Measuring the Efficiency of the Intraday Forex Market with a Universal Data Compression Algorithm
Universal compression algorithms can detect recurring patterns in any type of temporal data—including financial data—for the purpose of compression. The universal algorithms actually find a model of the data that can be used for either compression or prediction. We present a universal Variable Order...
Gespeichert in:
| Veröffentlicht in: | Computational economics Jg. 33; H. 2; S. 131 - 154 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Boston
Springer US
01.03.2009
Society for Computational Economics Springer Nature B.V |
| Schriftenreihe: | Computational Economics |
| Schlagworte: | |
| ISSN: | 0927-7099, 1572-9974 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Universal compression algorithms can detect recurring patterns in any type of temporal data—including financial data—for the purpose of compression. The universal algorithms actually find a model of the data that can be used for either compression or prediction. We present a universal Variable Order Markov (VOM) model and use it to test the weak form of the Efficient Market Hypothesis (EMH). The EMH is tested for 12 pairs of international intra-day currency exchange rates for one year series of 1, 5, 10, 15, 20, 25 and 30 min. Statistically significant compression is detected in all the time-series and the high frequency series are also predictable above random. However, the predictability of the model is not sufficient to generate a profitable trading strategy, thus, Forex market turns out to be efficient, at least most of the time. |
|---|---|
| Bibliographie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| ISSN: | 0927-7099 1572-9974 |
| DOI: | 10.1007/s10614-008-9153-3 |