An Interpretable Skin Cancer Classification Using Optimized Convolutional Neural Network for a Smart Healthcare System
Skin cancer is a prevalent form of malignancy globally, and its early and accurate diagnosis is critical for patient survival. Clinical evaluation of skin lesions is essential, but it faces challenges such as long waiting times and subjective interpretations. Deep learning techniques have been devel...
Gespeichert in:
| Veröffentlicht in: | IEEE access Jg. 11; S. 41003 - 41018 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Piscataway
IEEE
2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 2169-3536, 2169-3536 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Skin cancer is a prevalent form of malignancy globally, and its early and accurate diagnosis is critical for patient survival. Clinical evaluation of skin lesions is essential, but it faces challenges such as long waiting times and subjective interpretations. Deep learning techniques have been developed to tackle these challenges and assist dermatologists in making more accurate diagnoses. Prompt treatment of skin cancer is vital to prevent its progression and potentially life-threatening consequences. The use of deep learning algorithms can improve the speed and accuracy of diagnosis, leading to earlier detection and treatment. Additionally, it can reduce the workload for healthcare professionals, allowing them to concentrate on more complex cases. The goal of this study was to develop reliable deep learning (DL) prediction models for skin cancer classification; (i) deal with a typical severe class imbalance problem, which arises because the skin-affected patients' class is significantly smaller than the healthy class; and (ii) interpret the model output to better understand the decision-making mechanism (iii) Propose an End-to-End smart healthcare system through an android application. In a comparison examination with six well-known classifiers, the effectiveness of the proposed DL technique was explored in terms of metrics relating to both generalization capability and classification accuracy. A study used the HAM10000 dataset and an optimized CNN to identify the seven forms of skin cancer. The model was trained using two optimization functions (Adam and RMSprop) and three activation functions (Relu, Swish, and Tanh). Furthermore, an XAI-based skin lesion classification system was developed, incorporating Grad-CAM and Grad-CAM++ to explain the model's decisions. This system can help doctors make informed skin cancer diagnoses in their early stages, with an 82% classification accuracy and 0.47% loss accuracy. |
|---|---|
| AbstractList | Skin cancer is a prevalent form of malignancy globally, and its early and accurate diagnosis is critical for patient survival. Clinical evaluation of skin lesions is essential, but it faces challenges such as long waiting times and subjective interpretations. Deep learning techniques have been developed to tackle these challenges and assist dermatologists in making more accurate diagnoses. Prompt treatment of skin cancer is vital to prevent its progression and potentially life-threatening consequences. The use of deep learning algorithms can improve the speed and accuracy of diagnosis, leading to earlier detection and treatment. Additionally, it can reduce the workload for healthcare professionals, allowing them to concentrate on more complex cases. The goal of this study was to develop reliable deep learning (DL) prediction models for skin cancer classification; (i) deal with a typical severe class imbalance problem, which arises because the skin-affected patients’ class is significantly smaller than the healthy class; and (ii) interpret the model output to better understand the decision-making mechanism (iii) Propose an End-to-End smart healthcare system through an android application. In a comparison examination with six well-known classifiers, the effectiveness of the proposed DL technique was explored in terms of metrics relating to both generalization capability and classification accuracy. A study used the HAM10000 dataset and an optimized CNN to identify the seven forms of skin cancer. The model was trained using two optimization functions (Adam and RMSprop) and three activation functions (Relu, Swish, and Tanh). Furthermore, an XAI-based skin lesion classification system was developed, incorporating Grad-CAM and Grad-CAM++ to explain the model’s decisions. This system can help doctors make informed skin cancer diagnoses in their early stages, with an 82% classification accuracy and 0.47% loss accuracy. |
| Author | Uddin, Md. Mezbah Mridha, M. F. Shin, Jungpil Khadka, Susan Mridha, Krishna |
| Author_xml | – sequence: 1 givenname: Krishna orcidid: 0000-0002-2238-1516 surname: Mridha fullname: Mridha, Krishna organization: Department of Computer Engineering, Marwadi University, Gujarat, Rajkot, India – sequence: 2 givenname: Md. Mezbah orcidid: 0009-0002-0441-8722 surname: Uddin fullname: Uddin, Md. Mezbah organization: Department of Computer Engineering, Marwadi University, Gujarat, Rajkot, India – sequence: 3 givenname: Jungpil orcidid: 0000-0002-7476-2468 surname: Shin fullname: Shin, Jungpil email: jpshin@u-aizu.ac.jp organization: Department of Computer Science and Engineering, University of Aizu, Aizuwakamatsu, Japan – sequence: 4 givenname: Susan orcidid: 0009-0007-2696-9804 surname: Khadka fullname: Khadka, Susan organization: Department of Computer Engineering, Marwadi University, Gujarat, Rajkot, India – sequence: 5 givenname: M. F. orcidid: 0000-0001-5738-1631 surname: Mridha fullname: Mridha, M. F. organization: Department of Computer Science, American International University-Bangladesh, Dhaka, Bangladesh |
| BookMark | eNp9kU9PGzEQxVeISqWUT9AeLPWc1P_W3j1GKwqRUDmknK1ZZ0wdNuvUdkDw6etkQUI91Jexnuf3NOP3qTodw4hV9YXROWO0_b7ousvVas4pF3PBVataeVKdcabamaiFOn13_1hdpLSh5TRFqvVZ9bgYyXLMGHcRM_QDktWDH0kHo8VIugFS8s5byD6M5C758Z7c7rLf-hdcky6Mj2HYH95gID9xH48lP4X4QFyIBMhqCzGTa4Qh_7YQi_1zyrj9XH1wMCS8eK3n1d2Py1_d9ezm9mrZLW5mVuo6z_h6LSlSJ5XmUreq15Q6gaBqlFZb7iQvIjSur2thQfVUaOYc7zmFWlkuzqvl5LsOsDG76Ms4zyaAN0chxHtT5vN2QENbXrgGrRIgHfS9bq10ivGmBq21KF7fJq9dDH_2mLLZhH0smyfDG9o0olaKla526rIxpBTRGevz8ftyBD8YRs0hNTOlZg6pmdfUCiv-Yd8m_j_1daI8Ir4jGNWSMvEXxO-mDA |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1016_j_aej_2024_12_080 crossref_primary_10_1016_j_bspc_2024_107141 crossref_primary_10_1109_ACCESS_2023_3332479 crossref_primary_10_1007_s11831_024_10121_7 crossref_primary_10_3390_diagnostics15010099 crossref_primary_10_3390_ijms25031546 crossref_primary_10_1007_s13198_024_02521_6 crossref_primary_10_3390_sym17081264 crossref_primary_10_1007_s11517_024_03115_x crossref_primary_10_1088_2057_1976_ad9eb7 crossref_primary_10_1145_3709367 crossref_primary_10_1016_j_imu_2024_101584 crossref_primary_10_3390_ai5040138 crossref_primary_10_1016_j_dajour_2023_100278 crossref_primary_10_1007_s12672_024_01671_0 crossref_primary_10_3390_diagnostics14060636 crossref_primary_10_1007_s13721_025_00568_4 crossref_primary_10_1016_j_bspc_2025_107934 crossref_primary_10_1002_ima_23214 crossref_primary_10_1007_s00521_024_10227_w crossref_primary_10_1016_j_procs_2024_11_115 crossref_primary_10_1016_j_ijmedinf_2024_105689 crossref_primary_10_1016_j_asoc_2024_112013 crossref_primary_10_1371_journal_pone_0301275 crossref_primary_10_1016_j_neucom_2025_129701 crossref_primary_10_1109_ACCESS_2024_3420415 crossref_primary_10_1109_TCSS_2024_3459929 crossref_primary_10_1007_s00521_024_10862_3 crossref_primary_10_1007_s13721_024_00495_w crossref_primary_10_4018_JOEUC_335081 crossref_primary_10_1007_s10586_024_04540_1 crossref_primary_10_1007_s13721_025_00554_w crossref_primary_10_1016_j_bspc_2024_107449 crossref_primary_10_1038_s41598_025_04931_3 crossref_primary_10_1109_ACCESS_2023_3311752 crossref_primary_10_3390_app14198884 crossref_primary_10_1038_s41598_024_81961_3 crossref_primary_10_1016_j_asoc_2024_111624 crossref_primary_10_1016_j_bspc_2025_107914 crossref_primary_10_3390_diagnostics13182869 crossref_primary_10_1007_s11042_025_20854_7 crossref_primary_10_1007_s44174_025_00467_2 crossref_primary_10_1007_s40031_025_01252_x crossref_primary_10_1186_s12911_025_02889_w crossref_primary_10_1080_01969722_2025_2540117 crossref_primary_10_1109_ACCESS_2023_3299850 crossref_primary_10_1080_07357907_2025_2518400 crossref_primary_10_3390_diagnostics14131338 crossref_primary_10_7717_peerj_cs_2530 crossref_primary_10_3390_diagnostics13193063 crossref_primary_10_1016_j_jksuci_2024_102007 crossref_primary_10_1007_s44174_024_00205_0 crossref_primary_10_1016_j_physo_2025_100287 crossref_primary_10_1016_j_compbiomed_2024_109030 crossref_primary_10_1016_j_eij_2025_100706 |
| Cites_doi | 10.1109/ICACCM56405.2022.10009311 10.1109/CVPRW.2019.00334 10.3390/healthcare10071183 10.1109/WACV.2018.00097 10.1016/j.neunet.2023.01.022 10.3322/caac.21601 10.1109/CIBEC.2018.8641815 10.1007/s11042-018-5714-1 10.4103/ijdpdd.ijdpdd_10_17 10.1056/NEJMra1708701 10.1109/ICCV.2017.74 10.5194/isprsarchives-XL-5-W6-73-2015 10.1109/ACCESS.2020.3003890 10.3390/s18020556 10.1088/1757-899X/982/1/012005 10.1109/ICEARS53579.2022.9751826 10.1109/ICCCA52192.2021.9666302 10.19101/IJACR.2021.1152001 10.1155/2021/5895156 10.3390/s22186915 10.24425/ijet.2019.129818 10.1109/CVPRW53098.2021.00199 10.3906/elk-2101-133 10.1002/ima.22750 10.1109/ACCESS.2022.3217217 10.31661/jbpe.v0i0.2004-1107 10.1109/ISBI.2019.8759561 10.1109/ACCESS.2019.2906241 10.1109/ACCESS.2020.2997710 10.18178/ijmlc.2018.8.1.664 10.5144/0256-4947.2018.21.01.1515 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2023.3269694 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 41018 |
| ExternalDocumentID | oai_doaj_org_article_0922b28ec63a4fabb79c4f61285a7773 10_1109_ACCESS_2023_3269694 10107401 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: JSPS KAKENHI Grant Number JP23H03477 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c475t-2dd40e0f46724796b700f3ea65e4c7c2f4296ba8fb553ca6b0371ff2b20a56c23 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 64 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000981878700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:43:58 EDT 2025 Mon Jun 30 04:03:50 EDT 2025 Tue Nov 18 22:36:36 EST 2025 Sat Nov 29 04:02:35 EST 2025 Wed Aug 27 02:18:12 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c475t-2dd40e0f46724796b700f3ea65e4c7c2f4296ba8fb553ca6b0371ff2b20a56c23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2238-1516 0009-0002-0441-8722 0000-0002-7476-2468 0000-0001-5738-1631 0009-0007-2696-9804 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/10107401 |
| PQID | 2808835661 |
| PQPubID | 4845423 |
| PageCount | 16 |
| ParticipantIDs | crossref_citationtrail_10_1109_ACCESS_2023_3269694 crossref_primary_10_1109_ACCESS_2023_3269694 proquest_journals_2808835661 ieee_primary_10107401 doaj_primary_oai_doaj_org_article_0922b28ec63a4fabb79c4f61285a7773 |
| PublicationCentury | 2000 |
| PublicationDate | 20230000 2023-00-00 20230101 2023-01-01 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – year: 2023 text: 20230000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref34 ref15 ref14 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 soyer (ref9) 2001; 11 (ref3) 2022 ref28 ref27 ref29 ref8 ref7 ref4 ref6 ref5 sherif (ref16) 2019; 65 |
| References_xml | – ident: ref33 doi: 10.1109/ICACCM56405.2022.10009311 – ident: ref8 doi: 10.1109/CVPRW.2019.00334 – ident: ref19 doi: 10.3390/healthcare10071183 – ident: ref32 doi: 10.1109/WACV.2018.00097 – ident: ref29 doi: 10.1016/j.neunet.2023.01.022 – ident: ref6 doi: 10.3322/caac.21601 – ident: ref13 doi: 10.1109/CIBEC.2018.8641815 – ident: ref20 doi: 10.1007/s11042-018-5714-1 – ident: ref10 doi: 10.4103/ijdpdd.ijdpdd_10_17 – ident: ref2 doi: 10.1056/NEJMra1708701 – ident: ref31 doi: 10.1109/ICCV.2017.74 – ident: ref11 doi: 10.5194/isprsarchives-XL-5-W6-73-2015 – ident: ref12 doi: 10.1109/ACCESS.2020.3003890 – ident: ref14 doi: 10.3390/s18020556 – ident: ref21 doi: 10.1088/1757-899X/982/1/012005 – ident: ref25 doi: 10.1109/ICEARS53579.2022.9751826 – ident: ref34 doi: 10.1109/ICCCA52192.2021.9666302 – ident: ref7 doi: 10.19101/IJACR.2021.1152001 – ident: ref17 doi: 10.1155/2021/5895156 – year: 2022 ident: ref3 publication-title: Melanoma Skin Cancer Key Statistics – ident: ref18 doi: 10.3390/s22186915 – volume: 65 start-page: 597 year: 2019 ident: ref16 article-title: Skin lesion analysis toward melanoma detection using deep learning techniques publication-title: Int J Electron Telecommun doi: 10.24425/ijet.2019.129818 – ident: ref26 doi: 10.1109/CVPRW53098.2021.00199 – ident: ref28 doi: 10.3906/elk-2101-133 – ident: ref30 doi: 10.1002/ima.22750 – ident: ref23 doi: 10.1109/ACCESS.2022.3217217 – ident: ref24 doi: 10.31661/jbpe.v0i0.2004-1107 – ident: ref22 doi: 10.1109/ISBI.2019.8759561 – ident: ref4 doi: 10.1109/ACCESS.2019.2906241 – ident: ref27 doi: 10.1109/ACCESS.2020.2997710 – ident: ref5 doi: 10.1155/2021/5895156 – ident: ref15 doi: 10.18178/ijmlc.2018.8.1.664 – ident: ref1 doi: 10.5144/0256-4947.2018.21.01.1515 – volume: 11 start-page: 483 year: 2001 ident: ref9 article-title: Dermoscopy of pigmented skin lesions*(Part II) publication-title: Eur J Dermatol |
| SSID | ssj0000816957 |
| Score | 2.6013725 |
| Snippet | Skin cancer is a prevalent form of malignancy globally, and its early and accurate diagnosis is critical for patient survival. Clinical evaluation of skin... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 41003 |
