Polynomial time solvable algorithms to a class of unconstrained and linearly constrained binary quadratic programming problems
Binary quadratic programming (BQP) is a typical integer programming problem widely applied in the field of signal processing, economy, management and engineering. However, it is NP-hard and lacks efficient algorithms. Due to this reason, in this paper, some novel polynomial algorithms are proposed t...
Uloženo v:
| Vydáno v: | Neurocomputing (Amsterdam) Ročník 198; s. 171 - 179 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
19.07.2016
|
| Témata: | |
| ISSN: | 0925-2312, 1872-8286 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Binary quadratic programming (BQP) is a typical integer programming problem widely applied in the field of signal processing, economy, management and engineering. However, it is NP-hard and lacks efficient algorithms. Due to this reason, in this paper, some novel polynomial algorithms are proposed to solve a class of unconstrained and linearly constrained binary quadratic programming problems. We first deduce the polynomial time solvable algorithms to the unconstrained binary quadratic programming problems with Q being a seven-diagonal matrix (UBQP7) and a five-diagonal matrix (UBQP5) respectively with two different approaches. Then, the algorithm to unconstrained problem is combined with the dynamic programming method to solve the linearly constrained binary quadratic programming problem with Q being a five-diagonal matrix (LCBQP5). In addition, the polynomial solvable feature of these algorithms is analyzed and some specific examples are presented to illustrate these new algorithms. Lastly, we demonstrate their polynomial feature as well as their high efficiency. |
|---|---|
| AbstractList | Binary quadratic programming (BQP) is a typical integer programming problem widely applied in the field of signal processing, economy, management and engineering. However, it is NP-hard and lacks efficient algorithms. Due to this reason, in this paper, some novel polynomial algorithms are proposed to solve a class of unconstrained and linearly constrained binary quadratic programming problems. We first deduce the polynomial time solvable algorithms to the unconstrained binary quadratic programming problems with Q being a seven-diagonal matrix (UBQP7) and a five-diagonal matrix (UBQP5) respectively with two different approaches. Then, the algorithm to unconstrained problem is combined with the dynamic programming method to solve the linearly constrained binary quadratic programming problem with Q being a five-diagonal matrix (LCBQP5). In addition, the polynomial solvable feature of these algorithms is analyzed and some specific examples are presented to illustrate these new algorithms. Lastly, we demonstrate their polynomial feature as well as their high efficiency. Binary quadratic programming (BQP) is a typical integer programming problem widely applied in the field of signal processing, economy, management and engineering. However, it is NP-hard and lacks efficient algorithms. Due to this reason, in this paper, some novel polynomial algorithms are proposed to solve a class of unconstrained and linearly constrained binary quadratic programming problems. We first deduce the polynomial time solvable algorithms to the unconstrained binary quadratic programming problems with Q being a seven-diagonal matrix (UBQP7)(UBQP7) and a five-diagonal matrix (UBQP5)(UBQP5) respectively with two different approaches. Then, the algorithm to unconstrained problem is combined with the dynamic programming method to solve the linearly constrained binary quadratic programming problem with Q being a five-diagonal matrix (LCBQP5)(LCBQP5). In addition, the polynomial solvable feature of these algorithms is analyzed and some specific examples are presented to illustrate these new algorithms. Lastly, we demonstrate their polynomial feature as well as their high efficiency. |
| Author | Gu, Shenshen Peng, Jiao Cui, Rui |
| Author_xml | – sequence: 1 givenname: Shenshen surname: Gu fullname: Gu, Shenshen email: gushenshen@shu.edu.cn – sequence: 2 givenname: Rui surname: Cui fullname: Cui, Rui – sequence: 3 givenname: Jiao surname: Peng fullname: Peng, Jiao |
| BookMark | eNqFkE9r3DAQxUVJoJs03yAHHXOxK8mWbeVQKKFJA4H20JyFLI23WvQnkeTAXvrZq2V7CDk0pxmYee_xfmfoJMQACF1S0lJCh8-7NsCqo28ZobwloqUd-YA2dBpZM7FpOEEbIhhvWEfZR3SW844QOlImNujPz-j2IXqrHC7WA87RvajZAVZuG5Mtv33GJWKFtVM547jgNegYcknKBjBYBYNd3VRye_z6MNug0h4_r8okVazGTyluk_Lehu1hrxk-f0Kni3IZLv7Nc_R4--3Xzffm4cfd_c3Xh0b3Iy8N42QGumjC-5HwiQ58NKYH082carFQGPhMxGDINCjO-4kZYNAJwWYmBDWmO0dXR98a_LxCLtLbrME5FSCuWdKJVeupG7r6en181SnmnGCR2pZaIIZDMycpkQfocieP0OUBuiRCVuhV3L8RPyXrK4f3ZF-OMqgMXiwkmbWFoMHYBLpIE-3_Df4CkB2jbQ |
| CitedBy_id | crossref_primary_10_1007_s13160_020_00416_0 crossref_primary_10_3390_math8010138 crossref_primary_10_3390_app10175785 |
| Cites_doi | 10.1007/978-3-540-72792-7_23 10.1007/s10107-005-0637-9 10.1287/mnsc.41.4.704 10.1287/mnsc.26.3.282 10.1016/0166-218X(90)90142-Y 10.1007/BF01587084 10.1007/BF02247879 10.1007/BF01096724 10.1007/BF01580072 |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier B.V. |
| Copyright_xml | – notice: 2016 Elsevier B.V. |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.neucom.2015.09.130 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Economics |
| EISSN | 1872-8286 |
| EndPage | 179 |
| ExternalDocumentID | 10_1016_j_neucom_2015_09_130 S0925231216003301 |
| GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB HLZ HVGLF HZ~ R2- SBC SEW WUQ XPP ~HD 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c475t-250be1fc05470581657dd4ed3b51c9f1e65b096d086a55482de2e3992b2991dd3 |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000377230300021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0925-2312 |
| IngestDate | Sun Nov 09 10:30:45 EST 2025 Sat Nov 29 07:08:15 EST 2025 Tue Nov 18 21:49:07 EST 2025 Fri Feb 23 02:28:31 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Polynomial time solvable algorithm Binary quadratic programming Dynamic programming |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c475t-250be1fc05470581657dd4ed3b51c9f1e65b096d086a55482de2e3992b2991dd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1825478363 |
| PQPubID | 23500 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_1825478363 crossref_citationtrail_10_1016_j_neucom_2015_09_130 crossref_primary_10_1016_j_neucom_2015_09_130 elsevier_sciencedirect_doi_10_1016_j_neucom_2015_09_130 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-07-19 |
| PublicationDateYYYYMMDD | 2016-07-19 |
| PublicationDate_xml | – month: 07 year: 2016 text: 2016-07-19 day: 19 |
| PublicationDecade | 2010 |
| PublicationTitle | Neurocomputing (Amsterdam) |
| PublicationYear | 2016 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Helmberg, Rendl (bib8) 1998; 82 Mcbride, Yormark (bib2) 1980; 26 Barahona, Jünger, Reinelt (bib6) 1989; 44 Pardalos, Rodgers (bib9) 1990; 45 Phillips, Rosen (bib3) 1994; 4 Li, Sun (bib5) 2006 Hammer, Rudeanu (bib11) 1968 Crama, Hansen, Jaumard (bib12) 1990; 29 Billionnet, Elloumi (bib7) 2007; 109 Rendl, Rinaldi, Wiegele (bib10) 2007; 4513 Garey, Johnson (bib1) 1979 Gu (bib13) 2011; 3 Chardaire, Sutter (bib4) 1995; 41 Barahona (10.1016/j.neucom.2015.09.130_bib6) 1989; 44 Mcbride (10.1016/j.neucom.2015.09.130_bib2) 1980; 26 Rendl (10.1016/j.neucom.2015.09.130_bib10) 2007; 4513 Chardaire (10.1016/j.neucom.2015.09.130_bib4) 1995; 41 Billionnet (10.1016/j.neucom.2015.09.130_bib7) 2007; 109 Gu (10.1016/j.neucom.2015.09.130_bib13) 2011; 3 Helmberg (10.1016/j.neucom.2015.09.130_bib8) 1998; 82 Li (10.1016/j.neucom.2015.09.130_bib5) 2006 Garey (10.1016/j.neucom.2015.09.130_bib1) 1979 Pardalos (10.1016/j.neucom.2015.09.130_bib9) 1990; 45 Crama (10.1016/j.neucom.2015.09.130_bib12) 1990; 29 Hammer (10.1016/j.neucom.2015.09.130_bib11) 1968 Phillips (10.1016/j.neucom.2015.09.130_bib3) 1994; 4 |
| References_xml | – volume: 44 start-page: 127 year: 1989 end-page: 137 ident: bib6 article-title: Experiments in quadratic 0–1 programming publication-title: Math. Program. – year: 1979 ident: bib1 article-title: Computers and Intractability: A Guide to the Theory of NP-Completeness – year: 2006 ident: bib5 article-title: Nonlinear Integer Programming – volume: 26 start-page: 282 year: 1980 end-page: 296 ident: bib2 article-title: An implicit enumeration algorithm for quadratic integer programming publication-title: Manag. Sci. – volume: 109 start-page: 55 year: 2007 end-page: 68 ident: bib7 article-title: Using a mixed integer quadratic programming solver for the unconstrained quadratic 0–1 problem publication-title: Math. Program. – volume: 4513 start-page: 295 year: 2007 end-page: 309 ident: bib10 article-title: Solving max-cut to optimality by intersecting semidefinite and polyhedral relaxations publication-title: Lect. Notes Comput. Sci. – volume: 29 start-page: 171 year: 1990 end-page: 185 ident: bib12 article-title: The basic algorithm for pseudo-Boolean programming revisited publication-title: Discret. Appl. Math. – volume: 4 start-page: 229 year: 1994 end-page: 241 ident: bib3 article-title: A quadratic assignment formulation of the molecular conformation problem publication-title: J. Glob. Optim. – volume: 45 start-page: 131 year: 1990 end-page: 144 ident: bib9 article-title: Computational aspects of a branch-and-bound algorithm for quadratic zero-one programming publication-title: Computing – year: 1968 ident: bib11 article-title: Boolean Methods in Operations Research and Related Areas – volume: 41 start-page: 704 year: 1995 end-page: 712 ident: bib4 article-title: A decomposition method for quadratic zero-one programming publication-title: Manag. Sci. – volume: 82 start-page: 291 year: 1998 end-page: 315 ident: bib8 article-title: Solving quadratic (0,1)-problems by semidefinite programs and cutting planes publication-title: Math. Program. – volume: 3 start-page: 65 year: 2011 end-page: 72 ident: bib13 article-title: A polynomial time solvable algorithm to linearly constrained binary quadratic programming problems with Q being a tri-diagonal matrix publication-title: Adv. Inf. Sci. Serv. Sci. – year: 2006 ident: 10.1016/j.neucom.2015.09.130_bib5 – volume: 3 start-page: 65 issue: 6 year: 2011 ident: 10.1016/j.neucom.2015.09.130_bib13 article-title: A polynomial time solvable algorithm to linearly constrained binary quadratic programming problems with Q being a tri-diagonal matrix publication-title: Adv. Inf. Sci. Serv. Sci. – year: 1968 ident: 10.1016/j.neucom.2015.09.130_bib11 – volume: 4513 start-page: 295 year: 2007 ident: 10.1016/j.neucom.2015.09.130_bib10 article-title: Solving max-cut to optimality by intersecting semidefinite and polyhedral relaxations publication-title: Lect. Notes Comput. Sci. doi: 10.1007/978-3-540-72792-7_23 – volume: 109 start-page: 55 year: 2007 ident: 10.1016/j.neucom.2015.09.130_bib7 article-title: Using a mixed integer quadratic programming solver for the unconstrained quadratic 0–1 problem publication-title: Math. Program. doi: 10.1007/s10107-005-0637-9 – volume: 41 start-page: 704 year: 1995 ident: 10.1016/j.neucom.2015.09.130_bib4 article-title: A decomposition method for quadratic zero-one programming publication-title: Manag. Sci. doi: 10.1287/mnsc.41.4.704 – volume: 26 start-page: 282 year: 1980 ident: 10.1016/j.neucom.2015.09.130_bib2 article-title: An implicit enumeration algorithm for quadratic integer programming publication-title: Manag. Sci. doi: 10.1287/mnsc.26.3.282 – volume: 29 start-page: 171 year: 1990 ident: 10.1016/j.neucom.2015.09.130_bib12 article-title: The basic algorithm for pseudo-Boolean programming revisited publication-title: Discret. Appl. Math. doi: 10.1016/0166-218X(90)90142-Y – year: 1979 ident: 10.1016/j.neucom.2015.09.130_bib1 – volume: 44 start-page: 127 year: 1989 ident: 10.1016/j.neucom.2015.09.130_bib6 article-title: Experiments in quadratic 0–1 programming publication-title: Math. Program. doi: 10.1007/BF01587084 – volume: 45 start-page: 131 year: 1990 ident: 10.1016/j.neucom.2015.09.130_bib9 article-title: Computational aspects of a branch-and-bound algorithm for quadratic zero-one programming publication-title: Computing doi: 10.1007/BF02247879 – volume: 4 start-page: 229 year: 1994 ident: 10.1016/j.neucom.2015.09.130_bib3 article-title: A quadratic assignment formulation of the molecular conformation problem publication-title: J. Glob. Optim. doi: 10.1007/BF01096724 – volume: 82 start-page: 291 year: 1998 ident: 10.1016/j.neucom.2015.09.130_bib8 article-title: Solving quadratic (0,1)-problems by semidefinite programs and cutting planes publication-title: Math. Program. doi: 10.1007/BF01580072 |
| SSID | ssj0017129 |
| Score | 2.1812172 |
| Snippet | Binary quadratic programming (BQP) is a typical integer programming problem widely applied in the field of signal processing, economy, management and... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 171 |
| SubjectTerms | Algorithms Binary quadratic programming Constraints Dynamic programming Economics Integer programming Management Polynomial time solvable algorithm Polynomials Quadratic programming Signal processing |
| Title | Polynomial time solvable algorithms to a class of unconstrained and linearly constrained binary quadratic programming problems |
| URI | https://dx.doi.org/10.1016/j.neucom.2015.09.130 https://www.proquest.com/docview/1825478363 |
| Volume | 198 |
| WOSCitedRecordID | wos000377230300021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtswECXcpIdeuhdNN7BAb4EK0Ra1HI0g3VAEQZECvgncXDuwpdSWjOSSX-gvd4akFido0xx6EQTJoiTP08zjcBZC3oVGsCSNVDCUMgwiJeJAykwGYIy0FpEGC2gThb8mR0fpZJIdDwa_mlyYzSIpivT8PDv7r6KGYyBsTJ29hbjbQeEA7IPQYQtih-0_Cf64XFxgrrHNB1mafbjbxuZHicWPcjWvZktb1AGTIoE4I1kE04YsEZtFGFu5dR-5p6183D8hXeruz1rola3z6mO7li6h3TamWffJri38oWzbCO-QGC-xLoNGELYOiI-19cDOYD496_LSDmobZvCtnnfK2wcPz0XZ91WwGJ2gXiN6p-OQB8Aot_Wva0PtNShzHVm8MWau08w1Pe9cDqfvC1Nj0A_ci2O5WubXeLbKal8xd20QYhPfdpq7UXIcJQ8zXOG7Q3aHCc9ATe6OPx9OvrQLUwkbuvKN_kWabEwbMnj9af7Edq7YfUtmTh6S-34WQscOPY_IwBSPyYOmwwf1Cv8JuezARBFMtAET7cBEq5IKasFEyyndAhMFMNEGTLR_woGJtmCiPTDRBkxPyfcPhycHnwLfsSNQUcKrAPi0NGyqYB6QhDxlMU-0joweSc5UNmUm5hLmzBrm0QJ4LOgDMzRYGlkCK2Jaj56RnaIszHNCBVPY6YELwUUkYp1GIZMwhEpFqhIp9sio-Wdz5cvZ4yss8r_JdY8E7VVnrpzLDb9PGqHlnpI6qpkDEm-48m0j4xw0Ni7DicKU9Tpn6JTB5KnRi1s-zUtyr_uqXpGdalWb1-Su2lTz9eqNh-pvjUrClg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polynomial+time+solvable+algorithms+to+a+class+of+unconstrained+and+linearly+constrained+binary+quadratic+programming+problems&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Gu%2C+Shenshen&rft.au=Cui%2C+Rui&rft.au=Peng%2C+Jiao&rft.date=2016-07-19&rft.issn=0925-2312&rft.volume=198&rft.spage=171&rft.epage=179&rft_id=info:doi/10.1016%2Fj.neucom.2015.09.130&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2015_09_130 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |