Segmentation metric misinterpretations in bioimage analysis

Quantitative evaluation of image segmentation algorithms is crucial in the field of bioimage analysis. The most common assessment scores, however, are often misinterpreted and multiple definitions coexist with the same name. Here we present the ambiguities of evaluation metrics for segmentation algo...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Nature methods Ročník 21; číslo 2; s. 213 - 216
Hlavní autori: Hirling, Dominik, Tasnadi, Ervin, Caicedo, Juan, Caroprese, Maria V., Sjögren, Rickard, Aubreville, Marc, Koos, Krisztian, Horvath, Peter
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Nature Publishing Group US 01.02.2024
Nature Publishing Group
Predmet:
ISSN:1548-7091, 1548-7105, 1548-7105
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Quantitative evaluation of image segmentation algorithms is crucial in the field of bioimage analysis. The most common assessment scores, however, are often misinterpreted and multiple definitions coexist with the same name. Here we present the ambiguities of evaluation metrics for segmentation algorithms and show how these misinterpretations can alter leaderboards of influential competitions. We also propose guidelines for how the currently existing problems could be tackled. This study shows the importance of proper metrics for comparing algorithms for bioimage segmentation and object detection by exploring the impact of metrics on the relative performance of algorithms in three image analysis competitions.
AbstractList Quantitative evaluation of image segmentation algorithms is crucial in the field of bioimage analysis. The most common assessment scores, however, are often misinterpreted and multiple definitions coexist with the same name. Here we present the ambiguities of evaluation metrics for segmentation algorithms and show how these misinterpretations can alter leaderboards of influential competitions. We also propose guidelines for how the currently existing problems could be tackled.
Quantitative evaluation of image segmentation algorithms is crucial in the field of bioimage analysis. The most common assessment scores, however, are often misinterpreted and multiple definitions coexist with the same name. Here we present the ambiguities of evaluation metrics for segmentation algorithms and show how these misinterpretations can alter leaderboards of influential competitions. We also propose guidelines for how the currently existing problems could be tackled. This study shows the importance of proper metrics for comparing algorithms for bioimage segmentation and object detection by exploring the impact of metrics on the relative performance of algorithms in three image analysis competitions.
Quantitative evaluation of image segmentation algorithms is crucial in the field of bioimage analysis. The most common assessment scores, however, are often misinterpreted and multiple definitions coexist with the same name. Here we present the ambiguities of evaluation metrics for segmentation algorithms and show how these misinterpretations can alter leaderboards of influential competitions. We also propose guidelines for how the currently existing problems could be tackled. This study shows the importance of proper metrics for comparing algorithms for bioimage segmentation and object detection by exploring the impact of metrics on the relative performance of algorithms in three image analysis competitions.
Quantitative evaluation of image segmentation algorithms is crucial in the field of bioimage analysis. The most common assessment scores, however, are often misinterpreted and multiple definitions coexist with the same name. Here we present the ambiguities of evaluation metrics for segmentation algorithms and show how these misinterpretations can alter leaderboards of influential competitions. We also propose guidelines for how the currently existing problems could be tackled.Quantitative evaluation of image segmentation algorithms is crucial in the field of bioimage analysis. The most common assessment scores, however, are often misinterpreted and multiple definitions coexist with the same name. Here we present the ambiguities of evaluation metrics for segmentation algorithms and show how these misinterpretations can alter leaderboards of influential competitions. We also propose guidelines for how the currently existing problems could be tackled.
Author Horvath, Peter
Hirling, Dominik
Caicedo, Juan
Sjögren, Rickard
Koos, Krisztian
Aubreville, Marc
Tasnadi, Ervin
Caroprese, Maria V.
Author_xml – sequence: 1
  givenname: Dominik
  orcidid: 0009-0009-4903-9188
  surname: Hirling
  fullname: Hirling, Dominik
  organization: Biological Research Centre, Eötvös Loránd Research Network (ELKH), Doctoral School of Computer Science, University of Szeged
– sequence: 2
  givenname: Ervin
  surname: Tasnadi
  fullname: Tasnadi, Ervin
  organization: Biological Research Centre, Eötvös Loránd Research Network (ELKH), Doctoral School of Computer Science, University of Szeged
– sequence: 3
  givenname: Juan
  surname: Caicedo
  fullname: Caicedo, Juan
  organization: Broad Institute of Harvard and MIT
– sequence: 4
  givenname: Maria V.
  surname: Caroprese
  fullname: Caroprese, Maria V.
  organization: Sartorius, Corporate Research
– sequence: 5
  givenname: Rickard
  surname: Sjögren
  fullname: Sjögren, Rickard
  organization: Sartorius, Corporate Research, CellVoyant Technologies Ltd
– sequence: 6
  givenname: Marc
  orcidid: 0000-0002-5294-5247
  surname: Aubreville
  fullname: Aubreville, Marc
  organization: Technische Hochschule Ingolstadt
– sequence: 7
  givenname: Krisztian
  orcidid: 0000-0003-3136-8978
  surname: Koos
  fullname: Koos, Krisztian
  organization: Biological Research Centre, Eötvös Loránd Research Network (ELKH)
– sequence: 8
  givenname: Peter
  orcidid: 0000-0002-4492-1798
  surname: Horvath
  fullname: Horvath, Peter
  email: horvath.peter@brc.hu
  organization: Biological Research Centre, Eötvös Loránd Research Network (ELKH), Single-Cell Technologies Ltd, Institute for Molecular Medicine Finland (FIMM), University of Helsinki
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37500758$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtLxDAUhYOMOOPoH3AhBTduqnk2CS5ExBcILtR1yNTbMdImY9IR_PdG6_hauErgnnP47j2baOSDB4R2CD4gmKnDxInQtMSUlZhoTku1hiZEcFVKgsVo9ceajNFmSk8YM8ap2EBjJgXGUqgJOrqFeQe-t70Lvuigj64uOpec7yEuIgyDVDhfzFxwnZ1DYb1tX5NLW2i9sW2C7c93iu7Pz-5OL8vrm4ur05PrsuZS9KVkChM-E6AbTkBhTmijFWssMMBK6qYBIaWsgDFcE5BVLSqroWFMa0UpY1N0POQulrMOHuqMG21rFjHjxFcTrDO_J949mnl4MQSrihMpcsL-Z0IMz0tIvckr1tC21kNYJkOV4Jzlo8ks3fsjfQrLmDfOKk2FrJQUNKt2fyJ9sawOmwVqENQxpBShMbUbbpkJXZvRzHuHZujQ5A7NR4fm3Ur_WFfp_5rYYEpZ7OcQv7H_cb0Bhryt8A
CitedBy_id crossref_primary_10_1038_s41592_024_02187_9
crossref_primary_10_1038_s41592_024_02580_4
crossref_primary_10_1038_s41467_025_60306_2
crossref_primary_10_1038_s44303_025_00099_7
crossref_primary_10_3390_electronics13040746
crossref_primary_10_3390_s25144436
crossref_primary_10_1038_s41592_023_02150_0
crossref_primary_10_1371_journal_pcbi_1012361
crossref_primary_10_1038_s41592_024_02513_1
crossref_primary_10_1186_s12859_023_05486_8
crossref_primary_10_1016_j_copbio_2023_103055
crossref_primary_10_1038_s41592_024_02241_6
crossref_primary_10_1016_j_ijpharm_2024_125018
crossref_primary_10_1038_s41592_024_02233_6
crossref_primary_10_7554_eLife_99848_4
crossref_primary_10_1242_dev_202800
crossref_primary_10_1016_j_mcpro_2024_100877
crossref_primary_10_7554_eLife_99848
crossref_primary_10_1242_dev_202817
crossref_primary_10_1016_j_ibmed_2025_100224
crossref_primary_10_3390_app131810286
Cites_doi 10.1007/s11263-014-0733-5
10.1038/s41592-019-0612-7
10.1016/j.cels.2020.04.003
10.1109/MLSP55214.2022.9943312
10.1016/j.compbiomed.2022.105792
10.1038/s41592-020-01018-x
10.1109/ISBI48211.2021.9433928
10.1016/j.media.2022.102371
10.1038/s41598-020-61808-3
10.1016/j.media.2022.102523
10.1016/j.media.2022.102699
10.1016/j.imu.2020.100297
10.1109/CVPR.2016.90
10.1007/978-3-030-00934-2_30
10.1038/s41598-021-94217-1
10.1038/s41592-020-01008-z
10.1109/IWSSIP48289.2020.9145130
10.1109/ICCV.2017.322
10.1038/s41592-021-01249-6
10.1007/978-3-319-10602-1_48
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QO
7SS
7TK
7U9
7X2
7X7
7XB
88E
88I
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
L6V
LK8
M0K
M0S
M1P
M2P
M7N
M7P
M7S
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
RC3
7X8
5PM
DOI 10.1038/s41592-023-01942-8
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agricultural Science Database
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
Environmental Science Collection
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic
CrossRef
Agricultural Science Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1548-7105
EndPage 216
ExternalDocumentID PMC10864175
37500758
10_1038_s41592_023_01942_8
Genre Journal Article
GroupedDBID ---
-~X
0R~
123
29M
39C
3V.
4.4
53G
5BI
7X2
7X7
7XC
88E
88I
8AO
8CJ
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AAEEF
AAHBH
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJCF
ABJNI
ABLJU
ABUWG
ACBWK
ACGFS
ACGOD
ACIWK
ACPRK
ACUHS
ADBBV
AENEX
AEUYN
AFANA
AFBBN
AFKRA
AFRAH
AFSHS
AGAYW
AHBCP
AHMBA
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARMCB
ASPBG
ATCPS
AVWKF
AXYYD
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
BKSAR
BPHCQ
BVXVI
C6C
CCPQU
CS3
D1I
D1J
D1K
DB5
DU5
DWQXO
EBS
EE.
EJD
EMOBN
ESX
F5P
FEDTE
FSGXE
FYUFA
FZEXT
GNUQQ
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IHR
INH
INR
ITC
K6-
KB.
L6V
LK5
LK8
M0K
M1P
M2P
M7P
M7R
M7S
NNMJJ
O9-
ODYON
P2P
P62
PATMY
PCBAR
PDBOC
PQQKQ
PROAC
PSQYO
PTHSS
PYCSY
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SJN
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
~8M
AAYXX
AFFHD
AGSTI
ATHPR
CITATION
NFIDA
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7SS
7TK
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c475t-738014b5e9f41e80412f983fae3e0879ffe57776e330c1e76c56a9ef339982233
IEDL.DBID 7X7
ISICitedReferencesCount 25
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001037348700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1548-7091
1548-7105
IngestDate Tue Nov 04 02:05:50 EST 2025
Thu Oct 02 07:09:57 EDT 2025
Mon Oct 06 17:18:51 EDT 2025
Thu Jul 24 03:25:47 EDT 2025
Sat Nov 29 01:48:14 EST 2025
Tue Nov 18 22:35:36 EST 2025
Fri Feb 21 02:37:45 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c475t-738014b5e9f41e80412f983fae3e0879ffe57776e330c1e76c56a9ef339982233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5294-5247
0009-0009-4903-9188
0000-0003-3136-8978
0000-0002-4492-1798
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC10864175
PMID 37500758
PQID 2925768752
PQPubID 28015
PageCount 4
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10864175
proquest_miscellaneous_2854431057
proquest_journals_2925768752
pubmed_primary_37500758
crossref_citationtrail_10_1038_s41592_023_01942_8
crossref_primary_10_1038_s41592_023_01942_8
springer_journals_10_1038_s41592_023_01942_8
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationSubtitle Techniques for life scientists and chemists
PublicationTitle Nature methods
PublicationTitleAbbrev Nat Methods
PublicationTitleAlternate Nat Methods
PublicationYear 2024
Publisher Nature Publishing Group US
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group US
– name: Nature Publishing Group
References EdlundCLIVECell—a large-scale dataset for label-free live cell segmentationNat. Methods202118.91038104510.1038/s41592-021-01249-6
Lin, T. Y. et al. Microsoft COCO: common objects in context. Computer Vision – ECCV 2014, pp. 740–755 (Springer International Publishing, 2014).
LalitMTomancakPJugFEmbedSeg: embedding-based instance segmentation for biomedical microscopy dataMed. Image Anal.20228110252310.1016/j.media.2022.10252335926335
CaicedoJCNucleus segmentation across imaging experiments: the 2018 Data Science BowlNat. Methods201916124712531:CAS:528:DC%2BC1MXitVSlsbrK10.1038/s41592-019-0612-7316364596919559.
MoshkovNTest-time augmentation for deep learning-based cell segmentation on microscopy imagesSci. Rep.2020101:CAS:528:DC%2BB3cXlvFCrtb0%3D10.1038/s41598-020-61808-33219348570813142020NatSR..10.5068M
HaqueIRizwanIJeremiahNDeep learning approaches to biomedical image segmentationInform. Med. Unlocked20201810029710.1016/j.imu.2020.100297
IsenseeFnnU-Net: a self-configuring method for deep learning-based biomedical image segmentationNat. Methods202118.220321110.1038/s41592-020-01008-z
PangHA fully automatic segmentation pipeline of pulmonary lobes before and after lobectomy from computed tomography imagesComput. Biol. Med.202214710579210.1016/j.compbiomed.2022.10579235780601
Mabon, J., Ortner, M. & Zerubia, J. CNN-based energy learning for MPP object detection in satellite images. In 2022 IEEE 32nd International Workshop on Machine Learning for Signal Processing (MLSP) pp. 1–6 (IEEE, 2022).
HollandiRnucleAIzer: a parameter-free deep learning framework for nucleus segmentation using image style transferCell Syst.202010.545345810.1016/j.cels.2020.04.003
Maier-Hein, L. et al. Metrics reloaded: pitfalls and recommendations for image analysis validation. Preprint at arXiv:2206.01653 (2022).
He, K. et al. Mask R-CNN. In Proc. International Conference on Computer Vision (ICCV) pp. 2961–2969 (2017).
StringerCCellpose: a generalist algorithm for cellular segmentationNat. Methods202118.110010610.1038/s41592-020-01018-x
AubrevilleMMitosis domain generalization in histopathology images—the MIDOG challengeMed. Image Anal.20238410269910.1016/j.media.2022.10269936463832
Padilla, R., Netto, S. L. & Da Silva, E. A. A survey on performance metrics for object-detection algorithms. In 2020 International Conference on Systems, Signals and Image Processing (IWSSIP) pp. 237–242 (IEEE, 2020).
Schmidt, U. et al. Cell detection with star-convex polygons. In Proc. 21st International Conference, Medical Image Computing and Computer Assisted Intervention (MICCAI) pp. 265–273 (Springer International Publishing, 2018).
Common objects in context. COCO datasethttps://cocodataset.org/#detection-eval (n.d.).
UpschulteEContour proposal networks for biomedical instance segmentationMed. Image Anal.20227710237110.1016/j.media.2022.10237135180674
He, K. et al. Deep residual learning for image recognition. In Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 770–778 (2016).
GrexaISpheroidPicker for automated 3D cell culture manipulation using deep learningSci. Rep.202111148131:CAS:528:DC%2BB3MXhs1Clt73E10.1038/s41598-021-94217-13428529182924602021NatSR..1114813G
Mandal, S. & Uhlmann, V. SplineDist: automated cell segmentation with spline curves. In IEEE 18th International Symposium on Biomedical Imaging (ISBI) pp. 1082–1086 (IEEE, 2021).
EveringhamMThe pascal visual object classes challenge: a retrospectiveInt. J. Comput. Vis.2015111.19813610.1007/s11263-014-0733-5
Barker, J. S. P. Deep learning for object detection with DIGITS. NVIDIA Developer Technical Bloghttps://developer.nvidia.com/blog/deep-learning-object-detection-digits/ (2016).
C Edlund (1942_CR7) 2021; 18.9
1942_CR15
C Stringer (1942_CR16) 2021; 18.1
R Hollandi (1942_CR19) 2020; 10.5
I Grexa (1942_CR17) 2021; 11
1942_CR22
1942_CR12
1942_CR23
E Upschulte (1942_CR9) 2022; 77
1942_CR13
1942_CR14
M Aubreville (1942_CR8) 2023; 84
1942_CR20
1942_CR10
1942_CR1
M Everingham (1942_CR11) 2015; 111.1
1942_CR2
H Pang (1942_CR5) 2022; 147
M Lalit (1942_CR21) 2022; 81
JC Caicedo (1942_CR6) 2019; 16
N Moshkov (1942_CR18) 2020; 10
I Haque (1942_CR3) 2020; 18
F Isensee (1942_CR4) 2021; 18.2
References_xml – reference: CaicedoJCNucleus segmentation across imaging experiments: the 2018 Data Science BowlNat. Methods201916124712531:CAS:528:DC%2BC1MXitVSlsbrK10.1038/s41592-019-0612-7316364596919559.
– reference: AubrevilleMMitosis domain generalization in histopathology images—the MIDOG challengeMed. Image Anal.20238410269910.1016/j.media.2022.10269936463832
– reference: Mabon, J., Ortner, M. & Zerubia, J. CNN-based energy learning for MPP object detection in satellite images. In 2022 IEEE 32nd International Workshop on Machine Learning for Signal Processing (MLSP) pp. 1–6 (IEEE, 2022).
– reference: LalitMTomancakPJugFEmbedSeg: embedding-based instance segmentation for biomedical microscopy dataMed. Image Anal.20228110252310.1016/j.media.2022.10252335926335
– reference: Lin, T. Y. et al. Microsoft COCO: common objects in context. Computer Vision – ECCV 2014, pp. 740–755 (Springer International Publishing, 2014).
– reference: Mandal, S. & Uhlmann, V. SplineDist: automated cell segmentation with spline curves. In IEEE 18th International Symposium on Biomedical Imaging (ISBI) pp. 1082–1086 (IEEE, 2021).
– reference: UpschulteEContour proposal networks for biomedical instance segmentationMed. Image Anal.20227710237110.1016/j.media.2022.10237135180674
– reference: HollandiRnucleAIzer: a parameter-free deep learning framework for nucleus segmentation using image style transferCell Syst.202010.545345810.1016/j.cels.2020.04.003
– reference: IsenseeFnnU-Net: a self-configuring method for deep learning-based biomedical image segmentationNat. Methods202118.220321110.1038/s41592-020-01008-z
– reference: PangHA fully automatic segmentation pipeline of pulmonary lobes before and after lobectomy from computed tomography imagesComput. Biol. Med.202214710579210.1016/j.compbiomed.2022.10579235780601
– reference: He, K. et al. Deep residual learning for image recognition. In Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 770–778 (2016).
– reference: Barker, J. S. P. Deep learning for object detection with DIGITS. NVIDIA Developer Technical Bloghttps://developer.nvidia.com/blog/deep-learning-object-detection-digits/ (2016).
– reference: He, K. et al. Mask R-CNN. In Proc. International Conference on Computer Vision (ICCV) pp. 2961–2969 (2017).
– reference: Padilla, R., Netto, S. L. & Da Silva, E. A. A survey on performance metrics for object-detection algorithms. In 2020 International Conference on Systems, Signals and Image Processing (IWSSIP) pp. 237–242 (IEEE, 2020).
– reference: Schmidt, U. et al. Cell detection with star-convex polygons. In Proc. 21st International Conference, Medical Image Computing and Computer Assisted Intervention (MICCAI) pp. 265–273 (Springer International Publishing, 2018).
– reference: Common objects in context. COCO datasethttps://cocodataset.org/#detection-eval (n.d.).
– reference: Maier-Hein, L. et al. Metrics reloaded: pitfalls and recommendations for image analysis validation. Preprint at arXiv:2206.01653 (2022).
– reference: StringerCCellpose: a generalist algorithm for cellular segmentationNat. Methods202118.110010610.1038/s41592-020-01018-x
– reference: EveringhamMThe pascal visual object classes challenge: a retrospectiveInt. J. Comput. Vis.2015111.19813610.1007/s11263-014-0733-5
– reference: GrexaISpheroidPicker for automated 3D cell culture manipulation using deep learningSci. Rep.202111148131:CAS:528:DC%2BB3MXhs1Clt73E10.1038/s41598-021-94217-13428529182924602021NatSR..1114813G
– reference: EdlundCLIVECell—a large-scale dataset for label-free live cell segmentationNat. Methods202118.91038104510.1038/s41592-021-01249-6
– reference: HaqueIRizwanIJeremiahNDeep learning approaches to biomedical image segmentationInform. Med. Unlocked20201810029710.1016/j.imu.2020.100297
– reference: MoshkovNTest-time augmentation for deep learning-based cell segmentation on microscopy imagesSci. Rep.2020101:CAS:528:DC%2BB3cXlvFCrtb0%3D10.1038/s41598-020-61808-33219348570813142020NatSR..10.5068M
– volume: 111.1
  start-page: 98
  year: 2015
  ident: 1942_CR11
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-014-0733-5
– ident: 1942_CR20
– volume: 16
  start-page: 1247
  year: 2019
  ident: 1942_CR6
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0612-7
– volume: 10.5
  start-page: 453
  year: 2020
  ident: 1942_CR19
  publication-title: Cell Syst.
  doi: 10.1016/j.cels.2020.04.003
– ident: 1942_CR12
  doi: 10.1109/MLSP55214.2022.9943312
– volume: 147
  start-page: 105792
  year: 2022
  ident: 1942_CR5
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.105792
– ident: 1942_CR1
– volume: 18.1
  start-page: 100
  year: 2021
  ident: 1942_CR16
  publication-title: Nat. Methods
  doi: 10.1038/s41592-020-01018-x
– ident: 1942_CR2
  doi: 10.1109/ISBI48211.2021.9433928
– volume: 77
  start-page: 102371
  year: 2022
  ident: 1942_CR9
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2022.102371
– volume: 10
  year: 2020
  ident: 1942_CR18
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-61808-3
– volume: 81
  start-page: 102523
  year: 2022
  ident: 1942_CR21
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2022.102523
– volume: 84
  start-page: 102699
  year: 2023
  ident: 1942_CR8
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2022.102699
– volume: 18
  start-page: 100297
  year: 2020
  ident: 1942_CR3
  publication-title: Inform. Med. Unlocked
  doi: 10.1016/j.imu.2020.100297
– ident: 1942_CR14
  doi: 10.1109/CVPR.2016.90
– ident: 1942_CR15
  doi: 10.1007/978-3-030-00934-2_30
– volume: 11
  start-page: 14813
  year: 2021
  ident: 1942_CR17
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-94217-1
– volume: 18.2
  start-page: 203
  year: 2021
  ident: 1942_CR4
  publication-title: Nat. Methods
  doi: 10.1038/s41592-020-01008-z
– ident: 1942_CR10
  doi: 10.1109/IWSSIP48289.2020.9145130
– ident: 1942_CR13
  doi: 10.1109/ICCV.2017.322
– volume: 18.9
  start-page: 1038
  year: 2021
  ident: 1942_CR7
  publication-title: Nat. Methods
  doi: 10.1038/s41592-021-01249-6
– ident: 1942_CR22
  doi: 10.1007/978-3-319-10602-1_48
– ident: 1942_CR23
SSID ssj0033425
Score 2.5683184
Snippet Quantitative evaluation of image segmentation algorithms is crucial in the field of bioimage analysis. The most common assessment scores, however, are often...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 213
SubjectTerms 631/114/1305
631/114/1564
631/1647/328
Algorithms
Bioinformatics
Biological Microscopy
Biological Techniques
Biomedical and Life Sciences
Biomedical Engineering/Biotechnology
Brief Communication
Data science
Datasets
Image analysis
Image processing
Image Processing, Computer-Assisted - methods
Image segmentation
Life Sciences
Object recognition
Proteomics
Title Segmentation metric misinterpretations in bioimage analysis
URI https://link.springer.com/article/10.1038/s41592-023-01942-8
https://www.ncbi.nlm.nih.gov/pubmed/37500758
https://www.proquest.com/docview/2925768752
https://www.proquest.com/docview/2854431057
https://pubmed.ncbi.nlm.nih.gov/PMC10864175
Volume 21
WOSCitedRecordID wos001037348700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Agricultural Science Database
  customDbUrl:
  eissn: 1548-7105
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0033425
  issn: 1548-7091
  databaseCode: M0K
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1548-7105
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0033425
  issn: 1548-7091
  databaseCode: M7P
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1548-7105
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0033425
  issn: 1548-7091
  databaseCode: PCBAR
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1548-7105
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0033425
  issn: 1548-7091
  databaseCode: M7S
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1548-7105
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0033425
  issn: 1548-7091
  databaseCode: PATMY
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (Proquest)
  customDbUrl:
  eissn: 1548-7105
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0033425
  issn: 1548-7091
  databaseCode: 7X7
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1548-7105
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0033425
  issn: 1548-7091
  databaseCode: KB.
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1548-7105
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0033425
  issn: 1548-7091
  databaseCode: P5Z
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1548-7105
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0033425
  issn: 1548-7091
  databaseCode: BENPR
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1548-7105
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0033425
  issn: 1548-7091
  databaseCode: M2P
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1BCxKXlm9CSxUkbhCatePYEQdEUSukwmpFQVpxiRLvGCKx2dJsK_HvmXG8qZaKXriMFMX58HhiP9uT9wBeCMxmWW5cUtcjm2SzmUiKFFVirc7rXFWIzvPMftTjsZlOi0lYcOtCWuWqT_Qd9WxheY18XxQeGmsl3p7-Slg1indXg4TGTdhk2WyOcz0dJlxSZl50lVF5omlgDD_NpNLsdzRwcd6l4GyiIqNeYX1guoI2ryZN_rVz6geko-3_rcpd2ApQNH7Xx849uIHtfbjdi1P-fgBvTvD7PPyZ1MZzVt6yMUVFs5am2MVNG9fNoplTxxRXgeLkIXw9Ovzy_kMSpBYSm2m1TLRkFplaYeGyETInkXCFka5CianRhXOotNY5SpnaEercqrwq0EnCNwQxpHwEG-2ixScQa5oAYWotTVTyzApVkfudVehSbQnv6AhGKz-XNvCQsxzGz9Lvh0tT9m1TUtuUvm1KE8HL4ZrTnoXj2tK7K7-X4YvsykunR_B8OE1e4w2SqsXFOZUxzAbIyscRPO5be3icJGhF8IpubtbiYCjAPN3rZ9rmh-frZjGrjGBaBK9WIXP5Xv-uxtPrq7EDdwQBrD6DfBc2lmfn-Axu2Ytl053t-Q_BW7MHmweH48lnOjo-eE32U3rMVkzY6t6ekJ2ob38ADh8VuQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VBQQXypvQAkGCE1jN-hEnqhBCQNWqy6oSRerNTbxjGqmbLc0W1D_Fb-zYSbZaKnrrgXOc53yZ-cYezwfwmqMcyzRzrCwHlsnxmLM8QcWs1WmZqgLRhT6zQz0aZfv7-e4S_On3wviyyt4nBkc9nlo_R77O80CNteIfjn8yrxrlV1d7CY0WFjt49ptStub99mey7xvON7_sfdpinaoAs1KrGdPCN0wpFeZODtC33-Euz4QrUGCS6dw5VFrrFCnTtwPUqVVpkaMTFMopmvoJUHL5N4hG8CSUCu72nl8IGURefRbANAXibpNOIrL1hgKlr_Pkvnopl-SFFgPhJXZ7uUjzr5XaEAA3V_63T3cP7nZUO_7Y_hv3YQnrB3CrFd88ewgb3_DHpNt5VccTryxmY0J9tVCG2cRVHZfVtJqQ442LroXLI_h-LU_-GJbraY1PIdaU4GFiLSViqbRcFWRuZxW6RFviczqCQW9XY7s-617u48iE9X6RmRYLhrBgAhZMFsHb-TnHbZeRK0ev9XY2ncdpzIWRI3g1P0xfzS8AFTVOT2lM5rsdemXnCJ606JrfThB1JPpIF88WcDcf4PuQLx6pq8PQj9yLdUmioRG86yF68Vz_fo1nV7_GS7i9tfd1aIbbo51VuMOJTLbV8muwPDs5xedw0_6aVc3Ji_ATxnBw3dA9BzmcZ_U
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VW0BcWt4NLRAkOIG1WTuOHSGEgHZF1Wq14iH1libeMY3UzZZmC-pf49cxTpytloreeuAc5zmf5xGPvw_gBcd4EifasqIYGBZPJpylEUpmjEqKROaItuGZ3VejkT44SMcr8LvbC-PaKjuf2Djqycy4f-R9njapsZK8b31bxHh7-O7kB3MKUm6ltZPTaCGyh-e_qHyr3-5uk61fcj7c-frxE_MKA8zESs6ZEo48pZCY2niAjoqH21QLm6PASKvUWpRKqQSp6jcDVImRSZ6iFRTWKbK6n6Hk_leVoKKnB6sfdkbjz10cECJuJF9dTcAUhWW_ZScSul9T2HRdn9z1MqUx-aTlsHgp173csvnXum0TDofr__OHvANrPgkP37ez5i6sYHUPbraynOf34c0X_D71e7KqcOo0x0xI86FcatCsw7IKi3JWTsklh7knd3kA367lyR9Cr5pVuAGhotIPI2OoREtiw2VOprdGoo2UoUxPBTDobJwZz8DuhECOs6YTQOisxUVGuMgaXGQ6gFeLc05a_pErR291Ns-8L6qzC4MH8HxxmL6aWxrKK5yd0RjteBCd5nMAj1qkLW4nKKmkxJIurpcwuBjgGMqXj1TlUcNU7mS8YkpQA3jdwfXiuf79Go-vfo1ncIsQm-3vjvY24TanLLNto9-C3vz0DJ_ADfNzXtanT_2MDOHwurH7B02Scg0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Segmentation+metric+misinterpretations+in+bioimage+analysis&rft.jtitle=Nature+methods&rft.au=Hirling%2C+Dominik&rft.au=Tasnadi%2C+Ervin&rft.au=Caicedo%2C+Juan&rft.au=Caroprese%2C+Maria+V.&rft.date=2024-02-01&rft.pub=Nature+Publishing+Group+US&rft.issn=1548-7091&rft.eissn=1548-7105&rft.volume=21&rft.issue=2&rft.spage=213&rft.epage=216&rft_id=info:doi/10.1038%2Fs41592-023-01942-8&rft_id=info%3Apmid%2F37500758&rft.externalDocID=PMC10864175
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1548-7091&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1548-7091&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1548-7091&client=summon