approaches to biomedical image segmentationInform. Med. Unlocked20201810029710.1016/j.imu.2020.100297 – reference: MoshkovNTest-time augmentation for deep learning-based cell segmentation on microscopy imagesSci. Rep.2020101:CAS:528:DC%2BB3cXlvFCrtb0%3D10.1038/s41598-020-61808-33219348570813142020NatSR..10.5068M – volume: 111.1 start-page: 98 year: 2015 ident: 1942_CR11 publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-014-0733-5 – ident: 1942_CR20 – volume: 16 start-page: 1247 year: 2019 ident: 1942_CR6 publication-title: Nat. Methods doi: 10.1038/s41592-019-0612-7 – volume: 10.5 start-page: 453 year: 2020 ident: 1942_CR19 publication-title: Cell Syst. doi: 10.1016/j.cels.2020.04.003 – ident: 1942_CR12 doi: 10.1109/MLSP55214.2022.9943312 – volume: 147 start-page: 105792 year: 2022 ident: 1942_CR5 publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2022.105792 – ident: 1942_CR1 – volume: 18.1 start-page: 100 year: 2021 ident: 1942_CR16 publication-title: Nat. Methods doi: 10.1038/s41592-020-01018-x – ident: 1942_CR2 doi: 10.1109/ISBI48211.2021.9433928 – volume: 77 start-page: 102371 year: 2022 ident: 1942_CR9 publication-title: Med. Image Anal. doi: 10.1016/j.media.2022.102371 – volume: 10 year: 2020 ident: 1942_CR18 publication-title: Sci. Rep. doi: 10.1038/s41598-020-61808-3 – volume: 81 start-page: 102523 year: 2022 ident: 1942_CR21 publication-title: Med. Image Anal. doi: 10.1016/j.media.2022.102523 – volume: 84 start-page: 102699 year: 2023 ident: 1942_CR8 publication-title: Med. Image Anal. doi: 10.1016/j.media.2022.102699 – volume: 18 start-page: 100297 year: 2020 ident: 1942_CR3 publication-title: Inform. Med. Unlocked doi: 10.1016/j.imu.2020.100297 – ident: 1942_CR14 doi: 10.1109/CVPR.2016.90 – ident: 1942_CR15 doi: 10.1007/978-3-030-00934-2_30 – volume: 11 start-page: 14813 year: 2021 ident: 1942_CR17 publication-title: Sci. Rep. doi: 10.1038/s41598-021-94217-1 – volume: 18.2 start-page: 203 year: 2021 ident: 1942_CR4 publication-title: Nat. Methods doi: 10.1038/s41592-020-01008-z – ident: 1942_CR10 doi: 10.1109/IWSSIP48289.2020.9145130 – ident: 1942_CR13 doi: 10.1109/ICCV.2017.322 – volume: 18.9 start-page: 1038 year: 2021 ident: 1942_CR7 publication-title: Nat. Methods doi: 10.1038/s41592-021-01249-6 – ident: 1942_CR22 doi: 10.1007/978-3-319-10602-1_48 – ident: 1942_CR23 |
| SSID | ssj0033425 |
| Score | 2.5683184 |
| Snippet | Quantitative evaluation of image segmentation algorithms is crucial in the field of bioimage analysis. The most common assessment scores, however, are often... |
| SourceID | pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 213 |
| SubjectTerms | 631/114/1305 631/114/1564 631/1647/328 Algorithms Bioinformatics Biological Microscopy Biological Techniques Biomedical and Life Sciences Biomedical Engineering/Biotechnology Brief Communication Data science Datasets Image analysis Image processing Image Processing, Computer-Assisted - methods Image segmentation Life Sciences Object recognition Proteomics |
| Title | Segmentation metric misinterpretations in bioimage analysis |
| URI | https://link.springer.com/article/10.1038/s41592-023-01942-8 https://www.ncbi.nlm.nih.gov/pubmed/37500758 https://www.proquest.com/docview/2925768752 https://www.proquest.com/docview/2854431057 https://pubmed.ncbi.nlm.nih.gov/PMC10864175 |
| Volume | 21 |
| WOSCitedRecordID | wos001037348700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Agricultural Science Database customDbUrl: eissn: 1548-7105 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0033425 issn: 1548-7091 databaseCode: M0K dateStart: 20220101 isFulltext: true titleUrlDefault: https://search.proquest.com/agriculturejournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1548-7105 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0033425 issn: 1548-7091 databaseCode: M7P dateStart: 20220101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1548-7105 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0033425 issn: 1548-7091 databaseCode: PCBAR dateStart: 20220101 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1548-7105 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0033425 issn: 1548-7091 databaseCode: M7S dateStart: 20220101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1548-7105 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0033425 issn: 1548-7091 databaseCode: PATMY dateStart: 20220101 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection (Proquest) customDbUrl: eissn: 1548-7105 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0033425 issn: 1548-7091 databaseCode: 7X7 dateStart: 20220101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 1548-7105 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0033425 issn: 1548-7091 databaseCode: KB. dateStart: 20220101 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest advanced technologies & aerospace journals customDbUrl: eissn: 1548-7105 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0033425 issn: 1548-7091 databaseCode: P5Z dateStart: 20220101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1548-7105 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0033425 issn: 1548-7091 databaseCode: BENPR dateStart: 20220101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1548-7105 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0033425 issn: 1548-7091 databaseCode: M2P dateStart: 20220101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1BCxKXlm9CSxUkbhCatePYEQdEUSukwmpFQVpxiRLvGCKx2dJsK_HvmXG8qZaKXriMFMX58HhiP9uT9wBeCMxmWW5cUtcjm2SzmUiKFFVirc7rXFWIzvPMftTjsZlOi0lYcOtCWuWqT_Qd9WxheY18XxQeGmsl3p7-Slg1indXg4TGTdhk2WyOcz0dJlxSZl50lVF5omlgDD_NpNLsdzRwcd6l4GyiIqNeYX1guoI2ryZN_rVz6geko-3_rcpd2ApQNH7Xx849uIHtfbjdi1P-fgBvTvD7PPyZ1MZzVt6yMUVFs5am2MVNG9fNoplTxxRXgeLkIXw9Ovzy_kMSpBYSm2m1TLRkFplaYeGyETInkXCFka5CianRhXOotNY5SpnaEercqrwq0EnCNwQxpHwEG-2ixScQa5oAYWotTVTyzApVkfudVehSbQnv6AhGKz-XNvCQsxzGz9Lvh0tT9m1TUtuUvm1KE8HL4ZrTnoXj2tK7K7-X4YvsykunR_B8OE1e4w2SqsXFOZUxzAbIyscRPO5be3icJGhF8IpubtbiYCjAPN3rZ9rmh-frZjGrjGBaBK9WIXP5Xv-uxtPrq7EDdwQBrD6DfBc2lmfn-Axu2Ytl053t-Q_BW7MHmweH48lnOjo-eE32U3rMVkzY6t6ekJ2ob38ADh8VuQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VBQQXypvQAkGCE1jN-hEnqhBCQNWqy6oSRerNTbxjGqmbLc0W1D_Fb-zYSbZaKnrrgXOc53yZ-cYezwfwmqMcyzRzrCwHlsnxmLM8QcWs1WmZqgLRhT6zQz0aZfv7-e4S_On3wviyyt4nBkc9nlo_R77O80CNteIfjn8yrxrlV1d7CY0WFjt49ptStub99mey7xvON7_sfdpinaoAs1KrGdPCN0wpFeZODtC33-Euz4QrUGCS6dw5VFrrFCnTtwPUqVVpkaMTFMopmvoJUHL5N4hG8CSUCu72nl8IGURefRbANAXibpNOIrL1hgKlr_Pkvnopl-SFFgPhJXZ7uUjzr5XaEAA3V_63T3cP7nZUO_7Y_hv3YQnrB3CrFd88ewgb3_DHpNt5VccTryxmY0J9tVCG2cRVHZfVtJqQ442LroXLI_h-LU_-GJbraY1PIdaU4GFiLSViqbRcFWRuZxW6RFviczqCQW9XY7s-617u48iE9X6RmRYLhrBgAhZMFsHb-TnHbZeRK0ev9XY2ncdpzIWRI3g1P0xfzS8AFTVOT2lM5rsdemXnCJ606JrfThB1JPpIF88WcDcf4PuQLx6pq8PQj9yLdUmioRG86yF68Vz_fo1nV7_GS7i9tfd1aIbbo51VuMOJTLbV8muwPDs5xedw0_6aVc3Ji_ATxnBw3dA9BzmcZ_U |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VW0BcWt4NLRAkOIG1WTuOHSGEgHZF1Wq14iH1libeMY3UzZZmC-pf49cxTpytloreeuAc5zmf5xGPvw_gBcd4EifasqIYGBZPJpylEUpmjEqKROaItuGZ3VejkT44SMcr8LvbC-PaKjuf2Djqycy4f-R9njapsZK8b31bxHh7-O7kB3MKUm6ltZPTaCGyh-e_qHyr3-5uk61fcj7c-frxE_MKA8zESs6ZEo48pZCY2niAjoqH21QLm6PASKvUWpRKqQSp6jcDVImRSZ6iFRTWKbK6n6Hk_leVoKKnB6sfdkbjz10cECJuJF9dTcAUhWW_ZScSul9T2HRdn9z1MqUx-aTlsHgp173csvnXum0TDofr__OHvANrPgkP37ez5i6sYHUPbraynOf34c0X_D71e7KqcOo0x0xI86FcatCsw7IKi3JWTsklh7knd3kA367lyR9Cr5pVuAGhotIPI2OoREtiw2VOprdGoo2UoUxPBTDobJwZz8DuhECOs6YTQOisxUVGuMgaXGQ6gFeLc05a_pErR291Ns-8L6qzC4MH8HxxmL6aWxrKK5yd0RjteBCd5nMAj1qkLW4nKKmkxJIurpcwuBjgGMqXj1TlUcNU7mS8YkpQA3jdwfXiuf79Go-vfo1ncIsQm-3vjvY24TanLLNto9-C3vz0DJ_ADfNzXtanT_2MDOHwurH7B02Scg0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Segmentation+metric+misinterpretations+in+bioimage+analysis&rft.jtitle=Nature+methods&rft.au=Hirling%2C+Dominik&rft.au=Tasnadi%2C+Ervin&rft.au=Caicedo%2C+Juan&rft.au=Caroprese%2C+Maria+V.&rft.date=2024-02-01&rft.pub=Nature+Publishing+Group+US&rft.issn=1548-7091&rft.eissn=1548-7105&rft.volume=21&rft.issue=2&rft.spage=213&rft.epage=216&rft_id=info:doi/10.1038%2Fs41592-023-01942-8&rft_id=info%3Apmid%2F37500758&rft.externalDocID=PMC10864175 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1548-7091&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1548-7091&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1548-7091&client=summon |