| SubjectTerms | Accuracy Algorithms Artificial intelligence Artificial neural networks Biological system modeling Cancer Classification CNN Decision making Deep learning Diagnosis explainable AI Grad-CAM Health care Health services Lesions Machine learning Optimization Prediction models Predictive models Skin Skin cancer |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS-wwFA0iLnQh7_mB855PsnBpNU3TfCzHorhSQQV3IZ8gaJVx3iz89d6kcRwRdOOqUNqmuef25qYczkFon1LrnUykMKN4xbxzlRWOVLUQxtYmRhEGswlxfi5vb9XlgtVX4oQN8sBD4I6IgsdRGRxvDIvGWqEci7Auy9YIIbLOJ3Q9C5upXINlzVUrisxQTdTRuOtgRofJLfwQWhbFFfuwFGXF_mKx8qku58Xm9BdaL10iHg9v9xsthX4DrS1oB26i2bjH74xBex9w8tHCXUJxgrPXZWIB5cDjTAzAF1AeHu5egsfdYz8rOQfDJIGOfMiMcAxtLDb46gFig8_m9DA8aJtvoZvTk-vurComCpVjop1W1HtGAolQECkTiltBSGyC4W1gTjgaYUHi1sho27Zxhtuk4RcjxJyYljvabKPl_rEPOwgb2M8y4qJpvGVWciUloAIFgvpoPfcjRN_iqV1RGE9GF_c67zSI0gMIOoGgCwgjdDC_6WkQ2Pj68uME1PzSpI6dT0DO6JIz-rucGaGtBPPCeImWSuoR2n3DXZdP-VlTCYW4ga63_vMTY_9Fq2k-w1-cXbQ8nfwP_9CKm03vnid7OYtfAfrj9Co priority: 102 providerName: Directory of Open Access Journals |
| Title | An Interpretable Skin Cancer Classification Using Optimized Convolutional Neural Network for a Smart Healthcare System |
| URI | https://ieeexplore.ieee.org/document/10107401 https://www.proquest.com/docview/2808835661 https://doaj.org/article/0922b28ec63a4fabb79c4f61285a7773 |
| Volume | 11 |
| WOSCitedRecordID | wos000981878700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYo4tAe-gR1W4p84NhsvY7jx3EbgbiUItFK3Cw_JSTIVsuyhx762zvjmIWqKlIvSRTZipNvPB5PZr4h5JBzH4PGoDBnZCNiCI1XgTUzpZyfuZxVGotNqNNTfXFhzmqyesmFSSmV4LM0xcvyLz8uwi26ymCGY_ggZms9UUqNyVobhwpWkDCdqsxCM2Y-zfseXmKKBcKnYKUYacQfq08h6a9VVf5SxWV9OX7xnyN7SZ5XQ5LOR-Rfka00vCbPHtALviHr-UDvgwr9VaJYaov2CPSSlnKYGChUsKEldoB-BQ1yffkzRdovhnUVS3gMcniUUwkap2DpUkfPr0Hu6MkmgoyO9Oe75Pvx0bf-pKl1FpogVLdqeIyCJZZBZ3KhjPSKsdwmJ7skggo8w5olvdPZd10bnPRI85cz95y5Tgbe7pHtYTGkt4Q62PIKFrJroxdeS6N1kKhDeMw-yjgh_O7721BJyLEWxpUtmxFm7AiaRdBsBW1CPm46_Rg5OB5v_hmB3TRFAu1yAxCzdT5aZkBKuU4wOiey816ZIDKYe7pzIFvthOwiyg-eNwI8Ift3cmLrbL-xXIOubsEwnr37R7f35CkOcfTd7JPt1fI2fSA7Yb26vFkeFEcAHL_8OjooQv0bQY30Cg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaqFgk4AIUilj7wgSNZHMfx47hEVFu1bCtRpN4sP6VKbRZtt3vg1-Nx3G0RAqmnRJEtO_nG47Hz-RuEPlJqvZNACjOKV8w7V1nhSFULYWxtYhRhSDYhZjN5caHOymH1fBYmhJDJZ2EMt_lfvp-7W9gqSyMc6INwWmurZYzWw3Gt9ZYK5JBQrSjaQjVRnyddl15jDCnCxylOUVyxP-afLNNf8qr85YzzDHP48pF9e4VelFASTwbst9FG6F-j5w8EBt-g1aTH97RCexUwJNvCHUC9wDkhJlCFMjo4swfwafIh15e_gsfdvF8Vw0zNgIpHvmTaOE6xLjb4-3WyPDxdc8jwIIC-g34cfj3vplXJtFA5JtplRb1nJJCYvCZlQnErCIlNMLwNzAlHY5q1uDUy2rZtnOEWhP5ipJYS03JHm7dos5_34R3CJi16GXHRNN4yK7mS0nHwItRH67kfIXr3_bUrMuSQDeNK5-UIUXoATQNouoA2Qp_WlX4OKhz_L_4FgF0XBQnt_CAhpsuI1EQlO6UypN4ZFo21QjkWU8AnWyOEaEZoB1B-0N4A8Ajt3dmJLuP9RlOZvHWTQuP6_T-qfUBPp-ffTvTJ0ex4Fz2D7g47OXtoc7m4DfvoiVstL28WB9mofwOUZvUr |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Interpretable+Skin+Cancer+Classification+Using+Optimized+Convolutional+Neural+Network+for+a+Smart+Healthcare+System&rft.jtitle=IEEE+access&rft.au=Mridha%2C+Krishna&rft.au=Uddin%2C+Md.+Mezbah&rft.au=Shin%2C+Jungpil&rft.au=Khadka%2C+Susan&rft.date=2023&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=11&rft.spage=41003&rft.epage=41018&rft_id=info:doi/10.1109%2FACCESS.2023.3269694&rft.externalDocID=10107401 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |