Combined artificial intelligence and radiologist model for predicting rectal cancer treatment response from magnetic resonance imaging: an external validation study

Purpose To evaluate an MRI-based radiomic texture classifier alone and combined with radiologist qualitative assessment in predicting pathological complete response (pCR) using restaging MRI with internal training and external validation. Methods Consecutive patients with locally advanced rectal can...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Abdominal imaging Ročník 47; číslo 8; s. 2770 - 2782
Hlavní autori: Horvat, Natally, Veeraraghavan, Harini, Nahas, Caio S. R., Bates, ‬David D. B., Ferreira, Felipe R., Zheng, Junting, Capanu, Marinela, Fuqua, James L., Fernandes, Maria Clara, Sosa, Ramon E., Jayaprakasam, Vetri Sudar, Cerri, Giovanni G., Nahas, Sergio C., Petkovska, Iva
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.08.2022
Springer Nature B.V
Predmet:
ISSN:2366-0058, 2366-004X, 2366-0058
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Purpose To evaluate an MRI-based radiomic texture classifier alone and combined with radiologist qualitative assessment in predicting pathological complete response (pCR) using restaging MRI with internal training and external validation. Methods Consecutive patients with locally advanced rectal cancer (LARC) who underwent neoadjuvant therapy followed by total mesorectal excision from March 2012 to February 2016 (Memorial Sloan Kettering Cancer Center/internal dataset, n  = 114, 41% female, median age = 55) and July 2014 to October 2015 (Instituto do Câncer do Estado de São Paulo/external dataset, n  = 50, 52% female, median age = 64.5) were retrospectively included. Two radiologists (R1, senior; R2, junior) independently evaluated restaging MRI, classifying patients (radiological complete response vs radiological partial response). Model A ( n  = 33 texture features), model B ( n  = 91 features including texture, shape, and edge features), and two combination models (model A + B + R1, model A + B + R2) were constructed. Pathology served as the reference standard for neoadjuvant treatment response. Comparison of the classifiers’ AUCs on the external set was done using DeLong’s test. Results Models A and B had similar discriminative ability ( P  = 0.3; Model B AUC = 83%, 95% CI 70%–97%). Combined models increased inter-reader agreement compared with radiologist-only interpretation ( κ  = 0.82, 95% CI 0.70–0.89 vs k  = 0.25, 95% CI 0.11–0.61). The combined model slightly increased junior radiologist specificity, positive predictive value, and negative predictive values (93% vs 90%, 57% vs 50%, and 91% vs 90%, respectively). Conclusion We developed and externally validated a combined model using radiomics and radiologist qualitative assessment, which improved inter-reader agreement and slightly increased the diagnostic performance of the junior radiologist in predicting pCR after neoadjuvant treatment in patients with LARC. Graphical abstract
AbstractList PurposeTo evaluate an MRI-based radiomic texture classifier alone and combined with radiologist qualitative assessment in predicting pathological complete response (pCR) using restaging MRI with internal training and external validation.MethodsConsecutive patients with locally advanced rectal cancer (LARC) who underwent neoadjuvant therapy followed by total mesorectal excision from March 2012 to February 2016 (Memorial Sloan Kettering Cancer Center/internal dataset, n = 114, 41% female, median age = 55) and July 2014 to October 2015 (Instituto do Câncer do Estado de São Paulo/external dataset, n = 50, 52% female, median age = 64.5) were retrospectively included. Two radiologists (R1, senior; R2, junior) independently evaluated restaging MRI, classifying patients (radiological complete response vs radiological partial response). Model A (n = 33 texture features), model B (n = 91 features including texture, shape, and edge features), and two combination models (model A + B + R1, model A + B + R2) were constructed. Pathology served as the reference standard for neoadjuvant treatment response. Comparison of the classifiers’ AUCs on the external set was done using DeLong’s test.ResultsModels A and B had similar discriminative ability (P = 0.3; Model B AUC = 83%, 95% CI 70%–97%). Combined models increased inter-reader agreement compared with radiologist-only interpretation (κ = 0.82, 95% CI 0.70–0.89 vs k = 0.25, 95% CI 0.11–0.61). The combined model slightly increased junior radiologist specificity, positive predictive value, and negative predictive values (93% vs 90%, 57% vs 50%, and 91% vs 90%, respectively).ConclusionWe developed and externally validated a combined model using radiomics and radiologist qualitative assessment, which improved inter-reader agreement and slightly increased the diagnostic performance of the junior radiologist in predicting pCR after neoadjuvant treatment in patients with LARC.
To evaluate an MRI-based radiomic texture classifier alone and combined with radiologist qualitative assessment in predicting pathological complete response (pCR) using restaging MRI with internal training and external validation.PURPOSETo evaluate an MRI-based radiomic texture classifier alone and combined with radiologist qualitative assessment in predicting pathological complete response (pCR) using restaging MRI with internal training and external validation.Consecutive patients with locally advanced rectal cancer (LARC) who underwent neoadjuvant therapy followed by total mesorectal excision from March 2012 to February 2016 (Memorial Sloan Kettering Cancer Center/internal dataset, n = 114, 41% female, median age = 55) and July 2014 to October 2015 (Instituto do Câncer do Estado de São Paulo/external dataset, n = 50, 52% female, median age = 64.5) were retrospectively included. Two radiologists (R1, senior; R2, junior) independently evaluated restaging MRI, classifying patients (radiological complete response vs radiological partial response). Model A (n = 33 texture features), model B (n = 91 features including texture, shape, and edge features), and two combination models (model A + B + R1, model A + B + R2) were constructed. Pathology served as the reference standard for neoadjuvant treatment response. Comparison of the classifiers' AUCs on the external set was done using DeLong's test.METHODSConsecutive patients with locally advanced rectal cancer (LARC) who underwent neoadjuvant therapy followed by total mesorectal excision from March 2012 to February 2016 (Memorial Sloan Kettering Cancer Center/internal dataset, n = 114, 41% female, median age = 55) and July 2014 to October 2015 (Instituto do Câncer do Estado de São Paulo/external dataset, n = 50, 52% female, median age = 64.5) were retrospectively included. Two radiologists (R1, senior; R2, junior) independently evaluated restaging MRI, classifying patients (radiological complete response vs radiological partial response). Model A (n = 33 texture features), model B (n = 91 features including texture, shape, and edge features), and two combination models (model A + B + R1, model A + B + R2) were constructed. Pathology served as the reference standard for neoadjuvant treatment response. Comparison of the classifiers' AUCs on the external set was done using DeLong's test.Models A and B had similar discriminative ability (P = 0.3; Model B AUC = 83%, 95% CI 70%-97%). Combined models increased inter-reader agreement compared with radiologist-only interpretation (κ = 0.82, 95% CI 0.70-0.89 vs k = 0.25, 95% CI 0.11-0.61). The combined model slightly increased junior radiologist specificity, positive predictive value, and negative predictive values (93% vs 90%, 57% vs 50%, and 91% vs 90%, respectively).RESULTSModels A and B had similar discriminative ability (P = 0.3; Model B AUC = 83%, 95% CI 70%-97%). Combined models increased inter-reader agreement compared with radiologist-only interpretation (κ = 0.82, 95% CI 0.70-0.89 vs k = 0.25, 95% CI 0.11-0.61). The combined model slightly increased junior radiologist specificity, positive predictive value, and negative predictive values (93% vs 90%, 57% vs 50%, and 91% vs 90%, respectively).We developed and externally validated a combined model using radiomics and radiologist qualitative assessment, which improved inter-reader agreement and slightly increased the diagnostic performance of the junior radiologist in predicting pCR after neoadjuvant treatment in patients with LARC.CONCLUSIONWe developed and externally validated a combined model using radiomics and radiologist qualitative assessment, which improved inter-reader agreement and slightly increased the diagnostic performance of the junior radiologist in predicting pCR after neoadjuvant treatment in patients with LARC.
To evaluate an MRI-based radiomic texture classifier alone and combined with radiologist qualitative assessment in predicting pathological complete response (pCR) using restaging MRI with internal training and external validation. Consecutive patients with locally advanced rectal cancer (LARC) who underwent neoadjuvant therapy followed by total mesorectal excision from March 2012 to February 2016 (Memorial Sloan Kettering Cancer Center/internal dataset, n = 114, 41% female, median age = 55) and July 2014 to October 2015 (Instituto do Câncer do Estado de São Paulo/external dataset, n = 50, 52% female, median age = 64.5) were retrospectively included. Two radiologists (R1, senior; R2, junior) independently evaluated restaging MRI, classifying patients (radiological complete response vs radiological partial response). Model A (n = 33 texture features), model B (n = 91 features including texture, shape, and edge features), and two combination models (model A + B + R1, model A + B + R2) were constructed. Pathology served as the reference standard for neoadjuvant treatment response. Comparison of the classifiers' AUCs on the external set was done using DeLong's test. Models A and B had similar discriminative ability (P = 0.3; Model B AUC = 83%, 95% CI 70%-97%). Combined models increased inter-reader agreement compared with radiologist-only interpretation (κ = 0.82, 95% CI 0.70-0.89 vs k = 0.25, 95% CI 0.11-0.61). The combined model slightly increased junior radiologist specificity, positive predictive value, and negative predictive values (93% vs 90%, 57% vs 50%, and 91% vs 90%, respectively). We developed and externally validated a combined model using radiomics and radiologist qualitative assessment, which improved inter-reader agreement and slightly increased the diagnostic performance of the junior radiologist in predicting pCR after neoadjuvant treatment in patients with LARC.
Purpose To evaluate an MRI-based radiomic texture classifier alone and combined with radiologist qualitative assessment in predicting pathological complete response (pCR) using restaging MRI with internal training and external validation. Methods Consecutive patients with locally advanced rectal cancer (LARC) who underwent neoadjuvant therapy followed by total mesorectal excision from March 2012 to February 2016 (Memorial Sloan Kettering Cancer Center/internal dataset, n  = 114, 41% female, median age = 55) and July 2014 to October 2015 (Instituto do Câncer do Estado de São Paulo/external dataset, n  = 50, 52% female, median age = 64.5) were retrospectively included. Two radiologists (R1, senior; R2, junior) independently evaluated restaging MRI, classifying patients (radiological complete response vs radiological partial response). Model A ( n  = 33 texture features), model B ( n  = 91 features including texture, shape, and edge features), and two combination models (model A + B + R1, model A + B + R2) were constructed. Pathology served as the reference standard for neoadjuvant treatment response. Comparison of the classifiers’ AUCs on the external set was done using DeLong’s test. Results Models A and B had similar discriminative ability ( P  = 0.3; Model B AUC = 83%, 95% CI 70%–97%). Combined models increased inter-reader agreement compared with radiologist-only interpretation ( κ  = 0.82, 95% CI 0.70–0.89 vs k  = 0.25, 95% CI 0.11–0.61). The combined model slightly increased junior radiologist specificity, positive predictive value, and negative predictive values (93% vs 90%, 57% vs 50%, and 91% vs 90%, respectively). Conclusion We developed and externally validated a combined model using radiomics and radiologist qualitative assessment, which improved inter-reader agreement and slightly increased the diagnostic performance of the junior radiologist in predicting pCR after neoadjuvant treatment in patients with LARC. Graphical abstract
Author Capanu, Marinela
Nahas, Caio S. R.
Ferreira, Felipe R.
Veeraraghavan, Harini
Horvat, Natally
Nahas, Sergio C.
Sosa, Ramon E.
Fuqua, James L.
Zheng, Junting
Bates, ‬David D. B.
Jayaprakasam, Vetri Sudar
Fernandes, Maria Clara
Petkovska, Iva
Cerri, Giovanni G.
AuthorAffiliation d Department of Surgery, University of Sao Paulo, Sao Paulo, SP, Brazil
b Department of Radiology, University of Sao Paulo, Sao Paulo, SP, Brazil
a Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
e Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
c Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
AuthorAffiliation_xml – name: b Department of Radiology, University of Sao Paulo, Sao Paulo, SP, Brazil
– name: c Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
– name: e Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
– name: d Department of Surgery, University of Sao Paulo, Sao Paulo, SP, Brazil
– name: a Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
Author_xml – sequence: 1
  givenname: Natally
  surname: Horvat
  fullname: Horvat, Natally
  organization: Department of Radiology, Memorial Sloan Kettering Cancer Center, Department of Radiology, University of Sao Paulo
– sequence: 2
  givenname: Harini
  surname: Veeraraghavan
  fullname: Veeraraghavan, Harini
  organization: Department of Medical Physics, Memorial Sloan Kettering Cancer Center
– sequence: 3
  givenname: Caio S. R.
  surname: Nahas
  fullname: Nahas, Caio S. R.
  organization: Department of Surgery, University of Sao Paulo
– sequence: 4
  givenname: ‬David D. B.
  surname: Bates
  fullname: Bates, ‬David D. B.
  organization: Department of Radiology, Memorial Sloan Kettering Cancer Center
– sequence: 5
  givenname: Felipe R.
  surname: Ferreira
  fullname: Ferreira, Felipe R.
  organization: Department of Radiology, University of Sao Paulo
– sequence: 6
  givenname: Junting
  surname: Zheng
  fullname: Zheng, Junting
  organization: Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center
– sequence: 7
  givenname: Marinela
  surname: Capanu
  fullname: Capanu, Marinela
  organization: Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center
– sequence: 8
  givenname: James L.
  surname: Fuqua
  fullname: Fuqua, James L.
  organization: Department of Radiology, Memorial Sloan Kettering Cancer Center
– sequence: 9
  givenname: Maria Clara
  surname: Fernandes
  fullname: Fernandes, Maria Clara
  organization: Department of Radiology, Memorial Sloan Kettering Cancer Center
– sequence: 10
  givenname: Ramon E.
  surname: Sosa
  fullname: Sosa, Ramon E.
  organization: Department of Radiology, Memorial Sloan Kettering Cancer Center
– sequence: 11
  givenname: Vetri Sudar
  surname: Jayaprakasam
  fullname: Jayaprakasam, Vetri Sudar
  organization: Department of Radiology, Memorial Sloan Kettering Cancer Center
– sequence: 12
  givenname: Giovanni G.
  surname: Cerri
  fullname: Cerri, Giovanni G.
  organization: Department of Radiology, University of Sao Paulo
– sequence: 13
  givenname: Sergio C.
  surname: Nahas
  fullname: Nahas, Sergio C.
  organization: Department of Surgery, University of Sao Paulo
– sequence: 14
  givenname: Iva
  orcidid: 0000-0002-4373-6494
  surname: Petkovska
  fullname: Petkovska, Iva
  email: petkovsi@mskcc.org
  organization: Department of Radiology, Memorial Sloan Kettering Cancer Center
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35710951$$D View this record in MEDLINE/PubMed
BookMark eNp9Us1uFiEUJabG1toXcGFI3LgZvTB_jBtjvviXNHGja8LAZaSZgU9gGvs-PqhMv1prF11BLuece87lPiVHPngk5DmD1wygf5MAeMcq4LyCuu15JR6RE153XQXQiqM792NyltIFALCuZYy3T8hxITAYWnZCfu_CMjqPhqqYnXXaqZk6n3Ge3YReI1Xe0KiMC3OYXMp0CQZnakOk-4jG6ez8RCPqXIhaFUakOaLKC_pc6mkffEJqY1jooiaP2emtHPyGpa7UisDb0obir4zRF5lLNTujsguepryaq2fksVVzwrOb85R8__jh2-5zdf7105fd-_NKN32bq67BgYmGjUaDqWvGR-CC1XzAsVNG2X5QjbUDH3s-NqOFgWuLXABvmkHwkden5N1Bd7-OCxpdEkQ1y30sLuOVDMrJ_1-8-yGncCkZsBZqIYrCqxuFGH6umLJcXNJlmMpjWJPkXS8a3vZNW6Av70EvwrrF31AlxyC6YUO9uGvp1svfHywAfgDoGFKKaG8hDOS2KfKwKbJsirzeFLnZFPdI2uXrgZdYbn6YWh-oqfTxE8Z_th9g_QEvQ9Zw
CitedBy_id crossref_primary_10_1038_s41698_025_01007_3
crossref_primary_10_1016_j_ejso_2024_109463
crossref_primary_10_3389_fonc_2022_1026216
crossref_primary_10_3390_molecules29133164
crossref_primary_10_3390_jpm15060244
crossref_primary_10_1016_j_acra_2022_12_037
crossref_primary_10_1007_s12195_024_00820_3
crossref_primary_10_1111_odi_70013
crossref_primary_10_1186_s13244_025_02056_9
crossref_primary_10_3389_fmed_2023_1128084
crossref_primary_10_3390_cancers15020432
crossref_primary_10_1007_s11547_024_01861_4
crossref_primary_10_1016_j_imed_2025_05_003
crossref_primary_10_1007_s00261_023_03898_x
crossref_primary_10_1007_s11547_024_01796_w
crossref_primary_10_3390_gidisord6040060
crossref_primary_10_1148_ryai_230437
crossref_primary_10_1371_journal_pone_0309033
crossref_primary_10_3389_fonc_2025_1550838
crossref_primary_10_3390_genes15040421
crossref_primary_10_1016_j_semcancer_2023_06_003
crossref_primary_10_1093_bjr_tqae098
crossref_primary_10_3748_wjg_v29_i19_2888
crossref_primary_10_1007_s00261_025_04953_5
crossref_primary_10_2196_66207
Cites_doi 10.1080/14737140.2021.1860762
10.1023/A:1010933404324
10.1148/radiol.2018172300
10.1007/s11547-017-0838-3
10.1093/neuonc/noz141
10.1158/1078-0432.CCR-15-2997
10.1007/s00261-019-02321-8
10.1148/rg.2019180114
10.1097/DCR.0000000000000558
10.1016/j.ejrad.2019.03.010
10.3390/ijms19123733
10.1097/01.sla.0000141194.27992.32
10.1073/pnas.1505935112
10.1097/DCR.0000000000001224
10.1155/2012/347120
10.1038/srep23428
10.1158/1078-0432.CCR-17-1038
10.1613/jair.953
10.1016/j.radonc.2019.07.033
10.2307/2532051
10.1245/s10434-012-2309-3
10.1088/1361-6560/ab2f44
10.1016/j.clcc.2019.02.003
10.1097/RLI.0000000000000116
10.1007/s00330-016-4623-9
10.1038/bjc.2017.320
10.1016/j.ejrad.2020.109251
10.18632/oncotarget.23813
10.18632/oncotarget.26578
10.18383/j.tom.2016.00235
10.1007/s00261-016-0733-8
10.1038/s41598-018-30657-6
10.1148/radiol.2020191145
10.1007/s00261-020-02502-w
10.1245/s10434-015-4687-9
10.1109/42.836373
10.1007/s00330-018-5683-9
10.1109/34.667881
10.1016/j.ebiom.2021.103407
10.1016/j.ijrobp.2018.04.065
10.1016/j.crad.2016.05.005
10.1007/s00261-019-02042-y
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
– notice: 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0S
M1P
M7P
M7Z
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1007/s00261-022-03572-8
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Database
AUTh Library subscriptions: ProQuest Central
Technology collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Biological Science
Biochemistry Abstracts 1
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Computer Science Database
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2366-0058
EndPage 2782
ExternalDocumentID PMC10150388
35710951
10_1007_s00261_022_03572_8
Genre Journal Article
Research Support, N.I.H., Extramural
GeographicLocations Brazil
GeographicLocations_xml – name: Brazil
GrantInformation_xml – fundername: National Cancer Institute
  grantid: P30 CA008748
  funderid: http://dx.doi.org/10.13039/100000054
– fundername: NCI NIH HHS
  grantid: P30 CA008748
GroupedDBID -EM
04C
0R~
29~
2J2
2JN
2JY
2KG
2KM
2LR
406
53G
5VS
7RV
7X7
88E
8AO
8FH
8FI
8FJ
95-
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAYIU
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMQK
ABNWP
ABPLI
ABQBU
ABSXP
ABTEG
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHVE
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACPRK
ACUDM
ACZOJ
ADBBV
ADINQ
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AESKC
AEVLU
AEXYK
AFBBN
AFEXP
AFJLC
AFKRA
AFLOW
AFQWF
AFRAH
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGVAE
AGWZB
AGYKE
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AILAN
AITGF
AJBLW
AJOOF
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AOCGG
ARAPS
ARMRJ
AXYYD
AZFZN
B-.
BBNVY
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BMSDO
BSONS
CCPQU
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIHBH
EIOEI
EJD
EMB
EMOBN
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GNWQR
GRRUI
H13
HCIFZ
HMCUK
IKXTQ
IMOTQ
ITM
IWAJR
J-C
JZLTJ
K7-
KOV
LK8
LLZTM
M1P
M4Y
M7P
NAPCQ
NPVJJ
NQJWS
NU0
O9J
PQQKQ
PROAC
PSQYO
PT4
QOR
R89
ROL
RSV
S16
SCLPG
SDE
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
TSG
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VFIZW
W23
YLTOR
Z7X
Z83
Z87
Z8V
Z8W
Z91
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
---
.86
.VR
06C
06D
0VY
1N0
23M
2~H
30V
36B
3V.
4.4
408
409
40D
40E
5GY
5RE
67Z
6NX
7XB
8FD
8FE
8FG
8FK
8TC
95.
95~
96X
AAWCG
AAWTL
AAYQN
ABBXA
ABOCM
ACOMO
ADHIR
ADIMF
AEGAL
AENEX
AEPYU
AETLH
AFWTZ
AHAVH
AIIXL
AKMHD
ALWAN
AZQEC
BA0
BKEYQ
BPHCQ
BVXVI
CS3
DL5
DWQXO
ESBYG
EX3
F5P
FEDTE
FR3
G-Y
G-Z
GGRSB
GJIRD
GNUQQ
GQ7
GQ8
GXS
HF~
HG5
HMJXF
HQYDN
HRMNR
HVGLF
I09
IHE
IJ-
IXC
IZIGR
IZQ
I~Z
J0Z
JQ2
K6V
K9.
KDC
KPH
LAS
M7Z
MA-
N9A
NB0
O93
O9I
OAM
OVD
P19
P62
P64
P9S
PF0
PKEHL
PQEST
PQUKI
PRINS
Q2X
QOK
QOS
R9I
RHV
RPX
RRX
S27
S37
S3B
SAP
SDH
SHX
SMD
T13
TSV
TT1
TUC
U2A
U9L
VC2
WH7
WJK
WK8
WOW
Z45
ZOVNA
7X8
5PM
ID FETCH-LOGICAL-c475t-64e91841bdc0d3312b0281329eb6adaf79a4ff92b72b4bf092cfe280244982b23
IEDL.DBID K7-
ISICitedReferencesCount 25
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000811958400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2366-0058
2366-004X
IngestDate Tue Nov 04 02:06:14 EST 2025
Sun Nov 09 12:42:33 EST 2025
Wed Nov 05 14:53:50 EST 2025
Mon Jul 21 05:55:44 EDT 2025
Sat Nov 29 03:28:50 EST 2025
Tue Nov 18 21:23:14 EST 2025
Fri Feb 21 02:45:01 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Neoadjuvant therapy
Watchful waiting
Rectal cancer
Magnetic resonance imaging
Artificial intelligence
Language English
License 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c475t-64e91841bdc0d3312b0281329eb6adaf79a4ff92b72b4bf092cfe280244982b23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Author contributions: Natally Horvat: Conceptualization; Data curation; Formal analysis; Investigation; Methodology; Project administration; Resources; Software; Supervision; Validation; Visualization; Roles/Writing - original draft; Writing - review & editing. Harini Veeraraghavan: Conceptualization; Data curation; Formal analysis; Investigation; Methodology; Project administration; Resources; Software; Supervision; Validation; Visualization; Roles/Writing - original draft; Writing - review & editing. Caio S.R. Nahas: Data curation; Writing – review & editing. David D.B. Bates: Formal analysis; Writing – review & editing. Felipe R. Ferreira: Data curation; Formal analysis; Writing – review & editing. James L. Fuqua III: Formal analysis; Writing – review & editing. Maria Clara Fernandes: Formal analysis; Writing – review & editing. Ramon E. Sosa: Data curation; Writing – review & editing. Vetri Sudar Jayaprakasam: Formal analysis; Writing – review & editing. Giovanni G. Cerri: Project administration; Supervision; Writing – review & editing. Sergio C. Nahas: Data curation; Project administration; Supervision; Writing – review & editing. Iva Petkovska: Conceptualization; Data curation; Formal analysis; Investigation; Methodology; Project administration; Resources; Software; Supervision; Validation; Visualization; Roles/Writing - original draft; Writing - review & editing.
Natally Horvat and Harini Veeraraghavan contributed equally to this study.
ORCID 0000-0002-4373-6494
OpenAccessLink https://pmc.ncbi.nlm.nih.gov/articles/PMC10150388/pdf/nihms-1889612.pdf
PMID 35710951
PQID 2691898695
PQPubID 31175
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10150388
proquest_miscellaneous_2678425745
proquest_journals_2691898695
pubmed_primary_35710951
crossref_primary_10_1007_s00261_022_03572_8
crossref_citationtrail_10_1007_s00261_022_03572_8
springer_journals_10_1007_s00261_022_03572_8
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Abdominal imaging
PublicationTitleAbbrev Abdom Radiol
PublicationTitleAlternate Abdom Radiol (NY)
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References ChawlaNVBowyerKWHallLOKegelmeyerWPSMOTE: Synthetic minority over-sampling techniqueJ Artif Intell Res20021632135710.1613/jair.953
TixierFUmHBermudezDIyerAApteAGrahamMSNevelKSDeasyJOYoungRJVeeraraghavanHPreoperative MRI-radiomics features improve prediction of survival in glioblastoma patients over MGMT methylation status aloneOncotarget201910666067210.18632/oncotarget.26578307747636363013
BreimanLRandom forestsMach Learn200145153210.1023/A:1010933404324
PatelUBBrownGRuttenHWestNSebag-MontefioreDGlynne-JonesRRullierEPeetersMVan CutsemERicciSVan de VeldeCKjellPQuirkePComparison of magnetic resonance imaging and histopathological response to chemoradiotherapy in locally advanced rectal cancerAnn Surg Oncol20121992842285210.1245/s10434-012-2309-322526897
CuiYYangXShiZYangZDuXZhaoZChengXRadiomics analysis of multiparametric MRI for prediction of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancerEur Radiol20192931211122010.1007/s00330-018-5683-930128616
NyulLGUdupaJKZhangXNew variants of a method of MRI scale standardizationIEEE Trans Med Imaging20001921431501:STN:280:DC%2BD3c3ksVyksw%3D%3D10.1109/42.83637310784285
LinLIA concordance correlation coefficient to evaluate reproducibilityBiometrics19894512552681:STN:280:DyaL1M3kslKrtg%3D%3D10.2307/2532051
BulensPCouwenbergAIntvenMDebucquoyAVandecaveyeVVan CutsemED'HooreAWolthuisAMukherjeePGevaertOHaustermansKPredicting the tumor response to chemoradiotherapy for rectal cancer: Model development and external validation using MRI radiomicsRadiother Oncol20201422462521:CAS:528:DC%2BC1MXhsFCmtbzJ10.1016/j.radonc.2019.07.03331431368
ZwanenburgAVallieresMAbdalahMAAertsHAndrearczykVApteAAshrafiniaSBakasSBeukingaRJBoellaardRBogowiczMBoldriniLBuvatICookGJRDavatzikosCDepeursingeADesseroitMCDinapoliNDinhCVEchegaraySEl NaqaIFedorovAYGattaRGilliesRJGohVGotzMGuckenbergerMHaSMHattMIsenseeFLambinPLegerSLeijenaarRTHLenkowiczJLippertFLosnegardAMaier-HeinKHMorinOMullerHNapelSNiocheCOrlhacFPatiSPfaehlerEAGRahmimARaoAUKSchererJSiddiqueMMSijtsemaNMSocarras FernandezJSpeziESteenbakkersRTanadini-LangSThorwarthDTroostEGCUpadhayaTValentiniVvan DijkLVvan GriethuysenJvan VeldenFHPWhybraPRichterCLockSThe Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based PhenotypingRadiology2020295232833810.1148/radiol.202019114532154773
SiddiquiMRGormlyKLBhodayJBalyansikovaSBattersbyNJChandMRaoSTekkisPAbulafiAMBrownGInterobserver agreement of radiologists assessing the response of rectal cancers to preoperative chemoradiation using the MRI tumour regression grading (mrTRG)Clin Radiol20167198548621:STN:280:DC%2BC2s7mvFGisQ%3D%3D10.1016/j.crad.2016.05.00527381221
MaasMLambregtsDMNelemansPJHeijnenLAMartensMHLeijtensJWSosefMHulseweKWHoffCBreukinkSOStassenLBeets-TanRGBeetsGLAssessment of Clinical Complete Response After Chemoradiation for Rectal Cancer with Digital Rectal Examination, Endoscopy, and MRI: Selection for Organ-Saving TreatmentAnn Surg Oncol201522123873388010.1245/s10434-015-4687-9261980744595525
LiuZZhangXYShiYJWangLZhuHTTangZWangSLiXTTianJSunYSRadiomics Analysis for Evaluation of Pathological Complete Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal CancerClin Cancer Res20172323725372621:CAS:528:DC%2BC2sXhvFWht7%2FJ10.1158/1078-0432.CCR-17-103828939744
AkerMGaneshanBAfaqAWanSGrovesAMArulampalamTMagnetic Resonance Texture Analysis in Identifying Complete Pathological Response to Neoadjuvant Treatment in Locally Advanced Rectal CancerDis Colon Rectum201962216317010.1097/DCR.000000000000122430451764
GittoSCuocoloRAnnovazziAAnelliVAcquasantaMCincottaAAlbanoDChiancaVFerraresiVMessinaCZoccaliCArmiraglioEParafioritiASciutoRLuzzatiABiaginiRImbriacoMSconfienzaLMCT radiomics-based machine learning classification of atypical cartilaginous tumours and appendicular chondrosarcomasEBioMedicine20216810.1016/j.ebiom.2021.103407340514428170113
Di ReAMSunYSundaresanPHauETohJWTGeeHOrMHaworthAMRI radiomics in the prediction of therapeutic response to neoadjuvant therapy for locoregionally advanced rectal cancer: a systematic reviewExpert Rev Anticancer Ther202110.1080/14737140.2021.186076233289435
van GriethuysenJJMLambregtsDMJTrebeschiSLahayeMJBakersFCHVliegenRFABeetsGLAertsHBeets-TanRGHRadiomics performs comparable to morphologic assessment by expert radiologists for prediction of response to neoadjuvant chemoradiotherapy on baseline staging MRI in rectal cancerAbdom Radiol (NY)202045363264310.1007/s00261-019-02321-8
CusumanoDDinapoliNBoldriniLChiloiroGGattaRMasciocchiCLenkowiczJCasaCDamianiAAzarioLVan SoestJDekkerALambinPDe SpiritoMValentiniVFractal-based radiomic approach to predict complete pathological response after chemo-radiotherapy in rectal cancerRadiol Med2018123428629510.1007/s11547-017-0838-329230678
BhatiaABirgerMVeeraraghavanHUmHTixierFMcKenneyASCugliariMCaviascoABialczakAMalaniRFlynnJZhangZYangTJSantomassoBDShoushtariANYoungRJMRI radiomic features are associated with survival in melanoma brain metastases treated with immune checkpoint inhibitorsNeuro Oncol20192112157815861:CAS:528:DC%2BB3cXhvFers7%2FL10.1093/neuonc/noz141316218837145582
Habr-Gama A, Perez RO, Nadalin W, Sabbaga J, Ribeiro U, Jr., Silva e Sousa AH, Jr., Campos FG, Kiss DR, Gama-Rodrigues J. Operative versus nonoperative treatment for stage 0 distal rectal cancer following chemoradiation therapy: long-term results. Ann Surg 2004;240(4):711–717; discussion 717–718. https://doi.org/10.1097/01.sla.0000141194.27992.32
HorvatNCarlos Tavares RochaCClemente OliveiraBPetkovskaIGollubMJMRI of Rectal Cancer: Tumor Staging, Imaging Techniques, and ManagementRadiographics201939236738710.1148/rg.201918011430768361
HorvatNVeeraraghavanHKhanMBlazicIZhengJCapanuMSalaEGarcia-AguilarJGollubMJPetkovskaIMR Imaging of Rectal Cancer: Radiomics Analysis to Assess Treatment Response after Neoadjuvant TherapyRadiology2018287383384310.1148/radiol.201817230029514017
NieKShiLChenQHuXJabbourSKYueNNiuTSunXRectal Cancer: Assessment of Neoadjuvant Chemoradiation Outcome based on Radiomics of Multiparametric MRIClin Cancer Res201622215256526410.1158/1078-0432.CCR-15-299727185368
FehrDVeeraraghavanHWibmerAGondoTMatsumotoKVargasHASalaEHricakHDeasyJOAutomatic classification of prostate cancer Gleason scores from multiparametric magnetic resonance imagesProc Natl Acad Sci U S A201511246E626562731:CAS:528:DC%2BC2MXhslKlur3O10.1073/pnas.1505935112265787864655555
MinXLiMDongDFengZZhangPKeZYouHHanFMaHTianJWangLMulti-parametric MRI-based radiomics signature for discriminating between clinically significant and insignificant prostate cancer: Cross-validation of a machine learning methodEur J Radiol2019115162110.1016/j.ejrad.2019.03.01031084754
MolinariCMarisiGPassardiAMatteucciLDe MaioGUliviPHeterogeneity in Colorectal Cancer: A Challenge for Personalized Medicine?Int J Mol Sci201810.3390/ijms19123733304771516321493
HuJZhaoYLiMLiuJWangFWengQWangXCaoDMachine learning-based radiomics analysis in predicting the meningioma grade using multiparametric MRIEur J Radiol202013110.1016/j.ejrad.2020.10925132916409
UmHTixierFBermudezDDeasyJOYoungRJVeeraraghavanHImpact of image preprocessing on the scanner dependence of multi-parametric MRI radiomic features and covariate shift in multi-institutional glioblastoma datasetsPhys Med Biol201910.1088/1361-6560/ab2f4431272093
ZhaoBTanYTsaiWYQiJXieCLuLSchwartzLHReproducibility of radiomics for deciphering tumor phenotype with imagingSci Rep20166234281:CAS:528:DC%2BC28XkvVCksb8%3D10.1038/srep23428270097654806325
De CeccoCNCiolinaMCarusoDRengoMGaneshanBMeinelFGMusioDDe FeliceFTomboliniVLaghiAPerformance of diffusion-weighted imaging, perfusion imaging, and texture analysis in predicting tumoral response to neoadjuvant chemoradiotherapy in rectal cancer patients studied with 3T MR: initial experienceAbdom Radiol (NY)20164191728173510.1007/s00261-016-0733-827056748
HorvatNBatesDDBPetkovskaINovel imaging techniques of rectal cancer: what do radiomics and radiogenomics have to offer? A literature reviewAbdom Radiol (NY)201944113764377410.1007/s00261-019-02042-y
De CeccoCNGaneshanBCiolinaMRengoMMeinelFGMusioDDe FeliceFRaffettoNTomboliniVLaghiATexture analysis as imaging biomarker of tumoral response to neoadjuvant chemoradiotherapy in rectal cancer patients studied with 3-T magnetic resonanceInvest Radiol20155042392451:CAS:528:DC%2BC2MXktVGksb8%3D10.1097/RLI.000000000000011625501017
PetkovskaITixierFOrtizEJGolia PernickaJSParoderVBatesDDHorvatNFuquaJSchilskyJGollubMJGarcia-AguilarJVeeraraghavanHClinical utility of radiomics at baseline rectal MRI to predict complete response of rectal cancer after chemoradiation therapyAbdom Radiol (NY)202045113608361710.1007/s00261-020-02502-w
NahasSCRizkallah NahasCSSparapan MarquesCFRibeiroUJrCottiGCImperialeARCapareliFCChih ChenATHoffPMCecconelloIPathologic Complete Response in Rectal Cancer: Can We Detect It? Lessons Learned From a Proposed Randomized Trial of Watch-and-Wait Treatment of Rectal CancerDis Colon Rectum201659425526310.1097/DCR.000000000000055826953983
BibaultJEGiraudPHoussetMDurduxCTaiebJBergerACoriatRChaussadeSDoussetBNordlingerBBurgunADeep Learning and Radiomics predict complete response after neo-adjuvant chemoradiation for locally advanced rectal cancerSci Rep201881126111:CAS:528:DC%2BC1MXjs1Glsw%3D%3D10.1038/s41598-018-30657-6301355496105676
MengYZhangCZouSZhaoXXuKZhangHZhouCMRI texture analysis in predicting treatment response to neoadjuvant chemoradiotherapy in rectal cancerOncotarget2018915119991200810.18632/oncotarget.2381329552288
RobitailleNMouihaACrepeaultBValdiviaFDuchesneSThe Alzheimer's Disease Neuroimaging I. Tissue-based MRI intensity standardization: application to multicentric datasetsInt J Biomed Imaging201210.1155/2012/347120226113703352580
SclafaniFBrownGCunninghamDWotherspoonAMendesLSTBalyasnikovaSEvansJPeckittCBegumRTaitDTaberneroJGlimeliusBRoselloSThomasJOatesJChauIComparison between MRI and pathology in the assessment of tumour regression grade in rectal cancerBr J Cancer2017117101478148510.1
LI Lin (3572_CR33) 1989; 45
X Min (3572_CR30) 2019; 115
H Um (3572_CR18) 2019
N Dinapoli (3572_CR20) 2018; 102
A Bhatia (3572_CR38) 2019; 21
MR Siddiqui (3572_CR4) 2016; 71
J Kalpathy-Cramer (3572_CR34) 2016; 2
N Robitaille (3572_CR23) 2012
TS Yoo (3572_CR24) 2002; 85
JE Bibault (3572_CR13) 2018; 8
K Nie (3572_CR15) 2016; 22
B Zhao (3572_CR35) 2016; 6
AM Di Re (3572_CR17) 2021
C Molinari (3572_CR42) 2018
F Sclafani (3572_CR3) 2017; 117
Z Liu (3572_CR14) 2017; 23
D Fehr (3572_CR31) 2015; 112
NV Chawla (3572_CR27) 2002; 16
A Zwanenburg (3572_CR25) 2020; 295
L Breiman (3572_CR26) 2001; 45
S Gitto (3572_CR28) 2021; 68
N Horvat (3572_CR39) 2019; 44
I Petkovska (3572_CR16) 2020; 45
CN De Cecco (3572_CR6) 2015; 50
Y Meng (3572_CR8) 2018; 9
SC Nahas (3572_CR5) 2016; 59
N Horvat (3572_CR10) 2018; 287
J Hu (3572_CR29) 2020; 131
A Greenbaum (3572_CR41) 2019; 18
Y Lakhman (3572_CR36) 2017; 27
3572_CR1
F Tixier (3572_CR37) 2019; 10
UB Patel (3572_CR2) 2012; 19
P Bulens (3572_CR19) 2020; 142
N Horvat (3572_CR43) 2019; 39
LG Nyul (3572_CR22) 2000; 19
D Cusumano (3572_CR11) 2018; 123
M Aker (3572_CR9) 2019; 62
J Kittler (3572_CR32) 1998; 20
CN De Cecco (3572_CR7) 2016; 41
M Maas (3572_CR40) 2015; 22
Y Cui (3572_CR12) 2019; 29
JJM van Griethuysen (3572_CR21) 2020; 45
References_xml – reference: MaasMLambregtsDMNelemansPJHeijnenLAMartensMHLeijtensJWSosefMHulseweKWHoffCBreukinkSOStassenLBeets-TanRGBeetsGLAssessment of Clinical Complete Response After Chemoradiation for Rectal Cancer with Digital Rectal Examination, Endoscopy, and MRI: Selection for Organ-Saving TreatmentAnn Surg Oncol201522123873388010.1245/s10434-015-4687-9261980744595525
– reference: ChawlaNVBowyerKWHallLOKegelmeyerWPSMOTE: Synthetic minority over-sampling techniqueJ Artif Intell Res20021632135710.1613/jair.953
– reference: BhatiaABirgerMVeeraraghavanHUmHTixierFMcKenneyASCugliariMCaviascoABialczakAMalaniRFlynnJZhangZYangTJSantomassoBDShoushtariANYoungRJMRI radiomic features are associated with survival in melanoma brain metastases treated with immune checkpoint inhibitorsNeuro Oncol20192112157815861:CAS:528:DC%2BB3cXhvFers7%2FL10.1093/neuonc/noz141316218837145582
– reference: ZwanenburgAVallieresMAbdalahMAAertsHAndrearczykVApteAAshrafiniaSBakasSBeukingaRJBoellaardRBogowiczMBoldriniLBuvatICookGJRDavatzikosCDepeursingeADesseroitMCDinapoliNDinhCVEchegaraySEl NaqaIFedorovAYGattaRGilliesRJGohVGotzMGuckenbergerMHaSMHattMIsenseeFLambinPLegerSLeijenaarRTHLenkowiczJLippertFLosnegardAMaier-HeinKHMorinOMullerHNapelSNiocheCOrlhacFPatiSPfaehlerEAGRahmimARaoAUKSchererJSiddiqueMMSijtsemaNMSocarras FernandezJSpeziESteenbakkersRTanadini-LangSThorwarthDTroostEGCUpadhayaTValentiniVvan DijkLVvan GriethuysenJvan VeldenFHPWhybraPRichterCLockSThe Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based PhenotypingRadiology2020295232833810.1148/radiol.202019114532154773
– reference: NieKShiLChenQHuXJabbourSKYueNNiuTSunXRectal Cancer: Assessment of Neoadjuvant Chemoradiation Outcome based on Radiomics of Multiparametric MRIClin Cancer Res201622215256526410.1158/1078-0432.CCR-15-299727185368
– reference: NahasSCRizkallah NahasCSSparapan MarquesCFRibeiroUJrCottiGCImperialeARCapareliFCChih ChenATHoffPMCecconelloIPathologic Complete Response in Rectal Cancer: Can We Detect It? Lessons Learned From a Proposed Randomized Trial of Watch-and-Wait Treatment of Rectal CancerDis Colon Rectum201659425526310.1097/DCR.000000000000055826953983
– reference: RobitailleNMouihaACrepeaultBValdiviaFDuchesneSThe Alzheimer's Disease Neuroimaging I. Tissue-based MRI intensity standardization: application to multicentric datasetsInt J Biomed Imaging201210.1155/2012/347120226113703352580
– reference: PetkovskaITixierFOrtizEJGolia PernickaJSParoderVBatesDDHorvatNFuquaJSchilskyJGollubMJGarcia-AguilarJVeeraraghavanHClinical utility of radiomics at baseline rectal MRI to predict complete response of rectal cancer after chemoradiation therapyAbdom Radiol (NY)202045113608361710.1007/s00261-020-02502-w
– reference: MengYZhangCZouSZhaoXXuKZhangHZhouCMRI texture analysis in predicting treatment response to neoadjuvant chemoradiotherapy in rectal cancerOncotarget2018915119991200810.18632/oncotarget.2381329552288
– reference: NyulLGUdupaJKZhangXNew variants of a method of MRI scale standardizationIEEE Trans Med Imaging20001921431501:STN:280:DC%2BD3c3ksVyksw%3D%3D10.1109/42.83637310784285
– reference: GreenbaumAMartinDRBocklageTLeeJHNessSARajputATumor Heterogeneity as a Predictor of Response to Neoadjuvant Chemotherapy in Locally Advanced Rectal CancerClin Colorectal Cancer201918210210910.1016/j.clcc.2019.02.003309357756556409
– reference: BibaultJEGiraudPHoussetMDurduxCTaiebJBergerACoriatRChaussadeSDoussetBNordlingerBBurgunADeep Learning and Radiomics predict complete response after neo-adjuvant chemoradiation for locally advanced rectal cancerSci Rep201881126111:CAS:528:DC%2BC1MXjs1Glsw%3D%3D10.1038/s41598-018-30657-6301355496105676
– reference: UmHTixierFBermudezDDeasyJOYoungRJVeeraraghavanHImpact of image preprocessing on the scanner dependence of multi-parametric MRI radiomic features and covariate shift in multi-institutional glioblastoma datasetsPhys Med Biol201910.1088/1361-6560/ab2f4431272093
– reference: HorvatNBatesDDBPetkovskaINovel imaging techniques of rectal cancer: what do radiomics and radiogenomics have to offer? A literature reviewAbdom Radiol (NY)201944113764377410.1007/s00261-019-02042-y
– reference: AkerMGaneshanBAfaqAWanSGrovesAMArulampalamTMagnetic Resonance Texture Analysis in Identifying Complete Pathological Response to Neoadjuvant Treatment in Locally Advanced Rectal CancerDis Colon Rectum201962216317010.1097/DCR.000000000000122430451764
– reference: TixierFUmHBermudezDIyerAApteAGrahamMSNevelKSDeasyJOYoungRJVeeraraghavanHPreoperative MRI-radiomics features improve prediction of survival in glioblastoma patients over MGMT methylation status aloneOncotarget201910666067210.18632/oncotarget.26578307747636363013
– reference: HorvatNCarlos Tavares RochaCClemente OliveiraBPetkovskaIGollubMJMRI of Rectal Cancer: Tumor Staging, Imaging Techniques, and ManagementRadiographics201939236738710.1148/rg.201918011430768361
– reference: Di ReAMSunYSundaresanPHauETohJWTGeeHOrMHaworthAMRI radiomics in the prediction of therapeutic response to neoadjuvant therapy for locoregionally advanced rectal cancer: a systematic reviewExpert Rev Anticancer Ther202110.1080/14737140.2021.186076233289435
– reference: BulensPCouwenbergAIntvenMDebucquoyAVandecaveyeVVan CutsemED'HooreAWolthuisAMukherjeePGevaertOHaustermansKPredicting the tumor response to chemoradiotherapy for rectal cancer: Model development and external validation using MRI radiomicsRadiother Oncol20201422462521:CAS:528:DC%2BC1MXhsFCmtbzJ10.1016/j.radonc.2019.07.03331431368
– reference: MolinariCMarisiGPassardiAMatteucciLDe MaioGUliviPHeterogeneity in Colorectal Cancer: A Challenge for Personalized Medicine?Int J Mol Sci201810.3390/ijms19123733304771516321493
– reference: KittlerJHatefMDuinRPWMatasJOn combining classifiersIEEE Transactions on Pattern Analysis and Machine Intelligence199820322623910.1109/34.667881
– reference: Kalpathy-CramerJMamomovAZhaoBLuLCherezovDNapelSEchegaraySRubinDMcNitt-GrayMLoPSierenJCUthoffJDilgerSKDriscollBYeungIHadjiiskiLChaKBalagurunathanYGilliesRGoldgofDRadiomics of Lung Nodules: A Multi-Institutional Study of Robustness and Agreement of Quantitative Imaging FeaturesTomography20162443043710.18383/j.tom.2016.00235281499585279995
– reference: YooTSAckermanMJLorensenWESchroederWChalanaVAylwardSMetaxasDWhitakerREngineering and algorithm design for an image processing Api: a technical report on ITK–the Insight ToolkitStud Health Technol Inform20028558659215458157
– reference: MinXLiMDongDFengZZhangPKeZYouHHanFMaHTianJWangLMulti-parametric MRI-based radiomics signature for discriminating between clinically significant and insignificant prostate cancer: Cross-validation of a machine learning methodEur J Radiol2019115162110.1016/j.ejrad.2019.03.01031084754
– reference: De CeccoCNGaneshanBCiolinaMRengoMMeinelFGMusioDDe FeliceFRaffettoNTomboliniVLaghiATexture analysis as imaging biomarker of tumoral response to neoadjuvant chemoradiotherapy in rectal cancer patients studied with 3-T magnetic resonanceInvest Radiol20155042392451:CAS:528:DC%2BC2MXktVGksb8%3D10.1097/RLI.000000000000011625501017
– reference: De CeccoCNCiolinaMCarusoDRengoMGaneshanBMeinelFGMusioDDe FeliceFTomboliniVLaghiAPerformance of diffusion-weighted imaging, perfusion imaging, and texture analysis in predicting tumoral response to neoadjuvant chemoradiotherapy in rectal cancer patients studied with 3T MR: initial experienceAbdom Radiol (NY)20164191728173510.1007/s00261-016-0733-827056748
– reference: ZhaoBTanYTsaiWYQiJXieCLuLSchwartzLHReproducibility of radiomics for deciphering tumor phenotype with imagingSci Rep20166234281:CAS:528:DC%2BC28XkvVCksb8%3D10.1038/srep23428270097654806325
– reference: CusumanoDDinapoliNBoldriniLChiloiroGGattaRMasciocchiCLenkowiczJCasaCDamianiAAzarioLVan SoestJDekkerALambinPDe SpiritoMValentiniVFractal-based radiomic approach to predict complete pathological response after chemo-radiotherapy in rectal cancerRadiol Med2018123428629510.1007/s11547-017-0838-329230678
– reference: LiuZZhangXYShiYJWangLZhuHTTangZWangSLiXTTianJSunYSRadiomics Analysis for Evaluation of Pathological Complete Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal CancerClin Cancer Res20172323725372621:CAS:528:DC%2BC2sXhvFWht7%2FJ10.1158/1078-0432.CCR-17-103828939744
– reference: van GriethuysenJJMLambregtsDMJTrebeschiSLahayeMJBakersFCHVliegenRFABeetsGLAertsHBeets-TanRGHRadiomics performs comparable to morphologic assessment by expert radiologists for prediction of response to neoadjuvant chemoradiotherapy on baseline staging MRI in rectal cancerAbdom Radiol (NY)202045363264310.1007/s00261-019-02321-8
– reference: DinapoliNBarbaroBGattaRChiloiroGCasaCMasciocchiCDamianiABoldriniLGambacortaMADezioMMattiucciGCBalducciMvan SoestJDekkerALambinPFiorinoCSiniCDe CobelliFDi MuzioNGuminaCPassoniPManfrediRValentiniVMagnetic Resonance, Vendor-independent, Intensity Histogram Analysis Predicting Pathologic Complete Response After Radiochemotherapy of Rectal CancerInt J Radiat Oncol Biol Phys2018102476577410.1016/j.ijrobp.2018.04.06529891200
– reference: LakhmanYVeeraraghavanHChaimJFeierDGoldmanDAMoskowitzCSNougaretSSosaREVargasHASoslowRAAbu-RustumNRHricakHSalaEDifferentiation of Uterine Leiomyosarcoma from Atypical Leiomyoma: Diagnostic Accuracy of Qualitative MR Imaging Features and Feasibility of Texture AnalysisEur Radiol20172772903291510.1007/s00330-016-4623-927921159
– reference: SiddiquiMRGormlyKLBhodayJBalyansikovaSBattersbyNJChandMRaoSTekkisPAbulafiAMBrownGInterobserver agreement of radiologists assessing the response of rectal cancers to preoperative chemoradiation using the MRI tumour regression grading (mrTRG)Clin Radiol20167198548621:STN:280:DC%2BC2s7mvFGisQ%3D%3D10.1016/j.crad.2016.05.00527381221
– reference: HuJZhaoYLiMLiuJWangFWengQWangXCaoDMachine learning-based radiomics analysis in predicting the meningioma grade using multiparametric MRIEur J Radiol202013110.1016/j.ejrad.2020.10925132916409
– reference: CuiYYangXShiZYangZDuXZhaoZChengXRadiomics analysis of multiparametric MRI for prediction of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancerEur Radiol20192931211122010.1007/s00330-018-5683-930128616
– reference: FehrDVeeraraghavanHWibmerAGondoTMatsumotoKVargasHASalaEHricakHDeasyJOAutomatic classification of prostate cancer Gleason scores from multiparametric magnetic resonance imagesProc Natl Acad Sci U S A201511246E626562731:CAS:528:DC%2BC2MXhslKlur3O10.1073/pnas.1505935112265787864655555
– reference: LinLIA concordance correlation coefficient to evaluate reproducibilityBiometrics19894512552681:STN:280:DyaL1M3kslKrtg%3D%3D10.2307/2532051
– reference: HorvatNVeeraraghavanHKhanMBlazicIZhengJCapanuMSalaEGarcia-AguilarJGollubMJPetkovskaIMR Imaging of Rectal Cancer: Radiomics Analysis to Assess Treatment Response after Neoadjuvant TherapyRadiology2018287383384310.1148/radiol.201817230029514017
– reference: PatelUBBrownGRuttenHWestNSebag-MontefioreDGlynne-JonesRRullierEPeetersMVan CutsemERicciSVan de VeldeCKjellPQuirkePComparison of magnetic resonance imaging and histopathological response to chemoradiotherapy in locally advanced rectal cancerAnn Surg Oncol20121992842285210.1245/s10434-012-2309-322526897
– reference: BreimanLRandom forestsMach Learn200145153210.1023/A:1010933404324
– reference: GittoSCuocoloRAnnovazziAAnelliVAcquasantaMCincottaAAlbanoDChiancaVFerraresiVMessinaCZoccaliCArmiraglioEParafioritiASciutoRLuzzatiABiaginiRImbriacoMSconfienzaLMCT radiomics-based machine learning classification of atypical cartilaginous tumours and appendicular chondrosarcomasEBioMedicine20216810.1016/j.ebiom.2021.103407340514428170113
– reference: Habr-Gama A, Perez RO, Nadalin W, Sabbaga J, Ribeiro U, Jr., Silva e Sousa AH, Jr., Campos FG, Kiss DR, Gama-Rodrigues J. Operative versus nonoperative treatment for stage 0 distal rectal cancer following chemoradiation therapy: long-term results. Ann Surg 2004;240(4):711–717; discussion 717–718. https://doi.org/10.1097/01.sla.0000141194.27992.32
– reference: SclafaniFBrownGCunninghamDWotherspoonAMendesLSTBalyasnikovaSEvansJPeckittCBegumRTaitDTaberneroJGlimeliusBRoselloSThomasJOatesJChauIComparison between MRI and pathology in the assessment of tumour regression grade in rectal cancerBr J Cancer2017117101478148510.1038/bjc.2017.320289347615680467
– year: 2021
  ident: 3572_CR17
  publication-title: Expert Rev Anticancer Ther
  doi: 10.1080/14737140.2021.1860762
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 3572_CR26
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 85
  start-page: 586
  year: 2002
  ident: 3572_CR24
  publication-title: Stud Health Technol Inform
– volume: 287
  start-page: 833
  issue: 3
  year: 2018
  ident: 3572_CR10
  publication-title: Radiology
  doi: 10.1148/radiol.2018172300
– volume: 123
  start-page: 286
  issue: 4
  year: 2018
  ident: 3572_CR11
  publication-title: Radiol Med
  doi: 10.1007/s11547-017-0838-3
– volume: 21
  start-page: 1578
  issue: 12
  year: 2019
  ident: 3572_CR38
  publication-title: Neuro Oncol
  doi: 10.1093/neuonc/noz141
– volume: 22
  start-page: 5256
  issue: 21
  year: 2016
  ident: 3572_CR15
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-15-2997
– volume: 45
  start-page: 632
  issue: 3
  year: 2020
  ident: 3572_CR21
  publication-title: Abdom Radiol (NY)
  doi: 10.1007/s00261-019-02321-8
– volume: 39
  start-page: 367
  issue: 2
  year: 2019
  ident: 3572_CR43
  publication-title: Radiographics
  doi: 10.1148/rg.2019180114
– volume: 59
  start-page: 255
  issue: 4
  year: 2016
  ident: 3572_CR5
  publication-title: Dis Colon Rectum
  doi: 10.1097/DCR.0000000000000558
– volume: 115
  start-page: 16
  year: 2019
  ident: 3572_CR30
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2019.03.010
– year: 2018
  ident: 3572_CR42
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms19123733
– ident: 3572_CR1
  doi: 10.1097/01.sla.0000141194.27992.32
– volume: 112
  start-page: E6265
  issue: 46
  year: 2015
  ident: 3572_CR31
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1505935112
– volume: 62
  start-page: 163
  issue: 2
  year: 2019
  ident: 3572_CR9
  publication-title: Dis Colon Rectum
  doi: 10.1097/DCR.0000000000001224
– year: 2012
  ident: 3572_CR23
  publication-title: Int J Biomed Imaging
  doi: 10.1155/2012/347120
– volume: 6
  start-page: 23428
  year: 2016
  ident: 3572_CR35
  publication-title: Sci Rep
  doi: 10.1038/srep23428
– volume: 23
  start-page: 7253
  issue: 23
  year: 2017
  ident: 3572_CR14
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-17-1038
– volume: 16
  start-page: 321
  year: 2002
  ident: 3572_CR27
  publication-title: J Artif Intell Res
  doi: 10.1613/jair.953
– volume: 142
  start-page: 246
  year: 2020
  ident: 3572_CR19
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2019.07.033
– volume: 45
  start-page: 255
  issue: 1
  year: 1989
  ident: 3572_CR33
  publication-title: Biometrics
  doi: 10.2307/2532051
– volume: 19
  start-page: 2842
  issue: 9
  year: 2012
  ident: 3572_CR2
  publication-title: Ann Surg Oncol
  doi: 10.1245/s10434-012-2309-3
– year: 2019
  ident: 3572_CR18
  publication-title: Phys Med Biol
  doi: 10.1088/1361-6560/ab2f44
– volume: 18
  start-page: 102
  issue: 2
  year: 2019
  ident: 3572_CR41
  publication-title: Clin Colorectal Cancer
  doi: 10.1016/j.clcc.2019.02.003
– volume: 50
  start-page: 239
  issue: 4
  year: 2015
  ident: 3572_CR6
  publication-title: Invest Radiol
  doi: 10.1097/RLI.0000000000000116
– volume: 27
  start-page: 2903
  issue: 7
  year: 2017
  ident: 3572_CR36
  publication-title: Eur Radiol
  doi: 10.1007/s00330-016-4623-9
– volume: 117
  start-page: 1478
  issue: 10
  year: 2017
  ident: 3572_CR3
  publication-title: Br J Cancer
  doi: 10.1038/bjc.2017.320
– volume: 131
  year: 2020
  ident: 3572_CR29
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2020.109251
– volume: 9
  start-page: 11999
  issue: 15
  year: 2018
  ident: 3572_CR8
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.23813
– volume: 10
  start-page: 660
  issue: 6
  year: 2019
  ident: 3572_CR37
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.26578
– volume: 2
  start-page: 430
  issue: 4
  year: 2016
  ident: 3572_CR34
  publication-title: Tomography
  doi: 10.18383/j.tom.2016.00235
– volume: 41
  start-page: 1728
  issue: 9
  year: 2016
  ident: 3572_CR7
  publication-title: Abdom Radiol (NY)
  doi: 10.1007/s00261-016-0733-8
– volume: 8
  start-page: 12611
  issue: 1
  year: 2018
  ident: 3572_CR13
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-30657-6
– volume: 295
  start-page: 328
  issue: 2
  year: 2020
  ident: 3572_CR25
  publication-title: Radiology
  doi: 10.1148/radiol.2020191145
– volume: 45
  start-page: 3608
  issue: 11
  year: 2020
  ident: 3572_CR16
  publication-title: Abdom Radiol (NY)
  doi: 10.1007/s00261-020-02502-w
– volume: 22
  start-page: 3873
  issue: 12
  year: 2015
  ident: 3572_CR40
  publication-title: Ann Surg Oncol
  doi: 10.1245/s10434-015-4687-9
– volume: 19
  start-page: 143
  issue: 2
  year: 2000
  ident: 3572_CR22
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/42.836373
– volume: 29
  start-page: 1211
  issue: 3
  year: 2019
  ident: 3572_CR12
  publication-title: Eur Radiol
  doi: 10.1007/s00330-018-5683-9
– volume: 20
  start-page: 226
  issue: 3
  year: 1998
  ident: 3572_CR32
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.667881
– volume: 68
  year: 2021
  ident: 3572_CR28
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2021.103407
– volume: 102
  start-page: 765
  issue: 4
  year: 2018
  ident: 3572_CR20
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2018.04.065
– volume: 71
  start-page: 854
  issue: 9
  year: 2016
  ident: 3572_CR4
  publication-title: Clin Radiol
  doi: 10.1016/j.crad.2016.05.005
– volume: 44
  start-page: 3764
  issue: 11
  year: 2019
  ident: 3572_CR39
  publication-title: Abdom Radiol (NY)
  doi: 10.1007/s00261-019-02042-y
SSID ssj0001651125
ssj0008379
Score 2.4589958
Snippet Purpose To evaluate an MRI-based radiomic texture classifier alone and combined with radiologist qualitative assessment in predicting pathological complete...
To evaluate an MRI-based radiomic texture classifier alone and combined with radiologist qualitative assessment in predicting pathological complete response...
PurposeTo evaluate an MRI-based radiomic texture classifier alone and combined with radiologist qualitative assessment in predicting pathological complete...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2770
SubjectTerms Artificial Intelligence
Brazil
Cancer
Cancer therapies
Chemoradiotherapy
Classifiers
Colorectal cancer
Datasets
Female
Females
Gastroenterology
Hepatology
Hollow Organ GI
Humans
Imaging
Magnetic Resonance Imaging
Magnetic Resonance Spectroscopy
Male
Medicine
Medicine & Public Health
Middle Aged
Patients
Radiologists
Radiology
Radiomics
Rectal Neoplasms - diagnostic imaging
Rectal Neoplasms - pathology
Rectal Neoplasms - therapy
Rectum
Retrospective Studies
Texture
Treatment Outcome
SummonAdditionalLinks – databaseName: Springer Nature - Connect here FIRST to enable access
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9UwEB5BQagXdtoHBQ0SN4iUOIttbghRcaFCbOot8hYaieZVea_9Rf2hnXGW8iggwTUZJ47zjf3ZswG8qCqTel9mSWMEbVCs0KRSaZn40pYmGEMs2sRiE_LgQB0e6o9jUNhq8nafTJJxpp6D3eJ2IWHv8zQvJenxdbhBy51idfz0-dvlyUrFJKIcI2R-33RzFbpCLa96SP5iJo2rz_6d_-v3Xbg9sk18M8DjHlwL3X249WG0pz-Ac5oOaGscPDKChmQS2P6UpRNN57E3Pga1ECIwVs5BYrp40vNj2Gsaedakho4R1OPsu07XowNuQA5iwWPzveOQSb685DwfAdvjWCTpNb0Gp3zUSNhvh0pPGJPfPoSv----vH2fjHUbElfIcp1URdC0ccysd6nP80xYIjFc0D7YynjTSG2KptHCSmEL26RauCYIRWyh0EpYkT-CrW7ZhV3AyMCET7UjqtfkTldKOmONCE45WTQLyKb_WLsxqTnX1vhRz-mY4_DXNPx1HP5aLeDl3OZkSOnxV-m9CR71qN6rWlT0gVpVulzA8_k2KSZbW0wXlqcsI9nEKQuS2RnQNL-OHp0xt12A2sDZLMBJvzfvdO1RTP6d8RFVrqhfrya4Xfbrz5_x-N_En8C2iIhlT8c92Fr3p-Ep3HRn63bVP4v6dgGF9SoR
  priority: 102
  providerName: Springer Nature
Title Combined artificial intelligence and radiologist model for predicting rectal cancer treatment response from magnetic resonance imaging: an external validation study
URI https://link.springer.com/article/10.1007/s00261-022-03572-8
https://www.ncbi.nlm.nih.gov/pubmed/35710951
https://www.proquest.com/docview/2691898695
https://www.proquest.com/docview/2678425745
https://pubmed.ncbi.nlm.nih.gov/PMC10150388
Volume 47
WOSCitedRecordID wos000811958400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink Journals
  customDbUrl:
  eissn: 2366-0058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001651125
  issn: 2366-0058
  databaseCode: RSV
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RFiEu5VlYKCsjcYOIxHnY5oIAtUJCrFYLVCsukV-BSDS7zW75RfxQZpxsylLRCxcfEiex5W8mY8_MNwDPikLHzuVJVGmOGxTDFYpUnEcuN7n2WqMVrUOxCTGZyPlcTfsDt1UfVrnRiUFRu4WlM_KXvFCJVLJQ-evlWURVo8i72pfQ2IG9hPOEcP5BRIMmlh3XHk8L3DXH2bxPmgmpc2HzEVEse5zmArXC9o_pkrV5OWjyL89p-CEd3_rfqdyG_d4UZW867NyBa765Czc-9s72e_ALdQXum71jBK-OaYLVf1B4Mt041moXMl4QLiyU1WFoBrNlS6-hkGpGKhUftASvlg2B7Xg9ROd6Rhku7FR_ayifki4viATEs_o0VFB6hZ9hG7JqhoJRd2WgWGDGvQ9fjo8-v3sf9UUdIpuJfB0VmcfZZ4lxNnZpmnCDFg5Vu_em0E5XQumsqhQ3gpvMVLHitvJcoimRKckNTw9gt1k0_iGwYJ5xFyuLdmCVWlVIYbXR3FtpRVaNINmsaGl7xnMqvPGjHLiaAwpKREEZUFDKETwfnll2fB9X9j7crHDZy_6qvFjeETwdbqPUkitGN35xTn0E-T9Fhn0edLgaPoevTsjwHYHcQtzQgRjBt-809ffADJ7Q-VUqcVwvNuC8GNe_p_Ho6mk8hps8CAqFPR7C7ro990_guv25rlftGHbE7ITauQitHMPe26PJdDYOwjimaNopttP8K7azTye_ASUUPQA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VBQEX3o-FAkaCE0QkzsM2EkIIqFq1XSFU0N6CX4FINLvsbkH8H878RmacR1kqeuuBW-TYzmu-mXE88w3Aw6LQsXN5ElWa4wLFcIWQivPI5SbXXmv0onUoNiHGYzmZqLdr8KvPhaGwyl4nBkXtppb-kT_lhUqkkoXKX8y-RlQ1inZX-xIarVjs-B_fccm2eL79Gr_vI8433-y_2oq6qgKRzUS-jIrM40xZYpyNXZom3KCJpXLr3hTa6UoonVWV4kZwk5kqVtxWnku0ZZmS3BDRAar8M6jHEwohE-8-DJpfttx-PC1wlR5nky5JJ6TqhcVORLHzcZoL1EKrhvCYd3s8SPOvndpgADcv_W-v7jJc7Fxt9rLFxhVY881VOLfXBRNcg5-oCw0eOUbwaZk0WP0HRSnTjWNz7UJGD8KBhbJBDN18NpvTNBQyzshk4EBL8JmzIXAf20P0sWeUwcMO9KeG8kWpeUokJ57VB6FC1DO8DOvJuBkCv27LXLHA_Hsd3p_KO7oB68208beABfeTu1hZ9HOr1KpCCquN5t5KK7JqBEkvQaXtGN2psMiXcuCiDlJXotSVQepKOYLHw5hZy2dyYu-NXqLKTrctyiNxGsGD4TRqJdpq0o2fHlIfQfu7IsM-N1s5Hi6HUyfk2I9Arkj40IEYz1fPNPXnwHye0P-5VOJ9PenBcHRf_36M2yc_xn04v7W_t1vubo937sAFHkBKIZ4bsL6cH_q7cNZ-W9aL-b0AdwYfTxskvwHj95Hm
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqgiou5d0uFDASnCBq4jixjYQQoqyoFlY9gLS34FcgEs0u2S2I_8Ov4Ncx4zzKUtFbD9wix3Ze882M45lvCHmU5zp2LkuiUjNYoBimAFJxFrnMZNprDV60DsUmxHQqZzN1tEF-9bkwGFbZ68SgqN3c4j_yfZarRCqZq2y_7MIijg7GLxZfI6wghTutfTmNVkQm_sd3WL4tnx8ewLd-zNj49ftXb6KuwkBkuchWUc49zMoT42zs0jRhBswtll73JtdOl0JpXpaKGcEMN2WsmC09k2DXuJLMIOkBqP9LYIUzxNhERIMVkC3PH0tzWLHHfNYl7IS0vbDwiTCOPk4zARpp3Sie8XTPBmz-tWsbjOH46v_8Gq-R7c4Fpy9bzFwnG76-QbbedUEGN8lP0JEGjhxFWLUMG7T6g7qU6trRRruQ6QMwoaGcEAX3ny4anAZDySmaEhhoEVYNHQL6oT1EJXuKmT30WH-qMY8Um-dIfuJpdRwqRz2Dy9CepJuCQqja8lc0MALfIh8u5B3dJpv1vPa7hAa3lLlYWfB_y9SqXAqrjWbeSit4OSJJL02F7ZjeseDIl2LgqA4SWIAEFkECCzkiT4Yxi5bn5Nzee710FZ3OWxanojUiD4fToK1wC0rXfn6CfQTu-woOfXZamR4uB1Mn6PCPiFyT9qEDMqGvn6mrz4ERPcH_dqmE-3raA-P0vv79GHfOf4wHZAuwUbw9nE7ukiss4BUjP_fI5qo58ffIZfttVS2b-wH5lHy8aIz8Bk9qmkI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combined+artificial+intelligence+and+radiologist+model+for+predicting+rectal+cancer+treatment+response+from+magnetic+resonance+imaging%3A+an+external+validation+study&rft.jtitle=Abdominal+radiology+%28New+York%29&rft.au=Horvat%2C+Natally&rft.au=Veeraraghavan%2C+Harini&rft.au=Nahas%2C+Caio+S+R&rft.au=Bates%2C+David+D+B&rft.date=2022-08-01&rft.issn=2366-0058&rft.eissn=2366-0058&rft.volume=47&rft.issue=8&rft.spage=2770&rft_id=info:doi/10.1007%2Fs00261-022-03572-8&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2366-0058&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2366-0058&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2366-0058&client=summon