Measuring the Efficiency of the Intraday Forex Market with a Universal Data Compression Algorithm
Universal compression algorithms can detect recurring patterns in any type of temporal data—including financial data—for the purpose of compression. The universal algorithms actually find a model of the data that can be used for either compression or prediction. We present a universal Variable Order...
Uložené v:
| Vydané v: | Computational economics Ročník 33; číslo 2; s. 131 - 154 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Boston
Springer US
01.03.2009
Society for Computational Economics Springer Nature B.V |
| Edícia: | Computational Economics |
| Predmet: | |
| ISSN: | 0927-7099, 1572-9974 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Universal compression algorithms can detect recurring patterns in any type of temporal data—including financial data—for the purpose of compression. The universal algorithms actually find a model of the data that can be used for either compression or prediction. We present a universal Variable Order Markov (VOM) model and use it to test the weak form of the Efficient Market Hypothesis (EMH). The EMH is tested for 12 pairs of international intra-day currency exchange rates for one year series of 1, 5, 10, 15, 20, 25 and 30 min. Statistically significant compression is detected in all the time-series and the high frequency series are also predictable above random. However, the predictability of the model is not sufficient to generate a profitable trading strategy, thus, Forex market turns out to be efficient, at least most of the time. |
|---|---|
| AbstractList | Universal compression algorithms can detect recurring patterns in any type of temporal data - including financial data - for the purpose of compression. The universal algorithms actually find a model of the data that can be used for either compression or prediction. We present a universal Variable Order Markov (VOM) model and use it to test the weak form of the Efficient Market Hypothesis (EMH). The EMH is tested for 12 pairs of international intra-day currency exchange rates for one year series of 1, 5, 10, 15, 20, 25 and 30 min. Statistically significant compression is detected in all the time-series and the high frequency series are also predictable above random. However, the predictability of the model is not sufficient to generate a profitable trading strategy, thus, Forex market turns out to be efficient, at least most of the time. [PUBLICATION ABSTRACT] Universal compression algorithms can detect recurring patterns in any type of temporal dataDLincluding financial dataDLfor the purpose of compression. The universal algorithms actually find a model of the data that can be used for either compression or prediction. We present a universal Variable Order Markov (VOM) model and use it to test the weak form of the Efficient Market Hypothesis (EMH). The EMH is tested for 12 pairs of international intra-day currency exchange rates for one year series of 1, 5, 10, 15, 20, 25 and 30_min. Statistically significant compression is detected in all the time-series and the high frequency series are also predictable above random. However, the predictability of the model is not sufficient to generate a profitable trading strategy, thus, Forex market turns out to be efficient, at least most of the time. Reprinted by permission of Springer Universal compression algorithms can detect recurring patterns in any type of temporal data—including financial data—for the purpose of compression. The universal algorithms actually find a model of the data that can be used for either compression or prediction. We present a universal Variable Order Markov (VOM) model and use it to test the weak form of the Efficient Market Hypothesis (EMH). The EMH is tested for 12 pairs of international intra-day currency exchange rates for one year series of 1, 5, 10, 15, 20, 25 and 30 min. Statistically significant compression is detected in all the time-series and the high frequency series are also predictable above random. However, the predictability of the model is not sufficient to generate a profitable trading strategy, thus, Forex market turns out to be efficient, at least most of the time. |
| Author | Shmilovici, Armin Ben-Gal, Irad Kahiri, Yoav Hauser, Shmuel |
| Author_xml | – sequence: 1 givenname: Armin surname: Shmilovici fullname: Shmilovici, Armin email: armin@bgumail.bgu.ac.il organization: Department of Information Systems, Ben-Gurion University – sequence: 2 givenname: Yoav surname: Kahiri fullname: Kahiri, Yoav organization: School of Management, Ben-Gurion University – sequence: 3 givenname: Irad surname: Ben-Gal fullname: Ben-Gal, Irad organization: Department of Industrial Engineering, Tel-Aviv University – sequence: 4 givenname: Shmuel surname: Hauser fullname: Hauser, Shmuel organization: ONO Academic College and School of Management, Ben-Gurion University |
| BackLink | http://econpapers.repec.org/article/kapcompec/v_3a33_3ay_3a2009_3ai_3a2_3ap_3a131-154.htm$$DView record in RePEc |
| BookMark | eNp9UcFu1DAQtVCR2C58ADeLA7fA2I7X8bFaWihqxYWeLeOddN0mdrC9Lfv3OASEVAkO47FG743mvXdKTkIMSMhrBu8YgHqfGWxY2wB0jWZSNOIZWTGpeKO1ak_ICjRXjQKtX5DTnO8AQDLOV8Reo82H5MMtLXuk533vncfgjjT2vyaXoSS7s0d6ERP-oNc23WOhj77sqaU3wT9gynagH2yxdBvHKWHOPgZ6NtzGVFHjS_K8t0PGV7_7mtxcnH_dfmquvny83J5dNa5VsjRcbKxymrF21_Gd5twJ_NYLwXZKcWh5D13nNr11UkuhNHcKEK3oLIJoe8HEmrxd9k4pfj9gLmb02eEw2IDxkI2Y1bPqzZq8eQK8i4cU6m2GMyklAG8r6PMCSjihM1Pyo01Hc28nV0XWyYMRVoj6HGtxAF2bn7-1plpMMMNka_ZlrMvUssylmHPC3jhfbKk2VW_9YBiYOUSzhGhqiGYO0YjKZE-Yfy75H4cvnDzNuWL6q-_fpJ8Bo68w |
| CitedBy_id | crossref_primary_10_1142_S2196888819500180 crossref_primary_10_1016_j_eswa_2015_12_028 crossref_primary_10_3233_AF_150052 crossref_primary_10_1007_s10614_022_10281_3 crossref_primary_10_1016_j_ribaf_2012_08_001 crossref_primary_10_1016_j_physa_2012_06_038 crossref_primary_10_1080_14697688_2014_906811 crossref_primary_10_1007_s10614_016_9641_9 crossref_primary_10_1177_2321022217724978 crossref_primary_10_1080_14697688_2023_2211108 crossref_primary_10_1007_s11023_022_09602_0 crossref_primary_10_1089_big_2018_0057 crossref_primary_10_1007_s10614_019_09885_z crossref_primary_10_1007_s10489_022_03342_5 crossref_primary_10_1007_s11066_013_9079_3 crossref_primary_10_32609_j_ruje_7_65328 |
| Cites_doi | 10.1002/for.837 10.1016/0304-405X(78)90025-9 10.1109/18.923732 10.1109/18.144706 10.20955/r.79.23-38 10.1002/jae.965 10.1016/0261-5606(92)90048-3 10.1093/bioinformatics/17.1.23 10.1016/S0022-1996(98)00061-0 10.3233/JCM-2007-7103 10.1145/279361.279370 10.1109/TIT.1978.1055934 10.1109/CIFER.1997.618933 10.1109/18.720534 10.1109/TIT.1983.1056741 10.1109/18.930925 10.1214/aos/1018031204 10.1016/S0304-405X(98)00026-9 10.1111/j.1467-9965.1991.tb00002.x 10.1198/004017003000000122 10.1023/A:1026198216929 10.1002/0471200611 10.1093/ptj/85.3.257 10.1111/0022-1082.00163 10.1016/S0169-2070(03)00012-8 10.1613/jair.1491 10.1109/72.935088 10.1109/TIT.1984.1056936 10.1257/089533003321164958 10.1111/j.1540-6261.1991.tb04636.x 10.1002/0471264105 10.1257/0895330042632744 10.1002/for.835 10.1093/bioinformatics/bti410 10.1109/18.272494 10.1002/j.1099-1174.1994.tb00072.x |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC. 2008 Springer Science+Business Media, LLC. 2009 |
| Copyright_xml | – notice: Springer Science+Business Media, LLC. 2008 – notice: Springer Science+Business Media, LLC. 2009 |
| DBID | AAYXX CITATION DKI X2L 3V. 7WY 7WZ 7XB 87Z 8AO 8BJ 8FE 8FG 8FK 8FL ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FQK FRNLG F~G GNUQQ HCIFZ JBE JQ2 K60 K6~ K7- L.- L.0 M0C P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
| DOI | 10.1007/s10614-008-9153-3 |
| DatabaseName | CrossRef RePEc IDEAS RePEc ProQuest Central (Corporate) ABI/INFORM Collection - QC ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection ProQuest Pharma Collection International Bibliography of the Social Sciences (IBSS) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Business Premium Collection ProQuest Technology Collection ProQuest One ProQuest Central Korea International Bibliography of the Social Sciences Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Collection (ProQuest) International Bibliography of the Social Sciences ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database (ProQuest) ABI/INFORM Professional Advanced ABI/INFORM Professional Standard ABI/INFORM Global Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences International Bibliography of the Social Sciences (IBSS) ABI/INFORM Professional Standard ProQuest Central Korea ProQuest Central (New) ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) Business Premium Collection (Alumni) |
| DatabaseTitleList | ABI/INFORM Global (Corporate) International Bibliography of the Social Sciences (IBSS) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Business |
| EISSN | 1572-9974 |
| EndPage | 154 |
| ExternalDocumentID | 1634323781 kapcompec_v_3a33_3ay_3a2009_3ai_3a2_3ap_3a131_154_htm 10_1007_s10614_008_9153_3 |
| Genre | Feature |
| GroupedDBID | -4X -57 -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29F 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3R3 3V. 4.4 406 408 409 40D 40E 41~ 5GY 5QI 5VS 67Z 6J9 6NX 7WY 8AO 8FE 8FG 8FL 8FW 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHQT ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACREN ACSNA ACYUM ACZOJ ADFRT ADHHG ADHIR ADIMF ADINQ ADIYS ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYQZM AZFZN B-. BA0 BAAKF BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD EOH ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IBB IEA IHE IJ- IKXTQ IOF ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O-J O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9M PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R-Y R4E R89 R9I RHV RNI ROL RPX RSV RZC RZD RZK S16 S1Z S26 S27 S28 S3B SAP SBE SCF SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WIP WK8 YLTOR Z45 Z81 Z83 Z86 Z88 Z8U Z8W Z92 ZMTXR ZYFGU ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 0R 41 4X 57 5G 95 A9 AAPBV ACIPQ ACVWB BR C DKI EM EX HZ IPNFZ K6 KSO LJ0 PQEST PQUKI PRINS RIG UNUBA VR X2L 7XB 8BJ 8FK AZQEC FQK GNUQQ JBE JQ2 L.- L.0 PKEHL Q9U PUEGO |
| ID | FETCH-LOGICAL-c475t-236a7c9114d82d922c3ebf331d772042f088c6fac5953792c70eea38ae034f313 |
| IEDL.DBID | 7WY |
| ISICitedReferencesCount | 18 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000265022500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0927-7099 |
| IngestDate | Fri Sep 05 06:47:38 EDT 2025 Wed Nov 26 13:12:16 EST 2025 Wed Aug 18 03:10:58 EDT 2021 Sat Nov 29 03:17:37 EST 2025 Tue Nov 18 20:52:12 EST 2025 Fri Feb 21 02:37:02 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | C53 C63 Variable Order Markov C22 Universal prediction Forex Intra-day trading C49 62P05 G14 Efficient Market Hypothesis 91B84 62M20 |
| Language | English |
| License | http://www.springer.com/tdm |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c475t-236a7c9114d82d922c3ebf331d772042f088c6fac5953792c70eea38ae034f313 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| PQID | 215550024 |
| PQPubID | 36414 |
| PageCount | 24 |
| ParticipantIDs | proquest_miscellaneous_37099115 proquest_journals_215550024 repec_primary_kapcompec_v_3a33_3ay_3a2009_3ai_3a2_3ap_3a131_154_htm crossref_citationtrail_10_1007_s10614_008_9153_3 crossref_primary_10_1007_s10614_008_9153_3 springer_journals_10_1007_s10614_008_9153_3 |
| PublicationCentury | 2000 |
| PublicationDate | 2009-03-01 |
| PublicationDateYYYYMMDD | 2009-03-01 |
| PublicationDate_xml | – month: 03 year: 2009 text: 2009-03-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | Boston |
| PublicationPlace_xml | – name: Boston – name: Dordrecht |
| PublicationSeriesTitle | Computational Economics |
| PublicationTitle | Computational economics |
| PublicationTitleAbbrev | Comput Econ |
| PublicationYear | 2009 |
| Publisher | Springer US Society for Computational Economics Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Society for Computational Economics – name: Springer Nature B.V |
| References | Bellgard, C. D. (2002). Diffusion of forecasting technology: Nonlinearity and the information advantage effect. Ph.D. dissertation, The University of Western Australia. Annette, M. G. (1997). Kappa statistics for multiple raters using categorical classifications. In Proceedings of the Twenty-Second Annual SAS Users Group International Conference (available online), San Diego, CA, March. ChenS.-H.TanC.-W.DoweD.L.KorbK.B.OliverJ.J.Measuring randomness by Rissanen’s stochastic complexity: Applications to the financial dataInformation, statistics and induction in science1996World ScientificSingapore FamaE.F.Market efficiency, long term returns, and behavioral financeJournal of Financial Economics,19984928330610.1016/S0304-405X(98)00026-9 FederM.MerhavN.GutmanM.Universal prediction of individual sequencesIEEE Transactions on Information Theory19923841258127010.1109/18.144706 KamruzzamanJ.SarkerR.A.ANN based forecasting of foreign currency exchange ratesNeural Information Processing—Letters and Reviews2004324958 Ben-GalI.ShaniA.GohrA.GrauJ.ArbivS.ShmiloviciA.Identification of transcription factor binding sites with variable-order Bayesian networksBioinformatics200521112657266610.1093/bioinformatics/bti410 Goldschmidt, P., & Bellgrad, C. (1999). Forecasting foreign exchange rates: Random walk hypothesis, linearity and data freqency. Department of Information Management and Marketing, The University of Western Australia. LebaronB.Technical trading rule profitability and foreign exchange interventionJournal of International Economics19994912514310.1016/S0022-1996(98)00061-0 ZivJ.LempelA.Compression of individual sequences via variable rate codingIEEE Transactions on Information Theory19782453053610.1109/TIT.1978.1055934 TimmermannA.GrangerC.W.J.Efficient market hypothesis and forecastingInternational Journal of Forecasting2004201152710.1016/S0169-2070(03)00012-8 Hellstrom, T., & Holmstrom, K. (1998). Predicting the stock market. Technical report Ima-TOM-1997-07, Umea University, Sweden. http://citeseer.ist.psu.edu/20821.html. Bahmani-Oskooee, M., Kutan, A. M., & Zhou, S. (2006). Do real exchange rates follow a non-linear mean reverting process in developing countries. EMG Working Paper Series, WP-EMG-02-2006. Kahiri, Y. (2004). Measuring the efficiency of the Forex market via the context tree model. M.Sc. dissertation (in Hebrew), Ben-Gurion University, Israel. MalkielB.G.The efficient market hypothesis and its criticsThe Journal of Economic Perspectives200317598210.1257/089533003321164958 BoeroG.MarrocuE.The performance of non linear exchange rate models: A forecasting comparisonJournal of Forecasting,20022151354210.1002/for.837 CoverT.M.Universal portfoliosMathematical Finance19911112910.1111/j.1467-9965.1991.tb00002.x FederovskyE.FederM.WeissS.Branch prediction based on universal data compression algorithmACM SIGARCH Computer Architecture News1998263627210.1145/279361.279370 MillmanG.J.Around the world on a trillion dollars a day1995New YorkBantam Press Tino, P., Schittenkopf, C., & Dorffner, G. (2000). A symbolics dynamics approach to volatility prediction. In Y. S. Abu-Mustafa & B. LeBaron (Eds.), Proceedings of the 6th International Conference on Computational Finance (pp. 137–151), January 6–8 1999. Cambridge, MA: Leonard N. Stern School of Bussiness, MIT Press. BuhlmannP.WynerA.J.Variable length Markov chainsAnnals of Statistics199927248051310.1214/aos/1018031204 Choong, C. K., Poon, W. C., Habibullah, M. S., & Yusop, Z. (2003). The validity of PPP theory in asean five: Another look on cointegration and panel data analysis. Faculty of Accountancy and Management, University Tunku Abdul Rahman. JensenM.Some anomalous evidence regarding market efficiencyJournal of Financial Economics,197869510110.1016/0304-405X(78)90025-9 Ben-GalI.MoragG.ShmiloviciA.CSPC: A monitoring procedure for state dependent processesTechnometrics200345429331110.1198/004017003000000122 TaylorA.M.TaylorM.P.The purchasing power parity debateThe Journal of Economic Perspectives200418135158 FederM.MerhavN.Relations between entropy and error probabilityIEEE Transactions on Information Theory199438125926610.1109/18.272494 TsayR.Analysis of financial time series2002New YorkWiley Alon-Brimer, Y. (2002). Measuring the efficiency of the Israeli stock market by the context tree model. M.Sc. dissertation (in Hebrew), Ben-Gurion University, Israel. VertJ.P.Adaptive context trees and text clusteringIEEE Transactions on Information Theory20014751884190110.1109/18.930925 Feder, M., & Federovski, E. (1999), Universal prediction with finite memory. IT Workshop on Detection, Estimation, Classification and Imaging, Santa Fe, NM, USA, 24–26 February. Papageorgiou, C. P. (1997). High frequency time series analysis and prediction using Markov models. In Proceedings of the conference on Computational Intelligence for Financial Engineering IEEE/IAFE (pp. 182–188), 23–25 March, New York City, NY. CoverT.M.ThomasJ.A.Elements of information theory1991New-YorkWiley Hutter, M. (2001). Convergence and error bounds for universal prediction of nonbinary sequences. In: Proceedings of the 12th European Conference on Machine Learning ECML-2001 (pp. 239–250). Chen, S.-H., & Tan, C.-W. (1999). Estimating the complexity function of financial time series: An estimation based on predictive stochastic complexity. In Proceedings of the 5th International Conference of the Society for Computational Economics, Boston, June 24–26. Also published in Journal of Management and Economics, 3(3) (an electronic journal). YuL.WangS.LaiK.K.SunderametalV.S.Adaptive smoothing neural networks in foreign exchange rate forecastingICCS, LNCS 35162005New YorkSpringer523530 SimJ.WrightC.C.The kappa statistic in reliability studies: Use, interpretation, and sample size requirementsPhysical Therapy200585257268 Wu, W., & Shafer, G. (2007). Testing lead-Lag effects under game-theoretic efficient market hypotheses. http://www.probabilityandfinance.com/articles/23.pdf. Shmilovici, A., & Ben-Gal, I. (2006). Assessing the efficient market hypothesis in stock exchange markets via a universal prediction statistic. Unpublished technical report. ZaidenraiseK.O.S.ShmiloviciA.Ben-GalI.Gene-finding with the VOM modelJournal of Computational Methods in Science and Engineering2007714554 ZivJ.A universal prediction lemma and applications to universal data compression and predictionIEEE Transactions on Information Theory20014741528153210.1109/18.923732 Ziv, J. (2002). An efficient universal prediction algorithm for unknown sources with limited training data. http://www.msri.org/publications/ln/msri/2002/infotheory/ziv/1/. DempsterM.A.H.PayneT.W.RomahiY.ThompsonG.W.P.Computational learning techniques for intraday FX trading using popular technical indicatorsIEEE Transactions on Neural Networks200112474475410.1109/72.935088 DacorognaM.GencayR.MullerU.OlsenR.PictetO.An introduction to high-frequency finance2001New YorkAcademic Press ChungJ.HongY.Model-free evaluation of directional predictability in foreign exchange marketsJournal of Applied Econometrics20072285588910.1002/jae.965 ZhangX.Non-linear predictive models for intra-day foreign exchange tradingIntelligent Systems in Accounting, Finance and Management19943293302 KaashoekJ.F.Van DijkH.K.Neural network pruning applied to real exchange rate analysisJournal of Forecasting20022155957710.1002/for.835 TaylorM.P.AllenH.The use of technical analysis in the foreign exchange marketJournal of International Money and Finance19921130431410.1016/0261-5606(92)90048-3 BaetaensD.J.E.van den BergW.M.VaudreyH.DunisC.Market inefficiencies, technical trading and neural networksForecasting financial markets, financial economics and quantitative analysis1996ChichesterWiley245260 OrlovY.L.FilippovV.P.PotapovV.N.KolchanovN.A.Construction of stochastic context trees for genetic textsIn Silico Biology200223233247 RissanenJ.A universal data compression systemIEEE Transactions on Information Theory,198329565666410.1109/TIT.1983.1056741 RissanenJ.Universal coding, information, prediction, and estimationIEEE Transactions on Information Theory198430462963610.1109/TIT.1984.1056936 DeboeckG.Trading on the edge: Neural, genetic, and fuzzy systems for chaotic financial markets1994New YorkWiley SchwertG.ConstantinidesG.M.HarrisM.StulzR.Anomalies and market efficiency (Chap. 15)Handbook of economics of finance2003AmsterdamElsevier939960 BejeranoG.YonaG.Variations on probabilistic suffix trees: Statistical modeling and prediction of protein familiesBioinformatics200117234310.1093/bioinformatics/17.1.23 LoA.W.BlumeL.DurlaufS.Efficient markets hypothesisThe new palgrave: A dictionary of economics20072LondonPalgrave MacMillan SullivanR.TimmermanA.WhiteH.Data-snooping, technical trading rule performance, and the bootstrapThe Journal of Finance1999541647169210.1111/0022-1082.00163 ShmiloviciA.Alon-BrimerY.HauserS.Using a stochastic complexity measure to check the efficient market hypothesisComputational Economics200322327328410.1023/A:1026198216929 MerhavN.FederM.Universal predictionIEEE Transactions on Information Theory IT-1998442124214710.1109/18.720534 FamaE.F.Efficient capital markets: IIThe Journal of Finance1991461575161110.2307/2328565 MillsT.Forecasting financial markets2002UK CheltenhamEdward Elgar PringM.J.Technical analysis explained: The successful investor’s guide to spotting investment trends and turning points1991New-YorkMcGraw-Hill BegleiterR.El-YanivR.YonaG.On prediction using variable order Markov modelsJournal of Artificial Intelligence200422385421 ShmiloviciA.Ben-GalI.Using a VOM model for reconstructing potential coding regions in EST sequences. Computational Statistics20072214969 Neely, C. J. (1997). Technical analysis in the foreign exchange market: A Layman’s guide. Federal Reserve Bank of St. Louis. M. Dacorogna (9153_CR18) 2001 G. Bejerano (9153_CR6) 2001; 17 M.A.H. Dempster (9153_CR20) 2001; 12 G.J. Millman (9153_CR38) 1995 T.M. Cover (9153_CR16) 1991; 1 9153_CR32 M.J. Pring (9153_CR43) 1991 E. Federovsky (9153_CR26) 1998; 26 A. Shmilovici (9153_CR47) 2003; 22 A. Shmilovici (9153_CR49) 2007; 22 M. Jensen (9153_CR30) 1978; 6 J.P. Vert (9153_CR57) 2001; 47 J. Sim (9153_CR50) 2005; 85 (9153_CR39) 2002 J. Ziv (9153_CR64) 1978; 24 E.F. Fama (9153_CR21) 1991; 46 R. Sullivan (9153_CR51) 1999; 54 X. Zhang (9153_CR61) 1994; 3 J. Ziv (9153_CR62) 2001; 47 E.F. Fama (9153_CR22) 1998; 49 9153_CR63 9153_CR1 9153_CR2 9153_CR23 Y.L. Orlov (9153_CR41) 2002; 2 9153_CR4 9153_CR28 9153_CR29 9153_CR7 9153_CR27 G. Boero (9153_CR10) 2002; 21 T.M. Cover (9153_CR17) 1991 B. Lebaron (9153_CR34) 1999; 49 A. Timmermann (9153_CR54) 2004; 20 J. Rissanen (9153_CR45) 1984; 30 R. Begleiter (9153_CR5) 2004; 22 J. Chung (9153_CR15) 2007; 22 I. Ben-Gal (9153_CR8) 2003; 45 D.J.E. Baetaens (9153_CR3) 1996 I. Ben-Gal (9153_CR9) 2005; 21 J.F. Kaashoek (9153_CR31) 2002; 21 9153_CR13 9153_CR14 9153_CR58 9153_CR55 K.O.S. Zaidenraise (9153_CR60) 2007; 7 G. Deboeck (9153_CR19) 1994 J. Kamruzzaman (9153_CR33) 2004; 3 A.M. Taylor (9153_CR53) 2004; 18 G. Schwert (9153_CR46) 2003 S.-H. Chen (9153_CR12) 1996 B.G. Malkiel (9153_CR36) 2003; 17 M. Feder (9153_CR24) 1994; 38 A.W. Lo (9153_CR35) 2007 R. Tsay (9153_CR56) 2002 M.P. Taylor (9153_CR52) 1992; 11 M. Feder (9153_CR25) 1992; 38 9153_CR42 J. Rissanen (9153_CR44) 1983; 29 L. Yu (9153_CR59) 2005 9153_CR40 N. Merhav (9153_CR37) 1998; 44 P. Buhlmann (9153_CR11) 1999; 27 9153_CR48 |
| References_xml | – reference: TsayR.Analysis of financial time series2002New YorkWiley – reference: Papageorgiou, C. P. (1997). High frequency time series analysis and prediction using Markov models. In Proceedings of the conference on Computational Intelligence for Financial Engineering IEEE/IAFE (pp. 182–188), 23–25 March, New York City, NY. – reference: BuhlmannP.WynerA.J.Variable length Markov chainsAnnals of Statistics199927248051310.1214/aos/1018031204 – reference: RissanenJ.A universal data compression systemIEEE Transactions on Information Theory,198329565666410.1109/TIT.1983.1056741 – reference: BegleiterR.El-YanivR.YonaG.On prediction using variable order Markov modelsJournal of Artificial Intelligence200422385421 – reference: SchwertG.ConstantinidesG.M.HarrisM.StulzR.Anomalies and market efficiency (Chap. 15)Handbook of economics of finance2003AmsterdamElsevier939960 – reference: KaashoekJ.F.Van DijkH.K.Neural network pruning applied to real exchange rate analysisJournal of Forecasting20022155957710.1002/for.835 – reference: DacorognaM.GencayR.MullerU.OlsenR.PictetO.An introduction to high-frequency finance2001New YorkAcademic Press – reference: ZivJ.LempelA.Compression of individual sequences via variable rate codingIEEE Transactions on Information Theory19782453053610.1109/TIT.1978.1055934 – reference: Neely, C. J. (1997). Technical analysis in the foreign exchange market: A Layman’s guide. Federal Reserve Bank of St. Louis. – reference: DempsterM.A.H.PayneT.W.RomahiY.ThompsonG.W.P.Computational learning techniques for intraday FX trading using popular technical indicatorsIEEE Transactions on Neural Networks200112474475410.1109/72.935088 – reference: JensenM.Some anomalous evidence regarding market efficiencyJournal of Financial Economics,197869510110.1016/0304-405X(78)90025-9 – reference: DeboeckG.Trading on the edge: Neural, genetic, and fuzzy systems for chaotic financial markets1994New YorkWiley – reference: Alon-Brimer, Y. (2002). Measuring the efficiency of the Israeli stock market by the context tree model. M.Sc. dissertation (in Hebrew), Ben-Gurion University, Israel. – reference: Bahmani-Oskooee, M., Kutan, A. M., & Zhou, S. (2006). Do real exchange rates follow a non-linear mean reverting process in developing countries. EMG Working Paper Series, WP-EMG-02-2006. – reference: Ben-GalI.ShaniA.GohrA.GrauJ.ArbivS.ShmiloviciA.Identification of transcription factor binding sites with variable-order Bayesian networksBioinformatics200521112657266610.1093/bioinformatics/bti410 – reference: Bellgard, C. D. (2002). Diffusion of forecasting technology: Nonlinearity and the information advantage effect. Ph.D. dissertation, The University of Western Australia. – reference: Wu, W., & Shafer, G. (2007). Testing lead-Lag effects under game-theoretic efficient market hypotheses. http://www.probabilityandfinance.com/articles/23.pdf. – reference: MillsT.Forecasting financial markets2002UK CheltenhamEdward Elgar – reference: TaylorA.M.TaylorM.P.The purchasing power parity debateThe Journal of Economic Perspectives200418135158 – reference: Annette, M. G. (1997). Kappa statistics for multiple raters using categorical classifications. In Proceedings of the Twenty-Second Annual SAS Users Group International Conference (available online), San Diego, CA, March. – reference: FamaE.F.Efficient capital markets: IIThe Journal of Finance1991461575161110.2307/2328565 – reference: ZhangX.Non-linear predictive models for intra-day foreign exchange tradingIntelligent Systems in Accounting, Finance and Management19943293302 – reference: FamaE.F.Market efficiency, long term returns, and behavioral financeJournal of Financial Economics,19984928330610.1016/S0304-405X(98)00026-9 – reference: Ben-GalI.MoragG.ShmiloviciA.CSPC: A monitoring procedure for state dependent processesTechnometrics200345429331110.1198/004017003000000122 – reference: FederovskyE.FederM.WeissS.Branch prediction based on universal data compression algorithmACM SIGARCH Computer Architecture News1998263627210.1145/279361.279370 – reference: ZivJ.A universal prediction lemma and applications to universal data compression and predictionIEEE Transactions on Information Theory20014741528153210.1109/18.923732 – reference: ChungJ.HongY.Model-free evaluation of directional predictability in foreign exchange marketsJournal of Applied Econometrics20072285588910.1002/jae.965 – reference: Ziv, J. (2002). An efficient universal prediction algorithm for unknown sources with limited training data. http://www.msri.org/publications/ln/msri/2002/infotheory/ziv/1/. – reference: LebaronB.Technical trading rule profitability and foreign exchange interventionJournal of International Economics19994912514310.1016/S0022-1996(98)00061-0 – reference: SullivanR.TimmermanA.WhiteH.Data-snooping, technical trading rule performance, and the bootstrapThe Journal of Finance1999541647169210.1111/0022-1082.00163 – reference: BaetaensD.J.E.van den BergW.M.VaudreyH.DunisC.Market inefficiencies, technical trading and neural networksForecasting financial markets, financial economics and quantitative analysis1996ChichesterWiley245260 – reference: MillmanG.J.Around the world on a trillion dollars a day1995New YorkBantam Press – reference: Shmilovici, A., & Ben-Gal, I. (2006). Assessing the efficient market hypothesis in stock exchange markets via a universal prediction statistic. Unpublished technical report. – reference: LoA.W.BlumeL.DurlaufS.Efficient markets hypothesisThe new palgrave: A dictionary of economics20072LondonPalgrave MacMillan – reference: SimJ.WrightC.C.The kappa statistic in reliability studies: Use, interpretation, and sample size requirementsPhysical Therapy200585257268 – reference: Feder, M., & Federovski, E. (1999), Universal prediction with finite memory. IT Workshop on Detection, Estimation, Classification and Imaging, Santa Fe, NM, USA, 24–26 February. – reference: BejeranoG.YonaG.Variations on probabilistic suffix trees: Statistical modeling and prediction of protein familiesBioinformatics200117234310.1093/bioinformatics/17.1.23 – reference: VertJ.P.Adaptive context trees and text clusteringIEEE Transactions on Information Theory20014751884190110.1109/18.930925 – reference: Hutter, M. (2001). Convergence and error bounds for universal prediction of nonbinary sequences. In: Proceedings of the 12th European Conference on Machine Learning ECML-2001 (pp. 239–250). – reference: CoverT.M.Universal portfoliosMathematical Finance19911112910.1111/j.1467-9965.1991.tb00002.x – reference: ShmiloviciA.Alon-BrimerY.HauserS.Using a stochastic complexity measure to check the efficient market hypothesisComputational Economics200322327328410.1023/A:1026198216929 – reference: BoeroG.MarrocuE.The performance of non linear exchange rate models: A forecasting comparisonJournal of Forecasting,20022151354210.1002/for.837 – reference: Choong, C. K., Poon, W. C., Habibullah, M. S., & Yusop, Z. (2003). The validity of PPP theory in asean five: Another look on cointegration and panel data analysis. Faculty of Accountancy and Management, University Tunku Abdul Rahman. – reference: KamruzzamanJ.SarkerR.A.ANN based forecasting of foreign currency exchange ratesNeural Information Processing—Letters and Reviews2004324958 – reference: TaylorM.P.AllenH.The use of technical analysis in the foreign exchange marketJournal of International Money and Finance19921130431410.1016/0261-5606(92)90048-3 – reference: ChenS.-H.TanC.-W.DoweD.L.KorbK.B.OliverJ.J.Measuring randomness by Rissanen’s stochastic complexity: Applications to the financial dataInformation, statistics and induction in science1996World ScientificSingapore – reference: Chen, S.-H., & Tan, C.-W. (1999). Estimating the complexity function of financial time series: An estimation based on predictive stochastic complexity. In Proceedings of the 5th International Conference of the Society for Computational Economics, Boston, June 24–26. Also published in Journal of Management and Economics, 3(3) (an electronic journal). – reference: Kahiri, Y. (2004). Measuring the efficiency of the Forex market via the context tree model. M.Sc. dissertation (in Hebrew), Ben-Gurion University, Israel. – reference: ShmiloviciA.Ben-GalI.Using a VOM model for reconstructing potential coding regions in EST sequences. Computational Statistics20072214969 – reference: Hellstrom, T., & Holmstrom, K. (1998). Predicting the stock market. Technical report Ima-TOM-1997-07, Umea University, Sweden. http://citeseer.ist.psu.edu/20821.html. – reference: Goldschmidt, P., & Bellgrad, C. (1999). Forecasting foreign exchange rates: Random walk hypothesis, linearity and data freqency. Department of Information Management and Marketing, The University of Western Australia. – reference: Tino, P., Schittenkopf, C., & Dorffner, G. (2000). A symbolics dynamics approach to volatility prediction. In Y. S. Abu-Mustafa & B. LeBaron (Eds.), Proceedings of the 6th International Conference on Computational Finance (pp. 137–151), January 6–8 1999. Cambridge, MA: Leonard N. Stern School of Bussiness, MIT Press. – reference: PringM.J.Technical analysis explained: The successful investor’s guide to spotting investment trends and turning points1991New-YorkMcGraw-Hill – reference: OrlovY.L.FilippovV.P.PotapovV.N.KolchanovN.A.Construction of stochastic context trees for genetic textsIn Silico Biology200223233247 – reference: CoverT.M.ThomasJ.A.Elements of information theory1991New-YorkWiley – reference: FederM.MerhavN.GutmanM.Universal prediction of individual sequencesIEEE Transactions on Information Theory19923841258127010.1109/18.144706 – reference: YuL.WangS.LaiK.K.SunderametalV.S.Adaptive smoothing neural networks in foreign exchange rate forecastingICCS, LNCS 35162005New YorkSpringer523530 – reference: TimmermannA.GrangerC.W.J.Efficient market hypothesis and forecastingInternational Journal of Forecasting2004201152710.1016/S0169-2070(03)00012-8 – reference: RissanenJ.Universal coding, information, prediction, and estimationIEEE Transactions on Information Theory198430462963610.1109/TIT.1984.1056936 – reference: FederM.MerhavN.Relations between entropy and error probabilityIEEE Transactions on Information Theory199438125926610.1109/18.272494 – reference: MalkielB.G.The efficient market hypothesis and its criticsThe Journal of Economic Perspectives200317598210.1257/089533003321164958 – reference: MerhavN.FederM.Universal predictionIEEE Transactions on Information Theory IT-1998442124214710.1109/18.720534 – reference: ZaidenraiseK.O.S.ShmiloviciA.Ben-GalI.Gene-finding with the VOM modelJournal of Computational Methods in Science and Engineering2007714554 – volume: 21 start-page: 513 year: 2002 ident: 9153_CR10 publication-title: Journal of Forecasting, doi: 10.1002/for.837 – ident: 9153_CR7 – volume: 6 start-page: 95 year: 1978 ident: 9153_CR30 publication-title: Journal of Financial Economics, doi: 10.1016/0304-405X(78)90025-9 – volume-title: Information, statistics and induction in science year: 1996 ident: 9153_CR12 – volume: 47 start-page: 1528 issue: 4 year: 2001 ident: 9153_CR62 publication-title: IEEE Transactions on Information Theory doi: 10.1109/18.923732 – volume: 38 start-page: 1258 issue: 4 year: 1992 ident: 9153_CR25 publication-title: IEEE Transactions on Information Theory doi: 10.1109/18.144706 – ident: 9153_CR40 doi: 10.20955/r.79.23-38 – volume: 22 start-page: 855 year: 2007 ident: 9153_CR15 publication-title: Journal of Applied Econometrics doi: 10.1002/jae.965 – volume: 11 start-page: 304 year: 1992 ident: 9153_CR52 publication-title: Journal of International Money and Finance doi: 10.1016/0261-5606(92)90048-3 – ident: 9153_CR28 – volume: 17 start-page: 23 year: 2001 ident: 9153_CR6 publication-title: Bioinformatics doi: 10.1093/bioinformatics/17.1.23 – volume: 49 start-page: 125 year: 1999 ident: 9153_CR34 publication-title: Journal of International Economics doi: 10.1016/S0022-1996(98)00061-0 – volume: 7 start-page: 45 issue: 1 year: 2007 ident: 9153_CR60 publication-title: Journal of Computational Methods in Science and Engineering doi: 10.3233/JCM-2007-7103 – volume: 26 start-page: 62 issue: 3 year: 1998 ident: 9153_CR26 publication-title: ACM SIGARCH Computer Architecture News doi: 10.1145/279361.279370 – volume: 24 start-page: 530 year: 1978 ident: 9153_CR64 publication-title: IEEE Transactions on Information Theory doi: 10.1109/TIT.1978.1055934 – ident: 9153_CR58 – ident: 9153_CR42 doi: 10.1109/CIFER.1997.618933 – ident: 9153_CR27 – volume: 44 start-page: 2124 year: 1998 ident: 9153_CR37 publication-title: IEEE Transactions on Information Theory IT- doi: 10.1109/18.720534 – volume-title: Around the world on a trillion dollars a day year: 1995 ident: 9153_CR38 – volume: 29 start-page: 656 issue: 5 year: 1983 ident: 9153_CR44 publication-title: IEEE Transactions on Information Theory, doi: 10.1109/TIT.1983.1056741 – volume: 47 start-page: 1884 issue: 5 year: 2001 ident: 9153_CR57 publication-title: IEEE Transactions on Information Theory doi: 10.1109/18.930925 – volume: 27 start-page: 480 issue: 2 year: 1999 ident: 9153_CR11 publication-title: Annals of Statistics doi: 10.1214/aos/1018031204 – volume: 49 start-page: 283 year: 1998 ident: 9153_CR22 publication-title: Journal of Financial Economics, doi: 10.1016/S0304-405X(98)00026-9 – start-page: 939 volume-title: Handbook of economics of finance year: 2003 ident: 9153_CR46 – ident: 9153_CR23 – start-page: 523 volume-title: ICCS, LNCS 3516 year: 2005 ident: 9153_CR59 – ident: 9153_CR4 – volume: 1 start-page: 1 issue: 1 year: 1991 ident: 9153_CR16 publication-title: Mathematical Finance doi: 10.1111/j.1467-9965.1991.tb00002.x – ident: 9153_CR48 – volume: 3 start-page: 49 issue: 2 year: 2004 ident: 9153_CR33 publication-title: Neural Information Processing—Letters and Reviews – volume: 45 start-page: 293 issue: 4 year: 2003 ident: 9153_CR8 publication-title: Technometrics doi: 10.1198/004017003000000122 – ident: 9153_CR13 – volume-title: Trading on the edge: Neural, genetic, and fuzzy systems for chaotic financial markets year: 1994 ident: 9153_CR19 – ident: 9153_CR32 – volume: 22 start-page: 273 issue: 3 year: 2003 ident: 9153_CR47 publication-title: Computational Economics doi: 10.1023/A:1026198216929 – ident: 9153_CR55 – volume-title: Elements of information theory year: 1991 ident: 9153_CR17 doi: 10.1002/0471200611 – volume: 85 start-page: 257 year: 2005 ident: 9153_CR50 publication-title: Physical Therapy doi: 10.1093/ptj/85.3.257 – volume: 54 start-page: 1647 year: 1999 ident: 9153_CR51 publication-title: The Journal of Finance doi: 10.1111/0022-1082.00163 – volume: 20 start-page: 15 issue: 1 year: 2004 ident: 9153_CR54 publication-title: International Journal of Forecasting doi: 10.1016/S0169-2070(03)00012-8 – volume: 22 start-page: 385 year: 2004 ident: 9153_CR5 publication-title: Journal of Artificial Intelligence doi: 10.1613/jair.1491 – volume: 12 start-page: 744 issue: 4 year: 2001 ident: 9153_CR20 publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.935088 – volume: 30 start-page: 629 issue: 4 year: 1984 ident: 9153_CR45 publication-title: IEEE Transactions on Information Theory doi: 10.1109/TIT.1984.1056936 – volume: 17 start-page: 59 year: 2003 ident: 9153_CR36 publication-title: The Journal of Economic Perspectives doi: 10.1257/089533003321164958 – ident: 9153_CR1 – volume: 46 start-page: 1575 year: 1991 ident: 9153_CR21 publication-title: The Journal of Finance doi: 10.1111/j.1540-6261.1991.tb04636.x – volume-title: Analysis of financial time series year: 2002 ident: 9153_CR56 doi: 10.1002/0471264105 – ident: 9153_CR14 – volume-title: Technical analysis explained: The successful investor’s guide to spotting investment trends and turning points year: 1991 ident: 9153_CR43 – volume-title: The new palgrave: A dictionary of economics year: 2007 ident: 9153_CR35 – volume-title: An introduction to high-frequency finance year: 2001 ident: 9153_CR18 – volume: 22 start-page: 49 issue: 1 year: 2007 ident: 9153_CR49 publication-title: Using a VOM model for reconstructing potential coding regions in EST sequences. Computational Statistics – volume: 18 start-page: 135 year: 2004 ident: 9153_CR53 publication-title: The Journal of Economic Perspectives doi: 10.1257/0895330042632744 – volume: 21 start-page: 559 year: 2002 ident: 9153_CR31 publication-title: Journal of Forecasting doi: 10.1002/for.835 – volume: 21 start-page: 2657 issue: 11 year: 2005 ident: 9153_CR9 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti410 – volume: 38 start-page: 259 issue: 1 year: 1994 ident: 9153_CR24 publication-title: IEEE Transactions on Information Theory doi: 10.1109/18.272494 – volume: 3 start-page: 293 year: 1994 ident: 9153_CR61 publication-title: Intelligent Systems in Accounting, Finance and Management doi: 10.1002/j.1099-1174.1994.tb00072.x – ident: 9153_CR2 – volume: 2 start-page: 233 issue: 3 year: 2002 ident: 9153_CR41 publication-title: In Silico Biology – start-page: 245 volume-title: Forecasting financial markets, financial economics and quantitative analysis year: 1996 ident: 9153_CR3 – ident: 9153_CR63 – ident: 9153_CR29 – volume-title: Forecasting financial markets year: 2002 ident: 9153_CR39 |
| SSID | ssj0005122 |
| Score | 1.8923032 |
| Snippet | Universal compression algorithms can detect recurring patterns in any type of temporal data—including financial data—for the purpose of compression. The... Universal compression algorithms can detect recurring patterns in any type of temporal data - including financial data - for the purpose of compression. The... Universal compression algorithms can detect recurring patterns in any type of temporal dataDLincluding financial dataDLfor the purpose of compression. The... |
| SourceID | proquest repec crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 131 |
| SubjectTerms | 62M20 62P05 91B84 Algorithms Behavioral/Experimental Economics C22 C49 C53 C63 Capital market theory Compression Computer Appl. in Social and Behavioral Sciences Data Data compression Economic models Economic statistics Economic theory Economic Theory/Quantitative Economics/Mathematical Methods Economics Economics and Finance Efficient Market Hypothesis Efficient markets Exchange market Forecasting Forecasting techniques Foreign exchange Foreign exchange rates Forex Intra-day trading G14 Hypotheses Market efficiency Markets Markov analysis Math Applications in Computer Science Measurement Online securities trading Operations Research/Decision Theory Process controls Studies Universal prediction Variable Order Markov |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5Bi4ALj1JEaAEfOIEsJXZcx8eqtIJDKyQe6s1yHJtWbbOrTVrRf8-Mk-yCKEhwsBIljm0545nPnhfAay1U48sq56JsHC_rwnCDTJGjbM-jjI0IxqVkE_roqDo-Nh9HP-5usnafVJKJU__k7IaihJO63uAy5fI2rCsKNkNb9E9fV3YdxaA6MEJzjfhnUmXe1MSvwmiFMNcXYR78b8rRJHMOHv7XaB_BgxFist2BJh7DrdBuwN3Jwn0D7k3OyN0TcIfpjBBbZogE2X4KKEHemGwW05MPdPjbuGtGOTy_s8PkJM3o9JY5Nlp1YGfvXO8Y8ZbBrLZlu-ffZgusdbEJXw72P--952PWBe5LrXou5I7THnlg2VSiMUJ4GeooZdFoSmgjIvIlvxOdV0ZJbYTXeQhOVi7ksoyykE9hrZ214RkwFIGxDq52pcrLWFSVUlpr1SgdSlOLOoN8mn7rx5DklBnj3K6CKdM0WkqVSdNoZQZvlp_Mh3gcf6u8Nf1TOy7NziLGwV0ZQpMMXi3f4poiRYlrw-yys5LoBqFyBnuJEJY9nbk5WfrjkysrncQu3DUW0jDh5ZRuscyxFLKwiE7tSX-RwduJRFaj-OOYn_9T7S24P6i3yChuG9b6xWV4AXf8VX_aLV6mhfEDfO4E2Q priority: 102 providerName: Springer Nature |
| Title | Measuring the Efficiency of the Intraday Forex Market with a Universal Data Compression Algorithm |
| URI | https://link.springer.com/article/10.1007/s10614-008-9153-3 http://econpapers.repec.org/article/kapcompec/v_3a33_3ay_3a2009_3ai_3a2_3ap_3a131-154.htm https://www.proquest.com/docview/215550024 https://www.proquest.com/docview/37099115 |
| Volume | 33 |
| WOSCitedRecordID | wos000265022500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 1572-9974 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0005122 issn: 0927-7099 databaseCode: 7WY dateStart: 19990201 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Global customDbUrl: eissn: 1572-9974 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0005122 issn: 0927-7099 databaseCode: M0C dateStart: 19990201 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1572-9974 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0005122 issn: 0927-7099 databaseCode: P5Z dateStart: 19990201 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database (ProQuest) customDbUrl: eissn: 1572-9974 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0005122 issn: 0927-7099 databaseCode: K7- dateStart: 19990201 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1572-9974 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0005122 issn: 0927-7099 databaseCode: BENPR dateStart: 19990201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1572-9974 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005122 issn: 0927-7099 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BFwEXHgXUUCg-cAJZJHZcJydUlq1AaFer8ipcLMdxaNU2GzZpRf89M3nsCiF64WAncRJ5pBnPjDzj-QCea6FyFychF3FueZxFKU9RKXK07WEhi1z41LZgE3o2Sw4P03mfm1P3aZWDTmwVdb5wtEf-Ck0TOtNoUV5XPzmBRlFwtUfQuA4jtNOKAAz012_rDI-oCyKkQnONntAQ1OxOzqFd4hT7T3HNc_mnWVr7mqOlr7z7K0zaWp_9u_9J9z2407udbK-Tk_twzZebcHPIet-EW8MB5foB2Gm7b4h0MPQO2aQtMkEnNNmiaEfe04Zwbi8Z4Xr-YtP24DSjHV1mWZ_pgZO9tY1lpG-6VNuS7Z3-QNKao7OH8Hl_8mn8jvdIDNzFWjVcyF2rHerFOE9EngrhpM8KKaNcE8iNKFBXud3COpUqqVPhdOi9lYn1oYwLGclHsFEuSr8FDM1ikXmb2ViFcREliVJaa5Ur7eM0E1kA4cAI4_oy5YSWcWrWBZaJd4bgM4l3RgbwYvVL1dXouOrj7YFPpl-utVkxKYBnq7e4zih4Yku_OK-NJAlC9zmAcSsSq5lObEXZ_zhyYaSVOIW9xEZRJ7wc0y22ClskI4MeqzlqzgJ4OQjUmop_0vz4Spq34XYX4qLEuCew0SzP_VO44S6a43q50y6JHRi9mczmB_j0QXPsp-EY-7n6jv3Bxy-_AX7QFEA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VFlEuPAqooUB9gAvIamIn6-SAUNWHutruikORejOO49CKNptu0sL-KP4jM3nsCiF664GDlch52LG_ecQz4wF4q0SU2TD2uQgzw8M0SHiCTJGjbPdzmWfCJaZJNqEmk_j0NPm8Ar_6WBhyq-x5YsOos6mlNfIdFE2oTKNE-VRecUoaRcbVPoNGi4qRm__AP7bq43Afp_edEIcHJ3tHvEsqwG2oopoLOTDKIomHWSyyRAgrXZpLGWSK8rWIHMnODnJjoySSKhFW-c4ZGRvnyzCXgcT33oO1UMYDIqiR4kuPkqA1WiRCcYWaV29EbSP1UA5y8jVIkMdw-acYXOq2azNXOvuXWbaRdoeP_7NxegKPOrWa7bZ08BRWXLEBD3qv_g1Y7wOwq2dgxs26KH43Q-2XHTSbaFAEKpvmTc2QFrwzM2eUt_QnGzeB4YxWrJlhnScLNrZvasOIn7auxAXbvfiGQ1GfXT6HL3fysS9gtZgWbhMYiv08dSY1YeSHeRDHUaSUirJIuTBJReqB30-8tt027JQN5EIvN5AmrGhKD0pY0dKD94tHynYPkttu3upxoTt2VOkFKDzYXlxFPkLGIVO46XWlJSEWfw882GsguGjpuykpugFrbrQ0EpswcyxkVcPDOZ1iKbEEMtCokeuz-tKDDz2Al734Z59f3trnbVg_Ohkf6-PhZLQFD1tzHjkBvoLVenbtXsN9e1OfV7M3DTky-HrXuP4NpoVpWw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VXVS48CggQoH6ABeQ1cRO6uSAUOnuilXpaoVA6s04jkMr2mzYTQv70_h3zOSxK4TorQcOViLnYcf5PDOehwfghRJRZsPY5yLMDA_TIOEJEkWOvN3PZZ4Jl5g62YSaTOLj42S6Ab-6WBhyq-xoYk2os5klHfkusiYUppGj7OatV8R0MHpbfueUQIoMrV02jQYhh275A1dvizfjAf7ql0KMhp8O3vM2wQC3oYoqLuSeURane5jFIkuEsNKluZRBpih3i8hxCtq93NgoiaRKhFW-c0bGxvkyzGUg8b03oK8krnl60H83nEw_rv1LgsaEkQjFFcphnUm1idtDrsjJ8yBBisPln0xxLen256509i8jbc37Rnf_41G7B3dagZvtNzPkPmy4Ygs2O3__LbjVhWYvHoA5qjWmOAYM5WI2rLfXoNhUNsvrmjGpwjOzZJTR9Cc7qkPGGemymWGtjws2NjCVYURpGyfjgu2ffcWhqE7OH8Lna_nYR9ArZoV7DAwFgjx1JjVh5Id5EMdRpJSKski5MElF6oHfgUDbdoN2yhNyptdbSxNuNCUOJdxo6cGr1SNlszvJVTdvdxjRLaFa6BVAPNhZXUUKQ2YjU7jZxUJLQi8uHDw4qOG4aumbKSnuAWsutTQSmzBLLGRvw8MpnWIpsQQy0Cir65Pq3IPXHZjXvfhnn59c2ecd2EQ46w_jyeE23G7sfOQd-BR61fzCPYOb9rI6Xcyft3OTwZfrBvZvZExzrQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measuring+the+Efficiency+of+the+Intraday+Forex+Market+with+a+Universal+Data+Compression+Algorithm&rft.jtitle=Computational+economics&rft.au=Hauser%2C+Shmuel&rft.au=Kahiri%2C+Yoav&rft.au=Shmilovici%2C+Armin&rft.au=Ben-Gal%2C+Irad&rft.series=Computational+Economics&rft.date=2009-03-01&rft.pub=Society+for+Computational+Economics&rft.issn=0927-7099&rft.eissn=1572-9974&rft.volume=33&rft.issue=2&rft.spage=131&rft.epage=154&rft_id=info:doi/10.1007%2Fs10614-008-9153-3&rft.externalDocID=kapcompec_v_3a33_3ay_3a2009_3ai_3a2_3ap_3a131_154_htm |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-7099&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-7099&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-7099&client=summon |