(Re)packing Equal Disks into Rectangle
The problem of packing of equal disks (or circles) into a rectangle is a fundamental geometric problem. (By a packing here we mean an arrangement of disks in a rectangle without overlapping.) We consider the following algorithmic generalization of the equal disk packing problem. In this problem, for...
Saved in:
| Published in: | Discrete & computational geometry Vol. 72; no. 4; pp. 1596 - 1629 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.12.2024
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0179-5376, 1432-0444 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The problem of packing of equal disks (or circles) into a rectangle is a fundamental geometric problem. (By a packing here we mean an arrangement of disks in a rectangle without overlapping.) We consider the following algorithmic generalization of the equal disk packing problem. In this problem, for a given packing of equal disks into a rectangle, the question is whether by changing positions of a small number of disks, we can allocate space for packing more disks. More formally, in the repacking problem, for a given set of
n
equal disks packed into a rectangle and integers
k
and
h
, we ask whether it is possible by changing positions of at most
h
disks to pack
n
+
k
disks. Thus the problem of packing equal disks is the special case of our problem with
n
=
h
=
0
. While the computational complexity of packing equal disks into a rectangle remains open, we prove that the repacking problem is NP-hard already for
h
=
0
. Our main algorithmic contribution is an algorithm that solves the repacking problem in time
(
h
+
k
)
O
(
h
+
k
)
·
|
I
|
O
(
1
)
, where |
I
| is the input size. That is, the problem is fixed-parameter tractable parameterized by
k
and
h
. |
|---|---|
| AbstractList | The problem of packing of equal disks (or circles) into a rectangle is a fundamental geometric problem. (By a packing here we mean an arrangement of disks in a rectangle without overlapping.) We consider the following algorithmic generalization of the equal disk packing problem. In this problem, for a given packing of equal disks into a rectangle, the question is whether by changing positions of a small number of disks, we can allocate space for packing more disks. More formally, in the repacking problem, for a given set of
n
equal disks packed into a rectangle and integers
k
and
h
, we ask whether it is possible by changing positions of at most
h
disks to pack
$$n+k$$
n
+
k
disks. Thus the problem of packing equal disks is the special case of our problem with
$$n=h=0$$
n
=
h
=
0
. While the computational complexity of packing equal disks into a rectangle remains open, we prove that the repacking problem is NP-hard already for
$$h=0$$
h
=
0
. Our main algorithmic contribution is an algorithm that solves the repacking problem in time
$$(h+k)^{\mathcal {O}(h+k)}\cdot |I|^{\mathcal {O}(1)}$$
(
h
+
k
)
O
(
h
+
k
)
·
|
I
|
O
(
1
)
, where |
I
| is the input size. That is, the problem is fixed-parameter tractable parameterized by
k
and
h
. The problem of packing of equal disks (or circles) into a rectangle is a fundamental geometric problem. (By a packing here we mean an arrangement of disks in a rectangle without overlapping.) We consider the following algorithmic generalization of the equal disk packing problem. In this problem, for a given packing of equal disks into a rectangle, the question is whether by changing positions of a small number of disks, we can allocate space for packing more disks. More formally, in the repacking problem, for a given set of equal disks packed into a rectangle and integers and , we ask whether it is possible by changing positions of at most disks to pack disks. Thus the problem of packing equal disks is the special case of our problem with . While the computational complexity of packing equal disks into a rectangle remains open, we prove that the repacking problem is NP-hard already for . Our main algorithmic contribution is an algorithm that solves the repacking problem in time , where | | is the input size. That is, the problem is fixed-parameter tractable parameterized by and . The problem of packing of equal disks (or circles) into a rectangle is a fundamental geometric problem. (By a packing here we mean an arrangement of disks in a rectangle without overlapping.) We consider the following algorithmic generalization of the equal disk packing problem. In this problem, for a given packing of equal disks into a rectangle, the question is whether by changing positions of a small number of disks, we can allocate space for packing more disks. More formally, in the repacking problem, for a given set of n equal disks packed into a rectangle and integers k and h, we ask whether it is possible by changing positions of at most h disks to pack n + k disks. Thus the problem of packing equal disks is the special case of our problem with n = h = 0 . While the computational complexity of packing equal disks into a rectangle remains open, we prove that the repacking problem is NP-hard already for h = 0 . Our main algorithmic contribution is an algorithm that solves the repacking problem in time ( h + k ) O ( h + k ) · | I | O ( 1 ) , where |I| is the input size. That is, the problem is fixed-parameter tractable parameterized by k and h.The problem of packing of equal disks (or circles) into a rectangle is a fundamental geometric problem. (By a packing here we mean an arrangement of disks in a rectangle without overlapping.) We consider the following algorithmic generalization of the equal disk packing problem. In this problem, for a given packing of equal disks into a rectangle, the question is whether by changing positions of a small number of disks, we can allocate space for packing more disks. More formally, in the repacking problem, for a given set of n equal disks packed into a rectangle and integers k and h, we ask whether it is possible by changing positions of at most h disks to pack n + k disks. Thus the problem of packing equal disks is the special case of our problem with n = h = 0 . While the computational complexity of packing equal disks into a rectangle remains open, we prove that the repacking problem is NP-hard already for h = 0 . Our main algorithmic contribution is an algorithm that solves the repacking problem in time ( h + k ) O ( h + k ) · | I | O ( 1 ) , where |I| is the input size. That is, the problem is fixed-parameter tractable parameterized by k and h. The problem of packing of equal disks (or circles) into a rectangle is a fundamental geometric problem. (By a packing here we mean an arrangement of disks in a rectangle without overlapping.) We consider the following algorithmic generalization of the equal disk packing problem. In this problem, for a given packing of equal disks into a rectangle, the question is whether by changing positions of a small number of disks, we can allocate space for packing more disks. More formally, in the repacking problem, for a given set of n equal disks packed into a rectangle and integers k and h, we ask whether it is possible by changing positions of at most h disks to pack $$n+k$$ n+k disks. Thus the problem of packing equal disks is the special case of our problem with $$n=h=0$$ n=h=0. While the computational complexity of packing equal disks into a rectangle remains open, we prove that the repacking problem is NP-hard already for $$h=0$$ h=0. Our main algorithmic contribution is an algorithm that solves the repacking problem in time $$(h+k)^{\mathcal {O}(h+k)}\cdot |I|^{\mathcal {O}(1)}$$ (h+k)O(h+k)·|I|O(1), where |I| is the input size. That is, the problem is fixed-parameter tractable parameterized by k and h. The problem of packing of equal disks (or circles) into a rectangle is a fundamental geometric problem. (By a packing here we mean an arrangement of disks in a rectangle without overlapping.) We consider the following algorithmic generalization of the equal disk packing problem. In this problem, for a given packing of equal disks into a rectangle, the question is whether by changing positions of a small number of disks, we can allocate space for packing more disks. More formally, in the repacking problem, for a given set of n equal disks packed into a rectangle and integers k and h , we ask whether it is possible by changing positions of at most h disks to pack n + k disks. Thus the problem of packing equal disks is the special case of our problem with n = h = 0 . While the computational complexity of packing equal disks into a rectangle remains open, we prove that the repacking problem is NP-hard already for h = 0 . Our main algorithmic contribution is an algorithm that solves the repacking problem in time ( h + k ) O ( h + k ) · | I | O ( 1 ) , where | I | is the input size. That is, the problem is fixed-parameter tractable parameterized by k and h . The problem of packing of equal disks (or circles) into a rectangle is a fundamental geometric problem. (By a packing here we mean an arrangement of disks in a rectangle without overlapping.) We consider the following algorithmic generalization of the equal disk packing problem. In this problem, for a given packing of equal disks into a rectangle, the question is whether by changing positions of a small number of disks, we can allocate space for packing more disks. More formally, in the repacking problem, for a given set of n equal disks packed into a rectangle and integers k and h, we ask whether it is possible by changing positions of at most h disks to pack n+k disks. Thus the problem of packing equal disks is the special case of our problem with n=h=0. While the computational complexity of packing equal disks into a rectangle remains open, we prove that the repacking problem is NP-hard already for h=0. Our main algorithmic contribution is an algorithm that solves the repacking problem in time (h+k)O(h+k)·|I|O(1), where |I| is the input size. That is, the problem is fixed-parameter tractable parameterized by k and h. |
| Author | Inamdar, Tanmay Fomin, Fedor V. Zehavi, Meirav Golovach, Petr A. Saurabh, Saket |
| Author_xml | – sequence: 1 givenname: Fedor V. surname: Fomin fullname: Fomin, Fedor V. email: Fedor.Fomin@uib.no organization: University of Bergen – sequence: 2 givenname: Petr A. surname: Golovach fullname: Golovach, Petr A. organization: University of Bergen – sequence: 3 givenname: Tanmay surname: Inamdar fullname: Inamdar, Tanmay organization: Indian Institute of Technology, Jodhpur – sequence: 4 givenname: Saket surname: Saurabh fullname: Saurabh, Saket organization: University of Bergen, Institute of Mathematical Sciences – sequence: 5 givenname: Meirav surname: Zehavi fullname: Zehavi, Meirav organization: Ben-Guiron University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39559786$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUlLBDEQhYMoOi5_wIMMCKKH1qosnclJxB0EQfQcYjo9RnuSsdMt-O_NOO4HD6EO-d6rl7xVshhicIRsIuwjgDxIAFzwAmg-UDJW4AIZIGe0AM75IhkASlUIJssVsprSI2RewWiZrDAlhJKjckB2dm_c3tTYJx_Gw9Pn3jTDE5-e0tCHLg5vnO1MGDdunSzVpklu42Oukbuz09vji-Lq-vzy-OiqsFyKrqCCGweSCqysQVZysErVeSenXMqqGsl7aZR1FGpnKlTUQY2Uoa0orXgp2Ro5nPtO-_uJq6wLXWsaPW39xLSvOhqvf98E_6DH8UUjilIBsuyw--HQxufepU5PfLKuaUxwsU-aIQOKoATN6PYf9DH2bcjvyxRVIJAhZmrrZ6SvLJ9_mIHRHLBtTKl1tba-M52Ps4S-0Qh6Vpee16VzXfq9Lj3zpn-kn-7_ithclDIcxq79jv2P6g3JVqRA |
| CitedBy_id | crossref_primary_10_1007_s10586_024_05093_z |
| Cites_doi | 10.1007/s00454-022-00422-8 10.1016/j.comgeo.2013.08.008 10.1016/S0166-218X(01)00359-6 10.1016/j.cosrev.2016.12.001 10.1145/174644.174650 10.1016/j.tcs.2016.11.034 10.1007/978-3-319-21275-3 10.1007/PL00009472 10.1109/SFCS.1995.492475 10.1007/978-3-662-01206-2 10.1016/j.ejor.2007.01.054 10.1145/210332.210337 10.1080/0025570X.1970.11975991 10.1145/3473713 10.1109/FOCS46700.2020.00098 10.1016/0012-365X(93)E0230-2 10.1007/978-3-319-11421-7_4 10.1006/jctb.2000.2026 10.1007/PL00009306 10.4153/CMB-1965-018-9 10.1145/2455.214106 10.1137/1.9781611973402.2 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 The Author(s) 2024. The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2024 2024 |
| Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2024 2024 |
| DBID | C6C AAYXX CITATION NPM 3V. 7SC 7TB 7XB 88I 8AL 8AO 8FD 8FE 8FG 8FK 8G5 ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ GUQSH HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M2O M2P M7S MBDVC P5Z P62 PADUT PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U 7X8 5PM |
| DOI | 10.1007/s00454-024-00633-1 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Technology collection ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Research Library China ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library Research Library China ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef PubMed MEDLINE - Academic Research Library Prep |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics Computer Science |
| EISSN | 1432-0444 |
| EndPage | 1629 |
| ExternalDocumentID | PMC11569013 39559786 10_1007_s00454_024_00633_1 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Israel Science Foundation grantid: 1176/18 funderid: http://dx.doi.org/10.13039/501100003977 – fundername: European Research Council grantid: 819416 funderid: http://dx.doi.org/10.13039/501100000781 – fundername: Norges Forskningsråd grantid: 314528 funderid: http://dx.doi.org/10.13039/501100005416 |
| GroupedDBID | -52 -5D -5G -BR -DZ -EM -Y2 -~C -~X .4S .86 .DC 06D 0R~ 0VY 199 1N0 1SB 203 28- 29G 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2WC 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 692 6NX 78A 88I 8AO 8FE 8FG 8FW 8G5 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAGAY AAHNG AAIAL AAJBT AAJKR AAKPC AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIHN ACIPV ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS C1A C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW KQ8 L6V LAS LLZTM LO0 M0N M2O M2P M4Y M7S MA- MQGED N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OK1 P19 P62 P9R PADUT PF0 PKN PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I REI RHV RIG RNI RNS ROL RPX RSV RYB RZK RZZ S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 YIN YLTOR Z45 Z7X Z83 Z88 Z8R Z8W Z92 ZMTXR ZWQNP ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB NPM 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c475t-254ae07251dca13640c99f90842477dd87b7a9ce20fead192e0f1231cd22d4673 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001180879800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0179-5376 |
| IngestDate | Tue Nov 04 02:04:59 EST 2025 Thu Sep 04 19:05:15 EDT 2025 Tue Dec 02 10:01:44 EST 2025 Mon Jul 21 06:05:26 EDT 2025 Sat Nov 29 02:58:49 EST 2025 Tue Nov 18 22:40:10 EST 2025 Fri Feb 21 02:40:15 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Computational geometry Circle packing 51E23: Spreads and packing problems 68W40: Analysis of algorithms Parameterized algorithms 68Q25: Analysis of algorithms and problem complexity Unit disks |
| Language | English |
| License | The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c475t-254ae07251dca13640c99f90842477dd87b7a9ce20fead192e0f1231cd22d4673 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Editor in Charge: Csaba D. Tóth |
| OpenAccessLink | https://link.springer.com/10.1007/s00454-024-00633-1 |
| PMID | 39559786 |
| PQID | 3129051311 |
| PQPubID | 31658 |
| PageCount | 34 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11569013 proquest_miscellaneous_3130210952 proquest_journals_3129051311 pubmed_primary_39559786 crossref_citationtrail_10_1007_s00454_024_00633_1 crossref_primary_10_1007_s00454_024_00633_1 springer_journals_10_1007_s00454_024_00633_1 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-01 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: United States |
| PublicationTitle | Discrete & computational geometry |
| PublicationTitleAbbrev | Discrete Comput Geom |
| PublicationTitleAlternate | Discrete Comput Geom |
| PublicationYear | 2024 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Litvinchev, I.S., Infante, L., Espinosa, E.L.O.: Approximate circle packing in a rectangular container: Integer programming formulations and valid inequalities. In: González-Ramírez, R.G., Schulte, F., Voß, S., Díaz, J.A.C. (eds.) Computational Logistics - 5th International Conference, ICCL 2014, Valparaiso, Chile, September 24-26, 2014. Proceedings. Lecture Notes in Computer Science, vol. 8760, pp. 47–60. Springer, Berlin (2014) HochbaumDSMaassWApproximation schemes for covering and packing problems in image processing and VLSIJ. ACM198532113013683233510.1145/2455.214106 LocatelliMRaberUPacking equal circles in a square: a deterministic global optimization approachDiscrete Appl. Math.20021221–3139166190782810.1016/S0166-218X(01)00359-6 LiuYMorganaASimeoneBA linear algorithm for 2-bend embeddings of planar graphs in the two-dimensional gridDiscrete Appl. Math.1998811–369911492002 CastilloIKampasFJPintérJDSolving circle packing problems by global optimization: numerical results and industrial applicationsEur. J. Oper. Res.20081913786802243550210.1016/j.ejor.2007.01.054 Demaine, E.D., Fekete, S.P., Lang, R.J.: Circle packing for origami design is hard. CoRR https://arxiv.org/abs/1008.1224 (2010) Bansal, N., Khan, A.: Improved approximation algorithm for two-dimensional bin packing. In: Chekuri, C. (ed.) Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5–7, 2014, pp. 13–25. SIAM (2014) Jansen, K., Rau, M.: Closing the gap for pseudo-polynomial strip packing. In: Bender, M.A., Svensson, O., Herman, G. (eds.) 27th Annual European Symposium on Algorithms, ESA 2019, September 9–11, 2019, Munich/Garching, Germany. LIPIcs, vol. 144, pp. 62–16214. Schloss Dagstuhl, Leibniz-Zentrum für Informatik (2019) AlonNYusterRZwickUColor-codingJ. ACM1995424844856141178710.1145/210332.210337 MaranasCDFloudasCAPardalosPMNew results in the packing of equal circles in a squareDiscrete Math.19951421–3287293134145410.1016/0012-365X(93)E0230-2 SzabóPGMarkótMCCsendesTSpechtECasadoLGGarcíaINew Approaches to Circle Packing in a Square - With Program Codes. Optimization and Its Applications2007BerlinSpringer FeketeSPKeldenichPSchefferCPacking disks into disks with optimal worst-case densityDiscrete Comput. Geom.20236915190452753410.1007/s00454-022-00422-8 DiestelRGraph Theory. Graduate Texts in Mathematics20124BerlinSpringer CroftHTFalconerKGuyRKUnsolved Problems in Geometry: Unsolved Problems in Intuitive Mathematics2012BerlinSpringer GareyMRJohnsonDSComputers and Intractability: A Guide to the Theory of NP-Completeness1979New YorkW. H. Freeman KeplerJStrena Seu de Nive Sexangula1611FrankfurtGodefrid Tampach Abrahamsen, M., Miltzow, T., Seiferth, N.: Framework for er-completeness of two-dimensional packing problems. In: 61st IEEE Annual Symposium on Foundations of Computer Science (FOCS), pp. 1014–1021. IEEE (2020) Fomin, F.V., Golovach, P.A., Inamdar, T., Zehavi, M.: (re)packing equal disks into rectangle. In: Bojanczyk, M., Merelli, E., Woodruff, D.P. (eds.) 49th International Colloquium on Automata, Languages, and Programming, ICALP 2022, July 4-8, 2022, Paris, France. LIPIcs, vol. 229, pp. 60–16017. Schloss Dagstuhl, Leibniz (2022) FominFVLokshtanovDSaurabhSZehaviMKernelization. Theory of Parameterized Preprocessing2019CambridgeCambridge University Press515 Specht, E.: The best known packings of equal circles in a square (up to N= 10000). English (2015). http://hydra.nat.uni-magdeburg.de/packing/csq/csq.html NurmelaKJÖstergårdPRJMore optimal packings of equal circles in a squareDiscrete Comput. Geom.1999223439457170657810.1007/PL00009472 SchaerJThe densest packing of 9 circles in a squareCan. Math. Bull.19658327327718193810.4153/CMB-1965-018-9 CyganMFominFVKowalikLLokshtanovDMarxDPilipczukMPilipczukMSaurabhSParameterized Algorithms2015BerlinSpringer10.1007/978-3-319-21275-3 BasuSPollackRRoyM-FAlgorithms in Real Algebraic Geometry2009BerlinSpringer Naor, M., Schulman, L.J., Srinivasan, A.: Splitters and near-optimal derandomization. In: 36th Annual Symposium on Foundations of Computer Science, Milwaukee, Wisconsin, USA, 23–25 October 1995, pp. 182–191. IEEE Computer Society (1995) ChristensenHIKhanAPokuttaSTetaliPApproximation and online algorithms for multidimensional bin packing: a surveyComput. Sci. Rev.2017246379365576810.1016/j.cosrev.2016.12.001 TóthLFLagerungen in der Ebene Auf der Kugel und Im Raum1953BerlinSpringer10.1007/978-3-662-01206-2 NurmelaKJÖstergårdPRJPacking up to 50 equal circles in a squareDiscrete Comput. Geom.1997181111120145344410.1007/PL00009306 CormenTHLeisersonCERivestRLSteinCIntroduction to Algorithms20093New YorkMIT Press BakerBSApproximation algorithms for np-complete problems on planar graphsJ. ACM1994411153180136919710.1145/174644.174650 HarrenRJansenKPrädelLvan SteeRA (5/3 + ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document})-approximation for strip packingComput. Geom.2014472248267312379210.1016/j.comgeo.2013.08.008 MoharBFace covers and the genus problem for apex graphsJ. Comb. Theory Ser. B2001821102117182843810.1006/jctb.2000.2026 GoldbergMThe packing of equal circles in a squareMath. Mag.19704312430157183410.1080/0025570X.1970.11975991 AshokPKolaySMeesumSMSaurabhSParameterized complexity of strip packing and minimum volume packingTheor. Comput. Sci.20176615664359121210.1016/j.tcs.2016.11.034 GálvezWGrandoniFIngalaSHeydrichSKhanAWieseAApproximating geometric knapsack via l-packingsACM Trans. Algorithms20211743313367432327510.1145/3473713 M Cygan (633_CR11) 2015 P Ashok (633_CR3) 2017; 661 633_CR29 633_CR24 W Gálvez (633_CR17) 2021; 17 B Mohar (633_CR28) 2001; 82 633_CR22 LF Tóth (633_CR35) 1953 N Alon (633_CR2) 1995; 42 I Castillo (633_CR7) 2008; 191 Y Liu (633_CR25) 1998; 81 R Diestel (633_CR13) 2012 M Locatelli (633_CR26) 2002; 122 DS Hochbaum (633_CR21) 1985; 32 PG Szabó (633_CR34) 2007 SP Fekete (633_CR14) 2023; 69 R Harren (633_CR20) 2014; 47 J Kepler (633_CR23) 1611 J Schaer (633_CR32) 1965; 8 KJ Nurmela (633_CR30) 1997; 18 TH Cormen (633_CR9) 2009 633_CR15 MR Garey (633_CR18) 1979 633_CR33 633_CR12 M Goldberg (633_CR19) 1970; 43 633_CR1 HT Croft (633_CR10) 2012 CD Maranas (633_CR27) 1995; 142 633_CR5 FV Fomin (633_CR16) 2019 BS Baker (633_CR4) 1994; 41 S Basu (633_CR6) 2009 KJ Nurmela (633_CR31) 1999; 22 HI Christensen (633_CR8) 2017; 24 |
| References_xml | – reference: NurmelaKJÖstergårdPRJMore optimal packings of equal circles in a squareDiscrete Comput. Geom.1999223439457170657810.1007/PL00009472 – reference: Specht, E.: The best known packings of equal circles in a square (up to N= 10000). English (2015). http://hydra.nat.uni-magdeburg.de/packing/csq/csq.html – reference: SzabóPGMarkótMCCsendesTSpechtECasadoLGGarcíaINew Approaches to Circle Packing in a Square - With Program Codes. Optimization and Its Applications2007BerlinSpringer – reference: LiuYMorganaASimeoneBA linear algorithm for 2-bend embeddings of planar graphs in the two-dimensional gridDiscrete Appl. Math.1998811–369911492002 – reference: GoldbergMThe packing of equal circles in a squareMath. Mag.19704312430157183410.1080/0025570X.1970.11975991 – reference: AlonNYusterRZwickUColor-codingJ. ACM1995424844856141178710.1145/210332.210337 – reference: Fomin, F.V., Golovach, P.A., Inamdar, T., Zehavi, M.: (re)packing equal disks into rectangle. In: Bojanczyk, M., Merelli, E., Woodruff, D.P. (eds.) 49th International Colloquium on Automata, Languages, and Programming, ICALP 2022, July 4-8, 2022, Paris, France. LIPIcs, vol. 229, pp. 60–16017. Schloss Dagstuhl, Leibniz (2022) – reference: CroftHTFalconerKGuyRKUnsolved Problems in Geometry: Unsolved Problems in Intuitive Mathematics2012BerlinSpringer – reference: BakerBSApproximation algorithms for np-complete problems on planar graphsJ. ACM1994411153180136919710.1145/174644.174650 – reference: GálvezWGrandoniFIngalaSHeydrichSKhanAWieseAApproximating geometric knapsack via l-packingsACM Trans. Algorithms20211743313367432327510.1145/3473713 – reference: Naor, M., Schulman, L.J., Srinivasan, A.: Splitters and near-optimal derandomization. In: 36th Annual Symposium on Foundations of Computer Science, Milwaukee, Wisconsin, USA, 23–25 October 1995, pp. 182–191. IEEE Computer Society (1995) – reference: Bansal, N., Khan, A.: Improved approximation algorithm for two-dimensional bin packing. In: Chekuri, C. (ed.) Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5–7, 2014, pp. 13–25. SIAM (2014) – reference: CormenTHLeisersonCERivestRLSteinCIntroduction to Algorithms20093New YorkMIT Press – reference: CyganMFominFVKowalikLLokshtanovDMarxDPilipczukMPilipczukMSaurabhSParameterized Algorithms2015BerlinSpringer10.1007/978-3-319-21275-3 – reference: CastilloIKampasFJPintérJDSolving circle packing problems by global optimization: numerical results and industrial applicationsEur. J. Oper. Res.20081913786802243550210.1016/j.ejor.2007.01.054 – reference: Litvinchev, I.S., Infante, L., Espinosa, E.L.O.: Approximate circle packing in a rectangular container: Integer programming formulations and valid inequalities. In: González-Ramírez, R.G., Schulte, F., Voß, S., Díaz, J.A.C. (eds.) Computational Logistics - 5th International Conference, ICCL 2014, Valparaiso, Chile, September 24-26, 2014. Proceedings. Lecture Notes in Computer Science, vol. 8760, pp. 47–60. Springer, Berlin (2014) – reference: Jansen, K., Rau, M.: Closing the gap for pseudo-polynomial strip packing. In: Bender, M.A., Svensson, O., Herman, G. (eds.) 27th Annual European Symposium on Algorithms, ESA 2019, September 9–11, 2019, Munich/Garching, Germany. LIPIcs, vol. 144, pp. 62–16214. Schloss Dagstuhl, Leibniz-Zentrum für Informatik (2019) – reference: NurmelaKJÖstergårdPRJPacking up to 50 equal circles in a squareDiscrete Comput. Geom.1997181111120145344410.1007/PL00009306 – reference: Abrahamsen, M., Miltzow, T., Seiferth, N.: Framework for er-completeness of two-dimensional packing problems. In: 61st IEEE Annual Symposium on Foundations of Computer Science (FOCS), pp. 1014–1021. IEEE (2020) – reference: FominFVLokshtanovDSaurabhSZehaviMKernelization. Theory of Parameterized Preprocessing2019CambridgeCambridge University Press515 – reference: GareyMRJohnsonDSComputers and Intractability: A Guide to the Theory of NP-Completeness1979New YorkW. H. Freeman – reference: Demaine, E.D., Fekete, S.P., Lang, R.J.: Circle packing for origami design is hard. CoRR https://arxiv.org/abs/1008.1224 (2010) – reference: KeplerJStrena Seu de Nive Sexangula1611FrankfurtGodefrid Tampach – reference: MoharBFace covers and the genus problem for apex graphsJ. Comb. Theory Ser. B2001821102117182843810.1006/jctb.2000.2026 – reference: FeketeSPKeldenichPSchefferCPacking disks into disks with optimal worst-case densityDiscrete Comput. Geom.20236915190452753410.1007/s00454-022-00422-8 – reference: AshokPKolaySMeesumSMSaurabhSParameterized complexity of strip packing and minimum volume packingTheor. Comput. Sci.20176615664359121210.1016/j.tcs.2016.11.034 – reference: TóthLFLagerungen in der Ebene Auf der Kugel und Im Raum1953BerlinSpringer10.1007/978-3-662-01206-2 – reference: ChristensenHIKhanAPokuttaSTetaliPApproximation and online algorithms for multidimensional bin packing: a surveyComput. Sci. Rev.2017246379365576810.1016/j.cosrev.2016.12.001 – reference: BasuSPollackRRoyM-FAlgorithms in Real Algebraic Geometry2009BerlinSpringer – reference: HochbaumDSMaassWApproximation schemes for covering and packing problems in image processing and VLSIJ. ACM198532113013683233510.1145/2455.214106 – reference: SchaerJThe densest packing of 9 circles in a squareCan. Math. Bull.19658327327718193810.4153/CMB-1965-018-9 – reference: HarrenRJansenKPrädelLvan SteeRA (5/3 + ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document})-approximation for strip packingComput. Geom.2014472248267312379210.1016/j.comgeo.2013.08.008 – reference: LocatelliMRaberUPacking equal circles in a square: a deterministic global optimization approachDiscrete Appl. Math.20021221–3139166190782810.1016/S0166-218X(01)00359-6 – reference: DiestelRGraph Theory. Graduate Texts in Mathematics20124BerlinSpringer – reference: MaranasCDFloudasCAPardalosPMNew results in the packing of equal circles in a squareDiscrete Math.19951421–3287293134145410.1016/0012-365X(93)E0230-2 – volume: 81 start-page: 69 issue: 1–3 year: 1998 ident: 633_CR25 publication-title: Discrete Appl. Math. – volume-title: Graph Theory. Graduate Texts in Mathematics year: 2012 ident: 633_CR13 – ident: 633_CR15 – volume: 69 start-page: 51 issue: 1 year: 2023 ident: 633_CR14 publication-title: Discrete Comput. Geom. doi: 10.1007/s00454-022-00422-8 – volume: 47 start-page: 248 issue: 2 year: 2014 ident: 633_CR20 publication-title: Comput. Geom. doi: 10.1016/j.comgeo.2013.08.008 – volume: 122 start-page: 139 issue: 1–3 year: 2002 ident: 633_CR26 publication-title: Discrete Appl. Math. doi: 10.1016/S0166-218X(01)00359-6 – volume: 24 start-page: 63 year: 2017 ident: 633_CR8 publication-title: Comput. Sci. Rev. doi: 10.1016/j.cosrev.2016.12.001 – volume-title: Unsolved Problems in Geometry: Unsolved Problems in Intuitive Mathematics year: 2012 ident: 633_CR10 – volume: 41 start-page: 153 issue: 1 year: 1994 ident: 633_CR4 publication-title: J. ACM doi: 10.1145/174644.174650 – volume: 661 start-page: 56 year: 2017 ident: 633_CR3 publication-title: Theor. Comput. Sci. doi: 10.1016/j.tcs.2016.11.034 – volume-title: Parameterized Algorithms year: 2015 ident: 633_CR11 doi: 10.1007/978-3-319-21275-3 – volume: 22 start-page: 439 issue: 3 year: 1999 ident: 633_CR31 publication-title: Discrete Comput. Geom. doi: 10.1007/PL00009472 – ident: 633_CR22 – ident: 633_CR29 doi: 10.1109/SFCS.1995.492475 – volume-title: Lagerungen in der Ebene Auf der Kugel und Im Raum year: 1953 ident: 633_CR35 doi: 10.1007/978-3-662-01206-2 – volume: 191 start-page: 786 issue: 3 year: 2008 ident: 633_CR7 publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2007.01.054 – ident: 633_CR12 – volume: 42 start-page: 844 issue: 4 year: 1995 ident: 633_CR2 publication-title: J. ACM doi: 10.1145/210332.210337 – ident: 633_CR33 – volume: 43 start-page: 24 issue: 1 year: 1970 ident: 633_CR19 publication-title: Math. Mag. doi: 10.1080/0025570X.1970.11975991 – volume: 17 start-page: 33 issue: 4 year: 2021 ident: 633_CR17 publication-title: ACM Trans. Algorithms doi: 10.1145/3473713 – ident: 633_CR1 doi: 10.1109/FOCS46700.2020.00098 – volume: 142 start-page: 287 issue: 1–3 year: 1995 ident: 633_CR27 publication-title: Discrete Math. doi: 10.1016/0012-365X(93)E0230-2 – volume-title: New Approaches to Circle Packing in a Square - With Program Codes. Optimization and Its Applications year: 2007 ident: 633_CR34 – volume-title: Introduction to Algorithms year: 2009 ident: 633_CR9 – start-page: 515 volume-title: Kernelization. Theory of Parameterized Preprocessing year: 2019 ident: 633_CR16 – volume-title: Algorithms in Real Algebraic Geometry year: 2009 ident: 633_CR6 – ident: 633_CR24 doi: 10.1007/978-3-319-11421-7_4 – volume: 82 start-page: 102 issue: 1 year: 2001 ident: 633_CR28 publication-title: J. Comb. Theory Ser. B doi: 10.1006/jctb.2000.2026 – volume: 18 start-page: 111 issue: 1 year: 1997 ident: 633_CR30 publication-title: Discrete Comput. Geom. doi: 10.1007/PL00009306 – volume: 8 start-page: 273 issue: 3 year: 1965 ident: 633_CR32 publication-title: Can. Math. Bull. doi: 10.4153/CMB-1965-018-9 – volume: 32 start-page: 130 issue: 1 year: 1985 ident: 633_CR21 publication-title: J. ACM doi: 10.1145/2455.214106 – volume-title: Computers and Intractability: A Guide to the Theory of NP-Completeness year: 1979 ident: 633_CR18 – ident: 633_CR5 doi: 10.1137/1.9781611973402.2 – volume-title: Strena Seu de Nive Sexangula year: 1611 ident: 633_CR23 |
| SSID | ssj0004908 |
| Score | 2.381266 |
| Snippet | The problem of packing of equal disks (or circles) into a rectangle is a fundamental geometric problem. (By a packing here we mean an arrangement of disks in a... |
| SourceID | pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1596 |
| SubjectTerms | Algorithms Combinatorics Computational Mathematics and Numerical Analysis Disks Mathematics Mathematics and Statistics Packaging Rectangles |
| SummonAdditionalLinks | – databaseName: SpringerLink Journals dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED9k-qAPTudXdUoFEUUDbdK16aPohi8OmR_srbRJpsPRybr593vJ2o45FfS5l7a53OV--bjfAZw4SgRKUZ8gVJbEkyLRycohkUKwnhvzEJuZYhNBu8273fA-TwrLitvuxZGkmanLZDfDFkcwphAdVxnBNc8yhjuu3bHz8DzLhgxNHTptakSTleSpMt-_Yz4cLWDMxauSX85LTRhqVf_XgQ1Yz2GnfTW1k01YUmkNqkVJBzv38Bqs3ZU0rtkWnJ511DkuqvV2ut3U-Zf2TT97y-x-Oh7aiDgRWb4M1DY8tZqP17ckL6xAhBc0xgQXhbFyAoQ2UsQu8z1HhGEP1eZRLwik5EESxKFQ1OmhoSEGVE4PI5wrJKUSZ1a2A5V0mKo9sCmPRcOXnlKx8njic5b4gguUdxMqHWGBW-g3EjnruC5-MYhKvmSjlgjVEhm1RK4FF2Wb9ynnxq_S9WLYotz_sojp7bWGphKy4Lh8jJ6jj0PiVA0nWobpBW_YoBbsTke5_BwzxHzct4DPjX8poFm555-k_VfDzo0QWxf5YhZcFmYw-6-fu7H_N_EDWKXakszFmjpUxqOJOoQV8THuZ6Mj4xCfc8oCdA priority: 102 providerName: Springer Nature |
| Title | (Re)packing Equal Disks into Rectangle |
| URI | https://link.springer.com/article/10.1007/s00454-024-00633-1 https://www.ncbi.nlm.nih.gov/pubmed/39559786 https://www.proquest.com/docview/3129051311 https://www.proquest.com/docview/3130210952 https://pubmed.ncbi.nlm.nih.gov/PMC11569013 |
| Volume | 72 |
| WOSCitedRecordID | wos001180879800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLink Journals customDbUrl: eissn: 1432-0444 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004908 issn: 0179-5376 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xjQd4YDC-AqMKEkIgsIjtJHaeEB-dkNBK1QGqeIkS290qpnQsHX8_d66TqkzshZd78VmJz2ff-ez7HcCzxBnlnMgZusqWpdbUlKxcMGuMnPFKF9jNF5tQo5GeTotxCLi14Vlltyf6jdouDMXI30gKmGQEDvP27BejqlF0uxpKaGzBDheCk55_VmydF1n4inSkdIxgS0LSjE-d89hzDC0UIystGd80TJe8zcuPJv-6OfUG6WD3f4dyG24FVzR-t9KdO3DNNXuw25V5iMOq34Obhz20a3sXnr-YuJd40KYQezyknMz447z92cbzZrmI0QtFb_P41N2DbwfDrx8-sVBsgZlUZUuGB8XKJQrdHWsqLvM0MUUxQwGmIlXKWq1qVRXGiWSGyod-oUtmaPW4sUJY3G3lfdhuFo17CLHQlclymzpXuVTXuZZ1brRBfl4Lm5gIeCfp0gQkciqIcVr2GMp-dkqcndLPTskjeNX3OVvhcFzJvd9Jvgxrsi3XYo_gad-Mq4muSKrGLS6IR9IhuMhEBA9W891_TnqwPp1HoDc0oWcgpO7NlmZ-4hG70e2mwl8ygted0qz_69_DeHT1MB7DDUEK7B_X7MP28vzCPYHr5vdy3p4PYEtN9QB23g9H48nALwykh-KLp2Oi6gjpOPuBdHL0_Q8HnxOV |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQ9UCiPBgoECRAILBI7m9gHhBBt1artCkEr9RaSsRdWrbLbZgviT_EbmfEmWS0VvfXA2Xbix-d52J5vAJ5FDjPnZCrIVLYisVhysLIRFlEN4kIbauaTTWT9vj48NJ8W4HcbC8PPKluZ6AW1HSGfkb9VfGDSY3KY9-MTwVmj-Ha1TaExhcWO-_WTXLb63fY6re9zKTc39j9uiSargMAk600EeUSFizLS6xaLWKVJhMYMTKQTmWSZtTors8Kgk9GAZpkMIBcNSLzHaKW0JFYUffcKXE1Y-vungl9mcZjGZ8BjkAumSWmCdHyonue6E6QRBVsFSsTzivCcdXv-keZfN7VeAW4u_29TdwtuNqZ2-GG6N27DgqtWYLlNYxE2Um0FlvY66tr6Drx4-dm9GhfIVwjhBsechuvD-qgOh9VkFJKVTdb0t2N3Fw4upe_3YLEaVW4VQqkL7KU2ca5wiS5TrcoUNVL9uJQ2wgDidmVzbJjWOeHHcd5xRHs05ISG3KMhjwN43bUZT3lGLqy91q503sicOp8tcwBPu2KSFnwFVFRudMZ1FDv5picDuD_FV_c75ckIdRqAnkNeV4GZyOdLquF3z0hObgUnNlMBvGlBOuvXv4fx4OJhPIHrW_t7u_nudn_nIdyQvHn8Q6I1WJycnrlHcA1_TIb16WO_DUP4etng_QO9vWfd |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VghAcKJRXoECQAIHAamInsX1ACLFdURVWK0SliktIbAdWVNml2YL4a_w6ZrxJVktFbz1wtp348Xk84_F8A_AockY6xzOGqrJliTUlBStrZo0RVVwojc18sgk5GqmDAz1eg99dLAw9q-xkohfUdmrojnxb0IVJSuQw21X7LGI8GL6afWeUQYo8rV06jQVE9tyvn2i-NS93B7jWjzkf7nx885a1GQaYSWQ6Z2gdFS6SeMZbU8QiSyKjdaUjlfBESmuVLGWhjeNRhTOOypCLKhT1sbGcWxQxAr97Ds5LtDHJ8Bunn5YxmdpnwyPAM6JMaQN2fNie571jeDoy0hAEi1cPxROa7skHm395bf1hONz4n6fxKlxpVfDw9WLPXIM1V2_CRpfeImyl3SZcft9T2jbX4cnTD-7ZrDDkWgh3KBY1HEyab004qefTELVv1LK_HLobsH8mfb8J6_W0drch5KowaWYT5wqXqDJTosyMMlg_LrmNTABxt8q5aRnYKRHIYd5zR3tk5IiM3CMjjwN43reZLfhHTq291a163sqiJl8ueQAP-2KUIuQaKmo3PaY6gox_nfIAbi2w1v9OeJJClQWgVlDYVyCG8tWSevLVM5WjuUEJz0QALzrALvv172HcOX0YD-AiYjZ_tzvauwuXOO0j_75oC9bnR8fuHlwwP-aT5ui-35EhfD5r7P4BCktwwA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%28Re%29packing+Equal+Disks+into+Rectangle&rft.jtitle=Discrete+%26+computational+geometry&rft.au=Fomin%2C+Fedor+V&rft.au=Golovach%2C+Petr+A&rft.au=Inamdar%2C+Tanmay&rft.au=Saurabh%2C+Saket&rft.date=2024-12-01&rft.pub=Springer+Nature+B.V&rft.issn=0179-5376&rft.eissn=1432-0444&rft.volume=72&rft.issue=4&rft.spage=1596&rft.epage=1629&rft_id=info:doi/10.1007%2Fs00454-024-00633-1&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0179-5376&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0179-5376&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0179-5376&client=summon |