Polynomial time solvable algorithms to a class of unconstrained and linearly constrained binary quadratic programming problems

Binary quadratic programming (BQP) is a typical integer programming problem widely applied in the field of signal processing, economy, management and engineering. However, it is NP-hard and lacks efficient algorithms. Due to this reason, in this paper, some novel polynomial algorithms are proposed t...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neurocomputing (Amsterdam) Ročník 198; s. 171 - 179
Hlavní autoři: Gu, Shenshen, Cui, Rui, Peng, Jiao
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 19.07.2016
Témata:
ISSN:0925-2312, 1872-8286
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Binary quadratic programming (BQP) is a typical integer programming problem widely applied in the field of signal processing, economy, management and engineering. However, it is NP-hard and lacks efficient algorithms. Due to this reason, in this paper, some novel polynomial algorithms are proposed to solve a class of unconstrained and linearly constrained binary quadratic programming problems. We first deduce the polynomial time solvable algorithms to the unconstrained binary quadratic programming problems with Q being a seven-diagonal matrix (UBQP7) and a five-diagonal matrix (UBQP5) respectively with two different approaches. Then, the algorithm to unconstrained problem is combined with the dynamic programming method to solve the linearly constrained binary quadratic programming problem with Q being a five-diagonal matrix (LCBQP5). In addition, the polynomial solvable feature of these algorithms is analyzed and some specific examples are presented to illustrate these new algorithms. Lastly, we demonstrate their polynomial feature as well as their high efficiency.
AbstractList Binary quadratic programming (BQP) is a typical integer programming problem widely applied in the field of signal processing, economy, management and engineering. However, it is NP-hard and lacks efficient algorithms. Due to this reason, in this paper, some novel polynomial algorithms are proposed to solve a class of unconstrained and linearly constrained binary quadratic programming problems. We first deduce the polynomial time solvable algorithms to the unconstrained binary quadratic programming problems with Q being a seven-diagonal matrix (UBQP7) and a five-diagonal matrix (UBQP5) respectively with two different approaches. Then, the algorithm to unconstrained problem is combined with the dynamic programming method to solve the linearly constrained binary quadratic programming problem with Q being a five-diagonal matrix (LCBQP5). In addition, the polynomial solvable feature of these algorithms is analyzed and some specific examples are presented to illustrate these new algorithms. Lastly, we demonstrate their polynomial feature as well as their high efficiency.
Binary quadratic programming (BQP) is a typical integer programming problem widely applied in the field of signal processing, economy, management and engineering. However, it is NP-hard and lacks efficient algorithms. Due to this reason, in this paper, some novel polynomial algorithms are proposed to solve a class of unconstrained and linearly constrained binary quadratic programming problems. We first deduce the polynomial time solvable algorithms to the unconstrained binary quadratic programming problems with Q being a seven-diagonal matrix (UBQP7)(UBQP7) and a five-diagonal matrix (UBQP5)(UBQP5) respectively with two different approaches. Then, the algorithm to unconstrained problem is combined with the dynamic programming method to solve the linearly constrained binary quadratic programming problem with Q being a five-diagonal matrix (LCBQP5)(LCBQP5). In addition, the polynomial solvable feature of these algorithms is analyzed and some specific examples are presented to illustrate these new algorithms. Lastly, we demonstrate their polynomial feature as well as their high efficiency.
Author Gu, Shenshen
Peng, Jiao
Cui, Rui
Author_xml – sequence: 1
  givenname: Shenshen
  surname: Gu
  fullname: Gu, Shenshen
  email: gushenshen@shu.edu.cn
– sequence: 2
  givenname: Rui
  surname: Cui
  fullname: Cui, Rui
– sequence: 3
  givenname: Jiao
  surname: Peng
  fullname: Peng, Jiao
BookMark eNqFkE9r3DAQxUVJoJs03yAHHXOxK8mWbeVQKKFJA4H20JyFLI23WvQnkeTAXvrZq2V7CDk0pxmYee_xfmfoJMQACF1S0lJCh8-7NsCqo28ZobwloqUd-YA2dBpZM7FpOEEbIhhvWEfZR3SW844QOlImNujPz-j2IXqrHC7WA87RvajZAVZuG5Mtv33GJWKFtVM547jgNegYcknKBjBYBYNd3VRye_z6MNug0h4_r8okVazGTyluk_Lehu1hrxk-f0Kni3IZLv7Nc_R4--3Xzffm4cfd_c3Xh0b3Iy8N42QGumjC-5HwiQ58NKYH082carFQGPhMxGDINCjO-4kZYNAJwWYmBDWmO0dXR98a_LxCLtLbrME5FSCuWdKJVeupG7r6en181SnmnGCR2pZaIIZDMycpkQfocieP0OUBuiRCVuhV3L8RPyXrK4f3ZF-OMqgMXiwkmbWFoMHYBLpIE-3_Df4CkB2jbQ
CitedBy_id crossref_primary_10_1007_s13160_020_00416_0
crossref_primary_10_3390_math8010138
crossref_primary_10_3390_app10175785
Cites_doi 10.1007/978-3-540-72792-7_23
10.1007/s10107-005-0637-9
10.1287/mnsc.41.4.704
10.1287/mnsc.26.3.282
10.1016/0166-218X(90)90142-Y
10.1007/BF01587084
10.1007/BF02247879
10.1007/BF01096724
10.1007/BF01580072
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright_xml – notice: 2016 Elsevier B.V.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.neucom.2015.09.130
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Economics
EISSN 1872-8286
EndPage 179
ExternalDocumentID 10_1016_j_neucom_2015_09_130
S0925231216003301
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c475t-250be1fc05470581657dd4ed3b51c9f1e65b096d086a55482de2e3992b2991dd3
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000377230300021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Sun Nov 09 10:30:45 EST 2025
Sat Nov 29 07:08:15 EST 2025
Tue Nov 18 21:49:07 EST 2025
Fri Feb 23 02:28:31 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Polynomial time solvable algorithm
Binary quadratic programming
Dynamic programming
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c475t-250be1fc05470581657dd4ed3b51c9f1e65b096d086a55482de2e3992b2991dd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1825478363
PQPubID 23500
PageCount 9
ParticipantIDs proquest_miscellaneous_1825478363
crossref_citationtrail_10_1016_j_neucom_2015_09_130
crossref_primary_10_1016_j_neucom_2015_09_130
elsevier_sciencedirect_doi_10_1016_j_neucom_2015_09_130
PublicationCentury 2000
PublicationDate 2016-07-19
PublicationDateYYYYMMDD 2016-07-19
PublicationDate_xml – month: 07
  year: 2016
  text: 2016-07-19
  day: 19
PublicationDecade 2010
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Helmberg, Rendl (bib8) 1998; 82
Mcbride, Yormark (bib2) 1980; 26
Barahona, Jünger, Reinelt (bib6) 1989; 44
Pardalos, Rodgers (bib9) 1990; 45
Phillips, Rosen (bib3) 1994; 4
Li, Sun (bib5) 2006
Hammer, Rudeanu (bib11) 1968
Crama, Hansen, Jaumard (bib12) 1990; 29
Billionnet, Elloumi (bib7) 2007; 109
Rendl, Rinaldi, Wiegele (bib10) 2007; 4513
Garey, Johnson (bib1) 1979
Gu (bib13) 2011; 3
Chardaire, Sutter (bib4) 1995; 41
Barahona (10.1016/j.neucom.2015.09.130_bib6) 1989; 44
Mcbride (10.1016/j.neucom.2015.09.130_bib2) 1980; 26
Rendl (10.1016/j.neucom.2015.09.130_bib10) 2007; 4513
Chardaire (10.1016/j.neucom.2015.09.130_bib4) 1995; 41
Billionnet (10.1016/j.neucom.2015.09.130_bib7) 2007; 109
Gu (10.1016/j.neucom.2015.09.130_bib13) 2011; 3
Helmberg (10.1016/j.neucom.2015.09.130_bib8) 1998; 82
Li (10.1016/j.neucom.2015.09.130_bib5) 2006
Garey (10.1016/j.neucom.2015.09.130_bib1) 1979
Pardalos (10.1016/j.neucom.2015.09.130_bib9) 1990; 45
Crama (10.1016/j.neucom.2015.09.130_bib12) 1990; 29
Hammer (10.1016/j.neucom.2015.09.130_bib11) 1968
Phillips (10.1016/j.neucom.2015.09.130_bib3) 1994; 4
References_xml – volume: 44
  start-page: 127
  year: 1989
  end-page: 137
  ident: bib6
  article-title: Experiments in quadratic 0–1 programming
  publication-title: Math. Program.
– year: 1979
  ident: bib1
  article-title: Computers and Intractability: A Guide to the Theory of NP-Completeness
– year: 2006
  ident: bib5
  article-title: Nonlinear Integer Programming
– volume: 26
  start-page: 282
  year: 1980
  end-page: 296
  ident: bib2
  article-title: An implicit enumeration algorithm for quadratic integer programming
  publication-title: Manag. Sci.
– volume: 109
  start-page: 55
  year: 2007
  end-page: 68
  ident: bib7
  article-title: Using a mixed integer quadratic programming solver for the unconstrained quadratic 0–1 problem
  publication-title: Math. Program.
– volume: 4513
  start-page: 295
  year: 2007
  end-page: 309
  ident: bib10
  article-title: Solving max-cut to optimality by intersecting semidefinite and polyhedral relaxations
  publication-title: Lect. Notes Comput. Sci.
– volume: 29
  start-page: 171
  year: 1990
  end-page: 185
  ident: bib12
  article-title: The basic algorithm for pseudo-Boolean programming revisited
  publication-title: Discret. Appl. Math.
– volume: 4
  start-page: 229
  year: 1994
  end-page: 241
  ident: bib3
  article-title: A quadratic assignment formulation of the molecular conformation problem
  publication-title: J. Glob. Optim.
– volume: 45
  start-page: 131
  year: 1990
  end-page: 144
  ident: bib9
  article-title: Computational aspects of a branch-and-bound algorithm for quadratic zero-one programming
  publication-title: Computing
– year: 1968
  ident: bib11
  article-title: Boolean Methods in Operations Research and Related Areas
– volume: 41
  start-page: 704
  year: 1995
  end-page: 712
  ident: bib4
  article-title: A decomposition method for quadratic zero-one programming
  publication-title: Manag. Sci.
– volume: 82
  start-page: 291
  year: 1998
  end-page: 315
  ident: bib8
  article-title: Solving quadratic (0,1)-problems by semidefinite programs and cutting planes
  publication-title: Math. Program.
– volume: 3
  start-page: 65
  year: 2011
  end-page: 72
  ident: bib13
  article-title: A polynomial time solvable algorithm to linearly constrained binary quadratic programming problems with Q being a tri-diagonal matrix
  publication-title: Adv. Inf. Sci. Serv. Sci.
– year: 2006
  ident: 10.1016/j.neucom.2015.09.130_bib5
– volume: 3
  start-page: 65
  issue: 6
  year: 2011
  ident: 10.1016/j.neucom.2015.09.130_bib13
  article-title: A polynomial time solvable algorithm to linearly constrained binary quadratic programming problems with Q being a tri-diagonal matrix
  publication-title: Adv. Inf. Sci. Serv. Sci.
– year: 1968
  ident: 10.1016/j.neucom.2015.09.130_bib11
– volume: 4513
  start-page: 295
  year: 2007
  ident: 10.1016/j.neucom.2015.09.130_bib10
  article-title: Solving max-cut to optimality by intersecting semidefinite and polyhedral relaxations
  publication-title: Lect. Notes Comput. Sci.
  doi: 10.1007/978-3-540-72792-7_23
– volume: 109
  start-page: 55
  year: 2007
  ident: 10.1016/j.neucom.2015.09.130_bib7
  article-title: Using a mixed integer quadratic programming solver for the unconstrained quadratic 0–1 problem
  publication-title: Math. Program.
  doi: 10.1007/s10107-005-0637-9
– volume: 41
  start-page: 704
  year: 1995
  ident: 10.1016/j.neucom.2015.09.130_bib4
  article-title: A decomposition method for quadratic zero-one programming
  publication-title: Manag. Sci.
  doi: 10.1287/mnsc.41.4.704
– volume: 26
  start-page: 282
  year: 1980
  ident: 10.1016/j.neucom.2015.09.130_bib2
  article-title: An implicit enumeration algorithm for quadratic integer programming
  publication-title: Manag. Sci.
  doi: 10.1287/mnsc.26.3.282
– volume: 29
  start-page: 171
  year: 1990
  ident: 10.1016/j.neucom.2015.09.130_bib12
  article-title: The basic algorithm for pseudo-Boolean programming revisited
  publication-title: Discret. Appl. Math.
  doi: 10.1016/0166-218X(90)90142-Y
– year: 1979
  ident: 10.1016/j.neucom.2015.09.130_bib1
– volume: 44
  start-page: 127
  year: 1989
  ident: 10.1016/j.neucom.2015.09.130_bib6
  article-title: Experiments in quadratic 0–1 programming
  publication-title: Math. Program.
  doi: 10.1007/BF01587084
– volume: 45
  start-page: 131
  year: 1990
  ident: 10.1016/j.neucom.2015.09.130_bib9
  article-title: Computational aspects of a branch-and-bound algorithm for quadratic zero-one programming
  publication-title: Computing
  doi: 10.1007/BF02247879
– volume: 4
  start-page: 229
  year: 1994
  ident: 10.1016/j.neucom.2015.09.130_bib3
  article-title: A quadratic assignment formulation of the molecular conformation problem
  publication-title: J. Glob. Optim.
  doi: 10.1007/BF01096724
– volume: 82
  start-page: 291
  year: 1998
  ident: 10.1016/j.neucom.2015.09.130_bib8
  article-title: Solving quadratic (0,1)-problems by semidefinite programs and cutting planes
  publication-title: Math. Program.
  doi: 10.1007/BF01580072
SSID ssj0017129
Score 2.1812172
Snippet Binary quadratic programming (BQP) is a typical integer programming problem widely applied in the field of signal processing, economy, management and...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 171
SubjectTerms Algorithms
Binary quadratic programming
Constraints
Dynamic programming
Economics
Integer programming
Management
Polynomial time solvable algorithm
Polynomials
Quadratic programming
Signal processing
Title Polynomial time solvable algorithms to a class of unconstrained and linearly constrained binary quadratic programming problems
URI https://dx.doi.org/10.1016/j.neucom.2015.09.130
https://www.proquest.com/docview/1825478363
Volume 198
WOSCitedRecordID wos000377230300021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtswECXcpIdeuhdNN7BAb4EK0Ra1HI0g3VAEQZECvgncXDuwpdSWjOSSX-gvd4akFido0xx6EQTJoiTP08zjcBZC3oVGsCSNVDCUMgwiJeJAykwGYIy0FpEGC2gThb8mR0fpZJIdDwa_mlyYzSIpivT8PDv7r6KGYyBsTJ29hbjbQeEA7IPQYQtih-0_Cf64XFxgrrHNB1mafbjbxuZHicWPcjWvZktb1AGTIoE4I1kE04YsEZtFGFu5dR-5p6183D8hXeruz1rola3z6mO7li6h3TamWffJri38oWzbCO-QGC-xLoNGELYOiI-19cDOYD496_LSDmobZvCtnnfK2wcPz0XZ91WwGJ2gXiN6p-OQB8Aot_Wva0PtNShzHVm8MWau08w1Pe9cDqfvC1Nj0A_ci2O5WubXeLbKal8xd20QYhPfdpq7UXIcJQ8zXOG7Q3aHCc9ATe6OPx9OvrQLUwkbuvKN_kWabEwbMnj9af7Edq7YfUtmTh6S-34WQscOPY_IwBSPyYOmwwf1Cv8JuezARBFMtAET7cBEq5IKasFEyyndAhMFMNEGTLR_woGJtmCiPTDRBkxPyfcPhycHnwLfsSNQUcKrAPi0NGyqYB6QhDxlMU-0joweSc5UNmUm5hLmzBrm0QJ4LOgDMzRYGlkCK2Jaj56RnaIszHNCBVPY6YELwUUkYp1GIZMwhEpFqhIp9sio-Wdz5cvZ4yss8r_JdY8E7VVnrpzLDb9PGqHlnpI6qpkDEm-48m0j4xw0Ni7DicKU9Tpn6JTB5KnRi1s-zUtyr_uqXpGdalWb1-Su2lTz9eqNh-pvjUrClg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polynomial+time+solvable+algorithms+to+a+class+of+unconstrained+and+linearly+constrained+binary+quadratic+programming+problems&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Gu%2C+Shenshen&rft.au=Cui%2C+Rui&rft.au=Peng%2C+Jiao&rft.date=2016-07-19&rft.issn=0925-2312&rft.volume=198&rft.spage=171&rft.epage=179&rft_id=info:doi/10.1016%2Fj.neucom.2015.09.130&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2015_09_130
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon