Artificial intelligence in diabetic retinopathy screening: clinical assessment using handheld fundus camera in a real-life setting

Aim Diabetic retinopathy (DR) represents the main cause of vision loss among working age people. A prompt screening of this condition may prevent its worst complications. This study aims to validate the in-built artificial intelligence (AI) algorithm Selena+ of a handheld fundus camera (Optomed Auro...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Acta diabetologica Ročník 60; číslo 8; s. 1083 - 1088
Hlavní autoři: Lupidi, Marco, Danieli, Luca, Fruttini, Daniela, Nicolai, Michele, Lassandro, Nicola, Chhablani, Jay, Mariotti, Cesare
Médium: Journal Article
Jazyk:angličtina
Vydáno: Milan Springer Milan 01.08.2023
Springer Nature B.V
Témata:
ISSN:1432-5233, 0940-5429, 1432-5233
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Aim Diabetic retinopathy (DR) represents the main cause of vision loss among working age people. A prompt screening of this condition may prevent its worst complications. This study aims to validate the in-built artificial intelligence (AI) algorithm Selena+ of a handheld fundus camera (Optomed Aurora, Optomed, Oulu, Finland) in a first line screening of a real-world clinical setting. Methods It was an observational cross-sectional study including 256 eyes of 256 consecutive patients. The sample included both diabetic and non-diabetic patients. Each patient received a 50°, macula centered, non-mydriatic fundus photography and, after pupil dilation, a complete fundus examination by an experienced retina specialist. All images were after analyzed by a skilled operator and by the AI algorithm. The results of the three procedures were then compared. Results The agreement between the operator-based fundus analysis in bio-microscopy and the fundus photographs was of 100%. Among the DR patients the AI algorithm revealed signs of DR in 121 out of 125 subjects (96.8%) and no signs of DR 122 of the 126 non-diabetic patients (96.8%). The sensitivity of the AI algorithm was 96.8% and the specificity 96.8%. The overall concordance coefficient k (95% CI) between AI-based assessment and fundus biomicroscopy was 0.935 (0.891–0.979). Conclusions The Aurora fundus camera is effective in a first line screening of DR. Its in-built AI software can be considered a reliable tool to automatically identify the presence of signs of DR and therefore employed as a promising resource in large screening campaigns.
AbstractList AimDiabetic retinopathy (DR) represents the main cause of vision loss among working age people. A prompt screening of this condition may prevent its worst complications. This study aims to validate the in-built artificial intelligence (AI) algorithm Selena+ of a handheld fundus camera (Optomed Aurora, Optomed, Oulu, Finland) in a first line screening of a real-world clinical setting.MethodsIt was an observational cross-sectional study including 256 eyes of 256 consecutive patients. The sample included both diabetic and non-diabetic patients. Each patient received a 50°, macula centered, non-mydriatic fundus photography and, after pupil dilation, a complete fundus examination by an experienced retina specialist. All images were after analyzed by a skilled operator and by the AI algorithm. The results of the three procedures were then compared.ResultsThe agreement between the operator-based fundus analysis in bio-microscopy and the fundus photographs was of 100%. Among the DR patients the AI algorithm revealed signs of DR in 121 out of 125 subjects (96.8%) and no signs of DR 122 of the 126 non-diabetic patients (96.8%). The sensitivity of the AI algorithm was 96.8% and the specificity 96.8%. The overall concordance coefficient k (95% CI) between AI-based assessment and fundus biomicroscopy was 0.935 (0.891–0.979).ConclusionsThe Aurora fundus camera is effective in a first line screening of DR. Its in-built AI software can be considered a reliable tool to automatically identify the presence of signs of DR and therefore employed as a promising resource in large screening campaigns.
Diabetic retinopathy (DR) represents the main cause of vision loss among working age people. A prompt screening of this condition may prevent its worst complications. This study aims to validate the in-built artificial intelligence (AI) algorithm Selena+ of a handheld fundus camera (Optomed Aurora, Optomed, Oulu, Finland) in a first line screening of a real-world clinical setting. It was an observational cross-sectional study including 256 eyes of 256 consecutive patients. The sample included both diabetic and non-diabetic patients. Each patient received a 50°, macula centered, non-mydriatic fundus photography and, after pupil dilation, a complete fundus examination by an experienced retina specialist. All images were after analyzed by a skilled operator and by the AI algorithm. The results of the three procedures were then compared. The agreement between the operator-based fundus analysis in bio-microscopy and the fundus photographs was of 100%. Among the DR patients the AI algorithm revealed signs of DR in 121 out of 125 subjects (96.8%) and no signs of DR 122 of the 126 non-diabetic patients (96.8%). The sensitivity of the AI algorithm was 96.8% and the specificity 96.8%. The overall concordance coefficient k (95% CI) between AI-based assessment and fundus biomicroscopy was 0.935 (0.891-0.979). The Aurora fundus camera is effective in a first line screening of DR. Its in-built AI software can be considered a reliable tool to automatically identify the presence of signs of DR and therefore employed as a promising resource in large screening campaigns.
