Measuring the Efficiency of the Intraday Forex Market with a Universal Data Compression Algorithm

Universal compression algorithms can detect recurring patterns in any type of temporal data—including financial data—for the purpose of compression. The universal algorithms actually find a model of the data that can be used for either compression or prediction. We present a universal Variable Order...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computational economics Ročník 33; číslo 2; s. 131 - 154
Hlavní autori: Shmilovici, Armin, Kahiri, Yoav, Ben-Gal, Irad, Hauser, Shmuel
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Boston Springer US 01.03.2009
Society for Computational Economics
Springer Nature B.V
Edícia:Computational Economics
Predmet:
ISSN:0927-7099, 1572-9974
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Universal compression algorithms can detect recurring patterns in any type of temporal data—including financial data—for the purpose of compression. The universal algorithms actually find a model of the data that can be used for either compression or prediction. We present a universal Variable Order Markov (VOM) model and use it to test the weak form of the Efficient Market Hypothesis (EMH). The EMH is tested for 12 pairs of international intra-day currency exchange rates for one year series of 1, 5, 10, 15, 20, 25 and 30 min. Statistically significant compression is detected in all the time-series and the high frequency series are also predictable above random. However, the predictability of the model is not sufficient to generate a profitable trading strategy, thus, Forex market turns out to be efficient, at least most of the time.
AbstractList Universal compression algorithms can detect recurring patterns in any type of temporal data - including financial data - for the purpose of compression. The universal algorithms actually find a model of the data that can be used for either compression or prediction. We present a universal Variable Order Markov (VOM) model and use it to test the weak form of the Efficient Market Hypothesis (EMH). The EMH is tested for 12 pairs of international intra-day currency exchange rates for one year series of 1, 5, 10, 15, 20, 25 and 30 min. Statistically significant compression is detected in all the time-series and the high frequency series are also predictable above random. However, the predictability of the model is not sufficient to generate a profitable trading strategy, thus, Forex market turns out to be efficient, at least most of the time. [PUBLICATION ABSTRACT]
Universal compression algorithms can detect recurring patterns in any type of temporal dataDLincluding financial dataDLfor the purpose of compression. The universal algorithms actually find a model of the data that can be used for either compression or prediction. We present a universal Variable Order Markov (VOM) model and use it to test the weak form of the Efficient Market Hypothesis (EMH). The EMH is tested for 12 pairs of international intra-day currency exchange rates for one year series of 1, 5, 10, 15, 20, 25 and 30_min. Statistically significant compression is detected in all the time-series and the high frequency series are also predictable above random. However, the predictability of the model is not sufficient to generate a profitable trading strategy, thus, Forex market turns out to be efficient, at least most of the time. Reprinted by permission of Springer
Universal compression algorithms can detect recurring patterns in any type of temporal data—including financial data—for the purpose of compression. The universal algorithms actually find a model of the data that can be used for either compression or prediction. We present a universal Variable Order Markov (VOM) model and use it to test the weak form of the Efficient Market Hypothesis (EMH). The EMH is tested for 12 pairs of international intra-day currency exchange rates for one year series of 1, 5, 10, 15, 20, 25 and 30 min. Statistically significant compression is detected in all the time-series and the high frequency series are also predictable above random. However, the predictability of the model is not sufficient to generate a profitable trading strategy, thus, Forex market turns out to be efficient, at least most of the time.
Author Shmilovici, Armin
Ben-Gal, Irad
Kahiri, Yoav
Hauser, Shmuel
Author_xml – sequence: 1
  givenname: Armin
  surname: Shmilovici
  fullname: Shmilovici, Armin
  email: armin@bgumail.bgu.ac.il
  organization: Department of Information Systems, Ben-Gurion University
– sequence: 2
  givenname: Yoav
  surname: Kahiri
  fullname: Kahiri, Yoav
  organization: School of Management, Ben-Gurion University
– sequence: 3
  givenname: Irad
  surname: Ben-Gal
  fullname: Ben-Gal, Irad
  organization: Department of Industrial Engineering, Tel-Aviv University
– sequence: 4
  givenname: Shmuel
  surname: Hauser
  fullname: Hauser, Shmuel
  organization: ONO Academic College and School of Management, Ben-Gurion University
BackLink http://econpapers.repec.org/article/kapcompec/v_3a33_3ay_3a2009_3ai_3a2_3ap_3a131-154.htm$$DView record in RePEc
BookMark eNp9UcFu1DAQtVCR2C58ADeLA7fA2I7X8bFaWihqxYWeLeOddN0mdrC9Lfv3OASEVAkO47FG743mvXdKTkIMSMhrBu8YgHqfGWxY2wB0jWZSNOIZWTGpeKO1ak_ICjRXjQKtX5DTnO8AQDLOV8Reo82H5MMtLXuk533vncfgjjT2vyaXoSS7s0d6ERP-oNc23WOhj77sqaU3wT9gynagH2yxdBvHKWHOPgZ6NtzGVFHjS_K8t0PGV7_7mtxcnH_dfmquvny83J5dNa5VsjRcbKxymrF21_Gd5twJ_NYLwXZKcWh5D13nNr11UkuhNHcKEK3oLIJoe8HEmrxd9k4pfj9gLmb02eEw2IDxkI2Y1bPqzZq8eQK8i4cU6m2GMyklAG8r6PMCSjihM1Pyo01Hc28nV0XWyYMRVoj6HGtxAF2bn7-1plpMMMNka_ZlrMvUssylmHPC3jhfbKk2VW_9YBiYOUSzhGhqiGYO0YjKZE-Yfy75H4cvnDzNuWL6q-_fpJ8Bo68w
CitedBy_id crossref_primary_10_1142_S2196888819500180
crossref_primary_10_1016_j_eswa_2015_12_028
crossref_primary_10_3233_AF_150052
crossref_primary_10_1007_s10614_022_10281_3
crossref_primary_10_1016_j_ribaf_2012_08_001
crossref_primary_10_1016_j_physa_2012_06_038
crossref_primary_10_1080_14697688_2014_906811
crossref_primary_10_1007_s10614_016_9641_9
crossref_primary_10_1177_2321022217724978
crossref_primary_10_1080_14697688_2023_2211108
crossref_primary_10_1007_s11023_022_09602_0
crossref_primary_10_1089_big_2018_0057
crossref_primary_10_1007_s10614_019_09885_z
crossref_primary_10_1007_s10489_022_03342_5
crossref_primary_10_1007_s11066_013_9079_3
crossref_primary_10_32609_j_ruje_7_65328
Cites_doi 10.1002/for.837
10.1016/0304-405X(78)90025-9
10.1109/18.923732
10.1109/18.144706
10.20955/r.79.23-38
10.1002/jae.965
10.1016/0261-5606(92)90048-3
10.1093/bioinformatics/17.1.23
10.1016/S0022-1996(98)00061-0
10.3233/JCM-2007-7103
10.1145/279361.279370
10.1109/TIT.1978.1055934
10.1109/CIFER.1997.618933
10.1109/18.720534
10.1109/TIT.1983.1056741
10.1109/18.930925
10.1214/aos/1018031204
10.1016/S0304-405X(98)00026-9
10.1111/j.1467-9965.1991.tb00002.x
10.1198/004017003000000122
10.1023/A:1026198216929
10.1002/0471200611
10.1093/ptj/85.3.257
10.1111/0022-1082.00163
10.1016/S0169-2070(03)00012-8
10.1613/jair.1491
10.1109/72.935088
10.1109/TIT.1984.1056936
10.1257/089533003321164958
10.1111/j.1540-6261.1991.tb04636.x
10.1002/0471264105
10.1257/0895330042632744
10.1002/for.835
10.1093/bioinformatics/bti410
10.1109/18.272494
10.1002/j.1099-1174.1994.tb00072.x
ContentType Journal Article
Copyright Springer Science+Business Media, LLC. 2008
Springer Science+Business Media, LLC. 2009
Copyright_xml – notice: Springer Science+Business Media, LLC. 2008
– notice: Springer Science+Business Media, LLC. 2009
DBID AAYXX
CITATION
DKI
X2L
3V.
7WY
7WZ
7XB
87Z
8AO
8BJ
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FQK
FRNLG
F~G
GNUQQ
HCIFZ
JBE
JQ2
K60
K6~
K7-
L.-
L.0
M0C
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s10614-008-9153-3
DatabaseName CrossRef
RePEc IDEAS
RePEc
ProQuest Central (Corporate)
ABI/INFORM Collection - QC
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
ProQuest Pharma Collection
International Bibliography of the Social Sciences (IBSS)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
International Bibliography of the Social Sciences
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Collection (ProQuest)
International Bibliography of the Social Sciences
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database (ProQuest)
ABI/INFORM Professional Advanced
ABI/INFORM Professional Standard
ABI/INFORM Global
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
International Bibliography of the Social Sciences (IBSS)
ABI/INFORM Professional Standard
ProQuest Central Korea
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)
International Bibliography of the Social Sciences (IBSS)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Business
EISSN 1572-9974
EndPage 154
ExternalDocumentID 1634323781
kapcompec_v_3a33_3ay_3a2009_3ai_3a2_3ap_3a131_154_htm
10_1007_s10614_008_9153_3
Genre Feature
GroupedDBID -4X
-57
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3R3
3V.
4.4
406
408
409
40D
40E
41~
5GY
5QI
5VS
67Z
6J9
6NX
7WY
8AO
8FE
8FG
8FL
8FW
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHQT
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACREN
ACSNA
ACYUM
ACZOJ
ADFRT
ADHHG
ADHIR
ADIMF
ADINQ
ADIYS
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
B-.
BA0
BAAKF
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
EOH
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IBB
IEA
IHE
IJ-
IKXTQ
IOF
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O-J
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9M
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R-Y
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZD
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBE
SCF
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WIP
WK8
YLTOR
Z45
Z81
Z83
Z86
Z88
Z8U
Z8W
Z92
ZMTXR
ZYFGU
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
0R
41
4X
57
5G
95
A9
AAPBV
ACIPQ
ACVWB
BR
C
DKI
EM
EX
HZ
IPNFZ
K6
KSO
LJ0
PQEST
PQUKI
PRINS
RIG
UNUBA
VR
X2L
7XB
8BJ
8FK
AZQEC
FQK
GNUQQ
JBE
JQ2
L.-
L.0
PKEHL
Q9U
PUEGO
ID FETCH-LOGICAL-c475t-236a7c9114d82d922c3ebf331d772042f088c6fac5953792c70eea38ae034f313
IEDL.DBID 7WY
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000265022500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0927-7099
IngestDate Fri Sep 05 06:47:38 EDT 2025
Wed Nov 26 13:12:16 EST 2025
Wed Aug 18 03:10:58 EDT 2021
Sat Nov 29 03:17:37 EST 2025
Tue Nov 18 20:52:12 EST 2025
Fri Feb 21 02:37:02 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords C53
C63
Variable Order Markov
C22
Universal prediction
Forex Intra-day trading
C49
62P05
G14
Efficient Market Hypothesis
91B84
62M20
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c475t-236a7c9114d82d922c3ebf331d772042f088c6fac5953792c70eea38ae034f313
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 215550024
PQPubID 36414
PageCount 24
ParticipantIDs proquest_miscellaneous_37099115
proquest_journals_215550024
repec_primary_kapcompec_v_3a33_3ay_3a2009_3ai_3a2_3ap_3a131_154_htm
crossref_citationtrail_10_1007_s10614_008_9153_3
crossref_primary_10_1007_s10614_008_9153_3
springer_journals_10_1007_s10614_008_9153_3
PublicationCentury 2000
PublicationDate 2009-03-01
PublicationDateYYYYMMDD 2009-03-01
PublicationDate_xml – month: 03
  year: 2009
  text: 2009-03-01
  day: 01
PublicationDecade 2000
PublicationPlace Boston
PublicationPlace_xml – name: Boston
– name: Dordrecht
PublicationSeriesTitle Computational Economics
PublicationTitle Computational economics
PublicationTitleAbbrev Comput Econ
PublicationYear 2009
Publisher Springer US
Society for Computational Economics
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Society for Computational Economics
– name: Springer Nature B.V
References Bellgard, C. D. (2002). Diffusion of forecasting technology: Nonlinearity and the information advantage effect. Ph.D. dissertation, The University of Western Australia.
Annette, M. G. (1997). Kappa statistics for multiple raters using categorical classifications. In Proceedings of the Twenty-Second Annual SAS Users Group International Conference (available online), San Diego, CA, March.
ChenS.-H.TanC.-W.DoweD.L.KorbK.B.OliverJ.J.Measuring randomness by Rissanen’s stochastic complexity: Applications to the financial dataInformation, statistics and induction in science1996World ScientificSingapore
FamaE.F.Market efficiency, long term returns, and behavioral financeJournal of Financial Economics,19984928330610.1016/S0304-405X(98)00026-9
FederM.MerhavN.GutmanM.Universal prediction of individual sequencesIEEE Transactions on Information Theory19923841258127010.1109/18.144706
KamruzzamanJ.SarkerR.A.ANN based forecasting of foreign currency exchange ratesNeural Information Processing—Letters and Reviews2004324958
Ben-GalI.ShaniA.GohrA.GrauJ.ArbivS.ShmiloviciA.Identification of transcription factor binding sites with variable-order Bayesian networksBioinformatics200521112657266610.1093/bioinformatics/bti410
Goldschmidt, P., & Bellgrad, C. (1999). Forecasting foreign exchange rates: Random walk hypothesis, linearity and data freqency. Department of Information Management and Marketing, The University of Western Australia.
LebaronB.Technical trading rule profitability and foreign exchange interventionJournal of International Economics19994912514310.1016/S0022-1996(98)00061-0
ZivJ.LempelA.Compression of individual sequences via variable rate codingIEEE Transactions on Information Theory19782453053610.1109/TIT.1978.1055934
TimmermannA.GrangerC.W.J.Efficient market hypothesis and forecastingInternational Journal of Forecasting2004201152710.1016/S0169-2070(03)00012-8
Hellstrom, T., & Holmstrom, K. (1998). Predicting the stock market. Technical report Ima-TOM-1997-07, Umea University, Sweden. http://citeseer.ist.psu.edu/20821.html.
Bahmani-Oskooee, M., Kutan, A. M., & Zhou, S. (2006). Do real exchange rates follow a non-linear mean reverting process in developing countries. EMG Working Paper Series, WP-EMG-02-2006.
Kahiri, Y. (2004). Measuring the efficiency of the Forex market via the context tree model. M.Sc. dissertation (in Hebrew), Ben-Gurion University, Israel.
MalkielB.G.The efficient market hypothesis and its criticsThe Journal of Economic Perspectives200317598210.1257/089533003321164958
BoeroG.MarrocuE.The performance of non linear exchange rate models: A forecasting comparisonJournal of Forecasting,20022151354210.1002/for.837
CoverT.M.Universal portfoliosMathematical Finance19911112910.1111/j.1467-9965.1991.tb00002.x
FederovskyE.FederM.WeissS.Branch prediction based on universal data compression algorithmACM SIGARCH Computer Architecture News1998263627210.1145/279361.279370
MillmanG.J.Around the world on a trillion dollars a day1995New YorkBantam Press
Tino, P., Schittenkopf, C., & Dorffner, G. (2000). A symbolics dynamics approach to volatility prediction. In Y. S. Abu-Mustafa & B. LeBaron (Eds.), Proceedings of the 6th International Conference on Computational Finance (pp. 137–151), January 6–8 1999. Cambridge, MA: Leonard N. Stern School of Bussiness, MIT Press.
BuhlmannP.WynerA.J.Variable length Markov chainsAnnals of Statistics199927248051310.1214/aos/1018031204
Choong, C. K., Poon, W. C., Habibullah, M. S., & Yusop, Z. (2003). The validity of PPP theory in asean five: Another look on cointegration and panel data analysis. Faculty of Accountancy and Management, University Tunku Abdul Rahman.
JensenM.Some anomalous evidence regarding market efficiencyJournal of Financial Economics,197869510110.1016/0304-405X(78)90025-9
Ben-GalI.MoragG.ShmiloviciA.CSPC: A monitoring procedure for state dependent processesTechnometrics200345429331110.1198/004017003000000122
TaylorA.M.TaylorM.P.The purchasing power parity debateThe Journal of Economic Perspectives200418135158
FederM.MerhavN.Relations between entropy and error probabilityIEEE Transactions on Information Theory199438125926610.1109/18.272494
TsayR.Analysis of financial time series2002New YorkWiley
Alon-Brimer, Y. (2002). Measuring the efficiency of the Israeli stock market by the context tree model. M.Sc. dissertation (in Hebrew), Ben-Gurion University, Israel.
VertJ.P.Adaptive context trees and text clusteringIEEE Transactions on Information Theory20014751884190110.1109/18.930925
Feder, M., & Federovski, E. (1999), Universal prediction with finite memory. IT Workshop on Detection, Estimation, Classification and Imaging, Santa Fe, NM, USA, 24–26 February.
Papageorgiou, C. P. (1997). High frequency time series analysis and prediction using Markov models. In Proceedings of the conference on Computational Intelligence for Financial Engineering IEEE/IAFE (pp. 182–188), 23–25 March, New York City, NY.
CoverT.M.ThomasJ.A.Elements of information theory1991New-YorkWiley
Hutter, M. (2001). Convergence and error bounds for universal prediction of nonbinary sequences. In: Proceedings of the 12th European Conference on Machine Learning ECML-2001 (pp. 239–250).
Chen, S.-H., & Tan, C.-W. (1999). Estimating the complexity function of financial time series: An estimation based on predictive stochastic complexity. In Proceedings of the 5th International Conference of the Society for Computational Economics, Boston, June 24–26. Also published in Journal of Management and Economics, 3(3) (an electronic journal).
YuL.WangS.LaiK.K.SunderametalV.S.Adaptive smoothing neural networks in foreign exchange rate forecastingICCS, LNCS 35162005New YorkSpringer523530
SimJ.WrightC.C.The kappa statistic in reliability studies: Use, interpretation, and sample size requirementsPhysical Therapy200585257268
Wu, W., & Shafer, G. (2007). Testing lead-Lag effects under game-theoretic efficient market hypotheses. http://www.probabilityandfinance.com/articles/23.pdf.
Shmilovici, A., & Ben-Gal, I. (2006). Assessing the efficient market hypothesis in stock exchange markets via a universal prediction statistic. Unpublished technical report.
ZaidenraiseK.O.S.ShmiloviciA.Ben-GalI.Gene-finding with the VOM modelJournal of Computational Methods in Science and Engineering2007714554
ZivJ.A universal prediction lemma and applications to universal data compression and predictionIEEE Transactions on Information Theory20014741528153210.1109/18.923732
Ziv, J. (2002). An efficient universal prediction algorithm for unknown sources with limited training data. http://www.msri.org/publications/ln/msri/2002/infotheory/ziv/1/.
DempsterM.A.H.PayneT.W.RomahiY.ThompsonG.W.P.Computational learning techniques for intraday FX trading using popular technical indicatorsIEEE Transactions on Neural Networks200112474475410.1109/72.935088
DacorognaM.GencayR.MullerU.OlsenR.PictetO.An introduction to high-frequency finance2001New YorkAcademic Press
ChungJ.HongY.Model-free evaluation of directional predictability in foreign exchange marketsJournal of Applied Econometrics20072285588910.1002/jae.965
ZhangX.Non-linear predictive models for intra-day foreign exchange tradingIntelligent Systems in Accounting, Finance and Management19943293302
KaashoekJ.F.Van DijkH.K.Neural network pruning applied to real exchange rate analysisJournal of Forecasting20022155957710.1002/for.835
TaylorM.P.AllenH.The use of technical analysis in the foreign exchange marketJournal of International Money and Finance19921130431410.1016/0261-5606(92)90048-3
BaetaensD.J.E.van den BergW.M.VaudreyH.DunisC.Market inefficiencies, technical trading and neural networksForecasting financial markets, financial economics and quantitative analysis1996ChichesterWiley245260
OrlovY.L.FilippovV.P.PotapovV.N.KolchanovN.A.Construction of stochastic context trees for genetic textsIn Silico Biology200223233247
RissanenJ.A universal data compression systemIEEE Transactions on Information Theory,198329565666410.1109/TIT.1983.1056741
RissanenJ.Universal coding, information, prediction, and estimationIEEE Transactions on Information Theory198430462963610.1109/TIT.1984.1056936
DeboeckG.Trading on the edge: Neural, genetic, and fuzzy systems for chaotic financial markets1994New YorkWiley
SchwertG.ConstantinidesG.M.HarrisM.StulzR.Anomalies and market efficiency (Chap. 15)Handbook of economics of finance2003AmsterdamElsevier939960
BejeranoG.YonaG.Variations on probabilistic suffix trees: Statistical modeling and prediction of protein familiesBioinformatics200117234310.1093/bioinformatics/17.1.23
LoA.W.BlumeL.DurlaufS.Efficient markets hypothesisThe new palgrave: A dictionary of economics20072LondonPalgrave MacMillan
SullivanR.TimmermanA.WhiteH.Data-snooping, technical trading rule performance, and the bootstrapThe Journal of Finance1999541647169210.1111/0022-1082.00163
ShmiloviciA.Alon-BrimerY.HauserS.Using a stochastic complexity measure to check the efficient market hypothesisComputational Economics200322327328410.1023/A:1026198216929
MerhavN.FederM.Universal predictionIEEE Transactions on Information Theory IT-1998442124214710.1109/18.720534
FamaE.F.Efficient capital markets: IIThe Journal of Finance1991461575161110.2307/2328565
MillsT.Forecasting financial markets2002UK CheltenhamEdward Elgar
PringM.J.Technical analysis explained: The successful investor’s guide to spotting investment trends and turning points1991New-YorkMcGraw-Hill
BegleiterR.El-YanivR.YonaG.On prediction using variable order Markov modelsJournal of Artificial Intelligence200422385421
ShmiloviciA.Ben-GalI.Using a VOM model for reconstructing potential coding regions in EST sequences. Computational Statistics20072214969
Neely, C. J. (1997). Technical analysis in the foreign exchange market: A Layman’s guide. Federal Reserve Bank of St. Louis.
M. Dacorogna (9153_CR18) 2001
G. Bejerano (9153_CR6) 2001; 17
M.A.H. Dempster (9153_CR20) 2001; 12
G.J. Millman (9153_CR38) 1995
T.M. Cover (9153_CR16) 1991; 1
9153_CR32
M.J. Pring (9153_CR43) 1991
E. Federovsky (9153_CR26) 1998; 26
A. Shmilovici (9153_CR47) 2003; 22
A. Shmilovici (9153_CR49) 2007; 22
M. Jensen (9153_CR30) 1978; 6
J.P. Vert (9153_CR57) 2001; 47
J. Sim (9153_CR50) 2005; 85
(9153_CR39) 2002
J. Ziv (9153_CR64) 1978; 24
E.F. Fama (9153_CR21) 1991; 46
R. Sullivan (9153_CR51) 1999; 54
X. Zhang (9153_CR61) 1994; 3
J. Ziv (9153_CR62) 2001; 47
E.F. Fama (9153_CR22) 1998; 49
9153_CR63
9153_CR1
9153_CR2
9153_CR23
Y.L. Orlov (9153_CR41) 2002; 2
9153_CR4
9153_CR28
9153_CR29
9153_CR7
9153_CR27
G. Boero (9153_CR10) 2002; 21
T.M. Cover (9153_CR17) 1991
B. Lebaron (9153_CR34) 1999; 49
A. Timmermann (9153_CR54) 2004; 20
J. Rissanen (9153_CR45) 1984; 30
R. Begleiter (9153_CR5) 2004; 22
J. Chung (9153_CR15) 2007; 22
I. Ben-Gal (9153_CR8) 2003; 45
D.J.E. Baetaens (9153_CR3) 1996
I. Ben-Gal (9153_CR9) 2005; 21
J.F. Kaashoek (9153_CR31) 2002; 21
9153_CR13
9153_CR14
9153_CR58
9153_CR55
K.O.S. Zaidenraise (9153_CR60) 2007; 7
G. Deboeck (9153_CR19) 1994
J. Kamruzzaman (9153_CR33) 2004; 3
A.M. Taylor (9153_CR53) 2004; 18
G. Schwert (9153_CR46) 2003
S.-H. Chen (9153_CR12) 1996
B.G. Malkiel (9153_CR36) 2003; 17
M. Feder (9153_CR24) 1994; 38
A.W. Lo (9153_CR35) 2007
R. Tsay (9153_CR56) 2002
M.P. Taylor (9153_CR52) 1992; 11
M. Feder (9153_CR25) 1992; 38
9153_CR42
J. Rissanen (9153_CR44) 1983; 29
L. Yu (9153_CR59) 2005
9153_CR40
N. Merhav (9153_CR37) 1998; 44
P. Buhlmann (9153_CR11) 1999; 27
9153_CR48
References_xml – reference: TsayR.Analysis of financial time series2002New YorkWiley
– reference: Papageorgiou, C. P. (1997). High frequency time series analysis and prediction using Markov models. In Proceedings of the conference on Computational Intelligence for Financial Engineering IEEE/IAFE (pp. 182–188), 23–25 March, New York City, NY.
– reference: BuhlmannP.WynerA.J.Variable length Markov chainsAnnals of Statistics199927248051310.1214/aos/1018031204
– reference: RissanenJ.A universal data compression systemIEEE Transactions on Information Theory,198329565666410.1109/TIT.1983.1056741
– reference: BegleiterR.El-YanivR.YonaG.On prediction using variable order Markov modelsJournal of Artificial Intelligence200422385421
– reference: SchwertG.ConstantinidesG.M.HarrisM.StulzR.Anomalies and market efficiency (Chap. 15)Handbook of economics of finance2003AmsterdamElsevier939960
– reference: KaashoekJ.F.Van DijkH.K.Neural network pruning applied to real exchange rate analysisJournal of Forecasting20022155957710.1002/for.835
– reference: DacorognaM.GencayR.MullerU.OlsenR.PictetO.An introduction to high-frequency finance2001New YorkAcademic Press
– reference: ZivJ.LempelA.Compression of individual sequences via variable rate codingIEEE Transactions on Information Theory19782453053610.1109/TIT.1978.1055934
– reference: Neely, C. J. (1997). Technical analysis in the foreign exchange market: A Layman’s guide. Federal Reserve Bank of St. Louis.
– reference: DempsterM.A.H.PayneT.W.RomahiY.ThompsonG.W.P.Computational learning techniques for intraday FX trading using popular technical indicatorsIEEE Transactions on Neural Networks200112474475410.1109/72.935088
– reference: JensenM.Some anomalous evidence regarding market efficiencyJournal of Financial Economics,197869510110.1016/0304-405X(78)90025-9
– reference: DeboeckG.Trading on the edge: Neural, genetic, and fuzzy systems for chaotic financial markets1994New YorkWiley
– reference: Alon-Brimer, Y. (2002). Measuring the efficiency of the Israeli stock market by the context tree model. M.Sc. dissertation (in Hebrew), Ben-Gurion University, Israel.
– reference: Bahmani-Oskooee, M., Kutan, A. M., & Zhou, S. (2006). Do real exchange rates follow a non-linear mean reverting process in developing countries. EMG Working Paper Series, WP-EMG-02-2006.
– reference: Ben-GalI.ShaniA.GohrA.GrauJ.ArbivS.ShmiloviciA.Identification of transcription factor binding sites with variable-order Bayesian networksBioinformatics200521112657266610.1093/bioinformatics/bti410
– reference: Bellgard, C. D. (2002). Diffusion of forecasting technology: Nonlinearity and the information advantage effect. Ph.D. dissertation, The University of Western Australia.
– reference: Wu, W., & Shafer, G. (2007). Testing lead-Lag effects under game-theoretic efficient market hypotheses. http://www.probabilityandfinance.com/articles/23.pdf.
– reference: MillsT.Forecasting financial markets2002UK CheltenhamEdward Elgar
– reference: TaylorA.M.TaylorM.P.The purchasing power parity debateThe Journal of Economic Perspectives200418135158
– reference: Annette, M. G. (1997). Kappa statistics for multiple raters using categorical classifications. In Proceedings of the Twenty-Second Annual SAS Users Group International Conference (available online), San Diego, CA, March.
– reference: FamaE.F.Efficient capital markets: IIThe Journal of Finance1991461575161110.2307/2328565
– reference: ZhangX.Non-linear predictive models for intra-day foreign exchange tradingIntelligent Systems in Accounting, Finance and Management19943293302
– reference: FamaE.F.Market efficiency, long term returns, and behavioral financeJournal of Financial Economics,19984928330610.1016/S0304-405X(98)00026-9
– reference: Ben-GalI.MoragG.ShmiloviciA.CSPC: A monitoring procedure for state dependent processesTechnometrics200345429331110.1198/004017003000000122
– reference: FederovskyE.FederM.WeissS.Branch prediction based on universal data compression algorithmACM SIGARCH Computer Architecture News1998263627210.1145/279361.279370
– reference: ZivJ.A universal prediction lemma and applications to universal data compression and predictionIEEE Transactions on Information Theory20014741528153210.1109/18.923732
– reference: ChungJ.HongY.Model-free evaluation of directional predictability in foreign exchange marketsJournal of Applied Econometrics20072285588910.1002/jae.965
– reference: Ziv, J. (2002). An efficient universal prediction algorithm for unknown sources with limited training data. http://www.msri.org/publications/ln/msri/2002/infotheory/ziv/1/.
– reference: LebaronB.Technical trading rule profitability and foreign exchange interventionJournal of International Economics19994912514310.1016/S0022-1996(98)00061-0
– reference: SullivanR.TimmermanA.WhiteH.Data-snooping, technical trading rule performance, and the bootstrapThe Journal of Finance1999541647169210.1111/0022-1082.00163
– reference: BaetaensD.J.E.van den BergW.M.VaudreyH.DunisC.Market inefficiencies, technical trading and neural networksForecasting financial markets, financial economics and quantitative analysis1996ChichesterWiley245260
– reference: MillmanG.J.Around the world on a trillion dollars a day1995New YorkBantam Press
– reference: Shmilovici, A., & Ben-Gal, I. (2006). Assessing the efficient market hypothesis in stock exchange markets via a universal prediction statistic. Unpublished technical report.
– reference: LoA.W.BlumeL.DurlaufS.Efficient markets hypothesisThe new palgrave: A dictionary of economics20072LondonPalgrave MacMillan
– reference: SimJ.WrightC.C.The kappa statistic in reliability studies: Use, interpretation, and sample size requirementsPhysical Therapy200585257268
– reference: Feder, M., & Federovski, E. (1999), Universal prediction with finite memory. IT Workshop on Detection, Estimation, Classification and Imaging, Santa Fe, NM, USA, 24–26 February.
– reference: BejeranoG.YonaG.Variations on probabilistic suffix trees: Statistical modeling and prediction of protein familiesBioinformatics200117234310.1093/bioinformatics/17.1.23
– reference: VertJ.P.Adaptive context trees and text clusteringIEEE Transactions on Information Theory20014751884190110.1109/18.930925
– reference: Hutter, M. (2001). Convergence and error bounds for universal prediction of nonbinary sequences. In: Proceedings of the 12th European Conference on Machine Learning ECML-2001 (pp. 239–250).
– reference: CoverT.M.Universal portfoliosMathematical Finance19911112910.1111/j.1467-9965.1991.tb00002.x
– reference: ShmiloviciA.Alon-BrimerY.HauserS.Using a stochastic complexity measure to check the efficient market hypothesisComputational Economics200322327328410.1023/A:1026198216929
– reference: BoeroG.MarrocuE.The performance of non linear exchange rate models: A forecasting comparisonJournal of Forecasting,20022151354210.1002/for.837
– reference: Choong, C. K., Poon, W. C., Habibullah, M. S., & Yusop, Z. (2003). The validity of PPP theory in asean five: Another look on cointegration and panel data analysis. Faculty of Accountancy and Management, University Tunku Abdul Rahman.
– reference: KamruzzamanJ.SarkerR.A.ANN based forecasting of foreign currency exchange ratesNeural Information Processing—Letters and Reviews2004324958
– reference: TaylorM.P.AllenH.The use of technical analysis in the foreign exchange marketJournal of International Money and Finance19921130431410.1016/0261-5606(92)90048-3
– reference: ChenS.-H.TanC.-W.DoweD.L.KorbK.B.OliverJ.J.Measuring randomness by Rissanen’s stochastic complexity: Applications to the financial dataInformation, statistics and induction in science1996World ScientificSingapore
– reference: Chen, S.-H., & Tan, C.-W. (1999). Estimating the complexity function of financial time series: An estimation based on predictive stochastic complexity. In Proceedings of the 5th International Conference of the Society for Computational Economics, Boston, June 24–26. Also published in Journal of Management and Economics, 3(3) (an electronic journal).
– reference: Kahiri, Y. (2004). Measuring the efficiency of the Forex market via the context tree model. M.Sc. dissertation (in Hebrew), Ben-Gurion University, Israel.
– reference: ShmiloviciA.Ben-GalI.Using a VOM model for reconstructing potential coding regions in EST sequences. Computational Statistics20072214969
– reference: Hellstrom, T., & Holmstrom, K. (1998). Predicting the stock market. Technical report Ima-TOM-1997-07, Umea University, Sweden. http://citeseer.ist.psu.edu/20821.html.
– reference: Goldschmidt, P., & Bellgrad, C. (1999). Forecasting foreign exchange rates: Random walk hypothesis, linearity and data freqency. Department of Information Management and Marketing, The University of Western Australia.
– reference: Tino, P., Schittenkopf, C., & Dorffner, G. (2000). A symbolics dynamics approach to volatility prediction. In Y. S. Abu-Mustafa & B. LeBaron (Eds.), Proceedings of the 6th International Conference on Computational Finance (pp. 137–151), January 6–8 1999. Cambridge, MA: Leonard N. Stern School of Bussiness, MIT Press.
– reference: PringM.J.Technical analysis explained: The successful investor’s guide to spotting investment trends and turning points1991New-YorkMcGraw-Hill
– reference: OrlovY.L.FilippovV.P.PotapovV.N.KolchanovN.A.Construction of stochastic context trees for genetic textsIn Silico Biology200223233247
– reference: CoverT.M.ThomasJ.A.Elements of information theory1991New-YorkWiley
– reference: FederM.MerhavN.GutmanM.Universal prediction of individual sequencesIEEE Transactions on Information Theory19923841258127010.1109/18.144706
– reference: YuL.WangS.LaiK.K.SunderametalV.S.Adaptive smoothing neural networks in foreign exchange rate forecastingICCS, LNCS 35162005New YorkSpringer523530
– reference: TimmermannA.GrangerC.W.J.Efficient market hypothesis and forecastingInternational Journal of Forecasting2004201152710.1016/S0169-2070(03)00012-8
– reference: RissanenJ.Universal coding, information, prediction, and estimationIEEE Transactions on Information Theory198430462963610.1109/TIT.1984.1056936
– reference: FederM.MerhavN.Relations between entropy and error probabilityIEEE Transactions on Information Theory199438125926610.1109/18.272494
– reference: MalkielB.G.The efficient market hypothesis and its criticsThe Journal of Economic Perspectives200317598210.1257/089533003321164958
– reference: MerhavN.FederM.Universal predictionIEEE Transactions on Information Theory IT-1998442124214710.1109/18.720534
– reference: ZaidenraiseK.O.S.ShmiloviciA.Ben-GalI.Gene-finding with the VOM modelJournal of Computational Methods in Science and Engineering2007714554
– volume: 21
  start-page: 513
  year: 2002
  ident: 9153_CR10
  publication-title: Journal of Forecasting,
  doi: 10.1002/for.837
– ident: 9153_CR7
– volume: 6
  start-page: 95
  year: 1978
  ident: 9153_CR30
  publication-title: Journal of Financial Economics,
  doi: 10.1016/0304-405X(78)90025-9
– volume-title: Information, statistics and induction in science
  year: 1996
  ident: 9153_CR12
– volume: 47
  start-page: 1528
  issue: 4
  year: 2001
  ident: 9153_CR62
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/18.923732
– volume: 38
  start-page: 1258
  issue: 4
  year: 1992
  ident: 9153_CR25
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/18.144706
– ident: 9153_CR40
  doi: 10.20955/r.79.23-38
– volume: 22
  start-page: 855
  year: 2007
  ident: 9153_CR15
  publication-title: Journal of Applied Econometrics
  doi: 10.1002/jae.965
– volume: 11
  start-page: 304
  year: 1992
  ident: 9153_CR52
  publication-title: Journal of International Money and Finance
  doi: 10.1016/0261-5606(92)90048-3
– ident: 9153_CR28
– volume: 17
  start-page: 23
  year: 2001
  ident: 9153_CR6
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/17.1.23
– volume: 49
  start-page: 125
  year: 1999
  ident: 9153_CR34
  publication-title: Journal of International Economics
  doi: 10.1016/S0022-1996(98)00061-0
– volume: 7
  start-page: 45
  issue: 1
  year: 2007
  ident: 9153_CR60
  publication-title: Journal of Computational Methods in Science and Engineering
  doi: 10.3233/JCM-2007-7103
– volume: 26
  start-page: 62
  issue: 3
  year: 1998
  ident: 9153_CR26
  publication-title: ACM SIGARCH Computer Architecture News
  doi: 10.1145/279361.279370
– volume: 24
  start-page: 530
  year: 1978
  ident: 9153_CR64
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.1978.1055934
– ident: 9153_CR58
– ident: 9153_CR42
  doi: 10.1109/CIFER.1997.618933
– ident: 9153_CR27
– volume: 44
  start-page: 2124
  year: 1998
  ident: 9153_CR37
  publication-title: IEEE Transactions on Information Theory IT-
  doi: 10.1109/18.720534
– volume-title: Around the world on a trillion dollars a day
  year: 1995
  ident: 9153_CR38
– volume: 29
  start-page: 656
  issue: 5
  year: 1983
  ident: 9153_CR44
  publication-title: IEEE Transactions on Information Theory,
  doi: 10.1109/TIT.1983.1056741
– volume: 47
  start-page: 1884
  issue: 5
  year: 2001
  ident: 9153_CR57
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/18.930925
– volume: 27
  start-page: 480
  issue: 2
  year: 1999
  ident: 9153_CR11
  publication-title: Annals of Statistics
  doi: 10.1214/aos/1018031204
– volume: 49
  start-page: 283
  year: 1998
  ident: 9153_CR22
  publication-title: Journal of Financial Economics,
  doi: 10.1016/S0304-405X(98)00026-9
– start-page: 939
  volume-title: Handbook of economics of finance
  year: 2003
  ident: 9153_CR46
– ident: 9153_CR23
– start-page: 523
  volume-title: ICCS, LNCS 3516
  year: 2005
  ident: 9153_CR59
– ident: 9153_CR4
– volume: 1
  start-page: 1
  issue: 1
  year: 1991
  ident: 9153_CR16
  publication-title: Mathematical Finance
  doi: 10.1111/j.1467-9965.1991.tb00002.x
– ident: 9153_CR48
– volume: 3
  start-page: 49
  issue: 2
  year: 2004
  ident: 9153_CR33
  publication-title: Neural Information Processing—Letters and Reviews
– volume: 45
  start-page: 293
  issue: 4
  year: 2003
  ident: 9153_CR8
  publication-title: Technometrics
  doi: 10.1198/004017003000000122
– ident: 9153_CR13
– volume-title: Trading on the edge: Neural, genetic, and fuzzy systems for chaotic financial markets
  year: 1994
  ident: 9153_CR19
– ident: 9153_CR32
– volume: 22
  start-page: 273
  issue: 3
  year: 2003
  ident: 9153_CR47
  publication-title: Computational Economics
  doi: 10.1023/A:1026198216929
– ident: 9153_CR55
– volume-title: Elements of information theory
  year: 1991
  ident: 9153_CR17
  doi: 10.1002/0471200611
– volume: 85
  start-page: 257
  year: 2005
  ident: 9153_CR50
  publication-title: Physical Therapy
  doi: 10.1093/ptj/85.3.257
– volume: 54
  start-page: 1647
  year: 1999
  ident: 9153_CR51
  publication-title: The Journal of Finance
  doi: 10.1111/0022-1082.00163
– volume: 20
  start-page: 15
  issue: 1
  year: 2004
  ident: 9153_CR54
  publication-title: International Journal of Forecasting
  doi: 10.1016/S0169-2070(03)00012-8
– volume: 22
  start-page: 385
  year: 2004
  ident: 9153_CR5
  publication-title: Journal of Artificial Intelligence
  doi: 10.1613/jair.1491
– volume: 12
  start-page: 744
  issue: 4
  year: 2001
  ident: 9153_CR20
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.935088
– volume: 30
  start-page: 629
  issue: 4
  year: 1984
  ident: 9153_CR45
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.1984.1056936
– volume: 17
  start-page: 59
  year: 2003
  ident: 9153_CR36
  publication-title: The Journal of Economic Perspectives
  doi: 10.1257/089533003321164958
– ident: 9153_CR1
– volume: 46
  start-page: 1575
  year: 1991
  ident: 9153_CR21
  publication-title: The Journal of Finance
  doi: 10.1111/j.1540-6261.1991.tb04636.x
– volume-title: Analysis of financial time series
  year: 2002
  ident: 9153_CR56
  doi: 10.1002/0471264105
– ident: 9153_CR14
– volume-title: Technical analysis explained: The successful investor’s guide to spotting investment trends and turning points
  year: 1991
  ident: 9153_CR43
– volume-title: The new palgrave: A dictionary of economics
  year: 2007
  ident: 9153_CR35
– volume-title: An introduction to high-frequency finance
  year: 2001
  ident: 9153_CR18
– volume: 22
  start-page: 49
  issue: 1
  year: 2007
  ident: 9153_CR49
  publication-title: Using a VOM model for reconstructing potential coding regions in EST sequences. Computational Statistics
– volume: 18
  start-page: 135
  year: 2004
  ident: 9153_CR53
  publication-title: The Journal of Economic Perspectives
  doi: 10.1257/0895330042632744
– volume: 21
  start-page: 559
  year: 2002
  ident: 9153_CR31
  publication-title: Journal of Forecasting
  doi: 10.1002/for.835
– volume: 21
  start-page: 2657
  issue: 11
  year: 2005
  ident: 9153_CR9
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti410
– volume: 38
  start-page: 259
  issue: 1
  year: 1994
  ident: 9153_CR24
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/18.272494
– volume: 3
  start-page: 293
  year: 1994
  ident: 9153_CR61
  publication-title: Intelligent Systems in Accounting, Finance and Management
  doi: 10.1002/j.1099-1174.1994.tb00072.x
– ident: 9153_CR2
– volume: 2
  start-page: 233
  issue: 3
  year: 2002
  ident: 9153_CR41
  publication-title: In Silico Biology
– start-page: 245
  volume-title: Forecasting financial markets, financial economics and quantitative analysis
  year: 1996
  ident: 9153_CR3
– ident: 9153_CR63
– ident: 9153_CR29
– volume-title: Forecasting financial markets
  year: 2002
  ident: 9153_CR39
SSID ssj0005122
Score 1.8923032
Snippet Universal compression algorithms can detect recurring patterns in any type of temporal data—including financial data—for the purpose of compression. The...
Universal compression algorithms can detect recurring patterns in any type of temporal data - including financial data - for the purpose of compression. The...
Universal compression algorithms can detect recurring patterns in any type of temporal dataDLincluding financial dataDLfor the purpose of compression. The...
SourceID proquest
repec
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 131
SubjectTerms 62M20
62P05
91B84
Algorithms
Behavioral/Experimental Economics
C22
C49
C53
C63
Capital market theory
Compression
Computer Appl. in Social and Behavioral Sciences
Data
Data compression
Economic models
Economic statistics
Economic theory
Economic Theory/Quantitative Economics/Mathematical Methods
Economics
Economics and Finance
Efficient Market Hypothesis
Efficient markets
Exchange market
Forecasting
Forecasting techniques
Foreign exchange
Foreign exchange rates
Forex Intra-day trading
G14
Hypotheses
Market efficiency
Markets
Markov analysis
Math Applications in Computer Science
Measurement
Online securities trading
Operations Research/Decision Theory
Process controls
Studies
Universal prediction
Variable Order Markov
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5Bi4ALj1JEaAEfOIEsJXZcx8eqtIJDKyQe6s1yHJtWbbOrTVrRf8-Mk-yCKEhwsBIljm0545nPnhfAay1U48sq56JsHC_rwnCDTJGjbM-jjI0IxqVkE_roqDo-Nh9HP-5usnafVJKJU__k7IaihJO63uAy5fI2rCsKNkNb9E9fV3YdxaA6MEJzjfhnUmXe1MSvwmiFMNcXYR78b8rRJHMOHv7XaB_BgxFist2BJh7DrdBuwN3Jwn0D7k3OyN0TcIfpjBBbZogE2X4KKEHemGwW05MPdPjbuGtGOTy_s8PkJM3o9JY5Nlp1YGfvXO8Y8ZbBrLZlu-ffZgusdbEJXw72P--952PWBe5LrXou5I7THnlg2VSiMUJ4GeooZdFoSmgjIvIlvxOdV0ZJbYTXeQhOVi7ksoyykE9hrZ214RkwFIGxDq52pcrLWFSVUlpr1SgdSlOLOoN8mn7rx5DklBnj3K6CKdM0WkqVSdNoZQZvlp_Mh3gcf6u8Nf1TOy7NziLGwV0ZQpMMXi3f4poiRYlrw-yys5LoBqFyBnuJEJY9nbk5WfrjkysrncQu3DUW0jDh5ZRuscyxFLKwiE7tSX-RwduJRFaj-OOYn_9T7S24P6i3yChuG9b6xWV4AXf8VX_aLV6mhfEDfO4E2Q
  priority: 102
  providerName: Springer Nature
Title Measuring the Efficiency of the Intraday Forex Market with a Universal Data Compression Algorithm
URI https://link.springer.com/article/10.1007/s10614-008-9153-3
http://econpapers.repec.org/article/kapcompec/v_3a33_3ay_3a2009_3ai_3a2_3ap_3a131-154.htm
https://www.proquest.com/docview/215550024
https://www.proquest.com/docview/37099115
Volume 33
WOSCitedRecordID wos000265022500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1572-9974
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0005122
  issn: 0927-7099
  databaseCode: 7WY
  dateStart: 19990201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1572-9974
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0005122
  issn: 0927-7099
  databaseCode: M0C
  dateStart: 19990201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1572-9974
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0005122
  issn: 0927-7099
  databaseCode: P5Z
  dateStart: 19990201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database (ProQuest)
  customDbUrl:
  eissn: 1572-9974
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0005122
  issn: 0927-7099
  databaseCode: K7-
  dateStart: 19990201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1572-9974
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0005122
  issn: 0927-7099
  databaseCode: BENPR
  dateStart: 19990201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1572-9974
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005122
  issn: 0927-7099
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BFwEXHgXUUCg-cAJZJHZcJydUlq1AaFer8ipcLMdxaNU2GzZpRf89M3nsCiF64WAncRJ5pBnPjDzj-QCea6FyFychF3FueZxFKU9RKXK07WEhi1z41LZgE3o2Sw4P03mfm1P3aZWDTmwVdb5wtEf-Ck0TOtNoUV5XPzmBRlFwtUfQuA4jtNOKAAz012_rDI-oCyKkQnONntAQ1OxOzqFd4hT7T3HNc_mnWVr7mqOlr7z7K0zaWp_9u_9J9z2407udbK-Tk_twzZebcHPIet-EW8MB5foB2Gm7b4h0MPQO2aQtMkEnNNmiaEfe04Zwbi8Z4Xr-YtP24DSjHV1mWZ_pgZO9tY1lpG-6VNuS7Z3-QNKao7OH8Hl_8mn8jvdIDNzFWjVcyF2rHerFOE9EngrhpM8KKaNcE8iNKFBXud3COpUqqVPhdOi9lYn1oYwLGclHsFEuSr8FDM1ikXmb2ViFcREliVJaa5Ur7eM0E1kA4cAI4_oy5YSWcWrWBZaJd4bgM4l3RgbwYvVL1dXouOrj7YFPpl-utVkxKYBnq7e4zih4Yku_OK-NJAlC9zmAcSsSq5lObEXZ_zhyYaSVOIW9xEZRJ7wc0y22ClskI4MeqzlqzgJ4OQjUmop_0vz4Spq34XYX4qLEuCew0SzP_VO44S6a43q50y6JHRi9mczmB_j0QXPsp-EY-7n6jv3Bxy-_AX7QFEA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VFlEuPAqooUB9gAvIamIn6-SAUNWHutruikORejOO49CKNptu0sL-KP4jM3nsCiF664GDlch52LG_ecQz4wF4q0SU2TD2uQgzw8M0SHiCTJGjbPdzmWfCJaZJNqEmk_j0NPm8Ar_6WBhyq-x5YsOos6mlNfIdFE2oTKNE-VRecUoaRcbVPoNGi4qRm__AP7bq43Afp_edEIcHJ3tHvEsqwG2oopoLOTDKIomHWSyyRAgrXZpLGWSK8rWIHMnODnJjoySSKhFW-c4ZGRvnyzCXgcT33oO1UMYDIqiR4kuPkqA1WiRCcYWaV29EbSP1UA5y8jVIkMdw-acYXOq2azNXOvuXWbaRdoeP_7NxegKPOrWa7bZ08BRWXLEBD3qv_g1Y7wOwq2dgxs26KH43Q-2XHTSbaFAEKpvmTc2QFrwzM2eUt_QnGzeB4YxWrJlhnScLNrZvasOIn7auxAXbvfiGQ1GfXT6HL3fysS9gtZgWbhMYiv08dSY1YeSHeRDHUaSUirJIuTBJReqB30-8tt027JQN5EIvN5AmrGhKD0pY0dKD94tHynYPkttu3upxoTt2VOkFKDzYXlxFPkLGIVO46XWlJSEWfw882GsguGjpuykpugFrbrQ0EpswcyxkVcPDOZ1iKbEEMtCokeuz-tKDDz2Al734Z59f3trnbVg_Ohkf6-PhZLQFD1tzHjkBvoLVenbtXsN9e1OfV7M3DTky-HrXuP4NpoVpWw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VXVS48CggQoH6ABeQ1cRO6uSAUOnuilXpaoVA6s04jkMr2mzYTQv70_h3zOSxK4TorQcOViLnYcf5PDOehwfghRJRZsPY5yLMDA_TIOEJEkWOvN3PZZ4Jl5g62YSaTOLj42S6Ab-6WBhyq-xoYk2os5klHfkusiYUppGj7OatV8R0MHpbfueUQIoMrV02jQYhh275A1dvizfjAf7ql0KMhp8O3vM2wQC3oYoqLuSeURane5jFIkuEsNKluZRBpih3i8hxCtq93NgoiaRKhFW-c0bGxvkyzGUg8b03oK8krnl60H83nEw_rv1LgsaEkQjFFcphnUm1idtDrsjJ8yBBisPln0xxLen256509i8jbc37Rnf_41G7B3dagZvtNzPkPmy4Ygs2O3__LbjVhWYvHoA5qjWmOAYM5WI2rLfXoNhUNsvrmjGpwjOzZJTR9Cc7qkPGGemymWGtjws2NjCVYURpGyfjgu2ffcWhqE7OH8Lna_nYR9ArZoV7DAwFgjx1JjVh5Id5EMdRpJSKski5MElF6oHfgUDbdoN2yhNyptdbSxNuNCUOJdxo6cGr1SNlszvJVTdvdxjRLaFa6BVAPNhZXUUKQ2YjU7jZxUJLQi8uHDw4qOG4aumbKSnuAWsutTQSmzBLLGRvw8MpnWIpsQQy0Cir65Pq3IPXHZjXvfhnn59c2ecd2EQ46w_jyeE23G7sfOQd-BR61fzCPYOb9rI6Xcyft3OTwZfrBvZvZExzrQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measuring+the+Efficiency+of+the+Intraday+Forex+Market+with+a+Universal+Data+Compression+Algorithm&rft.jtitle=Computational+economics&rft.au=Hauser%2C+Shmuel&rft.au=Kahiri%2C+Yoav&rft.au=Shmilovici%2C+Armin&rft.au=Ben-Gal%2C+Irad&rft.series=Computational+Economics&rft.date=2009-03-01&rft.pub=Society+for+Computational+Economics&rft.issn=0927-7099&rft.eissn=1572-9974&rft.volume=33&rft.issue=2&rft.spage=131&rft.epage=154&rft_id=info:doi/10.1007%2Fs10614-008-9153-3&rft.externalDocID=kapcompec_v_3a33_3ay_3a2009_3ai_3a2_3ap_3a131_154_htm
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-7099&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-7099&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-7099&client=summon