Benchmark exercise on image-based permeability determination of engineering textiles: Microscale predictions
Permeability measurements of engineering textiles exhibit large variability as no standardization method currently exists; numerical permeability prediction is thus an attractive alternative. It has all advantages of virtual material characterization, including the possibility to study the impact of...
Uloženo v:
| Vydáno v: | Composites. Part A, Applied science and manufacturing Ročník 167; s. 107397 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.04.2023
Elsevier |
| Témata: | |
| ISSN: | 1359-835X, 1878-5840, 1878-5840 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Permeability measurements of engineering textiles exhibit large variability as no standardization method currently exists; numerical permeability prediction is thus an attractive alternative. It has all advantages of virtual material characterization, including the possibility to study the impact of material variability and small-scale parameters. This paper presents the results of an international virtual permeability benchmark, which is a first contribution to permeability predictions for fibrous reinforcements based on real images. In this first stage, the focus was on the microscale computation of fiber bundle permeability. In total 16 participants provided 50 results using different numerical methods, boundary conditions, permeability identification techniques. The scatter of the predicted axial permeability after the elimination of inconsistent results was found to be smaller (14%) than that of the transverse permeability (∼24%). Dominant effects on the permeability were found to be the boundary conditions in tangential direction, number of sub-domains used in the renormalization approach, and the permeability identification technique. |
|---|---|
| AbstractList | Permeability measurements of engineering textiles exhibit large variability as no standardization method currently exists; numerical permeability prediction is thus an attractive alternative. It has all advantages of virtual material characterization, including the possibility to study the impact of material variability and small-scale parameters. This paper presents the results of an international virtual permeability benchmark, which is a first contribution to permeability predictions for fibrous reinforcements based on real images. In this first stage, the focus was on the microscale computation of fiber bundle permeability. In total 16 participants provided 50 results using different numerical methods, boundary conditions, permeability identification techniques. The scatter of the predicted axial permeability after the elimination of inconsistent results was found to be smaller (14%) than that of the transverse permeability (∼24%). Dominant effects on the permeability were found to be the boundary conditions in tangential direction, number of sub-domains used in the renormalization approach, and the permeability identification technique. Permeability measurements of engineering textiles exhibit large variability as no standardization method currently exists; numerical permeability prediction is thus an attractive alternative. It has all advantages of virtual material characterization, including the possibility to study the impact of material variability and small-scale parameters. This paper presents the results of an international virtual permeability benchmark, which is a first contribution to permeability predictions for fibrous reinforcements based on real images. In this first stage, the focus was on the microscale computation of fiber bundle permeability. In total 16 participants provided 50 results using different numerical methods, boundary conditions, permeability identification techniques. The scatter of the predicted axial permeability after the elimination of inconsistent results was found to be smaller (14%) than that of the transverse permeability (∼24%). Dominant effects on the permeability were found to be the boundary conditions in tangential direction, number of sub-domains used in the renormalization approach, and the permeability identification technique. Permeability measurements of engineering textiles exhibit large variability as no standardization method currently exists; numerical permeability prediction is thus an attractive alternative. It has all advantages of virtual material characterization, including the possibility to study the impact of material variability and small-scale parameters. This paper presents the results of an international virtual permeability benchmark, which is a first contribution to permeability predictions for fibrous reinforcements based on real images. In this first stage, the focus was on the microscale computation of fiber bundle permeability. In total 16 participants provided 50 results using different numerical methods, boundary conditions, permeability identification techniques. The scatter of the predicted axial permeability after the elimination of inconsistent results was found to be smaller (14%) than that of the transverse permeability (~24%). Dominant effects on the permeability were found to be the boundary conditions in tangential direction, number of sub-domains used in the renormalization approach, and the permeability identification technique. |
| ArticleNumber | 107397 |
| Author | Drapier, S. Akhatov, I. Silva, L. Abaimov, S. Shishkina, O. Asiaban, N. Vorobyev, R. Umer, R. Swolfs, Y. Moulin, N. Leygue, A. Mahato, B. Sergeichev, I. Syerko, E. Orgéas, L. Aissa, N. May, D. Digonnet, H. Endruweit, A. Martínez-Lera, P. Binetruy, C. Middendorf, P. Kandinskii, R. Michaud, V. Shakoor, M. Broggi, G. Guilloux, A. Dittmann, J. Ali, M. Schmidt, T. Caglar, B. Rouhi, M. Park, C.H. Lomov, S. Advani, S.G. Matveev, M. Tahani, M. Bruchon, J. Rief, S. Vanclooster, K. |
| Author_xml | – sequence: 1 givenname: E. surname: Syerko fullname: Syerko, E. email: elena.syerko@ec-nantes.fr organization: Nantes Université, Ecole Centrale Nantes, CNRS, GeM, UMR 6183, Nantes F-44000, France – sequence: 2 givenname: T. surname: Schmidt fullname: Schmidt, T. organization: Leibniz-Institut für Verbundwerkstoffe GmbH, Erwin-Schrödinger-Straße, Geb. 58, 67663 Kaiserslautern, Germany – sequence: 3 givenname: D. surname: May fullname: May, D. organization: Leibniz-Institut für Verbundwerkstoffe GmbH, Erwin-Schrödinger-Straße, Geb. 58, 67663 Kaiserslautern, Germany – sequence: 4 givenname: C. surname: Binetruy fullname: Binetruy, C. organization: Nantes Université, Ecole Centrale Nantes, CNRS, GeM, UMR 6183, Nantes F-44000, France – sequence: 5 givenname: S.G. surname: Advani fullname: Advani, S.G. organization: Nantes Université, Ecole Centrale Nantes, CNRS, GeM, UMR 6183, Nantes F-44000, France – sequence: 6 givenname: S. surname: Lomov fullname: Lomov, S. organization: KU Leuven, Department of Materials Engineering, Kasteelpark Arenberg 44, 3001 Leuven, Belgium – sequence: 7 givenname: L. surname: Silva fullname: Silva, L. organization: Nantes Université, Ecole Centrale Nantes, CNRS, GeM, UMR 6183, Nantes F-44000, France – sequence: 8 givenname: S. surname: Abaimov fullname: Abaimov, S. organization: Skolkovo Institute of Science and Technology, Center for Materials Technologies, Bolshoy Boulevard 30, Moscow, Russia – sequence: 9 givenname: N. surname: Aissa fullname: Aissa, N. organization: Nantes Université, Ecole Centrale Nantes, CNRS, GeM, UMR 6183, Nantes F-44000, France – sequence: 10 givenname: I. surname: Akhatov fullname: Akhatov, I. organization: Skolkovo Institute of Science and Technology, Center for Materials Technologies, Bolshoy Boulevard 30, Moscow, Russia – sequence: 11 givenname: M. surname: Ali fullname: Ali, M. organization: Khalifa University of Science and Technology, Department of Aerospace Engineering, Abu Dhabi, United Arab Emirates – sequence: 12 givenname: N. surname: Asiaban fullname: Asiaban, N. organization: Ferdowsi University of Mashhad, Department of Mechanical Engineering, Mashhad, Iran – sequence: 13 givenname: G. surname: Broggi fullname: Broggi, G. organization: Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory for Processing of Advanced Composites (LPAC), Institute of Materials (IMX), Station 12, 1015 Lausanne, Switzerland – sequence: 14 givenname: J. surname: Bruchon fullname: Bruchon, J. organization: Mines Saint-Étienne, Univ. Lyon, CNRS, UMR 5307 LGF, 158 Cours Fauriel 42023, Saint-Étienne, France – sequence: 15 givenname: B. surname: Caglar fullname: Caglar, B. organization: Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory for Processing of Advanced Composites (LPAC), Institute of Materials (IMX), Station 12, 1015 Lausanne, Switzerland – sequence: 16 givenname: H. surname: Digonnet fullname: Digonnet, H. organization: Nantes Université, Ecole Centrale Nantes, CNRS, GeM, UMR 6183, Nantes F-44000, France – sequence: 17 givenname: J. surname: Dittmann fullname: Dittmann, J. organization: University of Stuttgart, Institute of Aircraft Design, Pfaffenwaldring 31, 70569 Stuttgart, Germany – sequence: 18 givenname: S. surname: Drapier fullname: Drapier, S. organization: Mines Saint-Étienne, Univ. Lyon, CNRS, UMR 5307 LGF, 158 Cours Fauriel 42023, Saint-Étienne, France – sequence: 19 givenname: A. surname: Endruweit fullname: Endruweit, A. organization: University of Nottingham, Faculty of Engineering, Jubilee Campus, Nottingham NG8 1BB, UK – sequence: 20 givenname: A. surname: Guilloux fullname: Guilloux, A. organization: TENSYL, 48 rue Jacques de Vaucanson, Pôle Arts & Métiers, 17180 Périgny, France – sequence: 21 givenname: R. surname: Kandinskii fullname: Kandinskii, R. organization: KU Leuven, Department of Materials Engineering, Kasteelpark Arenberg 44, 3001 Leuven, Belgium – sequence: 22 givenname: A. surname: Leygue fullname: Leygue, A. organization: Nantes Université, Ecole Centrale Nantes, CNRS, GeM, UMR 6183, Nantes F-44000, France – sequence: 23 givenname: B. surname: Mahato fullname: Mahato, B. organization: Skolkovo Institute of Science and Technology, Center for Materials Technologies, Bolshoy Boulevard 30, Moscow, Russia – sequence: 24 givenname: P. surname: Martínez-Lera fullname: Martínez-Lera, P. organization: Siemens Industry Software NV, Interleuvenlaan 68, 3001 Leuven, Belgium – sequence: 25 givenname: M. surname: Matveev fullname: Matveev, M. organization: University of Nottingham, Faculty of Engineering, Jubilee Campus, Nottingham NG8 1BB, UK – sequence: 26 givenname: V. surname: Michaud fullname: Michaud, V. organization: Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory for Processing of Advanced Composites (LPAC), Institute of Materials (IMX), Station 12, 1015 Lausanne, Switzerland – sequence: 27 givenname: P. surname: Middendorf fullname: Middendorf, P. organization: University of Stuttgart, Institute of Aircraft Design, Pfaffenwaldring 31, 70569 Stuttgart, Germany – sequence: 28 givenname: N. surname: Moulin fullname: Moulin, N. organization: Mines Saint-Étienne, Univ. Lyon, CNRS, UMR 5307 LGF, 158 Cours Fauriel 42023, Saint-Étienne, France – sequence: 29 givenname: L. surname: Orgéas fullname: Orgéas, L. organization: Univ. Grenoble Alpes, CNRS, Grenoble INP, 3SR Lab, 38000 Grenoble, France – sequence: 30 givenname: C.H. surname: Park fullname: Park, C.H. organization: IMT Nord Europe, Institut Mines-Télécom, Univ. Lille, Center for Materials and Processes, F-59000 Lille, France – sequence: 31 givenname: S. surname: Rief fullname: Rief, S. organization: Fraunhofer-Institut für Techno- und Wirtschaftsmathematik (ITWM), Fraunhofer-Platz 1, Kaiserslautern D-67663, Germany – sequence: 32 givenname: M. surname: Rouhi fullname: Rouhi, M. organization: RISE Research Institutes of Sweden, Division Materials and Production – RISE SICOMP AB, Box 104, SE-431 22 Mölndal, Sweden – sequence: 33 givenname: I. surname: Sergeichev fullname: Sergeichev, I. organization: Skolkovo Institute of Science and Technology, Center for Materials Technologies, Bolshoy Boulevard 30, Moscow, Russia – sequence: 34 givenname: M. surname: Shakoor fullname: Shakoor, M. organization: IMT Nord Europe, Institut Mines-Télécom, Univ. Lille, Center for Materials and Processes, F-59000 Lille, France – sequence: 35 givenname: O. surname: Shishkina fullname: Shishkina, O. organization: Siemens Industry Software NV, Interleuvenlaan 68, 3001 Leuven, Belgium – sequence: 36 givenname: Y. surname: Swolfs fullname: Swolfs, Y. organization: KU Leuven, Department of Materials Engineering, Kasteelpark Arenberg 44, 3001 Leuven, Belgium – sequence: 37 givenname: M. surname: Tahani fullname: Tahani, M. organization: Ferdowsi University of Mashhad, Department of Mechanical Engineering, Mashhad, Iran – sequence: 38 givenname: R. surname: Umer fullname: Umer, R. organization: Khalifa University of Science and Technology, Department of Aerospace Engineering, Abu Dhabi, United Arab Emirates – sequence: 39 givenname: K. surname: Vanclooster fullname: Vanclooster, K. organization: Siemens Industry Software NV, Interleuvenlaan 68, 3001 Leuven, Belgium – sequence: 40 givenname: R. surname: Vorobyev fullname: Vorobyev, R. organization: Skolkovo Institute of Science and Technology, Center for Materials Technologies, Bolshoy Boulevard 30, Moscow, Russia |
| BackLink | https://hal.science/hal-04193253$$DView record in HAL https://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-65472$$DView record from Swedish Publication Index |
| BookMark | eNqNkU9v1DAQxSNUJNrCdzA3EMriP8k64YKWpaVIi7gA4mZNnMl2liQOtre03x6HgAScerI9-r2n8Xtn2cnoRsyyp4KvBBfrl4eVdcPkAkUMsJJcyjTXqtYPslNR6Sovq4KfpLsq67xS5ddH2VkIB865UrU4zfo3ONrrAfw3hrfoLQVkbmQ0wB7zBgK2bEI_IDTUU7xjLcb0pBEiJcx1DMc9jYiexj2LeBupx_CKfSDrXbDQI5s8tmRnPDzOHnbQB3zy-zzPPl9efNpe5buP795vN7vcFrqMuaiEbJXiwq5lbWvgjQVlLTQoOttoqHCtGiu0kk3RVZVWCMA1oMQEFUl6nr1YfMMPnI6NmXz6j78zDsi8pS8b4_zeeDLrstAy0c8X-hr6f9Crzc7MM16IWslS3czss4WdvPt-xBDNQMFi38OI7hiMrFSCa16ohL5e0DmJ4LEzluKv2KIH6o3gZm7QHMxfDZq5QbM0mBzq_xz-bHcf7XbRYsr5htCbYClVnbrwaKNpHd3D5SffdMN0 |
| CitedBy_id | crossref_primary_10_3390_sci6030049 crossref_primary_10_1016_j_compositesa_2023_107499 crossref_primary_10_1016_j_finel_2023_104106 crossref_primary_10_1016_j_compositesa_2025_108863 crossref_primary_10_1016_j_compositesb_2023_110646 crossref_primary_10_1016_j_indcrop_2025_121397 crossref_primary_10_1016_j_compscitech_2025_111290 crossref_primary_10_1002_pc_28962 crossref_primary_10_1016_j_compositesa_2023_107748 crossref_primary_10_1016_j_compositesa_2024_108019 crossref_primary_10_1177_09506608251363653 crossref_primary_10_1615_JPorMedia_2024051457 crossref_primary_10_1016_j_ijmultiphaseflow_2024_104721 crossref_primary_10_1088_1757_899X_1293_1_012009 crossref_primary_10_1016_j_coco_2024_101960 crossref_primary_10_1016_j_compositesa_2024_108592 crossref_primary_10_1016_j_compositesa_2025_109126 crossref_primary_10_3390_ma17122873 crossref_primary_10_1016_j_matpr_2023_10_092 crossref_primary_10_1515_mim_2025_0004 crossref_primary_10_1080_09243046_2025_2526923 crossref_primary_10_1051_matecconf_202440003003 crossref_primary_10_1177_00219983241305808 crossref_primary_10_3390_s24154852 crossref_primary_10_3390_polym15030728 crossref_primary_10_1002_pc_29768 |
| Cites_doi | 10.1016/j.compositesa.2011.04.021 10.1016/j.compositesa.2022.106831 10.1080/17797179.2014.882140 10.1002/pc.25344 10.1137/S0036142997328664 10.1063/1.3484273 10.1177/002199839502900401 10.1002/pc.20029 10.1016/j.gmod.2015.06.003 10.1007/s11242-007-9123-6 10.1016/j.matdes.2017.06.035 10.1016/j.compositesa.2018.12.032 10.1016/S0262-8856(98)00160-7 10.1016/j.compositesa.2018.02.015 10.1098/rspa.1957.0133 10.1016/j.ijmultiphaseflow.2021.103751 10.1016/j.compscitech.2006.10.011 10.1016/j.compscitech.2010.04.023 10.1016/j.compositesa.2019.03.006 10.1016/j.compositesa.2015.11.025 10.1016/j.compositesa.2013.10.004 10.1007/BF01376989 10.1007/s12289-015-1224-0 10.3144/expresspolymlett.2015.14 10.1016/j.compositesa.2013.02.012 10.1002/pc.750140611 10.1016/j.compositesa.2014.02.010 10.1007/s11004-015-9587-9 10.1177/002199839202600802 10.1016/j.advwatres.2013.06.006 10.1016/j.compositesb.2017.09.075 10.1016/j.ijheatmasstransfer.2008.09.032 10.1016/j.compositesa.2021.106480 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd Attribution - NonCommercial |
| Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Attribution - NonCommercial |
| DBID | AAYXX CITATION 7S9 L.6 1XC VOOES ADTPV AOWAS |
| DOI | 10.1016/j.compositesa.2022.107397 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) SwePub SwePub Articles |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1878-5840 |
| ExternalDocumentID | oai_DiVA_org_ri_65472 oai:HAL:hal-04193253v2 10_1016_j_compositesa_2022_107397 S1359835X22005784 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADIYS ADMUD AEBSH AEKER AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSM SSZ T5K TN5 ZMT ~G- 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ADNMO AEIPS AFJKZ AGQPQ AIIUN ANKPU APXCP CITATION EFKBS ~HD 7S9 L.6 1XC VOOES ADTPV AOWAS |
| ID | FETCH-LOGICAL-c475t-1812d3301c629c9a0bca3ccabe1fcb7a8e63bc1732b4f8873eaa07ae2ecca42d3 |
| ISICitedReferencesCount | 26 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000996477300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1359-835X 1878-5840 |
| IngestDate | Wed Sep 24 03:56:57 EDT 2025 Tue Oct 14 20:53:47 EDT 2025 Thu Oct 02 21:45:53 EDT 2025 Sat Nov 29 06:59:58 EST 2025 Tue Nov 18 21:37:42 EST 2025 Fri Feb 23 02:36:48 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | A. Tow C. Computational modelling B. Permeability A. Fabrics/textiles E. Resin flow Resin flow Permeability Computational modeling Tow Fabrics/textiles |
| Language | English |
| License | Attribution - NonCommercial: http://creativecommons.org/licenses/by-nc |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c475t-1812d3301c629c9a0bca3ccabe1fcb7a8e63bc1732b4f8873eaa07ae2ecca42d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-0714-822X 0000-0003-1795-9034 0009-0000-8933-5322 0000-0003-1668-688X 0000-0001-7929-4221 0000-0003-2294-6211 0000-0001-5867-5842 0000-0001-6802-6176 |
| OpenAccessLink | https://hal.science/hal-04193253 |
| PQID | 2834199043 |
| PQPubID | 24069 |
| ParticipantIDs | swepub_primary_oai_DiVA_org_ri_65472 hal_primary_oai_HAL_hal_04193253v2 proquest_miscellaneous_2834199043 crossref_citationtrail_10_1016_j_compositesa_2022_107397 crossref_primary_10_1016_j_compositesa_2022_107397 elsevier_sciencedirect_doi_10_1016_j_compositesa_2022_107397 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-04-01 |
| PublicationDateYYYYMMDD | 2023-04-01 |
| PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Composites. Part A, Applied science and manufacturing |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Gebart (b0125) 1992; 26 Lopez, Abisset-Chavanne, Lebel (b0145) 2016; 9 Chen, Gu, Zhou (b0195) 2019; 6 Arbter, Beraud, Binetruy (b0055) 2011; 42 Endruweit, Gommer, Long (b0130) 2013; 49 Geoffre, Ghestin, Moulin (b0080) 2021; 143 Simacek, Advani (b0005) 2004; 25 Yong, Aktas, May (b0030) 2021; 148 Linden, Wiegmann, Hagen (b0115) 2015; 82 Eshelby (b0150) 1957; 241 Darcy (b0025) 1856 Straumit, Hahn, Winterstein (b0075) 2016; 81 International SAMPE Europe Conference, Paris, France – 2002: 633-644. Lundström, Gebart (b0185) 1995; 29 Zarandi, Arroyo, Pillai (b0060) 2019; 119 Wiegmann, Bube (b0110) 2000; 37 Wang, Simacek, Gupta, Advani (b0020) 2018; 140 Hwang, Advani (b0065) 2010; 22 Zeng, Brown, Endruweit (b0085) 2014; 56 ESI-Group. PAM-RTM Simulation Software of the Resin Transfer Molding (RTM) Process. https://www.esi-group.com/. Abouorm, Troian, Drapier (b0105) 2014; 23 May, Aktas, Advani (b0035) 2019; 121 Syerko, Binetruy, Comas-Cardona, Leygue (b0070) 2017; 131 Atherton, Kerbyson (b0170) 1999; 17 Koorevaar A. Simulation of Liquid Injection Moulding. In: Proceedings of the 23 Chen, Papathanasiou (b0180) 2007; 67 Guibert, Horgue, Debenest, Quintard (b0120) 2016; 48 Chen, Papathanasiou (b0190) 2008; 71 Raizada, Pillai, Ghosh (b0090) 2022; 156 Tamayol, Bahrami (b0135) 2009; 52 Becker, Grössing, Konstantopoulos (b0040) 2016; 2 Shakoor, Park (b0100) 2022 Ge, Wang, Sun, Liu (b0200) 2019; 40 Salvatori, Caglar, Teixidó, Michaud (b0095) 2018; 108 Tran, Comas-Cardona, Abriak, Binetruy (b0160) 2010; 70 Dormieux, Kondo, Ulm (b0155) 2006 Vernet, Ruiz, Advani (b0050) 2014; 61 Cai, Berdichevsky (b0175) 1993; 14 Neuman (b0165) 1977; 25 Grössing, Becker, Kaufmann (b0045) 2015; 9 Gray, Miller (b0140) 2013; 62 Straumit (10.1016/j.compositesa.2022.107397_b0075) 2016; 81 Linden (10.1016/j.compositesa.2022.107397_b0115) 2015; 82 Ge (10.1016/j.compositesa.2022.107397_b0200) 2019; 40 Zeng (10.1016/j.compositesa.2022.107397_b0085) 2014; 56 Endruweit (10.1016/j.compositesa.2022.107397_b0130) 2013; 49 Becker (10.1016/j.compositesa.2022.107397_b0040) 2016; 2 Guibert (10.1016/j.compositesa.2022.107397_b0120) 2016; 48 Chen (10.1016/j.compositesa.2022.107397_b0195) 2019; 6 Tamayol (10.1016/j.compositesa.2022.107397_b0135) 2009; 52 Gebart (10.1016/j.compositesa.2022.107397_b0125) 1992; 26 Cai (10.1016/j.compositesa.2022.107397_b0175) 1993; 14 Simacek (10.1016/j.compositesa.2022.107397_b0005) 2004; 25 Lopez (10.1016/j.compositesa.2022.107397_b0145) 2016; 9 Shakoor (10.1016/j.compositesa.2022.107397_b0100) 2022 Tran (10.1016/j.compositesa.2022.107397_b0160) 2010; 70 Wang (10.1016/j.compositesa.2022.107397_b0020) 2018; 140 Salvatori (10.1016/j.compositesa.2022.107397_b0095) 2018; 108 Gray (10.1016/j.compositesa.2022.107397_b0140) 2013; 62 May (10.1016/j.compositesa.2022.107397_b0035) 2019; 121 Yong (10.1016/j.compositesa.2022.107397_b0030) 2021; 148 Syerko (10.1016/j.compositesa.2022.107397_b0070) 2017; 131 10.1016/j.compositesa.2022.107397_b0010 Atherton (10.1016/j.compositesa.2022.107397_b0170) 1999; 17 10.1016/j.compositesa.2022.107397_b0015 Hwang (10.1016/j.compositesa.2022.107397_b0065) 2010; 22 Raizada (10.1016/j.compositesa.2022.107397_b0090) 2022; 156 Darcy (10.1016/j.compositesa.2022.107397_b0025) 1856 Geoffre (10.1016/j.compositesa.2022.107397_b0080) 2021; 143 Abouorm (10.1016/j.compositesa.2022.107397_b0105) 2014; 23 Chen (10.1016/j.compositesa.2022.107397_b0190) 2008; 71 Wiegmann (10.1016/j.compositesa.2022.107397_b0110) 2000; 37 Vernet (10.1016/j.compositesa.2022.107397_b0050) 2014; 61 Neuman (10.1016/j.compositesa.2022.107397_b0165) 1977; 25 Lundström (10.1016/j.compositesa.2022.107397_b0185) 1995; 29 Grössing (10.1016/j.compositesa.2022.107397_b0045) 2015; 9 Eshelby (10.1016/j.compositesa.2022.107397_b0150) 1957; 241 Dormieux (10.1016/j.compositesa.2022.107397_b0155) 2006 Chen (10.1016/j.compositesa.2022.107397_b0180) 2007; 67 Zarandi (10.1016/j.compositesa.2022.107397_b0060) 2019; 119 Arbter (10.1016/j.compositesa.2022.107397_b0055) 2011; 42 |
| References_xml | – volume: 9 start-page: 129 year: 2015 end-page: 142 ident: b0045 article-title: An evaluation of the reproducibility of capacitive sensor based in-plane permeability measurements: A benchmarking study publication-title: Express Polym Lett – volume: 9 start-page: 215 year: 2016 end-page: 227 ident: b0145 article-title: Flow modeling of linear and nonlinear fluids in two and three scale fibrous fabrics publication-title: Int J Mater Form – volume: 42 start-page: 1157 year: 2011 end-page: 1168 ident: b0055 article-title: Experimental determination of the permeability of textiles: A benchmark exercise publication-title: Compos A Appl Sci Manuf – year: 1856 ident: b0025 article-title: Les Fontaines Publiques de la ville de Dijon – volume: 37 start-page: 827 year: 2000 end-page: 862 ident: b0110 article-title: The explicit-jump immersed interface method: finite difference methods for PDEs with piecewise smooth solutions publication-title: SIAM J Numer Anal – volume: 49 start-page: 109 year: 2013 end-page: 118 ident: b0130 article-title: Stochastic analysis of fibre volume fraction and permeability in fibre bundles with random filament arrangement publication-title: Compos A Appl Sci Manuf – start-page: 1 year: 2022 end-page: 29 ident: b0100 article-title: Computational homogenization of unsteady flows with obstacles publication-title: Int J Numer Meth Fluids – volume: 62 start-page: 227 year: 2013 end-page: 237 ident: b0140 article-title: A generalization of averaging theorems for porous medium analysis publication-title: Adv Water Resour – volume: 56 start-page: 150 year: 2014 end-page: 160 ident: b0085 article-title: Geometrical modelling of 3D woven reinforcements for polymer composites: Prediction of fabric permeability and composite mechanical properties publication-title: Compos A Appl Sci Manuf – volume: 82 start-page: 58 year: 2015 end-page: 66 ident: b0115 article-title: The LIR space partitioning system applied to the Stokes equations publication-title: Graph Model – volume: 2 start-page: 34 year: 2016 end-page: 45 ident: b0040 article-title: An evaluation of the reproducibility of ultrasonic sensor-based out-of-plane permeability measurements: a benchmarking study publication-title: Adv Manuf Polym Compos Sci – volume: 143 year: 2021 ident: b0080 article-title: Bounding transverse permeability of fibrous media: a statistical study from random representative volume elements with consideration of fluid slip publication-title: Int J Multiph Flow – volume: 26 start-page: 1100 year: 1992 end-page: 1133 ident: b0125 article-title: Permeability of Unidirectional Reinforcements for RTM publication-title: J Compos Mater – volume: 67 start-page: 1286 year: 2007 end-page: 1293 ident: b0180 article-title: Micro-scale modeling of axial flow through unidirectional disordered fiber arrays publication-title: Compos Sci Technol – reference: ESI-Group. PAM-RTM Simulation Software of the Resin Transfer Molding (RTM) Process. https://www.esi-group.com/. – reference: Koorevaar A. Simulation of Liquid Injection Moulding. In: Proceedings of the 23 – volume: 119 start-page: 73 year: 2019 end-page: 87 ident: b0060 article-title: Longitudinal and transverse flows in fiber tows: Evaluation of theoretical permeability models through numerical predictions and experimental measurements publication-title: Compos A Appl Sci Manuf – volume: 108 start-page: 41 year: 2018 end-page: 52 ident: b0095 article-title: Permeability and capillary effects in a channel-wise non-crimp fabric publication-title: Compos A Appl Sci Manuf – volume: 140 start-page: 91 year: 2018 end-page: 98 ident: b0020 article-title: Multidisciplinary tool for composite wind blade design & analysis publication-title: Compos B Eng – volume: 241 start-page: 376 year: 1957 end-page: 396 ident: b0150 article-title: The determination of the elastic field of an ellipsoidal inclusion, and related problems publication-title: Proc Royal Soc Lond A – year: 2006 ident: b0155 article-title: Microporomechanics – volume: 14 start-page: 529 year: 1993 end-page: 539 ident: b0175 article-title: Numerical simulation on the permeability variations of a fiber assembly publication-title: Polym Compos – volume: 25 start-page: 355 year: 2004 end-page: 367 ident: b0005 article-title: Desirable features in mold filling simulations for liquid composite molding processes publication-title: Polym Compos – volume: 52 start-page: 2407 year: 2009 end-page: 2414 ident: b0135 article-title: Analytical determination of viscous permeability of fibrous porous media publication-title: Int J Heat Mass Transf – volume: 121 start-page: 100 year: 2019 end-page: 114 ident: b0035 article-title: In-plane permeability characterization of engineering textiles based on radial flow experiments: A benchmark exercise publication-title: Compos A Appl Sci Manuf – volume: 40 start-page: 4763 year: 2019 end-page: 4770 ident: b0200 article-title: An efficient method to generate random distribution of fibers in continuous fiber reinforced composites publication-title: Polym Compos – volume: 6 year: 2019 ident: b0195 article-title: Development of the RSA method for random short fiber reinforced elastomer composites with large fiber aspect ratios publication-title: Mater Res Express, IOP Publishing – volume: 81 start-page: 289 year: 2016 end-page: 295 ident: b0075 article-title: Computation of permeability of a non-crimp carbon textile reinforcement based on X-ray computed tomography images publication-title: Compos A Appl Sci Manuf – volume: 48 start-page: 329 year: 2016 end-page: 347 ident: b0120 article-title: A comparison of various methods for the numerical evaluation of porous media permeability tensors from pore-scale geometry publication-title: Math Geosci – volume: 131 start-page: 307 year: 2017 end-page: 322 ident: b0070 article-title: A numerical approach to design dual-scale porosity composite reinforcements with enhanced permeability publication-title: Mater Des – volume: 70 start-page: 1410 year: 2010 end-page: 1418 ident: b0160 article-title: Unified microporomechanical approach for mechanical behavior and permeability of misaligned unidirectional fiber reinforcement publication-title: Compos Sci Technol – volume: 156 year: 2022 ident: b0090 article-title: A validation of Whitaker’s closure formulation based method for estimating flow permeability in anisotropic porous media publication-title: Compos A Appl Sci Manuf – reference: International SAMPE Europe Conference, Paris, France – 2002: 633-644. – volume: 61 start-page: 172 year: 2014 end-page: 184 ident: b0050 article-title: Experimental determination of the permeability of engineering textiles: Benchmark II publication-title: Compos A Appl Sci Manuf – volume: 17 start-page: 795 year: 1999 end-page: 803 ident: b0170 article-title: Size invariant circle detection publication-title: Image Vis Comput – volume: 71 start-page: 233 year: 2008 end-page: 251 ident: b0190 article-title: The transverse permeability of disordered fiber arrays: a statistical correlation in terms of the mean nearest inter fiber spacing publication-title: Transp Porous Media – volume: 22 year: 2010 ident: b0065 article-title: Numerical simulations of Stokes-Brinkman equations for permeability prediction of dual scale fibrous porous media publication-title: Phys Fluids – volume: 23 start-page: 113 year: 2014 end-page: 137 ident: b0105 article-title: Stokes-Darcy coupling in severe regimes using multiscale stabilisation for mixed finite elements: monolithic approach versus decoupled approach publication-title: Eur J Comput Mech – volume: 148 year: 2021 ident: b0030 article-title: Out-of-plane permeability measurement for reinforcement textiles: A benchmark exercise publication-title: Compos A Appl Sci Manuf – volume: 25 start-page: 153 year: 1977 end-page: 170 ident: b0165 article-title: Theoretical Derivation of Darcy's Law publication-title: Acta Mech – volume: 29 start-page: 424 year: 1995 end-page: 443 ident: b0185 article-title: Effect of perturbation of fiber architecture on permeability inside fiber tows publication-title: J Compos Mater – volume: 42 start-page: 1157 year: 2011 ident: 10.1016/j.compositesa.2022.107397_b0055 article-title: Experimental determination of the permeability of textiles: A benchmark exercise publication-title: Compos A Appl Sci Manuf doi: 10.1016/j.compositesa.2011.04.021 – volume: 156 year: 2022 ident: 10.1016/j.compositesa.2022.107397_b0090 article-title: A validation of Whitaker’s closure formulation based method for estimating flow permeability in anisotropic porous media publication-title: Compos A Appl Sci Manuf doi: 10.1016/j.compositesa.2022.106831 – volume: 23 start-page: 113 issue: 3–4 year: 2014 ident: 10.1016/j.compositesa.2022.107397_b0105 article-title: Stokes-Darcy coupling in severe regimes using multiscale stabilisation for mixed finite elements: monolithic approach versus decoupled approach publication-title: Eur J Comput Mech doi: 10.1080/17797179.2014.882140 – volume: 40 start-page: 4763 issue: 12 year: 2019 ident: 10.1016/j.compositesa.2022.107397_b0200 article-title: An efficient method to generate random distribution of fibers in continuous fiber reinforced composites publication-title: Polym Compos doi: 10.1002/pc.25344 – volume: 37 start-page: 827 issue: 3 year: 2000 ident: 10.1016/j.compositesa.2022.107397_b0110 article-title: The explicit-jump immersed interface method: finite difference methods for PDEs with piecewise smooth solutions publication-title: SIAM J Numer Anal doi: 10.1137/S0036142997328664 – volume: 22 issue: 11 year: 2010 ident: 10.1016/j.compositesa.2022.107397_b0065 article-title: Numerical simulations of Stokes-Brinkman equations for permeability prediction of dual scale fibrous porous media publication-title: Phys Fluids doi: 10.1063/1.3484273 – volume: 29 start-page: 424 issue: 4 year: 1995 ident: 10.1016/j.compositesa.2022.107397_b0185 article-title: Effect of perturbation of fiber architecture on permeability inside fiber tows publication-title: J Compos Mater doi: 10.1177/002199839502900401 – volume: 25 start-page: 355 issue: 4 year: 2004 ident: 10.1016/j.compositesa.2022.107397_b0005 article-title: Desirable features in mold filling simulations for liquid composite molding processes publication-title: Polym Compos doi: 10.1002/pc.20029 – volume: 82 start-page: 58 year: 2015 ident: 10.1016/j.compositesa.2022.107397_b0115 article-title: The LIR space partitioning system applied to the Stokes equations publication-title: Graph Model doi: 10.1016/j.gmod.2015.06.003 – volume: 71 start-page: 233 issue: 2 year: 2008 ident: 10.1016/j.compositesa.2022.107397_b0190 article-title: The transverse permeability of disordered fiber arrays: a statistical correlation in terms of the mean nearest inter fiber spacing publication-title: Transp Porous Media doi: 10.1007/s11242-007-9123-6 – volume: 131 start-page: 307 year: 2017 ident: 10.1016/j.compositesa.2022.107397_b0070 article-title: A numerical approach to design dual-scale porosity composite reinforcements with enhanced permeability publication-title: Mater Des doi: 10.1016/j.matdes.2017.06.035 – volume: 119 start-page: 73 year: 2019 ident: 10.1016/j.compositesa.2022.107397_b0060 article-title: Longitudinal and transverse flows in fiber tows: Evaluation of theoretical permeability models through numerical predictions and experimental measurements publication-title: Compos A Appl Sci Manuf doi: 10.1016/j.compositesa.2018.12.032 – volume: 17 start-page: 795 issue: 11 year: 1999 ident: 10.1016/j.compositesa.2022.107397_b0170 article-title: Size invariant circle detection publication-title: Image Vis Comput doi: 10.1016/S0262-8856(98)00160-7 – volume: 108 start-page: 41 year: 2018 ident: 10.1016/j.compositesa.2022.107397_b0095 article-title: Permeability and capillary effects in a channel-wise non-crimp fabric publication-title: Compos A Appl Sci Manuf doi: 10.1016/j.compositesa.2018.02.015 – volume: 241 start-page: 376 year: 1957 ident: 10.1016/j.compositesa.2022.107397_b0150 article-title: The determination of the elastic field of an ellipsoidal inclusion, and related problems publication-title: Proc Royal Soc Lond A doi: 10.1098/rspa.1957.0133 – volume: 143 year: 2021 ident: 10.1016/j.compositesa.2022.107397_b0080 article-title: Bounding transverse permeability of fibrous media: a statistical study from random representative volume elements with consideration of fluid slip publication-title: Int J Multiph Flow doi: 10.1016/j.ijmultiphaseflow.2021.103751 – volume: 67 start-page: 1286 issue: 7–8 year: 2007 ident: 10.1016/j.compositesa.2022.107397_b0180 article-title: Micro-scale modeling of axial flow through unidirectional disordered fiber arrays publication-title: Compos Sci Technol doi: 10.1016/j.compscitech.2006.10.011 – volume: 70 start-page: 1410 issue: 9 year: 2010 ident: 10.1016/j.compositesa.2022.107397_b0160 article-title: Unified microporomechanical approach for mechanical behavior and permeability of misaligned unidirectional fiber reinforcement publication-title: Compos Sci Technol doi: 10.1016/j.compscitech.2010.04.023 – volume: 2 start-page: 34 issue: 1 year: 2016 ident: 10.1016/j.compositesa.2022.107397_b0040 article-title: An evaluation of the reproducibility of ultrasonic sensor-based out-of-plane permeability measurements: a benchmarking study publication-title: Adv Manuf Polym Compos Sci – year: 1856 ident: 10.1016/j.compositesa.2022.107397_b0025 – volume: 121 start-page: 100 year: 2019 ident: 10.1016/j.compositesa.2022.107397_b0035 article-title: In-plane permeability characterization of engineering textiles based on radial flow experiments: A benchmark exercise publication-title: Compos A Appl Sci Manuf doi: 10.1016/j.compositesa.2019.03.006 – volume: 81 start-page: 289 year: 2016 ident: 10.1016/j.compositesa.2022.107397_b0075 article-title: Computation of permeability of a non-crimp carbon textile reinforcement based on X-ray computed tomography images publication-title: Compos A Appl Sci Manuf doi: 10.1016/j.compositesa.2015.11.025 – volume: 56 start-page: 150 year: 2014 ident: 10.1016/j.compositesa.2022.107397_b0085 article-title: Geometrical modelling of 3D woven reinforcements for polymer composites: Prediction of fabric permeability and composite mechanical properties publication-title: Compos A Appl Sci Manuf doi: 10.1016/j.compositesa.2013.10.004 – start-page: 1 year: 2022 ident: 10.1016/j.compositesa.2022.107397_b0100 article-title: Computational homogenization of unsteady flows with obstacles publication-title: Int J Numer Meth Fluids – volume: 25 start-page: 153 year: 1977 ident: 10.1016/j.compositesa.2022.107397_b0165 article-title: Theoretical Derivation of Darcy's Law publication-title: Acta Mech doi: 10.1007/BF01376989 – ident: 10.1016/j.compositesa.2022.107397_b0015 – volume: 6 issue: 6 year: 2019 ident: 10.1016/j.compositesa.2022.107397_b0195 article-title: Development of the RSA method for random short fiber reinforced elastomer composites with large fiber aspect ratios publication-title: Mater Res Express, IOP Publishing – volume: 9 start-page: 215 issue: 2 year: 2016 ident: 10.1016/j.compositesa.2022.107397_b0145 article-title: Flow modeling of linear and nonlinear fluids in two and three scale fibrous fabrics publication-title: Int J Mater Form doi: 10.1007/s12289-015-1224-0 – volume: 9 start-page: 129 issue: 2 year: 2015 ident: 10.1016/j.compositesa.2022.107397_b0045 article-title: An evaluation of the reproducibility of capacitive sensor based in-plane permeability measurements: A benchmarking study publication-title: Express Polym Lett doi: 10.3144/expresspolymlett.2015.14 – volume: 49 start-page: 109 year: 2013 ident: 10.1016/j.compositesa.2022.107397_b0130 article-title: Stochastic analysis of fibre volume fraction and permeability in fibre bundles with random filament arrangement publication-title: Compos A Appl Sci Manuf doi: 10.1016/j.compositesa.2013.02.012 – year: 2006 ident: 10.1016/j.compositesa.2022.107397_b0155 – volume: 14 start-page: 529 issue: 6 year: 1993 ident: 10.1016/j.compositesa.2022.107397_b0175 article-title: Numerical simulation on the permeability variations of a fiber assembly publication-title: Polym Compos doi: 10.1002/pc.750140611 – volume: 61 start-page: 172 year: 2014 ident: 10.1016/j.compositesa.2022.107397_b0050 article-title: Experimental determination of the permeability of engineering textiles: Benchmark II publication-title: Compos A Appl Sci Manuf doi: 10.1016/j.compositesa.2014.02.010 – ident: 10.1016/j.compositesa.2022.107397_b0010 – volume: 48 start-page: 329 issue: 3 year: 2016 ident: 10.1016/j.compositesa.2022.107397_b0120 article-title: A comparison of various methods for the numerical evaluation of porous media permeability tensors from pore-scale geometry publication-title: Math Geosci doi: 10.1007/s11004-015-9587-9 – volume: 26 start-page: 1100 issue: 8 year: 1992 ident: 10.1016/j.compositesa.2022.107397_b0125 article-title: Permeability of Unidirectional Reinforcements for RTM publication-title: J Compos Mater doi: 10.1177/002199839202600802 – volume: 62 start-page: 227 year: 2013 ident: 10.1016/j.compositesa.2022.107397_b0140 article-title: A generalization of averaging theorems for porous medium analysis publication-title: Adv Water Resour doi: 10.1016/j.advwatres.2013.06.006 – volume: 140 start-page: 91 year: 2018 ident: 10.1016/j.compositesa.2022.107397_b0020 article-title: Multidisciplinary tool for composite wind blade design & analysis publication-title: Compos B Eng doi: 10.1016/j.compositesb.2017.09.075 – volume: 52 start-page: 2407 issue: 9–10 year: 2009 ident: 10.1016/j.compositesa.2022.107397_b0135 article-title: Analytical determination of viscous permeability of fibrous porous media publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2008.09.032 – volume: 148 year: 2021 ident: 10.1016/j.compositesa.2022.107397_b0030 article-title: Out-of-plane permeability measurement for reinforcement textiles: A benchmark exercise publication-title: Compos A Appl Sci Manuf doi: 10.1016/j.compositesa.2021.106480 |
| SSID | ssj0003391 |
| Score | 2.531236 |
| Snippet | Permeability measurements of engineering textiles exhibit large variability as no standardization method currently exists; numerical permeability prediction is... |
| SourceID | swepub hal proquest crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 107397 |
| SubjectTerms | A fabric/textile A tow A. Fabrics/textiles B permeability Besin flow Boundary conditions C computational modeling C. Computational modelling Computational modelling E resin flow Engineering Sciences exercise Fabric/textiles Fabrics/textiles Forecasting Materials Mechanical permeability Numerical methods Permeability Permeability identification Permeability prediction prediction Resin flows Textiles Tow |
| Title | Benchmark exercise on image-based permeability determination of engineering textiles: Microscale predictions |
| URI | https://dx.doi.org/10.1016/j.compositesa.2022.107397 https://www.proquest.com/docview/2834199043 https://hal.science/hal-04193253 https://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-65472 |
| Volume | 167 |
| WOSCitedRecordID | wos000996477300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1878-5840 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003391 issn: 1359-835X databaseCode: AIEXJ dateStart: 19960101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEF6lLULwgLgqwiUXVbxERs6uT8RLCqkKSgMSKcrbam2vqdvECc6h5g_wu5mJd31IVAoPvFiR5bHX-T7Pzs7OQcixnchYuJ5lOoGABUoAWARSUtOVNLEDloDStLbNJrzh0B-Pg2-t1m-dC7OeeFnm39wE8_8KNZwDsDF19h_gLm8KJ-A3gA5HgB2OOwF_AoO5nIr8umynhBsC6RQUh4lzVoyliqeyqM-96cQ6HkabjrKqUNjBsJBUhc2dY-jeAiDF1Crc3qlcfbrSAegWjAGDtTdYpvmy09tqHmXn6gQi9NRPRbbClIptjmTp5AHr_3rWyI74Dm-SxstGMPe52DQilU9gtMt8talcvsqJQVkt9qXQuwy9kcwZNxSz63Xm77q4l-iZf1X3hefhCtFS74elpChVQtUcp_f1h1_56cVgwEf98ejt_JeJ3cdQTrVi2SMH1HMC0I4Hvc_98ZdyTmcsKJbuaph3yVEVKXjL02-zdPYuMeS2vp6p16jd2jWjh-SBWpAYvYJIj0hLZo_J_VqZyidkUlLK0JQyZplRo5RRp5TRoJQxS4wapQxNqfdGRSijRqin5OK0P_p4ZqouHWZke87SRBMxZjBPRC4NokBYYSQY6IVQdpMo9IQvXRZGXY_R0E5gSmNSCMsTkqLysEH0kOxns0w-I4YVW9RLoqgby9h2WOz7MciGIXNsN3H9oE18_Y_ySJWwx04qE65jFa94DQyOYPACjDahpei8qOOyi9AHDRtXH0lhaHIg4C7ibwDq8nFYyP2sN-B4zrJx4eSwNW2TI80EDpodt-tEJmerBQfDH64KLJu1yXFBkca9PqU_enyW_-R5yrGFOH2-w61ekHvV9_eS7MP3KV-RO9F6mS7y14r2fwCk59pf |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Benchmark+exercise+on+image-based+permeability+determination+of+engineering+textiles%3A+Microscale+predictions&rft.jtitle=Composites.+Part+A%2C+Applied+science+and+manufacturing&rft.au=Syerko%2C+E&rft.au=Schmidt%2C+T&rft.au=May%2C+D&rft.au=Binetruy%2C+C&rft.date=2023-04-01&rft.issn=1359-835X&rft.volume=167+p.107397-&rft_id=info:doi/10.1016%2Fj.compositesa.2022.107397&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-835X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-835X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-835X&client=summon |