Parsimony and parameter estimation for mixtures of multivariate leptokurtic-normal distributions

Mixtures of multivariate leptokurtic-normal distributions have been recently introduced in the clustering literature based on mixtures of elliptical heavy-tailed distributions. They have the advantage of having parameters directly related to the moments of practical interest. We derive two estimatio...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Advances in data analysis and classification Ročník 18; číslo 3; s. 597 - 625
Hlavní autoři: Browne, Ryan P., Bagnato, Luca, Punzo, Antonio
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2024
Springer Nature B.V
Témata:
ISSN:1862-5347, 1862-5355
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Mixtures of multivariate leptokurtic-normal distributions have been recently introduced in the clustering literature based on mixtures of elliptical heavy-tailed distributions. They have the advantage of having parameters directly related to the moments of practical interest. We derive two estimation procedures for these mixtures. The first one is based on the majorization-minimization algorithm, while the second is based on a fixed point approximation. Moreover, we introduce parsimonious forms of the considered mixtures and we use the illustrated estimation procedures to fit them. We use simulated and real data sets to investigate various aspects of the proposed models and algorithms.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1862-5347
1862-5355
DOI:10.1007/s11634-023-00558-2