Aim Diabetic retinopathy (DR) represents the main cause of vision loss among working age people. A prompt screening of this condition may prevent its worst complications. This study aims to validate the in-built artificial intelligence (AI) algorithm Selena+ of a handheld fundus camera (Optomed Aurora, Optomed, Oulu, Finland) in a first line screening of a real-world clinical setting. Methods It was an observational cross-sectional study including 256 eyes of 256 consecutive patients. The sample included both diabetic and non-diabetic patients. Each patient received a 50°, macula centered, non-mydriatic fundus photography and, after pupil dilation, a complete fundus examination by an experienced retina specialist. All images were after analyzed by a skilled operator and by the AI algorithm. The results of the three procedures were then compared. Results The agreement between the operator-based fundus analysis in bio-microscopy and the fundus photographs was of 100%. Among the DR patients the AI algorithm revealed signs of DR in 121 out of 125 subjects (96.8%) and no signs of DR 122 of the 126 non-diabetic patients (96.8%). The sensitivity of the AI algorithm was 96.8% and the specificity 96.8%. The overall concordance coefficient k (95% CI) between AI-based assessment and fundus biomicroscopy was 0.935 (0.891–0.979). Conclusions The Aurora fundus camera is effective in a first line screening of DR. Its in-built AI software can be considered a reliable tool to automatically identify the presence of signs of DR and therefore employed as a promising resource in large screening campaigns.
Diabetic retinopathy (DR) represents the main cause of vision loss among working age people. A prompt screening of this condition may prevent its worst complications. This study aims to validate the in-built artificial intelligence (AI) algorithm Selena+ of a handheld fundus camera (Optomed Aurora, Optomed, Oulu, Finland) in a first line screening of a real-world clinical setting.AIMDiabetic retinopathy (DR) represents the main cause of vision loss among working age people. A prompt screening of this condition may prevent its worst complications. This study aims to validate the in-built artificial intelligence (AI) algorithm Selena+ of a handheld fundus camera (Optomed Aurora, Optomed, Oulu, Finland) in a first line screening of a real-world clinical setting.It was an observational cross-sectional study including 256 eyes of 256 consecutive patients. The sample included both diabetic and non-diabetic patients. Each patient received a 50°, macula centered, non-mydriatic fundus photography and, after pupil dilation, a complete fundus examination by an experienced retina specialist. All images were after analyzed by a skilled operator and by the AI algorithm. The results of the three procedures were then compared.METHODSIt was an observational cross-sectional study including 256 eyes of 256 consecutive patients. The sample included both diabetic and non-diabetic patients. Each patient received a 50°, macula centered, non-mydriatic fundus photography and, after pupil dilation, a complete fundus examination by an experienced retina specialist. All images were after analyzed by a skilled operator and by the AI algorithm. The results of the three procedures were then compared.The agreement between the operator-based fundus analysis in bio-microscopy and the fundus photographs was of 100%. Among the DR patients the AI algorithm revealed signs of DR in 121 out of 125 subjects (96.8%) and no signs of DR 122 of the 126 non-diabetic patients (96.8%). The sensitivity of the AI algorithm was 96.8% and the specificity 96.8%. The overall concordance coefficient k (95% CI) between AI-based assessment and fundus biomicroscopy was 0.935 (0.891-0.979).RESULTSThe agreement between the operator-based fundus analysis in bio-microscopy and the fundus photographs was of 100%. Among the DR patients the AI algorithm revealed signs of DR in 121 out of 125 subjects (96.8%) and no signs of DR 122 of the 126 non-diabetic patients (96.8%). The sensitivity of the AI algorithm was 96.8% and the specificity 96.8%. The overall concordance coefficient k (95% CI) between AI-based assessment and fundus biomicroscopy was 0.935 (0.891-0.979).The Aurora fundus camera is effective in a first line screening of DR. Its in-built AI software can be considered a reliable tool to automatically identify the presence of signs of DR and therefore employed as a promising resource in large screening campaigns.CONCLUSIONSThe Aurora fundus camera is effective in a first line screening of DR. Its in-built AI software can be considered a reliable tool to automatically identify the presence of signs of DR and therefore employed as a promising resource in large screening campaigns.
Author Mariotti, Cesare
Fruttini, Daniela
Chhablani, Jay
Nicolai, Michele
Lupidi, Marco
Danieli, Luca
Lassandro, Nicola
Author_xml – sequence: 1
  givenname: Marco
  orcidid: 0000-0002-6817-2488
  surname: Lupidi
  fullname: Lupidi, Marco
  email: marcomed2@gmail.com
  organization: Eye Clinic, Department of Experimental and Clinical Medicine, Polytechnic University of Marche, Fondazione per la Macula Onlus, Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-Infantili (DINOGMI), University Eye Clinic
– sequence: 2
  givenname: Luca
  surname: Danieli
  fullname: Danieli, Luca
  organization: IRCCS - Fondazione Bietti
– sequence: 3
  givenname: Daniela
  surname: Fruttini
  fullname: Fruttini, Daniela
  organization: Department of Medicine and Surgery, University of Perugia, S. Maria della Misericordia Hospital
– sequence: 4
  givenname: Michele
  surname: Nicolai
  fullname: Nicolai, Michele
  organization: Eye Clinic, Department of Experimental and Clinical Medicine, Polytechnic University of Marche
– sequence: 5
  givenname: Nicola
  surname: Lassandro
  fullname: Lassandro, Nicola
  organization: Eye Clinic, Department of Experimental and Clinical Medicine, Polytechnic University of Marche
– sequence: 6
  givenname: Jay
  surname: Chhablani
  fullname: Chhablani, Jay
  organization: Department of Ophthalmology, UPMC Eye Center, University of Pittsburgh
– sequence: 7
  givenname: Cesare
  surname: Mariotti
  fullname: Mariotti, Cesare
  organization: Eye Clinic, Department of Experimental and Clinical Medicine, Polytechnic University of Marche
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37154944$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v3SAQRFWq5qP9Az1USL304gYMGL9eqijqR6RIvSRntMZrPyKMXwFHyrW_vLgvadMccgAW7cxoFuaYHIQ5ICFvOfvIGdOniTG1qStWi7I4kxV7QY64FHWlaiEOHtWH5DilG8Z4rUX7ihwKzZXcSHlEfp3F7AZnHXjqQkbv3YjBYrnQ3kGH2Vkayx7mHeTtHU02IgYXxk_UehecLURICVOaMGS6pNKiWwj9Fn1PhyX0S6IWJoywakIRA195NyBNmIvu-Jq8HMAnfHN_npDrr1-uzr9Xlz--XZyfXVZWapUr0euu5QzswLvBdr3VVgGzatANSJSgBaxVmVFhJzeibXrboOi50JK3wMUJ-bzX3S3dhL0tdiN4s4tugnhnZnDm_05wWzPOt4Yz3jRMsqLw4V4hzj8XTNlMLtnyZhBwXpKpW85V0-qNKtD3T6A38xJDmc-IWsm6KEpRUO8eW_rr5eF_CqDdA2ycU4o4GOsyZDevDp0v1swaBbOPgilRMH-iYFaz9RPqg_qzJLEnpQIOI8Z_tp9h_QY-kcjD
CitedBy_id crossref_primary_10_1080_17434440_2025_2508877
crossref_primary_10_3390_diagnostics14171846
crossref_primary_10_1016_j_pdpdt_2024_103965
crossref_primary_10_3389_fmed_2024_1481088
crossref_primary_10_1080_07853890_2024_2352018
crossref_primary_10_1007_s11042_024_18309_6
crossref_primary_10_1097_ICU_0000000000001084
crossref_primary_10_1089_dia_2024_2505
crossref_primary_10_1186_s40662_024_00389_y
crossref_primary_10_1055_a_2620_1956
crossref_primary_10_1080_17469899_2025_2503792
crossref_primary_10_3389_fmed_2025_1519768
crossref_primary_10_1038_s41433_024_03354_0
Cites_doi 10.1016/S2213-8587(19)30411-5
10.18240/ijo.2022.04.16
10.1159/000368426
10.3390/jcm11092352
10.1186/s40662-015-0026-2
10.1167/iovs.16-19964
10.4103/ijo.IJO_1989_18
10.1016/j.ajo.2009.02.031
10.1089/dia.2019.0164
10.1016/j.preteyeres.2019.04.003
10.1016/S0140-6736(09)62124-3
10.1159/000475773
10.1007/s10654-019-00560-z
10.2307/2529310
10.22608/APO.201976
10.1016/j.ophtha.2004.02.004
10.1001/jamaophthalmol.2013.1743
10.1016/S2214-109X(17)30393-5
10.1016/j.survophthal.2021.11.006
10.1016/S0161-6420(03)00475-5
10.1111/aos.14850
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7T5
7X7
7XB
88E
8AO
8C1
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7P
MBDVC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.1007/s00592-023-02104-0
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Immunology Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Proquest Research Library
Biological Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
AIDS and Cancer Research Abstracts
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Public Health
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Immunology Abstracts
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Research Library Prep
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1432-5233
EndPage 1088
ExternalDocumentID PMC10166040
37154944
10_1007_s00592_023_02104_0
Genre Journal Article
Observational Study
GeographicLocations Finland
GeographicLocations_xml – name: Finland
GrantInformation_xml – fundername: Università Politecnica delle Marche
– fundername: ;
GroupedDBID ---
-53
-5E
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
199
1N0
2.D
203
23M
28-
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3V.
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
78A
7X7
88E
8AO
8FI
8FJ
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSNA
ACUDM
ACZOJ
ADBBV
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGNMA
BPHCQ
BSONS
BVXVI
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBD
EBLON
EBS
EIOEI
EJD
EMB
EMOBN
EN4
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GRRUI
GUQSH
GXS
H13
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IMOTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KOV
KOW
KPH
LAS
LLZTM
M1P
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9S
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R89
R9I
RHV
RIG
RNI
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDE
SDH
SDM
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
T16
TEORI
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
YLTOR
Z45
Z7U
Z7W
Z82
Z87
Z8O
Z8Q
Z8V
Z91
ZMTXR
ZOVNA
~A9
~EX
8C1
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
BBNVY
BHPHI
CITATION
HCIFZ
M7P
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7XB
8FE
8FH
8FK
H94
K9.
LK8
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c475t-3d7b810acf1bfcbdc7c5a0c5f76a4e4a73a76a40125eb49386dc6e3d137418a13
IEDL.DBID RSV
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000983871200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1432-5233
0940-5429
IngestDate Thu Nov 20 01:42:36 EST 2025
Sun Nov 09 11:34:26 EST 2025
Tue Oct 07 05:37:46 EDT 2025
Wed Feb 19 02:23:07 EST 2025
Sat Nov 29 05:03:14 EST 2025
Tue Nov 18 22:35:46 EST 2025
Fri Feb 21 02:43:31 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Handheld fundus cameras
Diabetic retinopathy
Screening
Artificial intelligence
Language English
License 2023. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c475t-3d7b810acf1bfcbdc7c5a0c5f76a4e4a73a76a40125eb49386dc6e3d137418a13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Undefined-3
This article belongs to the Topical Collection “Diabetic Eye Disease”, managed By Giuseppe Querques.
ORCID 0000-0002-6817-2488
OpenAccessLink https://link.springer.com/10.1007/s00592-023-02104-0
PMID 37154944
PQID 3254216643
PQPubID 49275
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10166040
proquest_miscellaneous_2811568795
proquest_journals_3254216643
pubmed_primary_37154944
crossref_citationtrail_10_1007_s00592_023_02104_0
crossref_primary_10_1007_s00592_023_02104_0
springer_journals_10_1007_s00592_023_02104_0
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Milan
PublicationPlace_xml – name: Milan
– name: Germany
– name: Heidelberg
PublicationTitle Acta diabetologica
PublicationTitleAbbrev Acta Diabetol
PublicationTitleAlternate Acta Diabetol
PublicationYear 2023
Publisher Springer Milan
Springer Nature B.V
Publisher_xml – name: Springer Milan
– name: Springer Nature B.V
References Cheung, Mitchell, Wong (CR1) 2010; 376
Ruan, Liu, Hu (CR19) 2022; 15
Flaxman, Bourne, Resnikoff (CR2) 2017; 5
Vujosevic, Aldington, Silva (CR5) 2020; 8
Cheung, Tang, Ting, Tan, Wong (CR11) 2019
Kubin, Wirkkala, Keskitalo, Ohtonen, Hautala (CR13) 2021; 99
Palermo, D'Amico, Kim, Brady (CR4) 2022; 67
Padhy, Takkar, Chawla, Kumar (CR20) 2019; 67
Vujosevic, Benetti, Massignan (CR9) 2009; 148
Midena, Zennaro, Lapo (CR14) 2022; 11
Wilkinson, Ferris, Klein (CR6) 2003; 110
Li, Welchowski, Schmid (CR3) 2020; 35
Ting, Peng, Varadarajan (CR21) 2019; 72
Ribeiro, Oliveira, Neves, Ramos, Ferreira, Cunha-Vaz (CR17) 2014
Lee, Wong, Sabanayagam (CR8) 2015; 30
Bhaskaranand, Ramachandra, Bhat (CR18) 2019; 21
Landis, Koch (CR7) 1977; 33
Davila, Sengupta, Niziol (CR12) 2017; 238
Abràmoff, Folk, Han (CR15) 2013; 131
Abràmoff, Lou, Erginay (CR16) 2016; 57
Williams, Scott, Haller, Maguire, Marcus, McDonald (CR10) 2004; 111
JR Davila (2104_CR12) 2017; 238
M Bhaskaranand (2104_CR18) 2019; 21
AM Kubin (2104_CR13) 2021; 99
R Lee (2104_CR8) 2015; 30
SK Padhy (2104_CR20) 2019; 67
GA Williams (2104_CR10) 2004; 111
MD Abràmoff (2104_CR15) 2013; 131
JR Landis (2104_CR7) 1977; 33
S Vujosevic (2104_CR5) 2020; 8
CP Wilkinson (2104_CR6) 2003; 110
S Vujosevic (2104_CR9) 2009; 148
E Midena (2104_CR14) 2022; 11
JQ Li (2104_CR3) 2020; 35
CY Cheung (2104_CR11) 2019
S Ruan (2104_CR19) 2022; 15
L Ribeiro (2104_CR17) 2014
DSW Ting (2104_CR21) 2019; 72
N Cheung (2104_CR1) 2010; 376
SR Flaxman (2104_CR2) 2017; 5
MD Abràmoff (2104_CR16) 2016; 57
BJ Palermo (2104_CR4) 2022; 67
References_xml – volume: 8
  start-page: 337
  issue: 4
  year: 2020
  end-page: 347
  ident: CR5
  article-title: Screening for diabetic retinopathy: new perspectives and challenges
  publication-title: Lancet Diabetes Endocrinol
  doi: 10.1016/S2213-8587(19)30411-5
– volume: 15
  start-page: 620
  issue: 4
  year: 2022
  end-page: 627
  ident: CR19
  article-title: A new handheld fundus camera combined with visual artificial intelligence facilitates diabetic retinopathy screening
  publication-title: Int J Ophthalmol
  doi: 10.18240/ijo.2022.04.16
– year: 2014
  ident: CR17
  article-title: Screening for diabetic retinopathy in the central Region of Portugal. Added Value of Automated 'Disease/No Disease' grading
  publication-title: Ophthalmologica
  doi: 10.1159/000368426
– volume: 11
  start-page: 2352
  issue: 9
  year: 2022
  ident: CR14
  article-title: Handheld fundus camera for diabetic retinopathy screening: a comparison study with table-top fundus camera in real-life setting
  publication-title: J Clin Med
  doi: 10.3390/jcm11092352
– volume: 30
  start-page: 17
  issue: 2
  year: 2015
  ident: CR8
  article-title: Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss
  publication-title: Eye Vis
  doi: 10.1186/s40662-015-0026-2
– volume: 57
  start-page: 5200
  issue: 13
  year: 2016
  end-page: 5206
  ident: CR16
  article-title: Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.16-19964
– volume: 67
  start-page: 1004
  issue: 7
  year: 2019
  end-page: 1009
  ident: CR20
  article-title: Artificial intelligence in diabetic retinopathy: a natural step to the future
  publication-title: Indian J Ophthalmol
  doi: 10.4103/ijo.IJO_1989_18
– volume: 148
  start-page: 111
  issue: 1
  year: 2009
  end-page: 118
  ident: CR9
  article-title: Screening for diabetic retinopathy: 1 and 3 nonmydriatic 45-degree digital fundus photographs vs 7 standard early treatment diabetic retinopathy study fields
  publication-title: Am J Ophthalmol
  doi: 10.1016/j.ajo.2009.02.031
– volume: 21
  start-page: 635
  issue: 11
  year: 2019
  end-page: 643
  ident: CR18
  article-title: The value of automated diabetic retinopathy screening with the EyeArt system: a study of more than 100,000 consecutive encounters from people with diabetes
  publication-title: Diabetes Technol Ther
  doi: 10.1089/dia.2019.0164
– volume: 72
  start-page: 100759
  year: 2019
  ident: CR21
  article-title: Deep learning in ophthalmology: The technical and clinical considerations
  publication-title: Prog Retin Eye Res
  doi: 10.1016/j.preteyeres.2019.04.003
– volume: 376
  start-page: 124
  issue: 9735
  year: 2010
  end-page: 136
  ident: CR1
  article-title: Diabetic retinopathy
  publication-title: Lancet
  doi: 10.1016/S0140-6736(09)62124-3
– volume: 238
  start-page: 89
  issue: 1–2
  year: 2017
  end-page: 99
  ident: CR12
  article-title: Predictors of photographic quality with a handheld nonmydriatic fundus camera used for screening of vision-threatening diabetic retinopathy
  publication-title: Ophthalmologica
  doi: 10.1159/000475773
– volume: 35
  start-page: 11
  issue: 1
  year: 2020
  end-page: 23
  ident: CR3
  article-title: Prevalence, incidence and future projection of diabetic eye disease in Europe: a systematic review and meta-analysis
  publication-title: Eur J Epidemiol
  doi: 10.1007/s10654-019-00560-z
– volume: 33
  start-page: 159
  issue: 1
  year: 1977
  end-page: 174
  ident: CR7
  article-title: The measurement of observer agreement for categorical data
  publication-title: Biometrics
  doi: 10.2307/2529310
– year: 2019
  ident: CR11
  article-title: Artificial intelligence in diabetic eye disease screening
  publication-title: Asia Pac J Ophthalmol
  doi: 10.22608/APO.201976
– volume: 111
  start-page: 1055
  issue: 5
  year: 2004
  end-page: 1062
  ident: CR10
  article-title: Single-field fundus photography for diabetic retinopathy screening: a report by the American Academy of Ophthalmology
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2004.02.004
– volume: 131
  start-page: 351
  issue: 3
  year: 2013
  end-page: 357
  ident: CR15
  article-title: Automated analysis of retinal images for detection of referable diabetic retinopathy
  publication-title: JAMA Ophthalmol
  doi: 10.1001/jamaophthalmol.2013.1743
– volume: 5
  start-page: e1221
  issue: 12
  year: 2017
  end-page: e1234
  ident: CR2
  article-title: Global causes of blindness and distance vision impairment 1990–2020: a systematic review and meta-analysis
  publication-title: Lancet Glob Health
  doi: 10.1016/S2214-109X(17)30393-5
– volume: 67
  start-page: 1531
  issue: 5
  year: 2022
  end-page: 1539
  ident: CR4
  article-title: Sensitivity and specificity of handheld fundus cameras for eye disease: a systematic review and pooled analysis
  publication-title: Surv Ophthalmol
  doi: 10.1016/j.survophthal.2021.11.006
– volume: 110
  start-page: 1677
  issue: 9
  year: 2003
  end-page: 1682
  ident: CR6
  article-title: Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales
  publication-title: Ophthalmology
  doi: 10.1016/S0161-6420(03)00475-5
– volume: 99
  start-page: e1415
  issue: 8
  year: 2021
  end-page: e1420
  ident: CR13
  article-title: Handheld fundus camera performance, image quality and outcomes of diabetic retinopathy grading in a pilot screening study
  publication-title: Acta Ophthalmol
  doi: 10.1111/aos.14850
– volume: 35
  start-page: 11
  issue: 1
  year: 2020
  ident: 2104_CR3
  publication-title: Eur J Epidemiol
  doi: 10.1007/s10654-019-00560-z
– volume: 72
  start-page: 100759
  year: 2019
  ident: 2104_CR21
  publication-title: Prog Retin Eye Res
  doi: 10.1016/j.preteyeres.2019.04.003
– volume: 8
  start-page: 337
  issue: 4
  year: 2020
  ident: 2104_CR5
  publication-title: Lancet Diabetes Endocrinol
  doi: 10.1016/S2213-8587(19)30411-5
– year: 2019
  ident: 2104_CR11
  publication-title: Asia Pac J Ophthalmol
  doi: 10.22608/APO.201976
– volume: 67
  start-page: 1531
  issue: 5
  year: 2022
  ident: 2104_CR4
  publication-title: Surv Ophthalmol
  doi: 10.1016/j.survophthal.2021.11.006
– volume: 30
  start-page: 17
  issue: 2
  year: 2015
  ident: 2104_CR8
  publication-title: Eye Vis
  doi: 10.1186/s40662-015-0026-2
– year: 2014
  ident: 2104_CR17
  publication-title: Ophthalmologica
  doi: 10.1159/000368426
– volume: 111
  start-page: 1055
  issue: 5
  year: 2004
  ident: 2104_CR10
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2004.02.004
– volume: 57
  start-page: 5200
  issue: 13
  year: 2016
  ident: 2104_CR16
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.16-19964
– volume: 99
  start-page: e1415
  issue: 8
  year: 2021
  ident: 2104_CR13
  publication-title: Acta Ophthalmol
  doi: 10.1111/aos.14850
– volume: 131
  start-page: 351
  issue: 3
  year: 2013
  ident: 2104_CR15
  publication-title: JAMA Ophthalmol
  doi: 10.1001/jamaophthalmol.2013.1743
– volume: 67
  start-page: 1004
  issue: 7
  year: 2019
  ident: 2104_CR20
  publication-title: Indian J Ophthalmol
  doi: 10.4103/ijo.IJO_1989_18
– volume: 11
  start-page: 2352
  issue: 9
  year: 2022
  ident: 2104_CR14
  publication-title: J Clin Med
  doi: 10.3390/jcm11092352
– volume: 21
  start-page: 635
  issue: 11
  year: 2019
  ident: 2104_CR18
  publication-title: Diabetes Technol Ther
  doi: 10.1089/dia.2019.0164
– volume: 15
  start-page: 620
  issue: 4
  year: 2022
  ident: 2104_CR19
  publication-title: Int J Ophthalmol
  doi: 10.18240/ijo.2022.04.16
– volume: 148
  start-page: 111
  issue: 1
  year: 2009
  ident: 2104_CR9
  publication-title: Am J Ophthalmol
  doi: 10.1016/j.ajo.2009.02.031
– volume: 376
  start-page: 124
  issue: 9735
  year: 2010
  ident: 2104_CR1
  publication-title: Lancet
  doi: 10.1016/S0140-6736(09)62124-3
– volume: 110
  start-page: 1677
  issue: 9
  year: 2003
  ident: 2104_CR6
  publication-title: Ophthalmology
  doi: 10.1016/S0161-6420(03)00475-5
– volume: 238
  start-page: 89
  issue: 1–2
  year: 2017
  ident: 2104_CR12
  publication-title: Ophthalmologica
  doi: 10.1159/000475773
– volume: 5
  start-page: e1221
  issue: 12
  year: 2017
  ident: 2104_CR2
  publication-title: Lancet Glob Health
  doi: 10.1016/S2214-109X(17)30393-5
– volume: 33
  start-page: 159
  issue: 1
  year: 1977
  ident: 2104_CR7
  publication-title: Biometrics
  doi: 10.2307/2529310
SSID ssj0012738
Score 2.4176836
Snippet Aim Diabetic retinopathy (DR) represents the main cause of vision loss among working age people. A prompt screening of this condition may prevent its worst...
Diabetic retinopathy (DR) represents the main cause of vision loss among working age people. A prompt screening of this condition may prevent its worst...
AimDiabetic retinopathy (DR) represents the main cause of vision loss among working age people. A prompt screening of this condition may prevent its worst...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1083
SubjectTerms Agreements
Algorithms
Archives & records
Artificial Intelligence
Automation
Cameras
Cataracts
Coronaviruses
COVID-19
Cross-Sectional Studies
Diabetes
Diabetes Mellitus
Diabetic retinopathy
Diabetic Retinopathy - diagnosis
Humans
Internal Medicine
Low income groups
Mass Screening - methods
Medicine
Medicine & Public Health
Metabolic Diseases
Original
Original Article
Patients
Photography
Retina
Retinopathy
Signs
Software
Statistical analysis
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BQYgLUJ6hBbkSt2KRxE4cc6kQouJC1UMr9RY5tkMjrbKl2UXiyi9nxnFSthW9cIkS2UlsjT0znsc3AO9QhJuWXP-ibTWXEi9GNiWXViqhPSrgrQvFJtTRUXV2po-jwW2IYZUTTwyM2i0t2cg_CDzJ5FmJAvTg4genqlHkXY0lNO7CPUJJECF073j2IlDaScDakymnukwxaSakzlHWZc5RYnE69UiebgqmG9rmzaDJa57TIJAOH__vVJ7Ao6iKsk_j2tmGO75_Cg--RWf7M_hNLSPABOv-Qu7EBzaabDvLKAmyX1Jd418MORCeinGwH9mUcMnMjPzJKMT-OyNL_blfOIYS1a0HZg2ZxeibBj9mFnzRtZ4NPsRjP4fTwy8nn7_yWLKBI22LFRdONVWWGttmTWsbZ5UtTGqLVpVGemmUMHSHpCl8I7WoSmdLL1wmCEXHZOIFbPXL3r8C5vLUSKNRsjottcqMstrmXpXIo0ShbQLZRK_aRjxzKquxqGck5kDjGmlcBxrXaQL78zsXI5rHrb13J_rVcWcP9RXxEtibm3FPkqPF9H65Huq8Qj27pDLuCbwcV838O6EIFE_KBKqN9TR3ILzvzZa-Ow-432RoKZHpJvB-WnpX4_r3NF7fPo0deJiHbUBBjbuwtbpc-zdw3_5cdcPl27Ch_gAsqieB
  priority: 102
  providerName: ProQuest
Title Artificial intelligence in diabetic retinopathy screening: clinical assessment using handheld fundus camera in a real-life setting
URI https://link.springer.com/article/10.1007/s00592-023-02104-0
https://www.ncbi.nlm.nih.gov/pubmed/37154944
https://www.proquest.com/docview/3254216643
https://www.proquest.com/docview/2811568795
https://pubmed.ncbi.nlm.nih.gov/PMC10166040
Volume 60
WOSCitedRecordID wos000983871200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1432-5233
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0012738
  issn: 1432-5233
  databaseCode: M7P
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1432-5233
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0012738
  issn: 1432-5233
  databaseCode: 7X7
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1432-5233
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0012738
  issn: 1432-5233
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Proquest Research Library
  customDbUrl:
  eissn: 1432-5233
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0012738
  issn: 1432-5233
  databaseCode: M2O
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1432-5233
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0012738
  issn: 1432-5233
  databaseCode: 8C1
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1432-5233
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012738
  issn: 1432-5233
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BixAXypu0ZWUkbmBpEztx3BtUrbh0WZWH9hY5ttNGWmVRs4vElV_OjPOApYAEFyuR7dixx56xZ-YbgBfIwk1Fqn9RVZpLiYmRZcallUpojwJ45UKwCTWb5YuFnvdOYe1g7T6oJMNOPTq7kZ9kwpHHcDqnSI4H9V1kdzktx_P3n0bdATmb9O4xv6-3zYKuyZXXzSN_0ZEG1nO693-dvgd3e1GTve5o4z7c8M0DuH3WK9MfwjfK6QAkWP0TMie-sO5KtraMnBybFcUt_spwh8FTLzZ_xAaHSmZGZE9GJvQXjG7iL_3SMeSYbtMya-jai75p8GNmyZd15Vnrg731I_h4evLh-C3vQzJwnLt0zYVTZR5Pja3isrKls8qmZmrTSmVGemmUMPSEk5D6UmqRZ85mXrhYEEqOicVj2GlWjX8KzCVTI41Gzum01Co2ymqbeJXhHiRSbSOIh1kqbI9XTmEzlsWItBwGt8DBLcLgFtMIXo51PndoHX8tfThMftGv3LYQeGJO4gwFtQiej9m45kiRYhq_2rRFkqMcnVGY9giedLQyNicUgd5JGUG-RUVjAcLz3s5p6suA600XKRluqhG8GojpR7_-_Bv7_1b8AO4kgR7JiPEQdtZXG_8Mbtkv67q9msBNtVAhzTHNj-MJ7L45mc3P8e0seUepmk_CgvsOPRAhmw
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgoAL70eggJHgBBZJ7MQJEkIIqFq1XfVQpN5Sx3ZopFW2NLugXvlB_EZmnEdZKnrrgctqV846G-_neXhmvgF4gSpcVxT6F1WVcynxRcsy5dJIJXKHBnhlfbMJNZlk-_v57gr8GmphKK1ykIleUNuZoTPyNwI9mThKUYG-P_rGqWsURVeHFhodLLbcyQ902dp3m5_w_30Zx-uf9z5u8L6rAMfbJ3MurCqzKNSmisrKlNYok-jQJJVKtXRSK6HpHQruxJUyF1lqTeqEjQQRvehI4LyX4DKaEXHmUwV3x6gFlbl4bj8ZcuoD1Rfp-FI9qvKMOWpITl6W5OGyIjxj3Z5N0vwrUusV4PrN_23pbsGN3tRmH7q9cRtWXHMHru70yQR34SeNdAQarP6DmRQ_sO5IujaMijybGfVtPmEoYdHrx8V5y4aCUqZHZlNGJQRfGUUiDt3UMrQY7KJlRtOxH82pcTI95dO6cqx1Pt_8Hny5kBW4D6vNrHEPgdk41FLnaDnYXOYq0srkJnYqRRksktwEEA34KEzP105tQ6bFyDTtMVUgpgqPqSIM4NX4naOOreTcq9cGvBS95GqLU7AE8HwcRplDgSTduNmiLeIM_YiU2tQH8KBD6Xg7oYj0T8oAsiX8jhcQn_nySFMfel5zOkhKUakE8HqA-unv-vdjPDr_MZ7BtY29ne1ie3Oy9Riux34LUgLnGqzOjxfuCVwx3-d1e_zUb2YGBxe9BX4DmEKFmw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgiouvB-BAkaCE1hNYidOkBBCLSuqwqoHkHoLju3QSKtsaXZBvfKz-HXMOI-yVPTWA5fVrpx48_g8M57HNwDPUIXrikL_oqpyLiV-aFmmXBqpRO7QAK-sbzahptPs4CDfX4NfQy0MpVUOMtELajs35CPfEriTiaMUFehW1adF7O9M3hx949RBiiKtQzuNDiJ77uQHbt_a17s7-K6fx_Hk3aft97zvMMDxUpIFF1aVWRRqU0VlZUprlEl0aJJKpVo6qZXQ9A2FeOJKmYsstSZ1wkaCSF90JHDeS3BZCUQxValvj-klEZW8eJ4_GXLqCdUX7PiyPar4jDlqS047LsnDVaV4xtI9m7D5V9TWK8PJ9f_5Md6Aa70Jzt52a-YmrLnmFmx87JMMbsNPGumINVj9B2Mp_mCdq7o2jIo_mzn1cz5hKHmdI__SKzYUmjI9Mp4yKi34yihCcehmlqElYZctM5rcgTSnxsn0jM_qyrHW-Tz0O_D5Qp7AXVhv5o27D8zGoZY6R4vC5jJXkVYmN7FTKcpmkeQmgGjASmF6HndqJzIrRgZqj68C8VV4fBVhAC_Gc446FpNzj94csFP0Eq0tToETwNNxGGURBZh04-bLtogz3F-k1L4-gHsdYse_E4rIAKUMIFvB8ngA8ZyvjjT1oec7JwdTisomgJcD7E-v69-38eD823gCG4j84sPudO8hXI39aqS8zk1YXxwv3SO4Yr4v6vb4sV_XDL5c9Ar4DSxBjhE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+intelligence+in+diabetic+retinopathy+screening%3A+clinical+assessment+using+handheld+fundus+camera+in+a+real-life+setting&rft.jtitle=Acta+diabetologica&rft.au=Lupidi%2C+Marco&rft.au=Danieli%2C+Luca&rft.au=Fruttini%2C+Daniela&rft.au=Nicolai%2C+Michele&rft.date=2023-08-01&rft.pub=Springer+Milan&rft.eissn=1432-5233&rft.volume=60&rft.issue=8&rft.spage=1083&rft.epage=1088&rft_id=info:doi/10.1007%2Fs00592-023-02104-0&rft.externalDocID=10_1007_s00592_023_02104_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-5233&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-5233&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-5233&client=summon