An Interpretable Skin Cancer Classification Using Optimized Convolutional Neural Network for a Smart Healthcare System

Skin cancer is a prevalent form of malignancy globally, and its early and accurate diagnosis is critical for patient survival. Clinical evaluation of skin lesions is essential, but it faces challenges such as long waiting times and subjective interpretations. Deep learning techniques have been devel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access Jg. 11; S. 41003 - 41018
Hauptverfasser: Mridha, Krishna, Uddin, Md. Mezbah, Shin, Jungpil, Khadka, Susan, Mridha, M. F.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2169-3536, 2169-3536
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Skin cancer is a prevalent form of malignancy globally, and its early and accurate diagnosis is critical for patient survival. Clinical evaluation of skin lesions is essential, but it faces challenges such as long waiting times and subjective interpretations. Deep learning techniques have been developed to tackle these challenges and assist dermatologists in making more accurate diagnoses. Prompt treatment of skin cancer is vital to prevent its progression and potentially life-threatening consequences. The use of deep learning algorithms can improve the speed and accuracy of diagnosis, leading to earlier detection and treatment. Additionally, it can reduce the workload for healthcare professionals, allowing them to concentrate on more complex cases. The goal of this study was to develop reliable deep learning (DL) prediction models for skin cancer classification; (i) deal with a typical severe class imbalance problem, which arises because the skin-affected patients' class is significantly smaller than the healthy class; and (ii) interpret the model output to better understand the decision-making mechanism (iii) Propose an End-to-End smart healthcare system through an android application. In a comparison examination with six well-known classifiers, the effectiveness of the proposed DL technique was explored in terms of metrics relating to both generalization capability and classification accuracy. A study used the HAM10000 dataset and an optimized CNN to identify the seven forms of skin cancer. The model was trained using two optimization functions (Adam and RMSprop) and three activation functions (Relu, Swish, and Tanh). Furthermore, an XAI-based skin lesion classification system was developed, incorporating Grad-CAM and Grad-CAM++ to explain the model's decisions. This system can help doctors make informed skin cancer diagnoses in their early stages, with an 82% classification accuracy and 0.47% loss accuracy.
AbstractList Skin cancer is a prevalent form of malignancy globally, and its early and accurate diagnosis is critical for patient survival. Clinical evaluation of skin lesions is essential, but it faces challenges such as long waiting times and subjective interpretations. Deep learning techniques have been developed to tackle these challenges and assist dermatologists in making more accurate diagnoses. Prompt treatment of skin cancer is vital to prevent its progression and potentially life-threatening consequences. The use of deep learning algorithms can improve the speed and accuracy of diagnosis, leading to earlier detection and treatment. Additionally, it can reduce the workload for healthcare professionals, allowing them to concentrate on more complex cases. The goal of this study was to develop reliable deep learning (DL) prediction models for skin cancer classification; (i) deal with a typical severe class imbalance problem, which arises because the skin-affected patients’ class is significantly smaller than the healthy class; and (ii) interpret the model output to better understand the decision-making mechanism (iii) Propose an End-to-End smart healthcare system through an android application. In a comparison examination with six well-known classifiers, the effectiveness of the proposed DL technique was explored in terms of metrics relating to both generalization capability and classification accuracy. A study used the HAM10000 dataset and an optimized CNN to identify the seven forms of skin cancer. The model was trained using two optimization functions (Adam and RMSprop) and three activation functions (Relu, Swish, and Tanh). Furthermore, an XAI-based skin lesion classification system was developed, incorporating Grad-CAM and Grad-CAM++ to explain the model’s decisions. This system can help doctors make informed skin cancer diagnoses in their early stages, with an 82% classification accuracy and 0.47% loss accuracy.
Author Uddin, Md. Mezbah
Mridha, M. F.
Shin, Jungpil
Khadka, Susan
Mridha, Krishna
Author_xml – sequence: 1
  givenname: Krishna
  orcidid: 0000-0002-2238-1516
  surname: Mridha
  fullname: Mridha, Krishna
  organization: Department of Computer Engineering, Marwadi University, Gujarat, Rajkot, India
– sequence: 2
  givenname: Md. Mezbah
  orcidid: 0009-0002-0441-8722
  surname: Uddin
  fullname: Uddin, Md. Mezbah
  organization: Department of Computer Engineering, Marwadi University, Gujarat, Rajkot, India
– sequence: 3
  givenname: Jungpil
  orcidid: 0000-0002-7476-2468
  surname: Shin
  fullname: Shin, Jungpil
  email: jpshin@u-aizu.ac.jp
  organization: Department of Computer Science and Engineering, University of Aizu, Aizuwakamatsu, Japan
– sequence: 4
  givenname: Susan
  orcidid: 0009-0007-2696-9804
  surname: Khadka
  fullname: Khadka, Susan
  organization: Department of Computer Engineering, Marwadi University, Gujarat, Rajkot, India
– sequence: 5
  givenname: M. F.
  orcidid: 0000-0001-5738-1631
  surname: Mridha
  fullname: Mridha, M. F.
  organization: Department of Computer Science, American International University-Bangladesh, Dhaka, Bangladesh
BookMark eNp9kU9PGzEQxVeISqWUT9AeLPWc1P_W3j1GKwqRUDmknK1ZZ0wdNuvUdkDw6etkQUI91Jexnuf3NOP3qTodw4hV9YXROWO0_b7ousvVas4pF3PBVataeVKdcabamaiFOn13_1hdpLSh5TRFqvVZ9bgYyXLMGHcRM_QDktWDH0kHo8VIugFS8s5byD6M5C758Z7c7rLf-hdcky6Mj2HYH95gID9xH48lP4X4QFyIBMhqCzGTa4Qh_7YQi_1zyrj9XH1wMCS8eK3n1d2Py1_d9ezm9mrZLW5mVuo6z_h6LSlSJ5XmUreq15Q6gaBqlFZb7iQvIjSur2thQfVUaOYc7zmFWlkuzqvl5LsOsDG76Ms4zyaAN0chxHtT5vN2QENbXrgGrRIgHfS9bq10ivGmBq21KF7fJq9dDH_2mLLZhH0smyfDG9o0olaKla526rIxpBTRGevz8ftyBD8YRs0hNTOlZg6pmdfUCiv-Yd8m_j_1daI8Ir4jGNWSMvEXxO-mDA
CODEN IAECCG
CitedBy_id crossref_primary_10_1016_j_aej_2024_12_080
crossref_primary_10_1016_j_bspc_2024_107141
crossref_primary_10_1109_ACCESS_2023_3332479
crossref_primary_10_1007_s11831_024_10121_7
crossref_primary_10_3390_diagnostics15010099
crossref_primary_10_3390_ijms25031546
crossref_primary_10_1007_s13198_024_02521_6
crossref_primary_10_3390_sym17081264
crossref_primary_10_1007_s11517_024_03115_x
crossref_primary_10_1088_2057_1976_ad9eb7
crossref_primary_10_1145_3709367
crossref_primary_10_1016_j_imu_2024_101584
crossref_primary_10_3390_ai5040138
crossref_primary_10_1016_j_dajour_2023_100278
crossref_primary_10_1007_s12672_024_01671_0
crossref_primary_10_3390_diagnostics14060636
crossref_primary_10_1007_s13721_025_00568_4
crossref_primary_10_1016_j_bspc_2025_107934
crossref_primary_10_1002_ima_23214
crossref_primary_10_1007_s00521_024_10227_w
crossref_primary_10_1016_j_procs_2024_11_115
crossref_primary_10_1016_j_ijmedinf_2024_105689
crossref_primary_10_1016_j_asoc_2024_112013
crossref_primary_10_1371_journal_pone_0301275
crossref_primary_10_1016_j_neucom_2025_129701
crossref_primary_10_1109_ACCESS_2024_3420415
crossref_primary_10_1109_TCSS_2024_3459929
crossref_primary_10_1007_s00521_024_10862_3
crossref_primary_10_1007_s13721_024_00495_w
crossref_primary_10_4018_JOEUC_335081
crossref_primary_10_1007_s10586_024_04540_1
crossref_primary_10_1007_s13721_025_00554_w
crossref_primary_10_1016_j_bspc_2024_107449
crossref_primary_10_1038_s41598_025_04931_3
crossref_primary_10_1109_ACCESS_2023_3311752
crossref_primary_10_3390_app14198884
crossref_primary_10_1038_s41598_024_81961_3
crossref_primary_10_1016_j_asoc_2024_111624
crossref_primary_10_1016_j_bspc_2025_107914
crossref_primary_10_3390_diagnostics13182869
crossref_primary_10_1007_s11042_025_20854_7
crossref_primary_10_1007_s44174_025_00467_2
crossref_primary_10_1007_s40031_025_01252_x
crossref_primary_10_1186_s12911_025_02889_w
crossref_primary_10_1080_01969722_2025_2540117
crossref_primary_10_1109_ACCESS_2023_3299850
crossref_primary_10_1080_07357907_2025_2518400
crossref_primary_10_3390_diagnostics14131338
crossref_primary_10_7717_peerj_cs_2530
crossref_primary_10_3390_diagnostics13193063
crossref_primary_10_1016_j_jksuci_2024_102007
crossref_primary_10_1007_s44174_024_00205_0
crossref_primary_10_1016_j_physo_2025_100287
crossref_primary_10_1016_j_compbiomed_2024_109030
crossref_primary_10_1016_j_eij_2025_100706
Cites_doi 10.1109/ICACCM56405.2022.10009311
10.1109/CVPRW.2019.00334
10.3390/healthcare10071183
10.1109/WACV.2018.00097
10.1016/j.neunet.2023.01.022
10.3322/caac.21601
10.1109/CIBEC.2018.8641815
10.1007/s11042-018-5714-1
10.4103/ijdpdd.ijdpdd_10_17
10.1056/NEJMra1708701
10.1109/ICCV.2017.74
10.5194/isprsarchives-XL-5-W6-73-2015
10.1109/ACCESS.2020.3003890
10.3390/s18020556
10.1088/1757-899X/982/1/012005
10.1109/ICEARS53579.2022.9751826
10.1109/ICCCA52192.2021.9666302
10.19101/IJACR.2021.1152001
10.1155/2021/5895156
10.3390/s22186915
10.24425/ijet.2019.129818
10.1109/CVPRW53098.2021.00199
10.3906/elk-2101-133
10.1002/ima.22750
10.1109/ACCESS.2022.3217217
10.31661/jbpe.v0i0.2004-1107
10.1109/ISBI.2019.8759561
10.1109/ACCESS.2019.2906241
10.1109/ACCESS.2020.2997710
10.18178/ijmlc.2018.8.1.664
10.5144/0256-4947.2018.21.01.1515
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2023.3269694
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 41018
ExternalDocumentID oai_doaj_org_article_0922b28ec63a4fabb79c4f61285a7773
10_1109_ACCESS_2023_3269694
10107401
Genre orig-research
GrantInformation_xml – fundername: JSPS KAKENHI Grant Number JP23H03477
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c475t-2dd40e0f46724796b700f3ea65e4c7c2f4296ba8fb553ca6b0371ff2b20a56c23
IEDL.DBID RIE
ISICitedReferencesCount 64
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000981878700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:43:58 EDT 2025
Mon Jun 30 04:03:50 EDT 2025
Tue Nov 18 22:36:36 EST 2025
Sat Nov 29 04:02:35 EST 2025
Wed Aug 27 02:18:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c475t-2dd40e0f46724796b700f3ea65e4c7c2f4296ba8fb553ca6b0371ff2b20a56c23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2238-1516
0009-0002-0441-8722
0000-0002-7476-2468
0000-0001-5738-1631
0009-0007-2696-9804
OpenAccessLink https://ieeexplore.ieee.org/document/10107401
PQID 2808835661
PQPubID 4845423
PageCount 16
ParticipantIDs crossref_citationtrail_10_1109_ACCESS_2023_3269694
crossref_primary_10_1109_ACCESS_2023_3269694
proquest_journals_2808835661
ieee_primary_10107401
doaj_primary_oai_doaj_org_article_0922b28ec63a4fabb79c4f61285a7773
PublicationCentury 2000
PublicationDate 20230000
2023-00-00
20230101
2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 20230000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref34
ref15
ref14
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
soyer (ref9) 2001; 11
(ref3) 2022
ref28
ref27
ref29
ref8
ref7
ref4
ref6
ref5
sherif (ref16) 2019; 65
References_xml – ident: ref33
  doi: 10.1109/ICACCM56405.2022.10009311
– ident: ref8
  doi: 10.1109/CVPRW.2019.00334
– ident: ref19
  doi: 10.3390/healthcare10071183
– ident: ref32
  doi: 10.1109/WACV.2018.00097
– ident: ref29
  doi: 10.1016/j.neunet.2023.01.022
– ident: ref6
  doi: 10.3322/caac.21601
– ident: ref13
  doi: 10.1109/CIBEC.2018.8641815
– ident: ref20
  doi: 10.1007/s11042-018-5714-1
– ident: ref10
  doi: 10.4103/ijdpdd.ijdpdd_10_17
– ident: ref2
  doi: 10.1056/NEJMra1708701
– ident: ref31
  doi: 10.1109/ICCV.2017.74
– ident: ref11
  doi: 10.5194/isprsarchives-XL-5-W6-73-2015
– ident: ref12
  doi: 10.1109/ACCESS.2020.3003890
– ident: ref14
  doi: 10.3390/s18020556
– ident: ref21
  doi: 10.1088/1757-899X/982/1/012005
– ident: ref25
  doi: 10.1109/ICEARS53579.2022.9751826
– ident: ref34
  doi: 10.1109/ICCCA52192.2021.9666302
– ident: ref7
  doi: 10.19101/IJACR.2021.1152001
– ident: ref17
  doi: 10.1155/2021/5895156
– year: 2022
  ident: ref3
  publication-title: Melanoma Skin Cancer Key Statistics
– ident: ref18
  doi: 10.3390/s22186915
– volume: 65
  start-page: 597
  year: 2019
  ident: ref16
  article-title: Skin lesion analysis toward melanoma detection using deep learning techniques
  publication-title: Int J Electron Telecommun
  doi: 10.24425/ijet.2019.129818
– ident: ref26
  doi: 10.1109/CVPRW53098.2021.00199
– ident: ref28
  doi: 10.3906/elk-2101-133
– ident: ref30
  doi: 10.1002/ima.22750
– ident: ref23
  doi: 10.1109/ACCESS.2022.3217217
– ident: ref24
  doi: 10.31661/jbpe.v0i0.2004-1107
– ident: ref22
  doi: 10.1109/ISBI.2019.8759561
– ident: ref4
  doi: 10.1109/ACCESS.2019.2906241
– ident: ref27
  doi: 10.1109/ACCESS.2020.2997710
– ident: ref5
  doi: 10.1155/2021/5895156
– ident: ref15
  doi: 10.18178/ijmlc.2018.8.1.664
– ident: ref1
  doi: 10.5144/0256-4947.2018.21.01.1515
– volume: 11
  start-page: 483
  year: 2001
  ident: ref9
  article-title: Dermoscopy of pigmented skin lesions*(Part II)
  publication-title: Eur J Dermatol
SSID ssj0000816957
Score 2.6013725
Snippet Skin cancer is a prevalent form of malignancy globally, and its early and accurate diagnosis is critical for patient survival. Clinical evaluation of skin...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 41003
SubjectTerms Accuracy
Algorithms
Artificial intelligence
Artificial neural networks
Biological system modeling
Cancer
Classification
CNN
Decision making
Deep learning
Diagnosis
explainable AI
Grad-CAM
Health care
Health services
Lesions
Machine learning
Optimization
Prediction models
Predictive models
Skin
Skin cancer
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS-wwFA0iLnQh7_mB855PsnBpNU3TfCzHorhSQQV3IZ8gaJVx3iz89d6kcRwRdOOqUNqmuef25qYczkFon1LrnUykMKN4xbxzlRWOVLUQxtYmRhEGswlxfi5vb9XlgtVX4oQN8sBD4I6IgsdRGRxvDIvGWqEci7Auy9YIIbLOJ3Q9C5upXINlzVUrisxQTdTRuOtgRofJLfwQWhbFFfuwFGXF_mKx8qku58Xm9BdaL10iHg9v9xsthX4DrS1oB26i2bjH74xBex9w8tHCXUJxgrPXZWIB5cDjTAzAF1AeHu5egsfdYz8rOQfDJIGOfMiMcAxtLDb46gFig8_m9DA8aJtvoZvTk-vurComCpVjop1W1HtGAolQECkTiltBSGyC4W1gTjgaYUHi1sho27Zxhtuk4RcjxJyYljvabKPl_rEPOwgb2M8y4qJpvGVWciUloAIFgvpoPfcjRN_iqV1RGE9GF_c67zSI0gMIOoGgCwgjdDC_6WkQ2Pj68uME1PzSpI6dT0DO6JIz-rucGaGtBPPCeImWSuoR2n3DXZdP-VlTCYW4ga63_vMTY_9Fq2k-w1-cXbQ8nfwP_9CKm03vnid7OYtfAfrj9Co
  priority: 102
  providerName: Directory of Open Access Journals
Title An Interpretable Skin Cancer Classification Using Optimized Convolutional Neural Network for a Smart Healthcare System
URI https://ieeexplore.ieee.org/document/10107401
https://www.proquest.com/docview/2808835661
https://doaj.org/article/0922b28ec63a4fabb79c4f61285a7773
Volume 11
WOSCitedRecordID wos000981878700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYo4tAe-gR1W4p84NhsvY7jx3EbgbiUItFK3Cw_JSTIVsuyhx762zvjmIWqKlIvSRTZipNvPB5PZr4h5JBzH4PGoDBnZCNiCI1XgTUzpZyfuZxVGotNqNNTfXFhzmqyesmFSSmV4LM0xcvyLz8uwi26ymCGY_ggZms9UUqNyVobhwpWkDCdqsxCM2Y-zfseXmKKBcKnYKUYacQfq08h6a9VVf5SxWV9OX7xnyN7SZ5XQ5LOR-Rfka00vCbPHtALviHr-UDvgwr9VaJYaov2CPSSlnKYGChUsKEldoB-BQ1yffkzRdovhnUVS3gMcniUUwkap2DpUkfPr0Hu6MkmgoyO9Oe75Pvx0bf-pKl1FpogVLdqeIyCJZZBZ3KhjPSKsdwmJ7skggo8w5olvdPZd10bnPRI85cz95y5Tgbe7pHtYTGkt4Q62PIKFrJroxdeS6N1kKhDeMw-yjgh_O7721BJyLEWxpUtmxFm7AiaRdBsBW1CPm46_Rg5OB5v_hmB3TRFAu1yAxCzdT5aZkBKuU4wOiey816ZIDKYe7pzIFvthOwiyg-eNwI8Ift3cmLrbL-xXIOubsEwnr37R7f35CkOcfTd7JPt1fI2fSA7Yb26vFkeFEcAHL_8OjooQv0bQY30Cg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaqFgk4AIUilj7wgSNZHMfx47hEVFu1bCtRpN4sP6VKbRZtt3vg1-Nx3G0RAqmnRJEtO_nG47Hz-RuEPlJqvZNACjOKV8w7V1nhSFULYWxtYhRhSDYhZjN5caHOymH1fBYmhJDJZ2EMt_lfvp-7W9gqSyMc6INwWmurZYzWw3Gt9ZYK5JBQrSjaQjVRnyddl15jDCnCxylOUVyxP-afLNNf8qr85YzzDHP48pF9e4VelFASTwbst9FG6F-j5w8EBt-g1aTH97RCexUwJNvCHUC9wDkhJlCFMjo4swfwafIh15e_gsfdvF8Vw0zNgIpHvmTaOE6xLjb4-3WyPDxdc8jwIIC-g34cfj3vplXJtFA5JtplRb1nJJCYvCZlQnErCIlNMLwNzAlHY5q1uDUy2rZtnOEWhP5ipJYS03JHm7dos5_34R3CJi16GXHRNN4yK7mS0nHwItRH67kfIXr3_bUrMuSQDeNK5-UIUXoATQNouoA2Qp_WlX4OKhz_L_4FgF0XBQnt_CAhpsuI1EQlO6UypN4ZFo21QjkWU8AnWyOEaEZoB1B-0N4A8Ajt3dmJLuP9RlOZvHWTQuP6_T-qfUBPp-ffTvTJ0ex4Fz2D7g47OXtoc7m4DfvoiVstL28WB9mofwOUZvUr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Interpretable+Skin+Cancer+Classification+Using+Optimized+Convolutional+Neural+Network+for+a+Smart+Healthcare+System&rft.jtitle=IEEE+access&rft.au=Mridha%2C+Krishna&rft.au=Uddin%2C+Md.+Mezbah&rft.au=Shin%2C+Jungpil&rft.au=Khadka%2C+Susan&rft.date=2023&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=11&rft.spage=41003&rft.epage=41018&rft_id=info:doi/10.1109%2FACCESS.2023.3269694&rft.externalDocID=10107401
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon