NiftyPAD - Novel Python Package for Quantitative Analysis of Dynamic PET Data

Current PET datasets are becoming larger, thereby increasing the demand for fast and reproducible processing pipelines. This paper presents a freely available, open source, Python-based software package called NiftyPAD, for versatile analyses of static, full or dual-time window dynamic brain PET dat...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Neuroinformatics (Totowa, N.J.) Ročník 21; číslo 2; s. 457 - 468
Hlavní autori: Jiao, Jieqing, Heeman, Fiona, Dixon, Rachael, Wimberley, Catriona, Lopes Alves, Isadora, Gispert, Juan Domingo, Lammertsma, Adriaan A., van Berckel, Bart N. M., da Costa-Luis, Casper, Markiewicz, Pawel, Cash, David M., Cardoso, M Jorge, Ourselin, Sebastién, Yaqub, Maqsood, Barkhof, Frederik
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.04.2023
Springer Nature B.V
Predmet:
ISSN:1539-2791, 1559-0089, 1559-0089
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Current PET datasets are becoming larger, thereby increasing the demand for fast and reproducible processing pipelines. This paper presents a freely available, open source, Python-based software package called NiftyPAD, for versatile analyses of static, full or dual-time window dynamic brain PET data. The key novelties of NiftyPAD are the analyses of dual-time window scans with reference input processing, pharmacokinetic modelling with shortened PET acquisitions through the incorporation of arterial spin labelling (ASL)-derived relative perfusion measures, as well as optional PET data-based motion correction. Results obtained with NiftyPAD were compared with the well-established software packages PPET and QModeling for a range of kinetic models. Clinical data from eight subjects scanned with four different amyloid tracers were used to validate the computational performance. NiftyPAD achieved R 2 > 0.999 correlation with PPET, with absolute difference ∼ 10 - 2 for linearised Logan and MRTM2 methods, and R 2 > 0.999999 correlation with QModeling, with absolute difference ∼ 10 - 4 for basis function based SRTM and SRTM2 models. For the recently published SRTM ASL method, which is unavailable in existing software packages, high correlations with negligible bias were observed with the full scan SRTM in terms of non-displaceable binding potential ( R 2 = 0.96 ), indicating reliable model implementation in NiftyPAD. Together, these findings illustrate that NiftyPAD is versatile, flexible, and produces comparable results with established software packages for quantification of dynamic PET data. It is freely available ( https://github.com/AMYPAD/NiftyPAD ), and allows for multi-platform usage. The modular setup makes adding new functionalities easy, and the package is lightweight with minimal dependencies, making it easy to use and integrate into existing processing pipelines.
AbstractList Current PET datasets are becoming larger, thereby increasing the demand for fast and reproducible processing pipelines. This paper presents a freely available, open source, Python-based software package called NiftyPAD, for versatile analyses of static, full or dual-time window dynamic brain PET data. The key novelties of NiftyPAD are the analyses of dual-time window scans with reference input processing, pharmacokinetic modelling with shortened PET acquisitions through the incorporation of arterial spin labelling (ASL)-derived relative perfusion measures, as well as optional PET data-based motion correction. Results obtained with NiftyPAD were compared with the well-established software packages PPET and QModeling for a range of kinetic models. Clinical data from eight subjects scanned with four different amyloid tracers were used to validate the computational performance. NiftyPAD achieved R 2 > 0.999 correlation with PPET, with absolute difference ∼ 10 - 2 for linearised Logan and MRTM2 methods, and R 2 > 0.999999 correlation with QModeling, with absolute difference ∼ 10 - 4 for basis function based SRTM and SRTM2 models. For the recently published SRTM ASL method, which is unavailable in existing software packages, high correlations with negligible bias were observed with the full scan SRTM in terms of non-displaceable binding potential ( R 2 = 0.96 ), indicating reliable model implementation in NiftyPAD. Together, these findings illustrate that NiftyPAD is versatile, flexible, and produces comparable results with established software packages for quantification of dynamic PET data. It is freely available ( https://github.com/AMYPAD/NiftyPAD ), and allows for multi-platform usage. The modular setup makes adding new functionalities easy, and the package is lightweight with minimal dependencies, making it easy to use and integrate into existing processing pipelines.
Current PET datasets are becoming larger, thereby increasing the demand for fast and reproducible processing pipelines. This paper presents a freely available, open source, Python-based software package called NiftyPAD, for versatile analyses of static, full or dual-time window dynamic brain PET data. The key novelties of NiftyPAD are the analyses of dual-time window scans with reference input processing, pharmacokinetic modelling with shortened PET acquisitions through the incorporation of arterial spin labelling (ASL)-derived relative perfusion measures, as well as optional PET data-based motion correction. Results obtained with NiftyPAD were compared with the well-established software packages PPET and QModeling for a range of kinetic models. Clinical data from eight subjects scanned with four different amyloid tracers were used to validate the computational performance. NiftyPAD achieved R2>0.999 correlation with PPET, with absolute difference ∼10-2 for linearised Logan and MRTM2 methods, and R2>0.999999 correlation with QModeling, with absolute difference ∼10-4 for basis function based SRTM and SRTM2 models. For the recently published SRTM ASL method, which is unavailable in existing software packages, high correlations with negligible bias were observed with the full scan SRTM in terms of non-displaceable binding potential (R2=0.96), indicating reliable model implementation in NiftyPAD. Together, these findings illustrate that NiftyPAD is versatile, flexible, and produces comparable results with established software packages for quantification of dynamic PET data. It is freely available (https://github.com/AMYPAD/NiftyPAD), and allows for multi-platform usage. The modular setup makes adding new functionalities easy, and the package is lightweight with minimal dependencies, making it easy to use and integrate into existing processing pipelines.
Current PET datasets are becoming larger, thereby increasing the demand for fast and reproducible processing pipelines. This paper presents a freely available, open source, Python-based software package called NiftyPAD, for versatile analyses of static, full or dual-time window dynamic brain PET data. The key novelties of NiftyPAD are the analyses of dual-time window scans with reference input processing, pharmacokinetic modelling with shortened PET acquisitions through the incorporation of arterial spin labelling (ASL)-derived relative perfusion measures, as well as optional PET data-based motion correction. Results obtained with NiftyPAD were compared with the well-established software packages PPET and QModeling for a range of kinetic models. Clinical data from eight subjects scanned with four different amyloid tracers were used to validate the computational performance. NiftyPAD achieved $$R^2>0.999$$ R2>0.999 correlation with PPET, with absolute difference $$\sim 10^{-2}$$ ∼10-2 for linearised Logan and MRTM2 methods, and $$R^2>0.999999$$ R2>0.999999 correlation with QModeling, with absolute difference $$\sim 10^{-4}$$ ∼10-4 for basis function based SRTM and SRTM2 models. For the recently published SRTM ASL method, which is unavailable in existing software packages, high correlations with negligible bias were observed with the full scan SRTM in terms of non-displaceable binding potential ( $$R^2=0.96$$ R2=0.96), indicating reliable model implementation in NiftyPAD. Together, these findings illustrate that NiftyPAD is versatile, flexible, and produces comparable results with established software packages for quantification of dynamic PET data. It is freely available (https://github.com/AMYPAD/NiftyPAD), and allows for multi-platform usage. The modular setup makes adding new functionalities easy, and the package is lightweight with minimal dependencies, making it easy to use and integrate into existing processing pipelines.
Current PET datasets are becoming larger, thereby increasing the demand for fast and reproducible processing pipelines. This paper presents a freely available, open source, Python-based software package called NiftyPAD, for versatile analyses of static, full or dual-time window dynamic brain PET data. The key novelties of NiftyPAD are the analyses of dual-time window scans with reference input processing, pharmacokinetic modelling with shortened PET acquisitions through the incorporation of arterial spin labelling (ASL)-derived relative perfusion measures, as well as optional PET data-based motion correction. Results obtained with NiftyPAD were compared with the well-established software packages PPET and QModeling for a range of kinetic models. Clinical data from eight subjects scanned with four different amyloid tracers were used to validate the computational performance. NiftyPAD achieved $$R^2>0.999$$ R 2 > 0.999 correlation with PPET, with absolute difference $$\sim 10^{-2}$$ ∼ 10 - 2 for linearised Logan and MRTM2 methods, and $$R^2>0.999999$$ R 2 > 0.999999 correlation with QModeling, with absolute difference $$\sim 10^{-4}$$ ∼ 10 - 4 for basis function based SRTM and SRTM2 models. For the recently published SRTM ASL method, which is unavailable in existing software packages, high correlations with negligible bias were observed with the full scan SRTM in terms of non-displaceable binding potential ( $$R^2=0.96$$ R 2 = 0.96 ), indicating reliable model implementation in NiftyPAD. Together, these findings illustrate that NiftyPAD is versatile, flexible, and produces comparable results with established software packages for quantification of dynamic PET data. It is freely available ( https://github.com/AMYPAD/NiftyPAD ), and allows for multi-platform usage. The modular setup makes adding new functionalities easy, and the package is lightweight with minimal dependencies, making it easy to use and integrate into existing processing pipelines.
Current PET datasets are becoming larger, thereby increasing the demand for fast and reproducible processing pipelines. This paper presents a freely available, open source, Python-based software package called NiftyPAD, for versatile analyses of static, full or dual-time window dynamic brain PET data. The key novelties of NiftyPAD are the analyses of dual-time window scans with reference input processing, pharmacokinetic modelling with shortened PET acquisitions through the incorporation of arterial spin labelling (ASL)-derived relative perfusion measures, as well as optional PET data-based motion correction. Results obtained with NiftyPAD were compared with the well-established software packages PPET and QModeling for a range of kinetic models. Clinical data from eight subjects scanned with four different amyloid tracers were used to validate the computational performance. NiftyPAD achieved [Formula: see text] correlation with PPET, with absolute difference [Formula: see text] for linearised Logan and MRTM2 methods, and [Formula: see text] correlation with QModeling, with absolute difference [Formula: see text] for basis function based SRTM and SRTM2 models. For the recently published SRTM ASL method, which is unavailable in existing software packages, high correlations with negligible bias were observed with the full scan SRTM in terms of non-displaceable binding potential ([Formula: see text]), indicating reliable model implementation in NiftyPAD. Together, these findings illustrate that NiftyPAD is versatile, flexible, and produces comparable results with established software packages for quantification of dynamic PET data. It is freely available ( https://github.com/AMYPAD/NiftyPAD ), and allows for multi-platform usage. The modular setup makes adding new functionalities easy, and the package is lightweight with minimal dependencies, making it easy to use and integrate into existing processing pipelines.
Current PET datasets are becoming larger, thereby increasing the demand for fast and reproducible processing pipelines. This paper presents a freely available, open source, Python-based software package called NiftyPAD, for versatile analyses of static, full or dual-time window dynamic brain PET data. The key novelties of NiftyPAD are the analyses of dual-time window scans with reference input processing, pharmacokinetic modelling with shortened PET acquisitions through the incorporation of arterial spin labelling (ASL)-derived relative perfusion measures, as well as optional PET data-based motion correction. Results obtained with NiftyPAD were compared with the well-established software packages PPET and QModeling for a range of kinetic models. Clinical data from eight subjects scanned with four different amyloid tracers were used to validate the computational performance. NiftyPAD achieved [Formula: see text] correlation with PPET, with absolute difference [Formula: see text] for linearised Logan and MRTM2 methods, and [Formula: see text] correlation with QModeling, with absolute difference [Formula: see text] for basis function based SRTM and SRTM2 models. For the recently published SRTM ASL method, which is unavailable in existing software packages, high correlations with negligible bias were observed with the full scan SRTM in terms of non-displaceable binding potential ([Formula: see text]), indicating reliable model implementation in NiftyPAD. Together, these findings illustrate that NiftyPAD is versatile, flexible, and produces comparable results with established software packages for quantification of dynamic PET data. It is freely available ( https://github.com/AMYPAD/NiftyPAD ), and allows for multi-platform usage. The modular setup makes adding new functionalities easy, and the package is lightweight with minimal dependencies, making it easy to use and integrate into existing processing pipelines.Current PET datasets are becoming larger, thereby increasing the demand for fast and reproducible processing pipelines. This paper presents a freely available, open source, Python-based software package called NiftyPAD, for versatile analyses of static, full or dual-time window dynamic brain PET data. The key novelties of NiftyPAD are the analyses of dual-time window scans with reference input processing, pharmacokinetic modelling with shortened PET acquisitions through the incorporation of arterial spin labelling (ASL)-derived relative perfusion measures, as well as optional PET data-based motion correction. Results obtained with NiftyPAD were compared with the well-established software packages PPET and QModeling for a range of kinetic models. Clinical data from eight subjects scanned with four different amyloid tracers were used to validate the computational performance. NiftyPAD achieved [Formula: see text] correlation with PPET, with absolute difference [Formula: see text] for linearised Logan and MRTM2 methods, and [Formula: see text] correlation with QModeling, with absolute difference [Formula: see text] for basis function based SRTM and SRTM2 models. For the recently published SRTM ASL method, which is unavailable in existing software packages, high correlations with negligible bias were observed with the full scan SRTM in terms of non-displaceable binding potential ([Formula: see text]), indicating reliable model implementation in NiftyPAD. Together, these findings illustrate that NiftyPAD is versatile, flexible, and produces comparable results with established software packages for quantification of dynamic PET data. It is freely available ( https://github.com/AMYPAD/NiftyPAD ), and allows for multi-platform usage. The modular setup makes adding new functionalities easy, and the package is lightweight with minimal dependencies, making it easy to use and integrate into existing processing pipelines.
Author Heeman, Fiona
Wimberley, Catriona
Cardoso, M Jorge
van Berckel, Bart N. M.
Cash, David M.
Ourselin, Sebastién
Yaqub, Maqsood
Gispert, Juan Domingo
Lopes Alves, Isadora
Lammertsma, Adriaan A.
Jiao, Jieqing
Markiewicz, Pawel
Dixon, Rachael
Barkhof, Frederik
da Costa-Luis, Casper
Author_xml – sequence: 1
  givenname: Jieqing
  surname: Jiao
  fullname: Jiao, Jieqing
  email: jieqing.jiao@gmail.com
  organization: Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, School of Biomedical Engineering and Imaging Sciences, King’s College London
– sequence: 2
  givenname: Fiona
  surname: Heeman
  fullname: Heeman, Fiona
  organization: Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam
– sequence: 3
  givenname: Rachael
  surname: Dixon
  fullname: Dixon, Rachael
  organization: Edinburgh Imaging, Queen’s Medical Research Institute, University of Edinburgh
– sequence: 4
  givenname: Catriona
  surname: Wimberley
  fullname: Wimberley, Catriona
  organization: Edinburgh Imaging, Queen’s Medical Research Institute, University of Edinburgh
– sequence: 5
  givenname: Isadora
  surname: Lopes Alves
  fullname: Lopes Alves, Isadora
  organization: Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam
– sequence: 6
  givenname: Juan Domingo
  surname: Gispert
  fullname: Gispert, Juan Domingo
  organization: BarcelonaBeta Brain Research Centre, Pasqual Maragall Foundation
– sequence: 7
  givenname: Adriaan A.
  surname: Lammertsma
  fullname: Lammertsma, Adriaan A.
  organization: Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam
– sequence: 8
  givenname: Bart N. M.
  surname: van Berckel
  fullname: van Berckel, Bart N. M.
  organization: Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam
– sequence: 9
  givenname: Casper
  surname: da Costa-Luis
  fullname: da Costa-Luis, Casper
  organization: Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, School of Biomedical Engineering and Imaging Sciences, King’s College London
– sequence: 10
  givenname: Pawel
  surname: Markiewicz
  fullname: Markiewicz, Pawel
  organization: Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London
– sequence: 11
  givenname: David M.
  surname: Cash
  fullname: Cash, David M.
  organization: Dementia Research Centre, Queen Square Institute of Neurology, University College London
– sequence: 12
  givenname: M Jorge
  surname: Cardoso
  fullname: Cardoso, M Jorge
  organization: School of Biomedical Engineering and Imaging Sciences, King’s College London
– sequence: 13
  givenname: Sebastién
  surname: Ourselin
  fullname: Ourselin, Sebastién
  organization: School of Biomedical Engineering and Imaging Sciences, King’s College London
– sequence: 14
  givenname: Maqsood
  surname: Yaqub
  fullname: Yaqub, Maqsood
  organization: Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam
– sequence: 15
  givenname: Frederik
  surname: Barkhof
  fullname: Barkhof, Frederik
  organization: Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36622500$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtv1DAUhS1URB_wB1ggS2zYGK6d-LVCo055SKUMUllbTsaeumTsNk5Gyr_H6bQ8uujK1r3nHH069xgdxBQdQq8pvKcA8kOmDBglwBgBLagg8AwdUc41AVD6YP5XmjCp6SE6zvkagAkJ8AIdVkIwxgGO0LeL4IdptVhigi_SznV4NQ1XKeKVbX_ZjcM-9fjHaOMQBjuEncOLaLsph4yTx8sp2m1o8ersEi_tYF-i59522b26f0_Qz09nl6dfyPn3z19PF-ekrSUfCPWgG2ha8FYpXnPlbQNaOmCyFY0tA64kUCZowVWVp1z4Rmnmardu13JdnaCP-9ybsdmWmYtDbztz04et7SeTbDD_b2K4Mpu0M6U3xTVlJeHdfUKfbkeXB7MNuXVdZ6NLYzZMCqaoqrku0rePpNdp7EsLs0orJWpgdVG9-RfpD8tD1UWg9oK2Tzn3zpv2rtI0E4auoM100uyvaspVzd1VzWxlj6wP6U-aqr0pF3HcuP4v9hOu31BJsfE
CitedBy_id crossref_primary_10_1007_s10278_023_00965_z
Cites_doi 10.1016/0169-2607(94)90201-1
10.2967/jnumed.117.200964
10.1212/WNL.0000000000009216
10.1006/nimg.1997.0303
10.1016/j.neuroimage.2012.01.021
10.2967/jnumed.116.173013
10.1007/s11307-019-01387-6
10.1007/s00259-009-1129-6
10.2967/jnumed.116.188029
10.1177/0271678X20915403
10.1007/s12021-018-9384-y
10.1093/geroni/igy023.3277
10.1007/s00259-017-3750-0
10.1177/0271678X18783628
10.1186/s13550-020-00714-1
10.1097/01.WCB.0000085441.37552.CA
10.1097/00004647-199609000-00008
10.1016/j.neuroimage.2013.08.031
10.1016/j.neuroimage.2006.04.053
10.3389/fninf.2020.00003
10.1177/0271678X18797343
10.1007/s00259-012-2102-3
10.3389/fninf.2018.00064
10.1088/0031-9155/51/17/007
10.2967/jnumed.112.113654
10.1016/j.nbd.2014.05.001
10.1186/s13550-019-0499-4
10.1097/01.WCB.0000033967.83623.34
10.1006/nimg.1996.0066
10.1101/755751
10.1097/RLU.0000000000002768
10.1002/alz.12069
ContentType Journal Article
Copyright The Author(s) 2023. corrected publication 2023
2023. The Author(s).
The Author(s) 2023. corrected publication 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2023, corrected publication 2023
Copyright_xml – notice: The Author(s) 2023. corrected publication 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. corrected publication 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2023, corrected publication 2023
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88A
88E
88G
8AO
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
7X8
5PM
DOI 10.1007/s12021-022-09616-0
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Psychology Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
ProQuest One Psychology

CrossRef
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1559-0089
EndPage 468
ExternalDocumentID PMC10085912
36622500
10_1007_s12021_022_09616_0
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-56
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
123
1N0
203
29N
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
406
408
40D
40E
53G
5VS
67N
6NX
7X7
88A
88E
8AO
8FE
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACCUX
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHMBA
AHSBF
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AZQEC
B-.
BA0
BBNVY
BDATZ
BENPR
BGNMA
BHPHI
BPHCQ
BVXVI
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
ESBYG
F5P
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
H13
HCIFZ
HF~
HG6
HLICF
HMCUK
HMJXF
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXD
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KOV
LK8
LLZTM
M0L
M1P
M2M
M4Y
M7P
MA-
NPVJJ
NQJWS
NU0
O9-
O9J
OVD
P2P
PF-
PQQKQ
PROAC
PSQYO
PSYQQ
PT4
Q2X
QOR
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3A
S3B
SAP
SBL
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
TEORI
TSG
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z83
Z88
ZMTXR
ZOVNA
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c475t-1f09b0bc0fa885458fab097e027c6ba4585870126170083f156fb892e4edcd7d3
IEDL.DBID RSV
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000911243000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1539-2791
1559-0089
IngestDate Tue Nov 04 02:06:35 EST 2025
Fri Sep 05 11:35:13 EDT 2025
Wed Nov 05 02:57:21 EST 2025
Wed Feb 19 02:24:26 EST 2025
Sat Nov 29 06:35:23 EST 2025
Tue Nov 18 21:58:50 EST 2025
Fri Feb 21 02:44:33 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords NiftyPAD
Reference input-based modelling
Python package
Pharmacokinetic analysis
PET
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c475t-1f09b0bc0fa885458fab097e027c6ba4585870126170083f156fb892e4edcd7d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://link.springer.com/10.1007/s12021-022-09616-0
PMID 36622500
PQID 2798864024
PQPubID 54206
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10085912
proquest_miscellaneous_2762818459
proquest_journals_2798864024
pubmed_primary_36622500
crossref_citationtrail_10_1007_s12021_022_09616_0
crossref_primary_10_1007_s12021_022_09616_0
springer_journals_10_1007_s12021_022_09616_0
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
– name: Totowa
PublicationTitle Neuroinformatics (Totowa, N.J.)
PublicationTitleAbbrev Neuroinform
PublicationTitleAlternate Neuroinformatics
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Ichise, Liow, Lu (CR17) 2003; 23
Jiao, Searle, Tziortzi, Salinas, Gunn, Schnabel (CR18) 2014; 84
Cecchin, Barthel, Poggiali (CR3) 2017; 44
Lammertsma (CR21) 2017; 58
Verfaillie, Golla, Timmers, Tuncel, van der Weijden, Schober, Schuit, van der Flier, Windhorst, Lammertsma, van Berckel, Boellaard (CR37) 2021; 41
Tolboom, Yaqub, Boellaard, Luurtsema, Windhorst, Scheltens, Lammertsma, van Berckel (CR35) 2009; 36
CR19
Logan, Fowler, Volkow (CR24) 1996; 16
CR39
CR16
CR38
Fischl (CR7) 2012; 62
CR14
CR36
Feng, Wang, Yan (CR5) 1994; 45
CR33
Tolboom, Yaqub, Boellaard (CR34) 2009; 36
Guo, Landau, Jagust (CR11) 2020; 94
CR31
Heeman, Hendriks, Lopes Alves (CR15) 2020; 10
Golla, Boellaard, Oikonen (CR9) 2016; 57
Muzic, Cornelius (CR29) 2001; 42
CR4
Golla, Verfaillie, Boellaard, Adriaanse, Zwan, Schuit, Timmers, Groot, Schober, Scheltens, van der Flier, Windhorst, van Berckel, Lammertsma (CR10) 2019; 39
López-González, Paredes-Pacheco, Thurnhofer-Hemsi, Rossi, Enciso, Toro-Flores, Murcia-Casas, Gutiérrez-Cardo, Roé-Vellvé (CR26) 2019; 17
CR8
Scott, Jiao, Melbourne (CR32) 2019; 39
LaMontagne, Tls, Morris (CR23) 2019; 2019
CR27
CR25
Bullich, Barthel, Koglin (CR2) 2018; 59
CR22
Ossenkoppele, Tolboom, Foster-Dingley, Adriaanse, Boellaard, Yaqub, Windhorst, Barkhof, Lammertsma, Scheltens, Flier, van Berckel (CR30) 2012; 39
Boellaard, Yaqub, Lubberink, Lammertsma (CR1) 2006; 31
Ferrucci (CR6) 2018; 2
Gunn, Lammertsma, Hume (CR13) 1997; 6
Mertens, Maguire, Serdons (CR28) 2020; 22
Karjalainen, Tuisku, Santavirta, Kantonen, Bucci, Tuominen, Hirvonen, Hietala, Rinne, Nummenmaa (CR20) 2020; 14
Gunn, Coello, Searle (CR12) 2016; 57
9616_CR22
9616_CR25
SS Golla (9616_CR10) 2019; 39
J Jiao (9616_CR18) 2014; 84
AA Lammertsma (9616_CR21) 2017; 58
RF Muzic (9616_CR29) 2001; 42
R Gunn (9616_CR12) 2016; 57
D Cecchin (9616_CR3) 2017; 44
S Bullich (9616_CR2) 2018; 59
N Tolboom (9616_CR34) 2009; 36
B Fischl (9616_CR7) 2012; 62
PJ LaMontagne (9616_CR23) 2019; 2019
CJ Scott (9616_CR32) 2019; 39
RN Gunn (9616_CR13) 1997; 6
J Logan (9616_CR24) 1996; 16
FJ López-González (9616_CR26) 2019; 17
9616_CR8
9616_CR27
9616_CR4
9616_CR33
L Ferrucci (9616_CR6) 2018; 2
9616_CR14
9616_CR36
F Heeman (9616_CR15) 2020; 10
D Feng (9616_CR5) 1994; 45
SSV Golla (9616_CR9) 2016; 57
9616_CR31
M Ichise (9616_CR17) 2003; 23
R Ossenkoppele (9616_CR30) 2012; 39
SC Verfaillie (9616_CR37) 2021; 41
N Tolboom (9616_CR35) 2009; 36
N Mertens (9616_CR28) 2020; 22
R Boellaard (9616_CR1) 2006; 31
T Guo (9616_CR11) 2020; 94
9616_CR19
T Karjalainen (9616_CR20) 2020; 14
9616_CR16
9616_CR38
9616_CR39
References_xml – ident: CR22
– volume: 45
  start-page: 175
  year: 1994
  end-page: 186
  ident: CR5
  article-title: computer simulation study on the input function sampling schedules in tracer kinetic modeling with positron emission tomography (pet)
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/0169-2607(94)90201-1
– volume: 59
  start-page: 1104
  year: 2018
  end-page: 1110
  ident: CR2
  article-title: Validation of noninvasive tracer kinetic analysis of 18f-florbetaben PET using a dual-time-window acquisition protocol
  publication-title: Journal of Nuclear Medicine
  doi: 10.2967/jnumed.117.200964
– ident: CR4
– ident: CR14
– ident: CR39
– volume: 94
  start-page: 1512
  year: 2020
  end-page: 1524
  ident: CR11
  article-title: Detecting earlier stages of amyloid deposition using PET in cognitively normal elderly adults
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000009216
– ident: CR16
– volume: 6
  start-page: 279
  year: 1997
  end-page: 287
  ident: CR13
  article-title: Parametric imaging of ligand-receptor binding in PET using a simplified reference region model
  publication-title: NeuroImage
  doi: 10.1006/nimg.1997.0303
– ident: CR33
– volume: 62
  start-page: 774
  issue: 2
  year: 2012
  end-page: 781
  ident: CR7
  publication-title: Freesurfer. NeuroImage
  doi: 10.1016/j.neuroimage.2012.01.021
– volume: 57
  start-page: 1543
  year: 2016
  end-page: 1547
  ident: CR9
  article-title: Parametric binding images of the TSPO ligand 18F-dpa-714
  publication-title: Journal of Nuclear Medicine
  doi: 10.2967/jnumed.116.173013
– volume: 22
  start-page: 444
  year: 2020
  end-page: 452
  ident: CR28
  article-title: Validation of parametric methods for 11CUCB-J PET imaging using subcortical white matter as reference tissue
  publication-title: Molecular Imaging and Biology
  doi: 10.1007/s11307-019-01387-6
– volume: 36
  start-page: 1629
  year: 2009
  end-page: 1638
  ident: CR34
  article-title: Test-retest variability of quantitative 11CPiB studies in alzheimer’PiB??s disease
  publication-title: European Journal of Nuclear Medicine and Molecular Imaging
  doi: 10.1007/s00259-009-1129-6
– ident: CR8
– volume: 58
  start-page: 1019
  year: 2017
  end-page: 1024
  ident: CR21
  article-title: Forward to the past: The case for quantitative PET imaging
  publication-title: Journal of Nuclear Medicine
  doi: 10.2967/jnumed.116.188029
– volume: 41
  start-page: 569
  issue: 3
  year: 2021
  end-page: 578
  ident: CR37
  article-title: Repeatability of parametric methods for [18f]florbetapir imaging in alzheimer’s disease and healthy controls: A test-retest study
  publication-title: Journal of Cerebral Blood Flow and Metabolism
  doi: 10.1177/0271678X20915403
– ident: CR25
– volume: 2019
  start-page: 12
  year: 2019
  ident: CR23
  article-title: Oasis-3: Longitudinal neuroimaging
  publication-title: Clinical, and Cognitive Dataset for Normal Aging and Alzheimer Disease
– volume: 17
  start-page: 103
  issue: 1
  year: 2019
  end-page: 114
  ident: CR26
  article-title: Qmodeling: a multiplatform, easy-to-use and open-source toolbox for PET kinetic analysis
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-018-9384-y
– ident: CR27
– ident: CR19
– volume: 42
  start-page: 636
  issue: 4
  year: 2001
  end-page: 645
  ident: CR29
  article-title: COMKAT: compartment model kinetic analysis tool
  publication-title: Journal of Nuclear Medicine
– volume: 2
  start-page: 637
  year: 2018
  end-page: 637
  ident: CR6
  article-title: The baltimore longitudinal study on aging: 60 years old and better than ever
  publication-title: Innovation in Aging
  doi: 10.1093/geroni/igy023.3277
– ident: CR38
– volume: 44
  start-page: 2060
  year: 2017
  end-page: 2072
  ident: CR3
  article-title: A new integrated dual time-point amyloid pet/mri data analysis method
  publication-title: European Journal of Nuclear Medicine and Molecular Imaging
  doi: 10.1007/s00259-017-3750-0
– ident: CR31
– volume: 39
  start-page: 2172
  issue: 11
  year: 2019
  end-page: 2180
  ident: CR10
  article-title: Quantification of [18f]florbetapir: A test?retest tracer kinetic modelling study
  publication-title: Journal of Cerebral Blood Flow & Metabolism
  doi: 10.1177/0271678X18783628
– volume: 10
  start-page: 123
  year: 2020
  ident: CR15
  article-title: 11CPiB amyloid quantification: effect of reference region selection
  publication-title: EJNMMI Research
  doi: 10.1186/s13550-020-00714-1
– volume: 23
  start-page: 1096
  year: 2003
  end-page: 1112
  ident: CR17
  article-title: Linearized reference tissue parametric imaging methods: Application to 11 Cdasb positron emission tomography studies of the serotonin transporter in human brain
  publication-title: Journal of Cerebral Blood Flow & Metabolism
  doi: 10.1097/01.WCB.0000085441.37552.CA
– volume: 16
  start-page: 834
  year: 1996
  end-page: 840
  ident: CR24
  article-title: Distribution volume ratios without blood sampling from graphical analysis of PET data
  publication-title: Journal of Cerebral Blood Flow and Metabolism
  doi: 10.1097/00004647-199609000-00008
– volume: 36
  start-page: 1629
  year: 2009
  end-page: 1638
  ident: CR35
  article-title: Test-retest variability of quantitative [11c]pib studies in alzheimer?s disease
  publication-title: European Journal of Nuclear Medicine and Molecular Imaging
  doi: 10.1007/s00259-009-1129-6
– volume: 84
  start-page: 225
  year: 2014
  end-page: 235
  ident: CR18
  article-title: Spatio-temporal pharmacokinetic model based registration of 4d PET neuroimaging data
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.08.031
– volume: 31
  start-page: 62
  issue: Supplement 2
  year: 2006
  ident: CR1
  article-title: Ppet: A software tool for kinetic and parametric analyses of dynamic PET studies
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.04.053
– ident: CR36
– volume: 14
  start-page: 3
  year: 2020
  ident: CR20
  article-title: Magia: Robust automated image processing and kinetic modeling toolbox for PET neuroinformatics
  publication-title: Frontiers in Neuroinformatics
  doi: 10.3389/fninf.2020.00003
– volume: 57
  start-page: 1928
  issue: supplement 2
  year: 2016
  end-page: 1928
  ident: CR12
  article-title: Molecular imaging and kinetic analysis toolbox (miakat) - a quantitative software package for the analysis of PET neuroimaging data
  publication-title: Journal of Nuclear Medicine
– volume: 39
  start-page: 2419
  year: 2019
  end-page: 2432
  ident: CR32
  article-title: Reduced acquisition time PET pharmacokinetic modelling using simultaneous ASL-MRI: proof of concept
  publication-title: Journal of Cerebral Blood Flow and Metabolism
  doi: 10.1177/0271678X18797343
– volume: 39
  start-page: 990
  year: 2012
  end-page: 1000
  ident: CR30
  article-title: Longitudinal imaging of alzheimer pathology using [11c]pib, [18f]fddnp and [18f]fdg pet
  publication-title: European Journal of Nuclear Medicine and Molecular Imaging
  doi: 10.1007/s00259-012-2102-3
– ident: 9616_CR8
  doi: 10.3389/fninf.2018.00064
– volume: 23
  start-page: 1096
  year: 2003
  ident: 9616_CR17
  publication-title: Journal of Cerebral Blood Flow & Metabolism
  doi: 10.1097/01.WCB.0000085441.37552.CA
– volume: 94
  start-page: 1512
  year: 2020
  ident: 9616_CR11
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000009216
– volume: 41
  start-page: 569
  issue: 3
  year: 2021
  ident: 9616_CR37
  publication-title: Journal of Cerebral Blood Flow and Metabolism
  doi: 10.1177/0271678X20915403
– volume: 58
  start-page: 1019
  year: 2017
  ident: 9616_CR21
  publication-title: Journal of Nuclear Medicine
  doi: 10.2967/jnumed.116.188029
– volume: 39
  start-page: 2419
  year: 2019
  ident: 9616_CR32
  publication-title: Journal of Cerebral Blood Flow and Metabolism
  doi: 10.1177/0271678X18797343
– ident: 9616_CR39
  doi: 10.1088/0031-9155/51/17/007
– ident: 9616_CR36
  doi: 10.2967/jnumed.112.113654
– volume: 44
  start-page: 2060
  year: 2017
  ident: 9616_CR3
  publication-title: European Journal of Nuclear Medicine and Molecular Imaging
  doi: 10.1007/s00259-017-3750-0
– volume: 16
  start-page: 834
  year: 1996
  ident: 9616_CR24
  publication-title: Journal of Cerebral Blood Flow and Metabolism
  doi: 10.1097/00004647-199609000-00008
– volume: 39
  start-page: 990
  year: 2012
  ident: 9616_CR30
  publication-title: European Journal of Nuclear Medicine and Molecular Imaging
  doi: 10.1007/s00259-012-2102-3
– volume: 36
  start-page: 1629
  year: 2009
  ident: 9616_CR35
  publication-title: European Journal of Nuclear Medicine and Molecular Imaging
  doi: 10.1007/s00259-009-1129-6
– volume: 57
  start-page: 1928
  issue: supplement 2
  year: 2016
  ident: 9616_CR12
  publication-title: Journal of Nuclear Medicine
– ident: 9616_CR4
  doi: 10.1016/j.nbd.2014.05.001
– volume: 62
  start-page: 774
  issue: 2
  year: 2012
  ident: 9616_CR7
  publication-title: Freesurfer. NeuroImage
  doi: 10.1016/j.neuroimage.2012.01.021
– ident: 9616_CR16
  doi: 10.1186/s13550-019-0499-4
– volume: 84
  start-page: 225
  year: 2014
  ident: 9616_CR18
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.08.031
– volume: 59
  start-page: 1104
  year: 2018
  ident: 9616_CR2
  publication-title: Journal of Nuclear Medicine
  doi: 10.2967/jnumed.117.200964
– volume: 39
  start-page: 2172
  issue: 11
  year: 2019
  ident: 9616_CR10
  publication-title: Journal of Cerebral Blood Flow & Metabolism
  doi: 10.1177/0271678X18783628
– volume: 17
  start-page: 103
  issue: 1
  year: 2019
  ident: 9616_CR26
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-018-9384-y
– ident: 9616_CR38
  doi: 10.1097/01.WCB.0000033967.83623.34
– ident: 9616_CR22
  doi: 10.1006/nimg.1996.0066
– ident: 9616_CR27
  doi: 10.1101/755751
– volume: 57
  start-page: 1543
  year: 2016
  ident: 9616_CR9
  publication-title: Journal of Nuclear Medicine
  doi: 10.2967/jnumed.116.173013
– volume: 6
  start-page: 279
  year: 1997
  ident: 9616_CR13
  publication-title: NeuroImage
  doi: 10.1006/nimg.1997.0303
– volume: 10
  start-page: 123
  year: 2020
  ident: 9616_CR15
  publication-title: EJNMMI Research
  doi: 10.1186/s13550-020-00714-1
– ident: 9616_CR33
  doi: 10.1097/RLU.0000000000002768
– ident: 9616_CR25
  doi: 10.1002/alz.12069
– volume: 2
  start-page: 637
  year: 2018
  ident: 9616_CR6
  publication-title: Innovation in Aging
  doi: 10.1093/geroni/igy023.3277
– volume: 14
  start-page: 3
  year: 2020
  ident: 9616_CR20
  publication-title: Frontiers in Neuroinformatics
  doi: 10.3389/fninf.2020.00003
– volume: 2019
  start-page: 12
  year: 2019
  ident: 9616_CR23
  publication-title: Clinical, and Cognitive Dataset for Normal Aging and Alzheimer Disease
– volume: 22
  start-page: 444
  year: 2020
  ident: 9616_CR28
  publication-title: Molecular Imaging and Biology
  doi: 10.1007/s11307-019-01387-6
– volume: 42
  start-page: 636
  issue: 4
  year: 2001
  ident: 9616_CR29
  publication-title: Journal of Nuclear Medicine
– ident: 9616_CR19
  doi: 10.3389/fninf.2020.00003
– ident: 9616_CR14
  doi: 10.1186/s13550-020-00714-1
– volume: 31
  start-page: 62
  issue: Supplement 2
  year: 2006
  ident: 9616_CR1
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.04.053
– volume: 45
  start-page: 175
  year: 1994
  ident: 9616_CR5
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/0169-2607(94)90201-1
– ident: 9616_CR31
– volume: 36
  start-page: 1629
  year: 2009
  ident: 9616_CR34
  publication-title: European Journal of Nuclear Medicine and Molecular Imaging
  doi: 10.1007/s00259-009-1129-6
SSID ssj0026700
Score 2.34122
Snippet Current PET datasets are becoming larger, thereby increasing the demand for fast and reproducible processing pipelines. This paper presents a freely available,...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 457
SubjectTerms Amyloid
Bioinformatics
Biomedical and Life Sciences
Biomedicine
Brain - diagnostic imaging
Computational Biology/Bioinformatics
Computational neuroscience
Computer Appl. in Life Sciences
Humans
Neurology
Neurosciences
Pharmacokinetics
Positron-Emission Tomography - methods
Quantitative analysis
Software
Software packages
Spin labeling
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcODCqzxSCjIS4gIWefpxQiu2FQdYBamg3iLbccSKkrTdbKX998w4TlZLRS9cYzuJM4_MeGa-IeQNz3KEg1XM8jpjeZFZJqUTjIvUqrxwtvYR0x9fxGIhT09VGQ7cViGtctSJXlHXncUz8g8pAmtx8Hbyj-cXDLtGYXQ1tNC4Te4gSkLmU_fKyeEKJSgwoBisT0LRzFA6l2JyAuayY9MT8Kp3f0zXrM3rSZN_RU79D-n4wf9u5SG5H0xROht45xG55drHZH_Wghv-e0PfUp8c6k_d98nXxbLpN-VsThlddFfujJYbRB2gpba_QCVRsH3pt7Vufc0aaFA6op3QrqHzoe09LY9O6Fz3-gn5fnx08ukzC50YmM1F0bOkiZWJjY0bLSWG2hptYiUc-LSWGw0XCpD7xKO7g03XgFPYGKlSl8P3qkWdPSV7bde654SqRNncKBELsMQ0T5XhqAS0aqRJjRQRSUYyVDbAlGO3jLNqC7CMpKuAdJUnXRVH5N205nwA6bhx9uFIlioI7Kra0iQir6dhEDWMn-jWdWucwxE7Ky9URJ4NzDA9LuMcNGMMN5c7bDJNQBjv3ZF2-dPDeSO8UqGSNCLvR47avte_t3Fw8zZekHuwIhuSjA7JXn-5di_JXXvVL1eXr7yc_AEAeBSd
  priority: 102
  providerName: ProQuest
Title NiftyPAD - Novel Python Package for Quantitative Analysis of Dynamic PET Data
URI https://link.springer.com/article/10.1007/s12021-022-09616-0
https://www.ncbi.nlm.nih.gov/pubmed/36622500
https://www.proquest.com/docview/2798864024
https://www.proquest.com/docview/2762818459
https://pubmed.ncbi.nlm.nih.gov/PMC10085912
Volume 21
WOSCitedRecordID wos000911243000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink Contemporary
  customDbUrl:
  eissn: 1559-0089
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0026700
  issn: 1539-2791
  databaseCode: RSV
  dateStart: 20030301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB6xuxy48FoegaUyEuIClhIn8eNYaFccaBSWZdVb5LiOqFhStE1X6r9n7DyqsoAEF0uxJ0488dgzmZnPAK94nDg4WEUNX8Q0SWNDpbSCcsGMSlJrFt5jevFRZJmcz1XeJYWt-2j33iXpV-pdshtz4QQu-twdU4J28AEc4XYnnTiefb4YzKwu8QRFWVEmVNSlyvy-j_3t6IaOeTNU8hd_qd-GTu_93wDuw91O7STjdp48gFu2fgjH4xpN7u9b8pr4QFD_h_0YZtmyarb5eEIoyVbX9pLkW4cwQHJtvuHyQ1DPJZ82uvb5abhakh7ZhKwqMmmPuCf59JxMdKMfwZfT6fn7D7Q7dYGaRKQNjapQlWFpwkpL6dxqlS5DJSzar4aXGitSlPHII7mj_lahAViVUjGbIJcWYhE_hsN6VdunQFSkTFIqEQrUujRnquRO4LWqZMlKKQKIeuYXpoMkdydjXBY7MGXHswJ5VnieFWEAb4Z7frSAHH-lPum_adEJ57pgDqONo-GcBPByaEaxcr4SXdvVxtFwh5OVpCqAJ-0UGB4Xc46rYIidy73JMRA4yO79lnr51UN3OyilVEUsgLf9HNm915-H8ezfyJ_DHayK2wCjEzhsrjb2Bdw2181yfTWCAzEXvpQjOHo3zfIzvJqxmStFPvLS9BOu_A-n
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQXXuURKGAk4AIWiZM48QGhFduqVXejIC2ot-A4jrpqm5Rutih_it_IOK_VUtFbD1wTx7Hjz-OZzMw3AG-46xk6WEEVz1zq-a6iYagDygOmhOdrlTUe0--TIIrCw0MRb8DvPhfGhFX2MrER1FmpzD_yj8wQa3G0drzPZz-pqRplvKt9CY0WFge6_oUm2-LT_hjX9y1juzuzL3u0qypAlRf4FXVyW6R2quxchqFxG-UytUWg0T5TPJV4wUcMOw1TOeonORo4eRoKpj2dqSzIXOz3Btz00BIypSKmbDoYeF3KCwoRQXG8Tpek06bqMRMMYWLnTZEVtOLXD8JL2u3lIM2_PLXNAbh773_7dPfhbqdqk1G7Nx7Ahi4ewtaokFV5WpN3pAl-bbwKWzCN5nlVx6MxoSQqL_QJiWvDqkBiqY5R5BLU7cnXpSyanDw8IUjP5kLKnIzrQp7OFYl3ZmQsK_kIvl3LxB7DZlEW-ikQ4QjlpSKwA9Q0JWci5UbISZGHKUvDwAKnX_ZEdTTsphrISbIikDZQSRAqSQOVxLbg_fDMWUtCcmXr7R4GSSeQFskKAxa8Hm6jKDH-IVnocmnacMMN5vnCgict-IbXuZyj5Lex83ANlkMDQ1O-fqeYHzV05YY-yhcOs-BDj-DVuP49jWdXT-MV3N6bTSfJZD86eA538Gm3Dajahs3qfKlfwC11Uc0X5y-bPUrgx3Uj-w_M6HAh
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VghAXXuURKGAk4AJW83Z8QGhFuqJqiYJUUG-p4zjqqm1Sutmi_DV-HWPnsVoqeuuBa_xInHwez2RmvgF4E3q-poPlVIaFR_3AkzSKFKMhcyX3AyUL4zH9sceSJDo44Oka_B5yYXRY5SATjaAuaqn_kW-5mlgrRGvH3yr7sIg0nn46-0l1BSntaR3KaXQQ2VXtLzTf5h93YvzWb113ur3_-QvtKwxQ6bOgoU5p89zOpV2KKNIupFLkNmcKbTUZ5gIvBIhnx7CWo65SorFT5hF3la8KWbDCw3lvwE2mSctN2GA6Gnt9-gsKFE7x2Z0-YadL23N1YISOo9cFV9CiXz0UL2m6lwM2__LamsNweu9_fo334W6vgpNJt2cewJqqHsLGpBJNfdqSd8QExRpvwwZ8TWZl06aTmFCS1BfqhKStZlsgqZDHKIoJ6vzk20JUJlcPTw4ysLyQuiRxW4nTmSTp9j6JRSMewfdrWdhjWK_qSj0Fwh0u_Zwzm6EGKkKX56EWfoKXUe7mEbPAGSCQyZ6eXVcJOcmWxNIaNhnCJjOwyWwL3o9jzjpykit7bw6QyHpBNc-WeLDg9diMIkb7jUSl6oXuE2rOMD_gFjzpgDjezgtDPBFsnDxagejYQdOXr7ZUsyNDY65ppQLuuBZ8GNC8fK5_L-PZ1ct4BbcR0NneTrL7HO7gYK-Ls9qE9eZ8oV7ALXnRzObnL812JXB43cD-A7PlePI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NiftyPAD+-+Novel+Python+Package+for+Quantitative+Analysis+of+Dynamic+PET+Data&rft.jtitle=Neuroinformatics+%28Totowa%2C+N.J.%29&rft.au=Jiao%2C+Jieqing&rft.au=Heeman%2C+Fiona&rft.au=Dixon%2C+Rachael&rft.au=Wimberley%2C+Catriona&rft.date=2023-04-01&rft.pub=Springer+US&rft.issn=1539-2791&rft.eissn=1559-0089&rft.volume=21&rft.issue=2&rft.spage=457&rft.epage=468&rft_id=info:doi/10.1007%2Fs12021-022-09616-0&rft_id=info%3Apmid%2F36622500&rft.externalDocID=PMC10085912
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1539-2791&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1539-2791&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1539-2791&client=summon