Direct visualization of transcription-replication conflicts reveals post-replicative DNA:RNA hybrids
Transcription-replication collisions (TRCs) are crucial determinants of genome instability. R-loops were linked to head-on TRCs and proposed to obstruct replication fork progression. The underlying mechanisms, however, remained elusive due to the lack of direct visualization and of non-ambiguous res...
Gespeichert in:
| Veröffentlicht in: | Nature structural & molecular biology Jg. 30; H. 3; S. 348 - 359 |
|---|---|
| Hauptverfasser: | , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Nature Publishing Group US
01.03.2023
Nature Publishing Group |
| Schlagworte: | |
| ISSN: | 1545-9993, 1545-9985, 1545-9985 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Transcription-replication collisions (TRCs) are crucial determinants of genome instability. R-loops were linked to head-on TRCs and proposed to obstruct replication fork progression. The underlying mechanisms, however, remained elusive due to the lack of direct visualization and of non-ambiguous research tools. Here, we ascertained the stability of estrogen-induced R-loops on the human genome, visualized them directly by electron microscopy (EM), and measured R-loop frequency and size at the single-molecule level. Combining EM and immuno-labeling on locus-specific head-on TRCs in bacteria, we observed the frequent accumulation of DNA:RNA hybrids behind replication forks. These post-replicative structures are linked to fork slowing and reversal across conflict regions and are distinct from physiological DNA:RNA hybrids at Okazaki fragments. Comet assays on nascent DNA revealed a marked delay in nascent DNA maturation in multiple conditions previously linked to R-loop accumulation. Altogether, our findings suggest that TRC-associated replication interference entails transactions that follow initial R-loop bypass by the replication fork.
The authors develop an EM-based method to directly visualize R-loops. Applying this method to transcription-replication conflicts in human and bacterial cells, they show that DNA:RNA hybrids accumulate primarily behind replication forks, and are linked to fork slowing and fork reversal. |
|---|---|
| AbstractList | Transcription-replication collisions (TRCs) are crucial determinants of genome instability. R-loops were linked to head-on TRCs and proposed to obstruct replication fork progression. The underlying mechanisms, however, remained elusive due to the lack of direct visualization and of non-ambiguous research tools. Here, we ascertained the stability of estrogen-induced R-loops on the human genome, visualized them directly by electron microscopy (EM), and measured R-loop frequency and size at the single-molecule level. Combining EM and immuno-labeling on locus-specific head-on TRCs in bacteria, we observed the frequent accumulation of DNA:RNA hybrids behind replication forks. These post-replicative structures are linked to fork slowing and reversal across conflict regions and are distinct from physiological DNA:RNA hybrids at Okazaki fragments. Comet assays on nascent DNA revealed a marked delay in nascent DNA maturation in multiple conditions previously linked to R-loop accumulation. Altogether, our findings suggest that TRC-associated replication interference entails transactions that follow initial R-loop bypass by the replication fork. The authors develop an EM-based method to directly visualize R-loops. Applying this method to transcription-replication conflicts in human and bacterial cells, they show that DNA:RNA hybrids accumulate primarily behind replication forks, and are linked to fork slowing and fork reversal. Transcription-replication collisions (TRCs) are crucial determinants of genome instability. R-loops were linked to head-on TRCs and proposed to obstruct replication fork progression. The underlying mechanisms, however, remained elusive due to the lack of direct visualization and of non-ambiguous research tools. Here, we ascertained the stability of estrogen-induced R-loops on the human genome, visualized them directly by electron microscopy (EM), and measured R-loop frequency and size at the single-molecule level. Combining EM and immuno-labeling on locus-specific head-on TRCs in bacteria, we observed the frequent accumulation of DNA:RNA hybrids behind replication forks. These post-replicative structures are linked to fork slowing and reversal across conflict regions and are distinct from physiological DNA:RNA hybrids at Okazaki fragments. Comet assays on nascent DNA revealed a marked delay in nascent DNA maturation in multiple conditions previously linked to R-loop accumulation. Altogether, our findings suggest that TRC-associated replication interference entails transactions that follow initial R-loop bypass by the replication fork. Transcription-replication collisions (TRCs) are crucial determinants of genome instability. R-loops were linked to head-on TRCs and proposed to obstruct replication fork progression. The underlying mechanisms, however, remained elusive due to the lack of direct visualization and of non-ambiguous research tools. Here, we ascertained the stability of estrogen-induced R-loops on the human genome, visualized them directly by electron microscopy (EM), and measured R-loop frequency and size at the single-molecule level. Combining EM and immuno-labeling on locus-specific head-on TRCs in bacteria, we observed the frequent accumulation of DNA:RNA hybrids behind replication forks. These post-replicative structures are linked to fork slowing and reversal across conflict regions and are distinct from physiological DNA:RNA hybrids at Okazaki fragments. Comet assays on nascent DNA revealed a marked delay in nascent DNA maturation in multiple conditions previously linked to R-loop accumulation. Altogether, our findings suggest that TRC-associated replication interference entails transactions that follow initial R-loop bypass by the replication fork. The authors develop an EM-based method to directly visualize R-loops. Applying this method to transcription-replication conflicts in human and bacterial cells, they show that DNA:RNA hybrids accumulate primarily behind replication forks, and are linked to fork slowing and fork reversal. Transcription-replication collisions (TRCs) are crucial determinants of genome instability. R-loops were linked to head-on TRCs and proposed to obstruct replication fork progression. The underlying mechanisms, however, remained elusive due to the lack of direct visualization and of non-ambiguous research tools. Here, we ascertained the stability of estrogen-induced R-loops on the human genome, visualized them directly by electron microscopy (EM), and measured R-loop frequency and size at the single-molecule level. Combining EM and immuno-labeling on locus-specific head-on TRCs in bacteria, we observed the frequent accumulation of DNA:RNA hybrids behind replication forks. These post-replicative structures are linked to fork slowing and reversal across conflict regions and are distinct from physiological DNA:RNA hybrids at Okazaki fragments. Comet assays on nascent DNA revealed a marked delay in nascent DNA maturation in multiple conditions previously linked to R-loop accumulation. Altogether, our findings suggest that TRC-associated replication interference entails transactions that follow initial R-loop bypass by the replication fork.Transcription-replication collisions (TRCs) are crucial determinants of genome instability. R-loops were linked to head-on TRCs and proposed to obstruct replication fork progression. The underlying mechanisms, however, remained elusive due to the lack of direct visualization and of non-ambiguous research tools. Here, we ascertained the stability of estrogen-induced R-loops on the human genome, visualized them directly by electron microscopy (EM), and measured R-loop frequency and size at the single-molecule level. Combining EM and immuno-labeling on locus-specific head-on TRCs in bacteria, we observed the frequent accumulation of DNA:RNA hybrids behind replication forks. These post-replicative structures are linked to fork slowing and reversal across conflict regions and are distinct from physiological DNA:RNA hybrids at Okazaki fragments. Comet assays on nascent DNA revealed a marked delay in nascent DNA maturation in multiple conditions previously linked to R-loop accumulation. Altogether, our findings suggest that TRC-associated replication interference entails transactions that follow initial R-loop bypass by the replication fork. |
| Author | Stoy, Henriette Krietsch, Jana Schmid, Jonas A. Cimprich, Karlene A. Lopes, Massimo Crossley, Magdalena P. Kuster, Danina Merrikh, Houra Lang, Kevin S Zwicky, Katharina |
| Author_xml | – sequence: 1 givenname: Henriette orcidid: 0000-0002-2943-414X surname: Stoy fullname: Stoy, Henriette organization: Institute of Molecular Cancer Research, University of Zurich – sequence: 2 givenname: Katharina surname: Zwicky fullname: Zwicky, Katharina organization: Institute of Molecular Cancer Research, University of Zurich – sequence: 3 givenname: Danina surname: Kuster fullname: Kuster, Danina organization: Institute of Molecular Cancer Research, University of Zurich – sequence: 4 givenname: Kevin S surname: Lang fullname: Lang, Kevin S organization: Vanderbilt University School of Medicine, Department of Veterinary and Biomedical Sciences, University of Minnesota – sequence: 5 givenname: Jana surname: Krietsch fullname: Krietsch, Jana organization: Institute of Molecular Cancer Research, University of Zurich – sequence: 6 givenname: Magdalena P. surname: Crossley fullname: Crossley, Magdalena P. organization: Department of Chemical and Systems Biology, Stanford University School of Medicine – sequence: 7 givenname: Jonas A. orcidid: 0000-0003-1791-1874 surname: Schmid fullname: Schmid, Jonas A. organization: Institute of Molecular Cancer Research, University of Zurich – sequence: 8 givenname: Karlene A. orcidid: 0000-0002-1937-2969 surname: Cimprich fullname: Cimprich, Karlene A. organization: Department of Chemical and Systems Biology, Stanford University School of Medicine – sequence: 9 givenname: Houra orcidid: 0000-0001-9956-9640 surname: Merrikh fullname: Merrikh, Houra organization: Vanderbilt University School of Medicine – sequence: 10 givenname: Massimo orcidid: 0000-0003-3847-8133 surname: Lopes fullname: Lopes, Massimo email: lopes@imcr.uzh.ch organization: Institute of Molecular Cancer Research, University of Zurich |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36864174$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9UclO3TAUtRAVU_sDLFCkbroJ9RQPbKonKIOEQELt2nIcB4zy7GAnT6JfX4fAY1iw8nDPOffce3bBpg_eArCP4CGCRPxMFFWSlhCTEkKJRck2wA6qaFVKKarN9V2SbbCb0j2EuKo42QLbhAlGEac7oDlx0ZqhWLk06s7904MLvghtMUTtk4munz7KaPvOmblogm_zY0hFtCuru1T0IQ2vkJUtTq4WRzdXi-LusY6uSV_Blzbj7Lfncw_8Pf395_i8vLw-uzheXJaG8mooKcVUGmmFYZrVrcC8xUQj3RIpOEUY1qQhJB9aMoqbFpLaNppRpg1vGiHJHvg16_ZjvbSNsT5P0ak-uqWOjypop95XvLtTt2GlUF4NyavJCj-eFWJ4GG0a1NIlY7tOexvGpDAXhEqOKpah3z9A78MYfZ5vQnHOGcKT4MFbS2svLwlkAJ4BJoaUom3XEATVFLOaY1bZoXqKWU29xQeSccNTOnks131OJTM15T7-1sZX25-w_gMBz74S |
| CitedBy_id | crossref_primary_10_3389_fimmu_2024_1451705 crossref_primary_10_1016_j_molcel_2024_09_003 crossref_primary_10_1038_s41467_025_60077_w crossref_primary_10_1016_j_molmed_2025_01_006 crossref_primary_10_3390_molecules29204920 crossref_primary_10_1016_j_gde_2025_102325 crossref_primary_10_3390_cancers15204986 crossref_primary_10_5802_crbiol_123_fr crossref_primary_10_15252_embj_2022113104 crossref_primary_10_1016_j_tcb_2023_07_002 crossref_primary_10_1038_s44319_024_00085_x crossref_primary_10_1093_nar_gkad839 crossref_primary_10_3389_fcell_2025_1537731 crossref_primary_10_7554_eLife_89981 crossref_primary_10_1016_j_ijrobp_2025_08_049 crossref_primary_10_1038_s41467_025_57588_x crossref_primary_10_1016_j_celrep_2024_114024 crossref_primary_10_7554_eLife_89981_3 crossref_primary_10_1016_j_bbcan_2025_189363 crossref_primary_10_3390_genes15091161 crossref_primary_10_1016_j_molcel_2025_02_019 crossref_primary_10_1093_nar_gkae673 crossref_primary_10_3390_ijms26030989 crossref_primary_10_1038_s41586_024_07217_2 crossref_primary_10_1093_femsre_fuad065 crossref_primary_10_1093_nar_gkae839 crossref_primary_10_1172_JCI193745 crossref_primary_10_1093_femsre_fuaf041 crossref_primary_10_1093_nar_gkaf109 crossref_primary_10_1038_s41467_024_48286_1 crossref_primary_10_3390_ijms26146951 crossref_primary_10_1016_j_molcel_2023_07_008 crossref_primary_10_3390_cells12222630 crossref_primary_10_1038_s41467_025_59804_0 crossref_primary_10_1002_bip_23576 crossref_primary_10_1016_j_tig_2025_05_010 crossref_primary_10_64013_jpbab_v2023i1_7 crossref_primary_10_5802_crbiol_123 crossref_primary_10_1007_s00412_023_00804_8 crossref_primary_10_1146_annurev_biochem_030222_115809 crossref_primary_10_1093_nar_gkad1101 |
| Cites_doi | 10.1016/j.molcel.2014.10.020 10.1016/j.ctrv.2017.02.001 10.1074/jbc.M009676200 10.1093/nar/gkaa500 10.15252/embj.201695131 10.1038/ncb1984 10.1016/j.molcel.2011.04.026 10.7554/eLife.17548 10.1126/science.1179595 10.1016/j.dnarep.2011.04.013 10.1016/j.cell.2017.07.043 10.1093/nar/gkaa741 10.1016/0022-1759(86)90040-2 10.1016/j.jmb.2020.02.014 10.1038/nature11989 10.1101/gad.300624.117 10.1016/j.celrep.2019.10.108 10.1128/MCB.00415-16 10.1016/j.celrep.2018.08.019 10.15252/embr.201847250 10.1038/s41594-022-00747-1 10.1093/nar/gkq980 10.1016/j.cell.2016.09.053 10.1038/nature25748 10.1111/j.1365-2958.2005.05006.x 10.1083/jcb.201305017 10.1016/j.celrep.2016.12.050 10.1073/pnas.1613448113 10.1038/nrm3228 10.1038/nrm.2016.88 10.1073/pnas.1505356112 10.1038/ncomms13087 10.1093/nar/gkz341 10.15252/embj.2020106394 10.1038/s41467-020-17858-2 10.1007/s12035-018-1246-y 10.1126/science.281.5382.1502 10.1038/sj.emboj.7600602 10.1016/j.molcel.2017.01.029 10.1016/j.molcel.2012.01.017 10.1083/jcb.201406099 10.1016/j.dnarep.2019.102658 10.1016/j.celrep.2021.108797 10.1093/bioinformatics/btp184 10.1007/978-1-4939-7306-4_19 10.1073/pnas.2020189117 10.1016/j.cell.2012.09.041 10.1038/s41467-020-18857-z 10.1016/j.molcel.2019.10.026 10.1038/nrmicro2800 10.1074/jbc.M006736200 10.3390/genes7120134 10.1016/j.molcel.2019.04.033 10.15252/embj.201899793 10.1128/MCB.25.3.888-895.2005 10.7554/eLife.08007 10.1038/nature09758 10.1016/j.molcel.2018.11.036 10.1038/nature25507 10.1038/s41467-018-07110-3 10.1016/j.cell.2017.07.044 10.1016/j.molcel.2017.08.010 10.1038/s41467-021-26904-6 10.1038/nsmb.2501 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2023 2023. The Author(s). The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7TK 7TM 7U9 7X7 7XB 88A 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. LK8 M0S M1P M2O M7N M7P MBDVC P64 PADUT PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 7X8 5PM |
| DOI | 10.1038/s41594-023-00928-6 |
| DatabaseName | Springer Nature Open Access Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Research Library Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts Research Library China ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) Research Library China ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Research Library ProQuest Central Basic ProQuest SciTech Collection ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef Research Library Prep |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1545-9985 |
| EndPage | 359 |
| ExternalDocumentID | PMC10023573 36864174 10_1038_s41594_023_00928_6 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIAID NIH HHS grantid: F32 AI140557 – fundername: NIGMS NIH HHS grantid: R01 GM119334 – fundername: NIGMS NIH HHS grantid: R01 GM128191 |
| GroupedDBID | --- -DZ .55 .GJ 0R~ 123 29M 36B 39C 3V. 4.4 53G 5BI 5S5 6TJ 70F 7X7 88A 88E 8AO 8FE 8FH 8FI 8FJ 8G5 8R4 8R5 AAEEF AAHBH AARCD AAYZH AAZLF ABAWZ ABDBF ABJNI ABLJU ABNNU ABUWG ACBWK ACGFO ACGFS ACIWK ACNCT ACPRK ACRPL ACUHS ADBBV ADFRT ADNMO AENEX AEUYN AFBBN AFFNX AFKRA AFRAH AFSHS AGAYW AGGDT AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ AIYXT AJQPL ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC B0M BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI C6C CCPQU DB5 DWQXO EAD EAP EBC EBD EBS EE. EJD EMB EMK EMOBN EPL ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HMCUK HVGLF HZ~ IAO IGS IH2 IHR INH INR ISR ITC L-9 L7B LK8 M0L M1P M2O M7P MVM N9A NNMJJ O9- ODYON P2P PADUT PKN PQQKQ PROAC PSQYO Q2X QF4 QM4 QN7 QO4 RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP X7M XJT ZXP ~8M AAYXX ABFSG ACSTC AEZWR AFANA AFFHD AFHIU AGSTI AHWEU AIXLP ALPWD ATHPR CITATION NFIDA PHGZM PHGZT PJZUB PPXIY PQGLB AETEA AGQPQ CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7TK 7TM 7U9 7XB 8FD 8FK C1K FR3 H94 K9. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c475t-44249c9e8c6a6bf827f23a1af39874120b3d3320ba9642df03beda646ac7dd893 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 40 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000942720100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1545-9993 1545-9985 |
| IngestDate | Tue Nov 04 02:07:06 EST 2025 Wed Oct 01 14:12:13 EDT 2025 Sun Nov 30 04:12:48 EST 2025 Mon Jul 21 06:07:15 EDT 2025 Tue Nov 18 21:36:10 EST 2025 Sat Nov 29 03:20:36 EST 2025 Fri Feb 21 02:37:22 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | 2023. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c475t-44249c9e8c6a6bf827f23a1af39874120b3d3320ba9642df03beda646ac7dd893 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-2943-414X 0000-0002-1937-2969 0000-0003-3847-8133 0000-0001-9956-9640 0000-0003-1791-1874 |
| OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC10023573 |
| PMID | 36864174 |
| PQID | 2787776123 |
| PQPubID | 27587 |
| PageCount | 12 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10023573 proquest_miscellaneous_2783497156 proquest_journals_2787776123 pubmed_primary_36864174 crossref_primary_10_1038_s41594_023_00928_6 crossref_citationtrail_10_1038_s41594_023_00928_6 springer_journals_10_1038_s41594_023_00928_6 |
| PublicationCentury | 2000 |
| PublicationDate | 20230300 |
| PublicationDateYYYYMMDD | 2023-03-01 |
| PublicationDate_xml | – month: 3 year: 2023 text: 20230300 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: United States |
| PublicationTitle | Nature structural & molecular biology |
| PublicationTitleAbbrev | Nat Struct Mol Biol |
| PublicationTitleAlternate | Nat Struct Mol Biol |
| PublicationYear | 2023 |
| Publisher | Nature Publishing Group US Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group US – name: Nature Publishing Group |
| References | Paul, Million-Weaver, Chattopadhyay, Sokurenko, Merrikh (CR7) 2013; 495 Merrikh, Zhang, Grossman, Wang (CR4) 2012; 10 Martin-Alonso, Soler-Oliva, García-Rubio, García-Muse, Aguilera (CR60) 2021; 12 Zellweger, Lopes (CR39) 2018; 1672 Mutreja (CR65) 2018; 24 Gorthi (CR57) 2018; 555 Zellweger (CR62) 2015; 208 Mirkin, Mirkin (CR12) 2005; 25 Alzu (CR54) 2012; 151 Hamperl, Bocek, Saldivar, Swigut, Cimprich (CR10) 2017; 170 Boguslawski (CR36) 1986; 89 Ginno, Lott, Christensen, Korf, Chédin (CR40) 2012; 45 Chédin, Hartono, Sanz, Vanoosthuyse (CR38) 2021; 40 Hodroj (CR14) 2017; 36 Carrasco-Salas (CR41) 2019; 47 Malig, Hartono, Giafaglione, Sanz, Chedin (CR51) 2020; 432 Macheret, Halazonetis (CR6) 2018; 555 Yang, Seidman, Rupp, Gao (CR29) 2019; 81 Chappidi (CR47) 2020; 77 Vaitsiankova (CR46) 2022; 29 Kotsantis (CR5) 2016; 7 Šviković (CR28) 2019; 38 Perego, Taiana, Bresolin, Comi, Corti (CR55) 2019; 56 CR9 Ciccarese (CR15) 2017; 54 Lockhart (CR21) 2019; 29 Schauer (CR26) 2020; 117 Wu, Lima, Crooke (CR37) 2001; 276 CR49 García-Muse, Aguilera (CR2) 2016; 17 CR45 CR44 Li (CR16) 2016; 36 CR43 Hamperl, Cimprich (CR3) 2016; 167 Stewart-Morgan, Reverón-Gómez, Groth (CR52) 2019; 75 Drolet (CR35) 2006; 59 Sridhara (CR20) 2017; 18 Lang, Merrikh (CR34) 2021; 34 Promonet (CR33) 2020; 11 Postow (CR63) 2001; 276 Crossley, Bocek, Hamperl, Swigut, Cimprich (CR50) 2020; 48 Sollier (CR18) 2014; 56 Lim, Sanz, Xu, Hartono, Chédin (CR58) 2015; 4 Preibisch, Saalfeld, Tomancak (CR66) 2009; 25 Pomerantz, O’Donnell (CR24) 2010; 327 Brüning, Marians (CR25) 2020; 48 Teloni (CR56) 2019; 73 Wei (CR1) 1998; 281 Bauer (CR59) 2020; 11 Song, Hotz-Wagenblatt, Voit, Grummt (CR19) 2017; 31 Keszthelyi, Minchell, Baxter (CR31) 2016; 7 Skourti-Stathaki, Proudfoot, Gromak (CR17) 2011; 42 Bubeck (CR53) 2011; 39 Nguyen (CR22) 2017; 65 Barroso (CR27) 2019; 20 Mejlvang (CR64) 2014; 204 Prado, Aguilera (CR11) 2005; 24 Tuduri (CR32) 2009; 11 Schalbetter, Mansoubi, Chambers, Downs, Baxter (CR61) 2015; 112 Merrikh, Merrikh (CR8) 2018; 9 Chakraborty, Grosse (CR13) 2011; 10 Vos, Tretter, Schmidt, Berger (CR30) 2011; 12 Stork (CR42) 2016; 5 Zimmer, Koshland (CR23) 2016; 113 Merrikh, Machón, Grainger, Grossman, Soultanas (CR48) 2011; 470 S Hamperl (928_CR10) 2017; 170 C Song (928_CR19) 2017; 31 D Bubeck (928_CR53) 2011; 39 W Yang (928_CR29) 2019; 81 KR Stewart-Morgan (928_CR52) 2019; 75 K Mutreja (928_CR65) 2018; 24 KS Lang (928_CR34) 2021; 34 H Merrikh (928_CR48) 2011; 470 S Preibisch (928_CR66) 2009; 25 HD Nguyen (928_CR22) 2017; 65 PA Ginno (928_CR40) 2012; 45 H Wu (928_CR37) 2001; 276 J-G Brüning (928_CR25) 2020; 48 M Malig (928_CR51) 2020; 432 N Chappidi (928_CR47) 2020; 77 MP Crossley (928_CR50) 2020; 48 F Prado (928_CR11) 2005; 24 928_CR43 CT Stork (928_CR42) 2016; 5 928_CR44 SM Vos (928_CR30) 2011; 12 A Promonet (928_CR33) 2020; 11 A Lockhart (928_CR21) 2019; 29 928_CR49 L Postow (928_CR63) 2001; 276 S Hamperl (928_CR3) 2016; 167 928_CR45 T García-Muse (928_CR2) 2016; 17 A Keszthelyi (928_CR31) 2016; 7 SA Schalbetter (928_CR61) 2015; 112 P Chakraborty (928_CR13) 2011; 10 M Macheret (928_CR6) 2018; 555 P Kotsantis (928_CR5) 2016; 7 AD Zimmer (928_CR23) 2016; 113 S Tuduri (928_CR32) 2009; 11 RT Pomerantz (928_CR24) 2010; 327 F Chédin (928_CR38) 2021; 40 R Zellweger (928_CR39) 2018; 1672 YW Lim (928_CR58) 2015; 4 M Bauer (928_CR59) 2020; 11 EV Mirkin (928_CR12) 2005; 25 S Barroso (928_CR27) 2019; 20 GD Schauer (928_CR26) 2020; 117 SJ Boguslawski (928_CR36) 1986; 89 R Zellweger (928_CR62) 2015; 208 A Alzu (928_CR54) 2012; 151 F Teloni (928_CR56) 2019; 73 D Hodroj (928_CR14) 2017; 36 MGL Perego (928_CR55) 2019; 56 J Sollier (928_CR18) 2014; 56 S Šviković (928_CR28) 2019; 38 A Vaitsiankova (928_CR46) 2022; 29 X Wei (928_CR1) 1998; 281 C Ciccarese (928_CR15) 2017; 54 S Martin-Alonso (928_CR60) 2021; 12 H Merrikh (928_CR4) 2012; 10 L Li (928_CR16) 2016; 36 SC Sridhara (928_CR20) 2017; 18 S Paul (928_CR7) 2013; 495 J Mejlvang (928_CR64) 2014; 204 CN Merrikh (928_CR8) 2018; 9 928_CR9 K Skourti-Stathaki (928_CR17) 2011; 42 M Drolet (928_CR35) 2006; 59 Y Carrasco-Salas (928_CR41) 2019; 47 A Gorthi (928_CR57) 2018; 555 |
| References_xml | – volume: 56 start-page: 777 year: 2014 end-page: 785 ident: CR18 article-title: Transcription-coupled nucleotide excision repair factors promote R-loop-induced genome instability publication-title: Mol. Cell doi: 10.1016/j.molcel.2014.10.020 – ident: CR45 – volume: 54 start-page: 68 year: 2017 end-page: 73 ident: CR15 article-title: Prostate cancer heterogeneity: discovering novel molecular targets for therapy publication-title: Cancer Treat. Rev. doi: 10.1016/j.ctrv.2017.02.001 – volume: 276 start-page: 23547 year: 2001 end-page: 23553 ident: CR37 article-title: Investigating the structure of human RNase H1 by site-directed mutagenesis publication-title: J. Biol. Chem. doi: 10.1074/jbc.M009676200 – volume: 48 start-page: e84 year: 2020 ident: CR50 article-title: qDRIP: a method to quantitatively assess RNA–DNA hybrid formation genome-wide publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa500 – volume: 36 start-page: 1182 year: 2017 end-page: 1198 ident: CR14 article-title: An ATR‐dependent function for the Ddx19 RNA helicase in nuclear R‐loop metabolism publication-title: EMBO J. doi: 10.15252/embj.201695131 – volume: 11 start-page: 1315 year: 2009 end-page: 1324 ident: CR32 article-title: Topoisomerase I suppresses genomic instability by preventing interference between replication and transcription publication-title: Nat. Cell Biol. doi: 10.1038/ncb1984 – ident: CR49 – volume: 42 start-page: 794 year: 2011 end-page: 805 ident: CR17 article-title: Human senataxin resolves RNA/DNA hybrids formed at transcriptional pause sites to promote Xrn2-dependent termination publication-title: Mol. Cell doi: 10.1016/j.molcel.2011.04.026 – volume: 5 start-page: e17548 year: 2016 ident: CR42 article-title: Co-transcriptional R-loops are the main cause of estrogen-induced DNA damage publication-title: eLife doi: 10.7554/eLife.17548 – volume: 327 start-page: 590 year: 2010 end-page: 592 ident: CR24 article-title: Direct restart of a replication fork stalled by a head-on RNA polymerase publication-title: Science doi: 10.1126/science.1179595 – volume: 10 start-page: 654 year: 2011 end-page: 665 ident: CR13 article-title: Human DHX9 helicase preferentially unwinds RNA-containing displacement loops (R-loops) and G-quadruplexes publication-title: DNA Repair doi: 10.1016/j.dnarep.2011.04.013 – volume: 170 start-page: 774 year: 2017 end-page: 786 ident: CR10 article-title: Transcription-replication conflict orientation modulates R-loop levels and activates distinct DNA damage responses publication-title: Cell doi: 10.1016/j.cell.2017.07.043 – volume: 48 start-page: 10353 year: 2020 end-page: 10367 ident: CR25 article-title: Replisome bypass of transcription complexes and R-loops publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa741 – volume: 89 start-page: 123 year: 1986 end-page: 130 ident: CR36 article-title: Characterization of monoclonal antibody to DNA·RNA and its application to immunodetection of hybrids publication-title: J. Immunol. Methods doi: 10.1016/0022-1759(86)90040-2 – volume: 432 start-page: 2271 year: 2020 end-page: 2288 ident: CR51 article-title: Ultra-deep coverage single-molecule R-loop footprinting reveals principles of R-loop formation publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2020.02.014 – volume: 495 start-page: 512 year: 2013 end-page: 515 ident: CR7 article-title: Accelerated gene evolution through replication–transcription conflicts publication-title: Nature doi: 10.1038/nature11989 – volume: 31 start-page: 1370 year: 2017 end-page: 1381 ident: CR19 article-title: SIRT7 and the DEAD-box helicase DDX21 cooperate to resolve genomic R loops and safeguard genome stability publication-title: Genes Dev. doi: 10.1101/gad.300624.117 – volume: 29 start-page: 2890 year: 2019 end-page: 2900 ident: CR21 article-title: RNase H1 and H2 are differentially regulated to process RNA-DNA hybrids publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.10.108 – volume: 36 start-page: 2794 year: 2016 end-page: 2810 ident: CR16 article-title: DEAD Box 1 facilitates removal of RNA and homologous recombination at DNA double-strand breaks publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00415-16 – volume: 24 start-page: 2629 year: 2018 end-page: 2642 ident: CR65 article-title: ATR-mediated global fork slowing and reversal assist fork traverse and prevent chromosomal breakage at DNA interstrand cross-links publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.08.019 – volume: 20 start-page: e47250 year: 2019 ident: CR27 article-title: The DNA damage response acts as a safeguard against harmful DNA–RNA hybrids of different origins publication-title: EMBO Rep. doi: 10.15252/embr.201847250 – volume: 29 start-page: 329 year: 2022 end-page: 338 ident: CR46 article-title: PARP inhibition impedes the maturation of nascent DNA strands during DNA replication publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-022-00747-1 – volume: 12 start-page: 1 year: 2021 end-page: 14 ident: CR60 article-title: Harmful R-loops are prevented via different cell cycle-specific mechanisms publication-title: Nat. Commun. – volume: 39 start-page: 3652 year: 2011 end-page: 3666 ident: CR53 article-title: PCNA directs type 2 RNase H activity on DNA replication and repair substrates publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq980 – ident: CR9 – volume: 167 start-page: 1455 year: 2016 end-page: 1467 ident: CR3 article-title: Conflict resolution in the genome: how transcription and replication make it work publication-title: Cell doi: 10.1016/j.cell.2016.09.053 – volume: 555 start-page: 387 year: 2018 end-page: 391 ident: CR57 article-title: EWS–FLI1 increases transcription to cause R-loops and block BRCA1 repair in Ewing sarcoma publication-title: Nature doi: 10.1038/nature25748 – volume: 59 start-page: 723 year: 2006 end-page: 730 ident: CR35 article-title: Growth inhibition mediated by excess negative supercoiling: the interplay between transcription elongation, R‐loop formation and DNA topology publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2005.05006.x – volume: 204 start-page: 29 year: 2014 end-page: 43 ident: CR64 article-title: New histone supply regulates replication fork speed and PCNA unloading publication-title: J. Cell Biol. doi: 10.1083/jcb.201305017 – volume: 18 start-page: 334 year: 2017 end-page: 343 ident: CR20 article-title: Transcription dynamics prevent RNA-mediated genomic instability through SRPK2-dependent DDX23 phosphorylation publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.12.050 – volume: 113 start-page: 12220 year: 2016 end-page: 12225 ident: CR23 article-title: Differential roles of the RNases H in preventing chromosome instability publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1613448113 – volume: 12 start-page: 827 year: 2011 end-page: 841 ident: CR30 article-title: All tangled up: how cells direct, manage and exploit topoisomerase function publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3228 – volume: 17 start-page: 553 year: 2016 ident: CR2 article-title: Transcription–replication conflicts: how they occur and how they are resolved publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm.2016.88 – volume: 112 start-page: E4565 year: 2015 end-page: E4570 ident: CR61 article-title: Fork rotation and DNA precatenation are restricted during DNA replication to prevent chromosomal instability publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1505356112 – volume: 7 year: 2016 ident: CR5 article-title: Increased global transcription activity as a mechanism of replication stress in cancer publication-title: Nat. Commun. doi: 10.1038/ncomms13087 – volume: 47 start-page: 6783 year: 2019 end-page: 6795 ident: CR41 article-title: The extruded non-template strand determines the architecture of R-loops publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkz341 – volume: 40 start-page: e106394 year: 2021 ident: CR38 article-title: Best practices for the visualization, mapping, and manipulation of R‐loops publication-title: EMBO J. doi: 10.15252/embj.2020106394 – volume: 11 start-page: 1 year: 2020 end-page: 12 ident: CR33 article-title: Topoisomerase 1 prevents replication stress at R-loop-enriched transcription termination sites publication-title: Nat. Commun. doi: 10.1038/s41467-020-17858-2 – volume: 56 start-page: 2579 year: 2019 end-page: 2589 ident: CR55 article-title: R-loops in motor neuron diseases publication-title: Mol. Neurobiol. doi: 10.1007/s12035-018-1246-y – volume: 281 start-page: 1502 year: 1998 end-page: 1505 ident: CR1 article-title: Segregation of transcription and replication sites into higher order domains publication-title: Science doi: 10.1126/science.281.5382.1502 – volume: 24 start-page: 1267 year: 2005 end-page: 1276 ident: CR11 article-title: Impairment of replication fork progression mediates RNA polII transcription‐associated recombination publication-title: EMBO J. doi: 10.1038/sj.emboj.7600602 – volume: 65 start-page: 832 year: 2017 end-page: 847 ident: CR22 article-title: Functions of replication protein A as a sensor of R loops and a regulator of RNaseH1 publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.01.029 – ident: CR43 – volume: 45 start-page: 814 year: 2012 end-page: 825 ident: CR40 article-title: R-loop formation is a distinctive characteristic of unmethylated human CpG island promoters publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.01.017 – volume: 208 start-page: 563 year: 2015 end-page: 579 ident: CR62 article-title: Rad51-mediated replication fork reversal is a global response to genotoxic treatments in human cells publication-title: J. Cell Biol. doi: 10.1083/jcb.201406099 – volume: 81 start-page: 102658 year: 2019 ident: CR29 article-title: Replisome structure suggests mechanism for continuous fork progression and post-replication repair publication-title: DNA Repair doi: 10.1016/j.dnarep.2019.102658 – volume: 34 start-page: 108797 year: 2021 ident: CR34 article-title: Topological stress is responsible for the detrimental outcomes of head-on replication-transcription conflicts publication-title: Cell Rep. doi: 10.1016/j.celrep.2021.108797 – volume: 25 start-page: 1463 year: 2009 end-page: 1465 ident: CR66 article-title: Globally optimal stitching of tiled 3D microscopic image acquisitions publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp184 – volume: 1672 start-page: 261 year: 2018 end-page: 294 ident: CR39 article-title: Dynamic architecture of eukaryotic DNA replication forks in vivo, visualized by electron microscopy publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-7306-4_19 – volume: 117 start-page: 30354 year: 2020 end-page: 30361 ident: CR26 article-title: Replisome bypass of a protein-based R-loop block by Pif1 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2020189117 – volume: 151 start-page: 835 year: 2012 end-page: 846 ident: CR54 article-title: Senataxin associates with replication forks to protect fork integrity across RNA-polymerase-II-transcribed genes publication-title: Cell doi: 10.1016/j.cell.2012.09.041 – ident: CR44 – volume: 11 start-page: 1 year: 2020 end-page: 16 ident: CR59 article-title: The ALPK1/TIFA/NF-κB axis links a bacterial carcinogen to R-loop-induced replication stress publication-title: Nat. Commun. doi: 10.1038/s41467-020-18857-z – volume: 77 start-page: 528 year: 2020 end-page: 541 ident: CR47 article-title: Fork cleavage-religation cycle and active transcription mediate replication restart after fork stalling at co-transcriptional R-loops publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.10.026 – volume: 10 start-page: 449 year: 2012 end-page: 458 ident: CR4 article-title: Replication–transcription conflicts in bacteria publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro2800 – volume: 276 start-page: 2790 year: 2001 end-page: 2796 ident: CR63 article-title: Positive torsional strain causes the formation of a four-way junction at replication forks publication-title: J. Biol. Chem. doi: 10.1074/jbc.M006736200 – volume: 7 start-page: 134 year: 2016 ident: CR31 article-title: The causes and consequences of topological stress during DNA replication publication-title: Genes doi: 10.3390/genes7120134 – volume: 75 start-page: 284 year: 2019 end-page: 297 ident: CR52 article-title: Transcription restart establishes chromatin accessibility after DNA replication publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.04.033 – volume: 38 start-page: e99793 year: 2019 ident: CR28 article-title: R‐loop formation during S phase is restricted by PrimPol‐mediated repriming publication-title: EMBO J. doi: 10.15252/embj.201899793 – volume: 25 start-page: 888 year: 2005 end-page: 895 ident: CR12 article-title: Mechanisms of transcription-replication collisions in bacteria publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.25.3.888-895.2005 – volume: 4 start-page: e08007 year: 2015 ident: CR58 article-title: Genome-wide DNA hypomethylation and RNA:DNA hybrid accumulation in Aicardi–Goutières syndrome publication-title: Elife doi: 10.7554/eLife.08007 – volume: 470 start-page: 554 year: 2011 end-page: 557 ident: CR48 article-title: Co-directional replication–transcription conflicts lead to replication restart publication-title: Nature doi: 10.1038/nature09758 – volume: 73 start-page: 670 year: 2019 end-page: 683 ident: CR56 article-title: Efficient pre-mRNA cleavage prevents replication-stress-associated genome instability publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.11.036 – volume: 555 start-page: 112 year: 2018 end-page: 116 ident: CR6 article-title: Intragenic origins due to short G1 phases underlie oncogene-induced DNA replication stress publication-title: Nature doi: 10.1038/nature25507 – volume: 9 start-page: 1 year: 2018 end-page: 10 ident: CR8 article-title: Gene inversion potentiates bacterial evolvability and virulence publication-title: Nat. Commun. doi: 10.1038/s41467-018-07110-3 – volume: 11 start-page: 1315 year: 2009 ident: 928_CR32 publication-title: Nat. Cell Biol. doi: 10.1038/ncb1984 – volume: 117 start-page: 30354 year: 2020 ident: 928_CR26 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2020189117 – volume: 38 start-page: e99793 year: 2019 ident: 928_CR28 publication-title: EMBO J. doi: 10.15252/embj.201899793 – ident: 928_CR9 doi: 10.1016/j.cell.2017.07.044 – ident: 928_CR43 – volume: 48 start-page: e84 year: 2020 ident: 928_CR50 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa500 – volume: 54 start-page: 68 year: 2017 ident: 928_CR15 publication-title: Cancer Treat. Rev. doi: 10.1016/j.ctrv.2017.02.001 – volume: 48 start-page: 10353 year: 2020 ident: 928_CR25 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa741 – volume: 29 start-page: 2890 year: 2019 ident: 928_CR21 publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.10.108 – volume: 151 start-page: 835 year: 2012 ident: 928_CR54 publication-title: Cell doi: 10.1016/j.cell.2012.09.041 – volume: 42 start-page: 794 year: 2011 ident: 928_CR17 publication-title: Mol. Cell doi: 10.1016/j.molcel.2011.04.026 – ident: 928_CR44 doi: 10.1016/j.molcel.2017.08.010 – volume: 112 start-page: E4565 year: 2015 ident: 928_CR61 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1505356112 – volume: 5 start-page: e17548 year: 2016 ident: 928_CR42 publication-title: eLife doi: 10.7554/eLife.17548 – volume: 18 start-page: 334 year: 2017 ident: 928_CR20 publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.12.050 – volume: 11 start-page: 1 year: 2020 ident: 928_CR59 publication-title: Nat. Commun. doi: 10.1038/s41467-020-18857-z – volume: 12 start-page: 827 year: 2011 ident: 928_CR30 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3228 – volume: 89 start-page: 123 year: 1986 ident: 928_CR36 publication-title: J. Immunol. Methods doi: 10.1016/0022-1759(86)90040-2 – volume: 34 start-page: 108797 year: 2021 ident: 928_CR34 publication-title: Cell Rep. doi: 10.1016/j.celrep.2021.108797 – volume: 36 start-page: 1182 year: 2017 ident: 928_CR14 publication-title: EMBO J. doi: 10.15252/embj.201695131 – volume: 12 start-page: 1 year: 2021 ident: 928_CR60 publication-title: Nat. Commun. doi: 10.1038/s41467-021-26904-6 – volume: 36 start-page: 2794 year: 2016 ident: 928_CR16 publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00415-16 – volume: 10 start-page: 449 year: 2012 ident: 928_CR4 publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro2800 – volume: 24 start-page: 2629 year: 2018 ident: 928_CR65 publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.08.019 – volume: 25 start-page: 1463 year: 2009 ident: 928_CR66 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp184 – volume: 208 start-page: 563 year: 2015 ident: 928_CR62 publication-title: J. Cell Biol. doi: 10.1083/jcb.201406099 – volume: 555 start-page: 112 year: 2018 ident: 928_CR6 publication-title: Nature doi: 10.1038/nature25507 – volume: 40 start-page: e106394 year: 2021 ident: 928_CR38 publication-title: EMBO J. doi: 10.15252/embj.2020106394 – volume: 170 start-page: 774 year: 2017 ident: 928_CR10 publication-title: Cell doi: 10.1016/j.cell.2017.07.043 – volume: 65 start-page: 832 year: 2017 ident: 928_CR22 publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.01.029 – volume: 9 start-page: 1 year: 2018 ident: 928_CR8 publication-title: Nat. Commun. doi: 10.1038/s41467-018-07110-3 – volume: 39 start-page: 3652 year: 2011 ident: 928_CR53 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq980 – volume: 432 start-page: 2271 year: 2020 ident: 928_CR51 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2020.02.014 – volume: 204 start-page: 29 year: 2014 ident: 928_CR64 publication-title: J. Cell Biol. doi: 10.1083/jcb.201305017 – ident: 928_CR49 – volume: 276 start-page: 2790 year: 2001 ident: 928_CR63 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M006736200 – volume: 31 start-page: 1370 year: 2017 ident: 928_CR19 publication-title: Genes Dev. doi: 10.1101/gad.300624.117 – volume: 29 start-page: 329 year: 2022 ident: 928_CR46 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-022-00747-1 – volume: 56 start-page: 2579 year: 2019 ident: 928_CR55 publication-title: Mol. Neurobiol. doi: 10.1007/s12035-018-1246-y – volume: 59 start-page: 723 year: 2006 ident: 928_CR35 publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2005.05006.x – volume: 81 start-page: 102658 year: 2019 ident: 928_CR29 publication-title: DNA Repair doi: 10.1016/j.dnarep.2019.102658 – volume: 281 start-page: 1502 year: 1998 ident: 928_CR1 publication-title: Science doi: 10.1126/science.281.5382.1502 – volume: 7 start-page: 134 year: 2016 ident: 928_CR31 publication-title: Genes doi: 10.3390/genes7120134 – volume: 45 start-page: 814 year: 2012 ident: 928_CR40 publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.01.017 – volume: 75 start-page: 284 year: 2019 ident: 928_CR52 publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.04.033 – volume: 327 start-page: 590 year: 2010 ident: 928_CR24 publication-title: Science doi: 10.1126/science.1179595 – volume: 276 start-page: 23547 year: 2001 ident: 928_CR37 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M009676200 – volume: 495 start-page: 512 year: 2013 ident: 928_CR7 publication-title: Nature doi: 10.1038/nature11989 – volume: 10 start-page: 654 year: 2011 ident: 928_CR13 publication-title: DNA Repair doi: 10.1016/j.dnarep.2011.04.013 – volume: 11 start-page: 1 year: 2020 ident: 928_CR33 publication-title: Nat. Commun. doi: 10.1038/s41467-020-17858-2 – volume: 1672 start-page: 261 year: 2018 ident: 928_CR39 publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-7306-4_19 – volume: 47 start-page: 6783 year: 2019 ident: 928_CR41 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkz341 – volume: 167 start-page: 1455 year: 2016 ident: 928_CR3 publication-title: Cell doi: 10.1016/j.cell.2016.09.053 – volume: 17 start-page: 553 year: 2016 ident: 928_CR2 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm.2016.88 – volume: 25 start-page: 888 year: 2005 ident: 928_CR12 publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.25.3.888-895.2005 – volume: 20 start-page: e47250 year: 2019 ident: 928_CR27 publication-title: EMBO Rep. doi: 10.15252/embr.201847250 – volume: 4 start-page: e08007 year: 2015 ident: 928_CR58 publication-title: Elife doi: 10.7554/eLife.08007 – volume: 56 start-page: 777 year: 2014 ident: 928_CR18 publication-title: Mol. Cell doi: 10.1016/j.molcel.2014.10.020 – volume: 77 start-page: 528 year: 2020 ident: 928_CR47 publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.10.026 – volume: 7 year: 2016 ident: 928_CR5 publication-title: Nat. Commun. doi: 10.1038/ncomms13087 – volume: 113 start-page: 12220 year: 2016 ident: 928_CR23 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1613448113 – ident: 928_CR45 doi: 10.1038/nsmb.2501 – volume: 73 start-page: 670 year: 2019 ident: 928_CR56 publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.11.036 – volume: 470 start-page: 554 year: 2011 ident: 928_CR48 publication-title: Nature doi: 10.1038/nature09758 – volume: 24 start-page: 1267 year: 2005 ident: 928_CR11 publication-title: EMBO J. doi: 10.1038/sj.emboj.7600602 – volume: 555 start-page: 387 year: 2018 ident: 928_CR57 publication-title: Nature doi: 10.1038/nature25748 |
| SSID | ssj0025573 |
| Score | 2.5869277 |
| Snippet | Transcription-replication collisions (TRCs) are crucial determinants of genome instability. R-loops were linked to head-on TRCs and proposed to obstruct... |
| SourceID | pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 348 |
| SubjectTerms | 101/28 631/1647/328/1259 631/337/1427 631/337/151/1431 631/337/151/2356 631/337/572 Accumulation Bacteria Bioassays Biochemistry Biological Microscopy Biomedical and Life Sciences Chromosomes - metabolism Deoxyribonucleic acid DNA DNA - chemistry DNA biosynthesis DNA Replication DNA-Binding Proteins - metabolism Electron microscopy Estrogens Genomes Genomic Instability Humans Hybrids Life Sciences Membrane Biology Okazaki fragments Protein Structure R-loops Replication Replication forks Ribonucleic acid RNA Transcription Visualization |
| Title | Direct visualization of transcription-replication conflicts reveals post-replicative DNA:RNA hybrids |
| URI | https://link.springer.com/article/10.1038/s41594-023-00928-6 https://www.ncbi.nlm.nih.gov/pubmed/36864174 https://www.proquest.com/docview/2787776123 https://www.proquest.com/docview/2783497156 https://pubmed.ncbi.nlm.nih.gov/PMC10023573 |
| Volume | 30 |
| WOSCitedRecordID | wos000942720100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1545-9985 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0025573 issn: 1545-9993 databaseCode: M7P dateStart: 20210101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1545-9985 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0025573 issn: 1545-9993 databaseCode: 7X7 dateStart: 20210101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1545-9985 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0025573 issn: 1545-9993 databaseCode: BENPR dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1545-9985 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0025573 issn: 1545-9993 databaseCode: M2O dateStart: 20210101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEB-8PQVf_D6tnkcE3zRc26RJ6ouseocv1uVQ2LeSpgm3IO267S3cf2-Spl3Ww3vxpaUkbRpmkpnJzPwG4K0wxmRW8mGmJcGUuCCAJFY4ZjE3ihOWUemLTfCiEMtlvggHbl0Iqxz3RL9R161yZ-SnKXfIdQ4s5OP6N3ZVo5x3NZTQOIBDh1RGZ3D46axYXEwmV5Z5H7PTE7BVhUhIm4mJOO2s6HKwuCnBDnhIYLYvmm7omzfDJv_ynXqRdP7wfyfzCB4EZRTNB-55DHd08wTuDeUpr59CPeyHaLvqXOrlkLCJWoN6J-DG7QZv9OQDRypkmXTIQUNZ1kbrtut3XbYafSnmHy6KObq8dsli3TP4eX724_NXHKoyYEV51mNKrcWmci0Uk6wyIuUmJTKRhuTCqidpXJGaEHuTubVtahOTSteSUSYVr2urHh3BrGkb_QKQMS4Ui5lMSvvtXFWxEiam2tqECa3jKoJkJEipAmS5q5zxq_SucyLKgYilJWLpiViyCN5N76wHwI5bex-PBCrD4u3KHXUieDM122XnfCmy0e2V70Nozq31G8HzgS2m4QgTjFpLLwKxxzBTBwfpvd_SrC49tHcy4A_Zgd-PvLX7r39P4-Xt03gF91PP5y507hhm_eZKv4a7atuvus0JHPAl91dxEtaPffqWfndXvvgDQCwioQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqAoIL70eggJHgBFaT2LEdJIRWlKpVS4RQkfaWOo6troSSZZMu2j_Fb8TjPFZLRW89cMrBzsPJ53lkZr5B6LW01iZO8xFuFCWMQhJAFGoS8lBYLShPmPLNJkSWyek0_bqFfg-1MJBWOchEL6jLWsM_8t1YAHMdkIV8nP8k0DUKoqtDC40OFkdm9cu5bM2Hwz33fd_E8f7nk08HpO8qQDQTSUsYcx6HTo3UXPHCyljYmKpIWercbxbFYUFLSt1Bpc42L21IC1MqzrjSoiwlkC85kX_NyXEBKWRiunbwksRHtMEqIc7won2RTkjlbuMUJZDwxpQAzZEkfFMRXrBuLyZp_hWp9Qpw_87_9uruotu9qY0n3d64h7ZMdR_d6Jpvrh6gspP2eDlroLC0K0fFtcUtqO9BmJKFGSP8WPc1NA0G4iu3cfG8btr1lKXBe9nk_bdsgs9WUArXPETfr2SJj9B2VVfmCcLWQqIZt4lS7tqpLkItbciM83gjVoZFgKIBALnuCdmhL8iP3CcGUJl3oMkdaHIPmpwH6O14zryjI7l09s4AiLwXTU2-RkOAXo3DTqhApEhVpj73cyhLhfPtA_S4g-F4O8olZ86PDZDcAOg4AQjLN0eq2ZknLo86diV343cDltfP9e9lPL18GS_RzYOTL8f58WF29Azdiv0egyTBHbTdLs7Nc3RdL9tZs3jhdytGp1eN8T-V1Xo6 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direct+visualization+of+transcription-replication+conflicts+reveals+post-replicative+DNA%3ARNA+hybrids&rft.jtitle=Nature+structural+%26+molecular+biology&rft.au=Stoy%2C+Henriette&rft.au=Zwicky%2C+Katharina&rft.au=Kuster%2C+Danina&rft.au=Lang%2C+Kevin+S&rft.date=2023-03-01&rft.pub=Nature+Publishing+Group+US&rft.issn=1545-9993&rft.eissn=1545-9985&rft.volume=30&rft.issue=3&rft.spage=348&rft.epage=359&rft_id=info:doi/10.1038%2Fs41594-023-00928-6&rft_id=info%3Apmid%2F36864174&rft.externalDocID=PMC10023573 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-9993&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-9993&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-9993&client=summon |