(Re)packing Equal Disks into Rectangle

The problem of packing of equal disks (or circles) into a rectangle is a fundamental geometric problem. (By a packing here we mean an arrangement of disks in a rectangle without overlapping.) We consider the following algorithmic generalization of the equal disk packing problem. In this problem, for...

Full description

Saved in:
Bibliographic Details
Published in:Discrete & computational geometry Vol. 72; no. 4; pp. 1596 - 1629
Main Authors: Fomin, Fedor V., Golovach, Petr A., Inamdar, Tanmay, Saurabh, Saket, Zehavi, Meirav
Format: Journal Article
Language:English
Published: New York Springer US 01.12.2024
Springer Nature B.V
Subjects:
ISSN:0179-5376, 1432-0444
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The problem of packing of equal disks (or circles) into a rectangle is a fundamental geometric problem. (By a packing here we mean an arrangement of disks in a rectangle without overlapping.) We consider the following algorithmic generalization of the equal disk packing problem. In this problem, for a given packing of equal disks into a rectangle, the question is whether by changing positions of a small number of disks, we can allocate space for packing more disks. More formally, in the repacking problem, for a given set of n equal disks packed into a rectangle and integers k and h , we ask whether it is possible by changing positions of at most h disks to pack n + k disks. Thus the problem of packing equal disks is the special case of our problem with n = h = 0 . While the computational complexity of packing equal disks into a rectangle remains open, we prove that the repacking problem is NP-hard already for h = 0 . Our main algorithmic contribution is an algorithm that solves the repacking problem in time ( h + k ) O ( h + k ) · | I | O ( 1 ) , where | I | is the input size. That is, the problem is fixed-parameter tractable parameterized by k and h .
AbstractList The problem of packing of equal disks (or circles) into a rectangle is a fundamental geometric problem. (By a packing here we mean an arrangement of disks in a rectangle without overlapping.) We consider the following algorithmic generalization of the equal disk packing problem. In this problem, for a given packing of equal disks into a rectangle, the question is whether by changing positions of a small number of disks, we can allocate space for packing more disks. More formally, in the repacking problem, for a given set of n equal disks packed into a rectangle and integers k and h , we ask whether it is possible by changing positions of at most h disks to pack $$n+k$$ n + k disks. Thus the problem of packing equal disks is the special case of our problem with $$n=h=0$$ n = h = 0 . While the computational complexity of packing equal disks into a rectangle remains open, we prove that the repacking problem is NP-hard already for $$h=0$$ h = 0 . Our main algorithmic contribution is an algorithm that solves the repacking problem in time $$(h+k)^{\mathcal {O}(h+k)}\cdot |I|^{\mathcal {O}(1)}$$ ( h + k ) O ( h + k ) · | I | O ( 1 ) , where | I | is the input size. That is, the problem is fixed-parameter tractable parameterized by k and h .
The problem of packing of equal disks (or circles) into a rectangle is a fundamental geometric problem. (By a packing here we mean an arrangement of disks in a rectangle without overlapping.) We consider the following algorithmic generalization of the equal disk packing problem. In this problem, for a given packing of equal disks into a rectangle, the question is whether by changing positions of a small number of disks, we can allocate space for packing more disks. More formally, in the repacking problem, for a given set of equal disks packed into a rectangle and integers and , we ask whether it is possible by changing positions of at most disks to pack disks. Thus the problem of packing equal disks is the special case of our problem with . While the computational complexity of packing equal disks into a rectangle remains open, we prove that the repacking problem is NP-hard already for . Our main algorithmic contribution is an algorithm that solves the repacking problem in time , where | | is the input size. That is, the problem is fixed-parameter tractable parameterized by and .
The problem of packing of equal disks (or circles) into a rectangle is a fundamental geometric problem. (By a packing here we mean an arrangement of disks in a rectangle without overlapping.) We consider the following algorithmic generalization of the equal disk packing problem. In this problem, for a given packing of equal disks into a rectangle, the question is whether by changing positions of a small number of disks, we can allocate space for packing more disks. More formally, in the repacking problem, for a given set of n equal disks packed into a rectangle and integers k and h, we ask whether it is possible by changing positions of at most h disks to pack n + k disks. Thus the problem of packing equal disks is the special case of our problem with n = h = 0 . While the computational complexity of packing equal disks into a rectangle remains open, we prove that the repacking problem is NP-hard already for h = 0 . Our main algorithmic contribution is an algorithm that solves the repacking problem in time ( h + k ) O ( h + k ) · | I | O ( 1 ) , where |I| is the input size. That is, the problem is fixed-parameter tractable parameterized by k and h.The problem of packing of equal disks (or circles) into a rectangle is a fundamental geometric problem. (By a packing here we mean an arrangement of disks in a rectangle without overlapping.) We consider the following algorithmic generalization of the equal disk packing problem. In this problem, for a given packing of equal disks into a rectangle, the question is whether by changing positions of a small number of disks, we can allocate space for packing more disks. More formally, in the repacking problem, for a given set of n equal disks packed into a rectangle and integers k and h, we ask whether it is possible by changing positions of at most h disks to pack n + k disks. Thus the problem of packing equal disks is the special case of our problem with n = h = 0 . While the computational complexity of packing equal disks into a rectangle remains open, we prove that the repacking problem is NP-hard already for h = 0 . Our main algorithmic contribution is an algorithm that solves the repacking problem in time ( h + k ) O ( h + k ) · | I | O ( 1 ) , where |I| is the input size. That is, the problem is fixed-parameter tractable parameterized by k and h.
The problem of packing of equal disks (or circles) into a rectangle is a fundamental geometric problem. (By a packing here we mean an arrangement of disks in a rectangle without overlapping.) We consider the following algorithmic generalization of the equal disk packing problem. In this problem, for a given packing of equal disks into a rectangle, the question is whether by changing positions of a small number of disks, we can allocate space for packing more disks. More formally, in the repacking problem, for a given set of n equal disks packed into a rectangle and integers k and h, we ask whether it is possible by changing positions of at most h disks to pack $$n+k$$ n+k disks. Thus the problem of packing equal disks is the special case of our problem with $$n=h=0$$ n=h=0. While the computational complexity of packing equal disks into a rectangle remains open, we prove that the repacking problem is NP-hard already for $$h=0$$ h=0. Our main algorithmic contribution is an algorithm that solves the repacking problem in time $$(h+k)^{\mathcal {O}(h+k)}\cdot |I|^{\mathcal {O}(1)}$$ (h+k)O(h+k)·|I|O(1), where |I| is the input size. That is, the problem is fixed-parameter tractable parameterized by k and h.
The problem of packing of equal disks (or circles) into a rectangle is a fundamental geometric problem. (By a packing here we mean an arrangement of disks in a rectangle without overlapping.) We consider the following algorithmic generalization of the equal disk packing problem. In this problem, for a given packing of equal disks into a rectangle, the question is whether by changing positions of a small number of disks, we can allocate space for packing more disks. More formally, in the repacking problem, for a given set of n equal disks packed into a rectangle and integers k and h , we ask whether it is possible by changing positions of at most h disks to pack n + k disks. Thus the problem of packing equal disks is the special case of our problem with n = h = 0 . While the computational complexity of packing equal disks into a rectangle remains open, we prove that the repacking problem is NP-hard already for h = 0 . Our main algorithmic contribution is an algorithm that solves the repacking problem in time ( h + k ) O ( h + k ) · | I | O ( 1 ) , where | I | is the input size. That is, the problem is fixed-parameter tractable parameterized by k and h .
The problem of packing of equal disks (or circles) into a rectangle is a fundamental geometric problem. (By a packing here we mean an arrangement of disks in a rectangle without overlapping.) We consider the following algorithmic generalization of the equal disk packing problem. In this problem, for a given packing of equal disks into a rectangle, the question is whether by changing positions of a small number of disks, we can allocate space for packing more disks. More formally, in the repacking problem, for a given set of n equal disks packed into a rectangle and integers k and h, we ask whether it is possible by changing positions of at most h disks to pack n+k disks. Thus the problem of packing equal disks is the special case of our problem with n=h=0. While the computational complexity of packing equal disks into a rectangle remains open, we prove that the repacking problem is NP-hard already for h=0. Our main algorithmic contribution is an algorithm that solves the repacking problem in time (h+k)O(h+k)·|I|O(1), where |I| is the input size. That is, the problem is fixed-parameter tractable parameterized by k and h.
Author Inamdar, Tanmay
Fomin, Fedor V.
Zehavi, Meirav
Golovach, Petr A.
Saurabh, Saket
Author_xml – sequence: 1
  givenname: Fedor V.
  surname: Fomin
  fullname: Fomin, Fedor V.
  email: Fedor.Fomin@uib.no
  organization: University of Bergen
– sequence: 2
  givenname: Petr A.
  surname: Golovach
  fullname: Golovach, Petr A.
  organization: University of Bergen
– sequence: 3
  givenname: Tanmay
  surname: Inamdar
  fullname: Inamdar, Tanmay
  organization: Indian Institute of Technology, Jodhpur
– sequence: 4
  givenname: Saket
  surname: Saurabh
  fullname: Saurabh, Saket
  organization: University of Bergen, Institute of Mathematical Sciences
– sequence: 5
  givenname: Meirav
  surname: Zehavi
  fullname: Zehavi, Meirav
  organization: Ben-Guiron University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39559786$$D View this record in MEDLINE/PubMed
BookMark eNp9kUlLBDEQhYMoOi5_wIMMCKKH1qosnclJxB0EQfQcYjo9RnuSsdMt-O_NOO4HD6EO-d6rl7xVshhicIRsIuwjgDxIAFzwAmg-UDJW4AIZIGe0AM75IhkASlUIJssVsprSI2RewWiZrDAlhJKjckB2dm_c3tTYJx_Gw9Pn3jTDE5-e0tCHLg5vnO1MGDdunSzVpklu42Oukbuz09vji-Lq-vzy-OiqsFyKrqCCGweSCqysQVZysErVeSenXMqqGsl7aZR1FGpnKlTUQY2Uoa0orXgp2Ro5nPtO-_uJq6wLXWsaPW39xLSvOhqvf98E_6DH8UUjilIBsuyw--HQxufepU5PfLKuaUxwsU-aIQOKoATN6PYf9DH2bcjvyxRVIJAhZmrrZ6SvLJ9_mIHRHLBtTKl1tba-M52Ps4S-0Qh6Vpee16VzXfq9Lj3zpn-kn-7_ithclDIcxq79jv2P6g3JVqRA
CitedBy_id crossref_primary_10_1007_s10586_024_05093_z
Cites_doi 10.1007/s00454-022-00422-8
10.1016/j.comgeo.2013.08.008
10.1016/S0166-218X(01)00359-6
10.1016/j.cosrev.2016.12.001
10.1145/174644.174650
10.1016/j.tcs.2016.11.034
10.1007/978-3-319-21275-3
10.1007/PL00009472
10.1109/SFCS.1995.492475
10.1007/978-3-662-01206-2
10.1016/j.ejor.2007.01.054
10.1145/210332.210337
10.1080/0025570X.1970.11975991
10.1145/3473713
10.1109/FOCS46700.2020.00098
10.1016/0012-365X(93)E0230-2
10.1007/978-3-319-11421-7_4
10.1006/jctb.2000.2026
10.1007/PL00009306
10.4153/CMB-1965-018-9
10.1145/2455.214106
10.1137/1.9781611973402.2
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024.
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024.
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
NPM
3V.
7SC
7TB
7XB
88I
8AL
8AO
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M2O
M2P
M7S
MBDVC
P5Z
P62
PADUT
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
7X8
5PM
DOI 10.1007/s00454-024-00633-1
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest
Technology collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Research Library China
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Research Library China
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed
MEDLINE - Academic


Research Library Prep
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1432-0444
EndPage 1629
ExternalDocumentID PMC11569013
39559786
10_1007_s00454_024_00633_1
Genre Journal Article
GrantInformation_xml – fundername: Israel Science Foundation
  grantid: 1176/18
  funderid: http://dx.doi.org/10.13039/501100003977
– fundername: European Research Council
  grantid: 819416
  funderid: http://dx.doi.org/10.13039/501100000781
– fundername: Norges Forskningsråd
  grantid: 314528
  funderid: http://dx.doi.org/10.13039/501100005416
GroupedDBID -52
-5D
-5G
-BR
-DZ
-EM
-Y2
-~C
-~X
.4S
.86
.DC
06D
0R~
0VY
199
1N0
1SB
203
28-
29G
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2WC
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
692
6NX
78A
88I
8AO
8FE
8FG
8FW
8G5
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAGAY
AAHNG
AAIAL
AAJBT
AAJKR
AAKPC
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIHN
ACIPV
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
C1A
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
KQ8
L6V
LAS
LLZTM
LO0
M0N
M2O
M2P
M4Y
M7S
MA-
MQGED
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OK1
P19
P62
P9R
PADUT
PF0
PKN
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
REI
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RYB
RZK
RZZ
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YIN
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
NPM
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c475t-254ae07251dca13640c99f90842477dd87b7a9ce20fead192e0f1231cd22d4673
IEDL.DBID K7-
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001180879800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0179-5376
IngestDate Tue Nov 04 02:04:59 EST 2025
Thu Sep 04 19:05:15 EDT 2025
Tue Dec 02 10:01:44 EST 2025
Mon Jul 21 06:05:26 EDT 2025
Sat Nov 29 02:58:49 EST 2025
Tue Nov 18 22:40:10 EST 2025
Fri Feb 21 02:40:15 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Computational geometry
Circle packing
51E23: Spreads and packing problems
68W40: Analysis of algorithms
Parameterized algorithms
68Q25: Analysis of algorithms and problem complexity
Unit disks
Language English
License The Author(s) 2024.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c475t-254ae07251dca13640c99f90842477dd87b7a9ce20fead192e0f1231cd22d4673
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Editor in Charge: Csaba D. Tóth
OpenAccessLink https://link.springer.com/10.1007/s00454-024-00633-1
PMID 39559786
PQID 3129051311
PQPubID 31658
PageCount 34
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11569013
proquest_miscellaneous_3130210952
proquest_journals_3129051311
pubmed_primary_39559786
crossref_citationtrail_10_1007_s00454_024_00633_1
crossref_primary_10_1007_s00454_024_00633_1
springer_journals_10_1007_s00454_024_00633_1
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Discrete & computational geometry
PublicationTitleAbbrev Discrete Comput Geom
PublicationTitleAlternate Discrete Comput Geom
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Litvinchev, I.S., Infante, L., Espinosa, E.L.O.: Approximate circle packing in a rectangular container: Integer programming formulations and valid inequalities. In: González-Ramírez, R.G., Schulte, F., Voß, S., Díaz, J.A.C. (eds.) Computational Logistics - 5th International Conference, ICCL 2014, Valparaiso, Chile, September 24-26, 2014. Proceedings. Lecture Notes in Computer Science, vol. 8760, pp. 47–60. Springer, Berlin (2014)
HochbaumDSMaassWApproximation schemes for covering and packing problems in image processing and VLSIJ. ACM198532113013683233510.1145/2455.214106
LocatelliMRaberUPacking equal circles in a square: a deterministic global optimization approachDiscrete Appl. Math.20021221–3139166190782810.1016/S0166-218X(01)00359-6
LiuYMorganaASimeoneBA linear algorithm for 2-bend embeddings of planar graphs in the two-dimensional gridDiscrete Appl. Math.1998811–369911492002
CastilloIKampasFJPintérJDSolving circle packing problems by global optimization: numerical results and industrial applicationsEur. J. Oper. Res.20081913786802243550210.1016/j.ejor.2007.01.054
Demaine, E.D., Fekete, S.P., Lang, R.J.: Circle packing for origami design is hard. CoRR https://arxiv.org/abs/1008.1224 (2010)
Bansal, N., Khan, A.: Improved approximation algorithm for two-dimensional bin packing. In: Chekuri, C. (ed.) Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5–7, 2014, pp. 13–25. SIAM (2014)
Jansen, K., Rau, M.: Closing the gap for pseudo-polynomial strip packing. In: Bender, M.A., Svensson, O., Herman, G. (eds.) 27th Annual European Symposium on Algorithms, ESA 2019, September 9–11, 2019, Munich/Garching, Germany. LIPIcs, vol. 144, pp. 62–16214. Schloss Dagstuhl, Leibniz-Zentrum für Informatik (2019)
AlonNYusterRZwickUColor-codingJ. ACM1995424844856141178710.1145/210332.210337
MaranasCDFloudasCAPardalosPMNew results in the packing of equal circles in a squareDiscrete Math.19951421–3287293134145410.1016/0012-365X(93)E0230-2
SzabóPGMarkótMCCsendesTSpechtECasadoLGGarcíaINew Approaches to Circle Packing in a Square - With Program Codes. Optimization and Its Applications2007BerlinSpringer
FeketeSPKeldenichPSchefferCPacking disks into disks with optimal worst-case densityDiscrete Comput. Geom.20236915190452753410.1007/s00454-022-00422-8
DiestelRGraph Theory. Graduate Texts in Mathematics20124BerlinSpringer
CroftHTFalconerKGuyRKUnsolved Problems in Geometry: Unsolved Problems in Intuitive Mathematics2012BerlinSpringer
GareyMRJohnsonDSComputers and Intractability: A Guide to the Theory of NP-Completeness1979New YorkW. H. Freeman
KeplerJStrena Seu de Nive Sexangula1611FrankfurtGodefrid Tampach
Abrahamsen, M., Miltzow, T., Seiferth, N.: Framework for er-completeness of two-dimensional packing problems. In: 61st IEEE Annual Symposium on Foundations of Computer Science (FOCS), pp. 1014–1021. IEEE (2020)
Fomin, F.V., Golovach, P.A., Inamdar, T., Zehavi, M.: (re)packing equal disks into rectangle. In: Bojanczyk, M., Merelli, E., Woodruff, D.P. (eds.) 49th International Colloquium on Automata, Languages, and Programming, ICALP 2022, July 4-8, 2022, Paris, France. LIPIcs, vol. 229, pp. 60–16017. Schloss Dagstuhl, Leibniz (2022)
FominFVLokshtanovDSaurabhSZehaviMKernelization. Theory of Parameterized Preprocessing2019CambridgeCambridge University Press515
Specht, E.: The best known packings of equal circles in a square (up to N= 10000). English (2015). http://hydra.nat.uni-magdeburg.de/packing/csq/csq.html
NurmelaKJÖstergårdPRJMore optimal packings of equal circles in a squareDiscrete Comput. Geom.1999223439457170657810.1007/PL00009472
SchaerJThe densest packing of 9 circles in a squareCan. Math. Bull.19658327327718193810.4153/CMB-1965-018-9
CyganMFominFVKowalikLLokshtanovDMarxDPilipczukMPilipczukMSaurabhSParameterized Algorithms2015BerlinSpringer10.1007/978-3-319-21275-3
BasuSPollackRRoyM-FAlgorithms in Real Algebraic Geometry2009BerlinSpringer
Naor, M., Schulman, L.J., Srinivasan, A.: Splitters and near-optimal derandomization. In: 36th Annual Symposium on Foundations of Computer Science, Milwaukee, Wisconsin, USA, 23–25 October 1995, pp. 182–191. IEEE Computer Society (1995)
ChristensenHIKhanAPokuttaSTetaliPApproximation and online algorithms for multidimensional bin packing: a surveyComput. Sci. Rev.2017246379365576810.1016/j.cosrev.2016.12.001
TóthLFLagerungen in der Ebene Auf der Kugel und Im Raum1953BerlinSpringer10.1007/978-3-662-01206-2
NurmelaKJÖstergårdPRJPacking up to 50 equal circles in a squareDiscrete Comput. Geom.1997181111120145344410.1007/PL00009306
CormenTHLeisersonCERivestRLSteinCIntroduction to Algorithms20093New YorkMIT Press
BakerBSApproximation algorithms for np-complete problems on planar graphsJ. ACM1994411153180136919710.1145/174644.174650
HarrenRJansenKPrädelLvan SteeRA (5/3 + ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document})-approximation for strip packingComput. Geom.2014472248267312379210.1016/j.comgeo.2013.08.008
MoharBFace covers and the genus problem for apex graphsJ. Comb. Theory Ser. B2001821102117182843810.1006/jctb.2000.2026
GoldbergMThe packing of equal circles in a squareMath. Mag.19704312430157183410.1080/0025570X.1970.11975991
AshokPKolaySMeesumSMSaurabhSParameterized complexity of strip packing and minimum volume packingTheor. Comput. Sci.20176615664359121210.1016/j.tcs.2016.11.034
GálvezWGrandoniFIngalaSHeydrichSKhanAWieseAApproximating geometric knapsack via l-packingsACM Trans. Algorithms20211743313367432327510.1145/3473713
M Cygan (633_CR11) 2015
P Ashok (633_CR3) 2017; 661
633_CR29
633_CR24
W Gálvez (633_CR17) 2021; 17
B Mohar (633_CR28) 2001; 82
633_CR22
LF Tóth (633_CR35) 1953
N Alon (633_CR2) 1995; 42
I Castillo (633_CR7) 2008; 191
Y Liu (633_CR25) 1998; 81
R Diestel (633_CR13) 2012
M Locatelli (633_CR26) 2002; 122
DS Hochbaum (633_CR21) 1985; 32
PG Szabó (633_CR34) 2007
SP Fekete (633_CR14) 2023; 69
R Harren (633_CR20) 2014; 47
J Kepler (633_CR23) 1611
J Schaer (633_CR32) 1965; 8
KJ Nurmela (633_CR30) 1997; 18
TH Cormen (633_CR9) 2009
633_CR15
MR Garey (633_CR18) 1979
633_CR33
633_CR12
M Goldberg (633_CR19) 1970; 43
633_CR1
HT Croft (633_CR10) 2012
CD Maranas (633_CR27) 1995; 142
633_CR5
FV Fomin (633_CR16) 2019
BS Baker (633_CR4) 1994; 41
S Basu (633_CR6) 2009
KJ Nurmela (633_CR31) 1999; 22
HI Christensen (633_CR8) 2017; 24
References_xml – reference: NurmelaKJÖstergårdPRJMore optimal packings of equal circles in a squareDiscrete Comput. Geom.1999223439457170657810.1007/PL00009472
– reference: Specht, E.: The best known packings of equal circles in a square (up to N= 10000). English (2015). http://hydra.nat.uni-magdeburg.de/packing/csq/csq.html
– reference: SzabóPGMarkótMCCsendesTSpechtECasadoLGGarcíaINew Approaches to Circle Packing in a Square - With Program Codes. Optimization and Its Applications2007BerlinSpringer
– reference: LiuYMorganaASimeoneBA linear algorithm for 2-bend embeddings of planar graphs in the two-dimensional gridDiscrete Appl. Math.1998811–369911492002
– reference: GoldbergMThe packing of equal circles in a squareMath. Mag.19704312430157183410.1080/0025570X.1970.11975991
– reference: AlonNYusterRZwickUColor-codingJ. ACM1995424844856141178710.1145/210332.210337
– reference: Fomin, F.V., Golovach, P.A., Inamdar, T., Zehavi, M.: (re)packing equal disks into rectangle. In: Bojanczyk, M., Merelli, E., Woodruff, D.P. (eds.) 49th International Colloquium on Automata, Languages, and Programming, ICALP 2022, July 4-8, 2022, Paris, France. LIPIcs, vol. 229, pp. 60–16017. Schloss Dagstuhl, Leibniz (2022)
– reference: CroftHTFalconerKGuyRKUnsolved Problems in Geometry: Unsolved Problems in Intuitive Mathematics2012BerlinSpringer
– reference: BakerBSApproximation algorithms for np-complete problems on planar graphsJ. ACM1994411153180136919710.1145/174644.174650
– reference: GálvezWGrandoniFIngalaSHeydrichSKhanAWieseAApproximating geometric knapsack via l-packingsACM Trans. Algorithms20211743313367432327510.1145/3473713
– reference: Naor, M., Schulman, L.J., Srinivasan, A.: Splitters and near-optimal derandomization. In: 36th Annual Symposium on Foundations of Computer Science, Milwaukee, Wisconsin, USA, 23–25 October 1995, pp. 182–191. IEEE Computer Society (1995)
– reference: Bansal, N., Khan, A.: Improved approximation algorithm for two-dimensional bin packing. In: Chekuri, C. (ed.) Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5–7, 2014, pp. 13–25. SIAM (2014)
– reference: CormenTHLeisersonCERivestRLSteinCIntroduction to Algorithms20093New YorkMIT Press
– reference: CyganMFominFVKowalikLLokshtanovDMarxDPilipczukMPilipczukMSaurabhSParameterized Algorithms2015BerlinSpringer10.1007/978-3-319-21275-3
– reference: CastilloIKampasFJPintérJDSolving circle packing problems by global optimization: numerical results and industrial applicationsEur. J. Oper. Res.20081913786802243550210.1016/j.ejor.2007.01.054
– reference: Litvinchev, I.S., Infante, L., Espinosa, E.L.O.: Approximate circle packing in a rectangular container: Integer programming formulations and valid inequalities. In: González-Ramírez, R.G., Schulte, F., Voß, S., Díaz, J.A.C. (eds.) Computational Logistics - 5th International Conference, ICCL 2014, Valparaiso, Chile, September 24-26, 2014. Proceedings. Lecture Notes in Computer Science, vol. 8760, pp. 47–60. Springer, Berlin (2014)
– reference: Jansen, K., Rau, M.: Closing the gap for pseudo-polynomial strip packing. In: Bender, M.A., Svensson, O., Herman, G. (eds.) 27th Annual European Symposium on Algorithms, ESA 2019, September 9–11, 2019, Munich/Garching, Germany. LIPIcs, vol. 144, pp. 62–16214. Schloss Dagstuhl, Leibniz-Zentrum für Informatik (2019)
– reference: NurmelaKJÖstergårdPRJPacking up to 50 equal circles in a squareDiscrete Comput. Geom.1997181111120145344410.1007/PL00009306
– reference: Abrahamsen, M., Miltzow, T., Seiferth, N.: Framework for er-completeness of two-dimensional packing problems. In: 61st IEEE Annual Symposium on Foundations of Computer Science (FOCS), pp. 1014–1021. IEEE (2020)
– reference: FominFVLokshtanovDSaurabhSZehaviMKernelization. Theory of Parameterized Preprocessing2019CambridgeCambridge University Press515
– reference: GareyMRJohnsonDSComputers and Intractability: A Guide to the Theory of NP-Completeness1979New YorkW. H. Freeman
– reference: Demaine, E.D., Fekete, S.P., Lang, R.J.: Circle packing for origami design is hard. CoRR https://arxiv.org/abs/1008.1224 (2010)
– reference: KeplerJStrena Seu de Nive Sexangula1611FrankfurtGodefrid Tampach
– reference: MoharBFace covers and the genus problem for apex graphsJ. Comb. Theory Ser. B2001821102117182843810.1006/jctb.2000.2026
– reference: FeketeSPKeldenichPSchefferCPacking disks into disks with optimal worst-case densityDiscrete Comput. Geom.20236915190452753410.1007/s00454-022-00422-8
– reference: AshokPKolaySMeesumSMSaurabhSParameterized complexity of strip packing and minimum volume packingTheor. Comput. Sci.20176615664359121210.1016/j.tcs.2016.11.034
– reference: TóthLFLagerungen in der Ebene Auf der Kugel und Im Raum1953BerlinSpringer10.1007/978-3-662-01206-2
– reference: ChristensenHIKhanAPokuttaSTetaliPApproximation and online algorithms for multidimensional bin packing: a surveyComput. Sci. Rev.2017246379365576810.1016/j.cosrev.2016.12.001
– reference: BasuSPollackRRoyM-FAlgorithms in Real Algebraic Geometry2009BerlinSpringer
– reference: HochbaumDSMaassWApproximation schemes for covering and packing problems in image processing and VLSIJ. ACM198532113013683233510.1145/2455.214106
– reference: SchaerJThe densest packing of 9 circles in a squareCan. Math. Bull.19658327327718193810.4153/CMB-1965-018-9
– reference: HarrenRJansenKPrädelLvan SteeRA (5/3 + ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document})-approximation for strip packingComput. Geom.2014472248267312379210.1016/j.comgeo.2013.08.008
– reference: LocatelliMRaberUPacking equal circles in a square: a deterministic global optimization approachDiscrete Appl. Math.20021221–3139166190782810.1016/S0166-218X(01)00359-6
– reference: DiestelRGraph Theory. Graduate Texts in Mathematics20124BerlinSpringer
– reference: MaranasCDFloudasCAPardalosPMNew results in the packing of equal circles in a squareDiscrete Math.19951421–3287293134145410.1016/0012-365X(93)E0230-2
– volume: 81
  start-page: 69
  issue: 1–3
  year: 1998
  ident: 633_CR25
  publication-title: Discrete Appl. Math.
– volume-title: Graph Theory. Graduate Texts in Mathematics
  year: 2012
  ident: 633_CR13
– ident: 633_CR15
– volume: 69
  start-page: 51
  issue: 1
  year: 2023
  ident: 633_CR14
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/s00454-022-00422-8
– volume: 47
  start-page: 248
  issue: 2
  year: 2014
  ident: 633_CR20
  publication-title: Comput. Geom.
  doi: 10.1016/j.comgeo.2013.08.008
– volume: 122
  start-page: 139
  issue: 1–3
  year: 2002
  ident: 633_CR26
  publication-title: Discrete Appl. Math.
  doi: 10.1016/S0166-218X(01)00359-6
– volume: 24
  start-page: 63
  year: 2017
  ident: 633_CR8
  publication-title: Comput. Sci. Rev.
  doi: 10.1016/j.cosrev.2016.12.001
– volume-title: Unsolved Problems in Geometry: Unsolved Problems in Intuitive Mathematics
  year: 2012
  ident: 633_CR10
– volume: 41
  start-page: 153
  issue: 1
  year: 1994
  ident: 633_CR4
  publication-title: J. ACM
  doi: 10.1145/174644.174650
– volume: 661
  start-page: 56
  year: 2017
  ident: 633_CR3
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2016.11.034
– volume-title: Parameterized Algorithms
  year: 2015
  ident: 633_CR11
  doi: 10.1007/978-3-319-21275-3
– volume: 22
  start-page: 439
  issue: 3
  year: 1999
  ident: 633_CR31
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/PL00009472
– ident: 633_CR22
– ident: 633_CR29
  doi: 10.1109/SFCS.1995.492475
– volume-title: Lagerungen in der Ebene Auf der Kugel und Im Raum
  year: 1953
  ident: 633_CR35
  doi: 10.1007/978-3-662-01206-2
– volume: 191
  start-page: 786
  issue: 3
  year: 2008
  ident: 633_CR7
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2007.01.054
– ident: 633_CR12
– volume: 42
  start-page: 844
  issue: 4
  year: 1995
  ident: 633_CR2
  publication-title: J. ACM
  doi: 10.1145/210332.210337
– ident: 633_CR33
– volume: 43
  start-page: 24
  issue: 1
  year: 1970
  ident: 633_CR19
  publication-title: Math. Mag.
  doi: 10.1080/0025570X.1970.11975991
– volume: 17
  start-page: 33
  issue: 4
  year: 2021
  ident: 633_CR17
  publication-title: ACM Trans. Algorithms
  doi: 10.1145/3473713
– ident: 633_CR1
  doi: 10.1109/FOCS46700.2020.00098
– volume: 142
  start-page: 287
  issue: 1–3
  year: 1995
  ident: 633_CR27
  publication-title: Discrete Math.
  doi: 10.1016/0012-365X(93)E0230-2
– volume-title: New Approaches to Circle Packing in a Square - With Program Codes. Optimization and Its Applications
  year: 2007
  ident: 633_CR34
– volume-title: Introduction to Algorithms
  year: 2009
  ident: 633_CR9
– start-page: 515
  volume-title: Kernelization. Theory of Parameterized Preprocessing
  year: 2019
  ident: 633_CR16
– volume-title: Algorithms in Real Algebraic Geometry
  year: 2009
  ident: 633_CR6
– ident: 633_CR24
  doi: 10.1007/978-3-319-11421-7_4
– volume: 82
  start-page: 102
  issue: 1
  year: 2001
  ident: 633_CR28
  publication-title: J. Comb. Theory Ser. B
  doi: 10.1006/jctb.2000.2026
– volume: 18
  start-page: 111
  issue: 1
  year: 1997
  ident: 633_CR30
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/PL00009306
– volume: 8
  start-page: 273
  issue: 3
  year: 1965
  ident: 633_CR32
  publication-title: Can. Math. Bull.
  doi: 10.4153/CMB-1965-018-9
– volume: 32
  start-page: 130
  issue: 1
  year: 1985
  ident: 633_CR21
  publication-title: J. ACM
  doi: 10.1145/2455.214106
– volume-title: Computers and Intractability: A Guide to the Theory of NP-Completeness
  year: 1979
  ident: 633_CR18
– ident: 633_CR5
  doi: 10.1137/1.9781611973402.2
– volume-title: Strena Seu de Nive Sexangula
  year: 1611
  ident: 633_CR23
SSID ssj0004908
Score 2.381266
Snippet The problem of packing of equal disks (or circles) into a rectangle is a fundamental geometric problem. (By a packing here we mean an arrangement of disks in a...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1596
SubjectTerms Algorithms
Combinatorics
Computational Mathematics and Numerical Analysis
Disks
Mathematics
Mathematics and Statistics
Packaging
Rectangles
SummonAdditionalLinks – databaseName: SpringerLink Journals
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED9k-qAPTudXdUoFEUUDbdK16aPohi8OmR_srbRJpsPRybr593vJ2o45FfS5l7a53OV--bjfAZw4SgRKUZ8gVJbEkyLRycohkUKwnhvzEJuZYhNBu8273fA-TwrLitvuxZGkmanLZDfDFkcwphAdVxnBNc8yhjuu3bHz8DzLhgxNHTptakSTleSpMt-_Yz4cLWDMxauSX85LTRhqVf_XgQ1Yz2GnfTW1k01YUmkNqkVJBzv38Bqs3ZU0rtkWnJ511DkuqvV2ut3U-Zf2TT97y-x-Oh7aiDgRWb4M1DY8tZqP17ckL6xAhBc0xgQXhbFyAoQ2UsQu8z1HhGEP1eZRLwik5EESxKFQ1OmhoSEGVE4PI5wrJKUSZ1a2A5V0mKo9sCmPRcOXnlKx8njic5b4gguUdxMqHWGBW-g3EjnruC5-MYhKvmSjlgjVEhm1RK4FF2Wb9ynnxq_S9WLYotz_sojp7bWGphKy4Lh8jJ6jj0PiVA0nWobpBW_YoBbsTke5_BwzxHzct4DPjX8poFm555-k_VfDzo0QWxf5YhZcFmYw-6-fu7H_N_EDWKXakszFmjpUxqOJOoQV8THuZ6Mj4xCfc8oCdA
  priority: 102
  providerName: Springer Nature
Title (Re)packing Equal Disks into Rectangle
URI https://link.springer.com/article/10.1007/s00454-024-00633-1
https://www.ncbi.nlm.nih.gov/pubmed/39559786
https://www.proquest.com/docview/3129051311
https://www.proquest.com/docview/3130210952
https://pubmed.ncbi.nlm.nih.gov/PMC11569013
Volume 72
WOSCitedRecordID wos001180879800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink Journals
  customDbUrl:
  eissn: 1432-0444
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004908
  issn: 0179-5376
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xjQd4YDC-AqMKEkIgsIjtJHaeEB-dkNBK1QGqeIkS290qpnQsHX8_d66TqkzshZd78VmJz2ff-ez7HcCzxBnlnMgZusqWpdbUlKxcMGuMnPFKF9jNF5tQo5GeTotxCLi14Vlltyf6jdouDMXI30gKmGQEDvP27BejqlF0uxpKaGzBDheCk55_VmydF1n4inSkdIxgS0LSjE-d89hzDC0UIystGd80TJe8zcuPJv-6OfUG6WD3f4dyG24FVzR-t9KdO3DNNXuw25V5iMOq34Obhz20a3sXnr-YuJd40KYQezyknMz447z92cbzZrmI0QtFb_P41N2DbwfDrx8-sVBsgZlUZUuGB8XKJQrdHWsqLvM0MUUxQwGmIlXKWq1qVRXGiWSGyod-oUtmaPW4sUJY3G3lfdhuFo17CLHQlclymzpXuVTXuZZ1brRBfl4Lm5gIeCfp0gQkciqIcVr2GMp-dkqcndLPTskjeNX3OVvhcFzJvd9Jvgxrsi3XYo_gad-Mq4muSKrGLS6IR9IhuMhEBA9W891_TnqwPp1HoDc0oWcgpO7NlmZ-4hG70e2mwl8ygted0qz_69_DeHT1MB7DDUEK7B_X7MP28vzCPYHr5vdy3p4PYEtN9QB23g9H48nALwykh-KLp2Oi6gjpOPuBdHL0_Q8HnxOV
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQ9UCiPBgoECRAILBI7m9gHhBBt1artCkEr9RaSsRdWrbLbZgviT_EbmfEmWS0VvfXA2Xbix-d52J5vAJ5FDjPnZCrIVLYisVhysLIRFlEN4kIbauaTTWT9vj48NJ8W4HcbC8PPKluZ6AW1HSGfkb9VfGDSY3KY9-MTwVmj-Ha1TaExhcWO-_WTXLb63fY6re9zKTc39j9uiSargMAk600EeUSFizLS6xaLWKVJhMYMTKQTmWSZtTors8Kgk9GAZpkMIBcNSLzHaKW0JFYUffcKXE1Y-vungl9mcZjGZ8BjkAumSWmCdHyonue6E6QRBVsFSsTzivCcdXv-keZfN7VeAW4u_29TdwtuNqZ2-GG6N27DgqtWYLlNYxE2Um0FlvY66tr6Drx4-dm9GhfIVwjhBsechuvD-qgOh9VkFJKVTdb0t2N3Fw4upe_3YLEaVW4VQqkL7KU2ca5wiS5TrcoUNVL9uJQ2wgDidmVzbJjWOeHHcd5xRHs05ISG3KMhjwN43bUZT3lGLqy91q503sicOp8tcwBPu2KSFnwFVFRudMZ1FDv5picDuD_FV_c75ckIdRqAnkNeV4GZyOdLquF3z0hObgUnNlMBvGlBOuvXv4fx4OJhPIHrW_t7u_nudn_nIdyQvHn8Q6I1WJycnrlHcA1_TIb16WO_DUP4etng_QO9vWfd
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VghAcKJRXoECQAIHAamInsX1ACLFdURVWK0SliktIbAdWVNml2YL4a_w6ZrxJVktFbz1wtp348Xk84_F8A_AockY6xzOGqrJliTUlBStrZo0RVVwojc18sgk5GqmDAz1eg99dLAw9q-xkohfUdmrojnxb0IVJSuQw21X7LGI8GL6afWeUQYo8rV06jQVE9tyvn2i-NS93B7jWjzkf7nx885a1GQaYSWQ6Z2gdFS6SeMZbU8QiSyKjdaUjlfBESmuVLGWhjeNRhTOOypCLKhT1sbGcWxQxAr97Ds5LtDHJ8Bunn5YxmdpnwyPAM6JMaQN2fNie571jeDoy0hAEi1cPxROa7skHm395bf1hONz4n6fxKlxpVfDw9WLPXIM1V2_CRpfeImyl3SZcft9T2jbX4cnTD-7ZrDDkWgh3KBY1HEyab004qefTELVv1LK_HLobsH8mfb8J6_W0drch5KowaWYT5wqXqDJTosyMMlg_LrmNTABxt8q5aRnYKRHIYd5zR3tk5IiM3CMjjwN43reZLfhHTq291a163sqiJl8ueQAP-2KUIuQaKmo3PaY6gox_nfIAbi2w1v9OeJJClQWgVlDYVyCG8tWSevLVM5WjuUEJz0QALzrALvv172HcOX0YD-AiYjZ_tzvauwuXOO0j_75oC9bnR8fuHlwwP-aT5ui-35EhfD5r7P4BCktwwA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%28Re%29packing+Equal+Disks+into+Rectangle&rft.jtitle=Discrete+%26+computational+geometry&rft.au=Fomin%2C+Fedor+V&rft.au=Golovach%2C+Petr+A&rft.au=Inamdar%2C+Tanmay&rft.au=Saurabh%2C+Saket&rft.date=2024-12-01&rft.pub=Springer+Nature+B.V&rft.issn=0179-5376&rft.eissn=1432-0444&rft.volume=72&rft.issue=4&rft.spage=1596&rft.epage=1629&rft_id=info:doi/10.1007%2Fs00454-024-00633-1&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0179-5376&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0179-5376&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0179-5376&client=summon