Observed Impacts of Anthropogenic Climate Change on Wildfire in California
Recent fire seasons have fueled intense speculation regarding the effect of anthropogenic climate change on wildfire in western North America and especially in California. During 1972–2018, California experienced a fivefold increase in annual burned area, mainly due to more than an eightfold increas...
Uloženo v:
| Vydáno v: | Earth's future Ročník 7; číslo 8; s. 892 - 910 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Bognor Regis
John Wiley & Sons, Inc
01.08.2019
Wiley |
| Témata: | |
| ISSN: | 2328-4277, 2328-4277 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Recent fire seasons have fueled intense speculation regarding the effect of anthropogenic climate change on wildfire in western North America and especially in California. During 1972–2018, California experienced a fivefold increase in annual burned area, mainly due to more than an eightfold increase in summer forest‐fire extent. Increased summer forest‐fire area very likely occurred due to increased atmospheric aridity caused by warming. Since the early 1970s, warm‐season days warmed by approximately 1.4 °C as part of a centennial warming trend, significantly increasing the atmospheric vapor pressure deficit (VPD). These trends are consistent with anthropogenic trends simulated by climate models. The response of summer forest‐fire area to VPD is exponential, meaning that warming has grown increasingly impactful. Robust interannual relationships between VPD and summer forest‐fire area strongly suggest that nearly all of the increase in summer forest‐fire area during 1972–2018 was driven by increased VPD. Climate change effects on summer wildfire were less evident in nonforested lands. In fall, wind events and delayed onset of winter precipitation are the dominant promoters of wildfire. While these variables did not change much over the past century, background warming and consequent fuel drying is increasingly enhancing the potential for large fall wildfires. Among the many processes important to California's diverse fire regimes, warming‐driven fuel drying is the clearest link between anthropogenic climate change and increased California wildfire activity to date.
Plain Language Summary
Since the early 1970s, California's annual wildfire extent increased fivefold, punctuated by extremely large and destructive wildfires in 2017 and 2018. This trend was mainly due to an eightfold increase in summertime forest‐fire area and was very likely driven by drying of fuels promoted by human‐induced warming. Warming effects were also apparent in the fall by enhancing the odds that fuels are dry when strong fall wind events occur. The ability of dry fuels to promote large fires is nonlinear, which has allowed warming to become increasingly impactful. Human‐caused warming has already significantly enhanced wildfire activity in California, particularly in the forests of the Sierra Nevada and North Coast, and will likely continue to do so in the coming decades.
Key Points
Annual burned area in California increased fivefold during 1972–2018, mainly due to summer forest fire
Anthropogenic warming very likely increased summer forest fire by drying fuels; this trend is likely to continue
Large fall fires are likely to become increasingly frequent with continued warming and possibly gradual declines in fall precipitation |
|---|---|
| AbstractList | Recent fire seasons have fueled intense speculation regarding the effect of anthropogenic climate change on wildfire in western North America and especially in California. During 1972–2018, California experienced a fivefold increase in annual burned area, mainly due to more than an eightfold increase in summer forest‐fire extent. Increased summer forest‐fire area very likely occurred due to increased atmospheric aridity caused by warming. Since the early 1970s, warm‐season days warmed by approximately 1.4 °C as part of a centennial warming trend, significantly increasing the atmospheric vapor pressure deficit (VPD). These trends are consistent with anthropogenic trends simulated by climate models. The response of summer forest‐fire area to VPD is exponential, meaning that warming has grown increasingly impactful. Robust interannual relationships between VPD and summer forest‐fire area strongly suggest that nearly all of the increase in summer forest‐fire area during 1972–2018 was driven by increased VPD. Climate change effects on summer wildfire were less evident in nonforested lands. In fall, wind events and delayed onset of winter precipitation are the dominant promoters of wildfire. While these variables did not change much over the past century, background warming and consequent fuel drying is increasingly enhancing the potential for large fall wildfires. Among the many processes important to California's diverse fire regimes, warming‐driven fuel drying is the clearest link between anthropogenic climate change and increased California wildfire activity to date. Recent fire seasons have fueled intense speculation regarding the effect of anthropogenic climate change on wildfire in western North America and especially in California. During 1972–2018, California experienced a fivefold increase in annual burned area, mainly due to more than an eightfold increase in summer forest‐fire extent. Increased summer forest‐fire area very likely occurred due to increased atmospheric aridity caused by warming. Since the early 1970s, warm‐season days warmed by approximately 1.4 °C as part of a centennial warming trend, significantly increasing the atmospheric vapor pressure deficit (VPD). These trends are consistent with anthropogenic trends simulated by climate models. The response of summer forest‐fire area to VPD is exponential, meaning that warming has grown increasingly impactful. Robust interannual relationships between VPD and summer forest‐fire area strongly suggest that nearly all of the increase in summer forest‐fire area during 1972–2018 was driven by increased VPD. Climate change effects on summer wildfire were less evident in nonforested lands. In fall, wind events and delayed onset of winter precipitation are the dominant promoters of wildfire. While these variables did not change much over the past century, background warming and consequent fuel drying is increasingly enhancing the potential for large fall wildfires. Among the many processes important to California's diverse fire regimes, warming‐driven fuel drying is the clearest link between anthropogenic climate change and increased California wildfire activity to date. Plain Language Summary Since the early 1970s, California's annual wildfire extent increased fivefold, punctuated by extremely large and destructive wildfires in 2017 and 2018. This trend was mainly due to an eightfold increase in summertime forest‐fire area and was very likely driven by drying of fuels promoted by human‐induced warming. Warming effects were also apparent in the fall by enhancing the odds that fuels are dry when strong fall wind events occur. The ability of dry fuels to promote large fires is nonlinear, which has allowed warming to become increasingly impactful. Human‐caused warming has already significantly enhanced wildfire activity in California, particularly in the forests of the Sierra Nevada and North Coast, and will likely continue to do so in the coming decades. Key Points Annual burned area in California increased fivefold during 1972–2018, mainly due to summer forest fire Anthropogenic warming very likely increased summer forest fire by drying fuels; this trend is likely to continue Large fall fires are likely to become increasingly frequent with continued warming and possibly gradual declines in fall precipitation Recent fire seasons have fueled intense speculation regarding the effect of anthropogenic climate change on wildfire in western North America and especially in California. During 1972–2018, California experienced a fivefold increase in annual burned area, mainly due to more than an eightfold increase in summer forest‐fire extent. Increased summer forest‐fire area very likely occurred due to increased atmospheric aridity caused by warming. Since the early 1970s, warm‐season days warmed by approximately 1.4 °C as part of a centennial warming trend, significantly increasing the atmospheric vapor pressure deficit (VPD). These trends are consistent with anthropogenic trends simulated by climate models. The response of summer forest‐fire area to VPD is exponential, meaning that warming has grown increasingly impactful. Robust interannual relationships between VPD and summer forest‐fire area strongly suggest that nearly all of the increase in summer forest‐fire area during 1972–2018 was driven by increased VPD. Climate change effects on summer wildfire were less evident in nonforested lands. In fall, wind events and delayed onset of winter precipitation are the dominant promoters of wildfire. While these variables did not change much over the past century, background warming and consequent fuel drying is increasingly enhancing the potential for large fall wildfires. Among the many processes important to California's diverse fire regimes, warming‐driven fuel drying is the clearest link between anthropogenic climate change and increased California wildfire activity to date. Since the early 1970s, California's annual wildfire extent increased fivefold, punctuated by extremely large and destructive wildfires in 2017 and 2018. This trend was mainly due to an eightfold increase in summertime forest‐fire area and was very likely driven by drying of fuels promoted by human‐induced warming. Warming effects were also apparent in the fall by enhancing the odds that fuels are dry when strong fall wind events occur. The ability of dry fuels to promote large fires is nonlinear, which has allowed warming to become increasingly impactful. Human‐caused warming has already significantly enhanced wildfire activity in California, particularly in the forests of the Sierra Nevada and North Coast, and will likely continue to do so in the coming decades. Annual burned area in California increased fivefold during 1972–2018, mainly due to summer forest fire Anthropogenic warming very likely increased summer forest fire by drying fuels; this trend is likely to continue Large fall fires are likely to become increasingly frequent with continued warming and possibly gradual declines in fall precipitation Abstract Recent fire seasons have fueled intense speculation regarding the effect of anthropogenic climate change on wildfire in western North America and especially in California. During 1972–2018, California experienced a fivefold increase in annual burned area, mainly due to more than an eightfold increase in summer forest‐fire extent. Increased summer forest‐fire area very likely occurred due to increased atmospheric aridity caused by warming. Since the early 1970s, warm‐season days warmed by approximately 1.4 °C as part of a centennial warming trend, significantly increasing the atmospheric vapor pressure deficit (VPD). These trends are consistent with anthropogenic trends simulated by climate models. The response of summer forest‐fire area to VPD is exponential, meaning that warming has grown increasingly impactful. Robust interannual relationships between VPD and summer forest‐fire area strongly suggest that nearly all of the increase in summer forest‐fire area during 1972–2018 was driven by increased VPD. Climate change effects on summer wildfire were less evident in nonforested lands. In fall, wind events and delayed onset of winter precipitation are the dominant promoters of wildfire. While these variables did not change much over the past century, background warming and consequent fuel drying is increasingly enhancing the potential for large fall wildfires. Among the many processes important to California's diverse fire regimes, warming‐driven fuel drying is the clearest link between anthropogenic climate change and increased California wildfire activity to date. |
| Author | Gershunov, Alexander Guzman‐Morales, Janin Bishop, Daniel A. Balch, Jennifer K. Williams, A. Park Lettenmaier, Dennis P. Abatzoglou, John T. |
| Author_xml | – sequence: 1 givenname: A. Park orcidid: 0000-0001-8176-8166 surname: Williams fullname: Williams, A. Park email: williams@ldeo.columbia.edu organization: Columbia University – sequence: 2 givenname: John T. orcidid: 0000-0001-7599-9750 surname: Abatzoglou fullname: Abatzoglou, John T. organization: University of Idaho – sequence: 3 givenname: Alexander orcidid: 0000-0002-6598-6638 surname: Gershunov fullname: Gershunov, Alexander organization: University of California, San Diego – sequence: 4 givenname: Janin orcidid: 0000-0001-6040-454X surname: Guzman‐Morales fullname: Guzman‐Morales, Janin organization: University of California, San Diego – sequence: 5 givenname: Daniel A. orcidid: 0000-0002-0394-5996 surname: Bishop fullname: Bishop, Daniel A. organization: Columbia University – sequence: 6 givenname: Jennifer K. surname: Balch fullname: Balch, Jennifer K. organization: University of Colorado Boulder – sequence: 7 givenname: Dennis P. orcidid: 0000-0002-0914-0726 surname: Lettenmaier fullname: Lettenmaier, Dennis P. organization: University of California |
| BookMark | eNp9kUtLAzEUhYNU8LnzBwTcWs1NMpNkKUOrFcGN4jLEPNqUMamZqeK_d7QKRdC7uYfLdw4H7gEapZw8QidAzoFQdUEJqMmUEKBAdtA-ZVSOORVitKX30HHXLckwShBWiX10c_fU-fLqHZ49r4ztO5wDvkz9ouRVnvsULW7a-Gx6j5uFSXOPc8KPsXUhFo9jwo1pY8glRXOEdoNpO3_8vQ_Rw3Ry31yPb--uZs3l7dhyUYkxAwMcnAQrgwAuah8or4UDJT5VYK6qGQ9KWlM7x4BwKbkcLnwoLSRjh2i2yXXZLPWqDO3Ku84m6q9DLnNtSh9t63UFztngFbNccsOpIU9BKlHXqmY2KD9knW6yViW_rH3X62VelzTU15RKwQBAVANFN5QtueuKD9rG3vQxp76Y2Gog-vMFevsFg-nsl-mn6h84bPC32Pr3f1k9md7TSgj2AfjAk3s |
| CitedBy_id | crossref_primary_10_1016_j_jaerosci_2023_106316 crossref_primary_10_1029_2023EF003778 crossref_primary_10_1071_WF20190 crossref_primary_10_1093_biosci_biaf144 crossref_primary_10_1098_rstb_2023_0464 crossref_primary_10_3389_fped_2022_891616 crossref_primary_10_1029_2020JD033180 crossref_primary_10_1016_j_apr_2024_102226 crossref_primary_10_1016_j_jclepro_2020_121000 crossref_primary_10_1080_10549811_2024_2448028 crossref_primary_10_1029_2022JF006591 crossref_primary_10_1016_j_jenvman_2022_115920 crossref_primary_10_1016_j_scitotenv_2020_141592 crossref_primary_10_1051_e3sconf_202341504003 crossref_primary_10_1016_j_foreco_2023_121478 crossref_primary_10_1088_1748_9326_adb764 crossref_primary_10_3390_rs15133388 crossref_primary_10_1071_WF22016 crossref_primary_10_1021_acsearthspacechem_5c00003 crossref_primary_10_5194_essd_14_1109_2022 crossref_primary_10_1016_j_landusepol_2021_105502 crossref_primary_10_1016_j_rse_2022_113237 crossref_primary_10_1038_s41586_024_07028_5 crossref_primary_10_1111_ddi_13700 crossref_primary_10_1175_WAF_D_21_0075_1 crossref_primary_10_1007_s10546_020_00562_5 crossref_primary_10_5194_bg_22_2225_2025 crossref_primary_10_1029_2020EF001480 crossref_primary_10_1038_s41467_021_21266_5 crossref_primary_10_1016_j_scitotenv_2020_142788 crossref_primary_10_1088_1748_9326_ac576a crossref_primary_10_1111_gcb_70481 crossref_primary_10_1007_s00265_025_03629_w crossref_primary_10_1007_s10584_021_03066_4 crossref_primary_10_1111_head_14442 crossref_primary_10_1016_j_erss_2024_103519 crossref_primary_10_1016_j_foreco_2024_121861 crossref_primary_10_1001_jama_2020_19334 crossref_primary_10_1016_j_joclim_2023_100285 crossref_primary_10_3390_cli13060109 crossref_primary_10_5194_nhess_22_2317_2022 crossref_primary_10_3389_ffgc_2024_1507554 crossref_primary_10_1088_1748_9326_ab83a7 crossref_primary_10_1186_s42408_024_00345_0 crossref_primary_10_1088_2515_7620_ad2e44 crossref_primary_10_1038_s41612_022_00248_4 crossref_primary_10_1029_2021GH000546 crossref_primary_10_1038_d41586_020_00173_7 crossref_primary_10_3390_f16071095 crossref_primary_10_1002_ldr_5335 crossref_primary_10_1016_j_ress_2023_109742 crossref_primary_10_5194_acp_21_16645_2021 crossref_primary_10_1021_acs_est_5c01641 crossref_primary_10_1071_WF22033 crossref_primary_10_1186_s42408_023_00199_y crossref_primary_10_1071_WF22155 crossref_primary_10_1016_j_agrformet_2024_110268 crossref_primary_10_3389_fenvs_2024_1438262 crossref_primary_10_1021_acs_est_9b05641 crossref_primary_10_1088_1748_9326_ac60da crossref_primary_10_3390_f16040592 crossref_primary_10_5194_hess_25_3713_2021 crossref_primary_10_1073_pnas_2405458121 crossref_primary_10_1029_2021GL097131 crossref_primary_10_1371_journal_pone_0291026 crossref_primary_10_1088_2752_5295_adec11 crossref_primary_10_3390_su15075973 crossref_primary_10_1038_s41612_024_00862_4 crossref_primary_10_1007_s10584_024_03735_0 crossref_primary_10_3390_s21093047 crossref_primary_10_1542_peds_2023_065505 crossref_primary_10_1038_s43017_020_0060_z crossref_primary_10_3390_fire6040168 crossref_primary_10_1029_2022GL101235 crossref_primary_10_1080_03036758_2020_1741404 crossref_primary_10_1017_S1049023X22001054 crossref_primary_10_17730_1938_3525_81_3_193 crossref_primary_10_1016_j_atmosres_2023_107199 crossref_primary_10_3390_atmos16040403 crossref_primary_10_1016_j_scitotenv_2023_161954 crossref_primary_10_1175_JCLI_D_20_0084_1 crossref_primary_10_1186_s12989_020_00394_8 crossref_primary_10_1016_j_atmosenv_2021_118431 crossref_primary_10_1126_science_ado1006 crossref_primary_10_1016_j_enggeo_2020_105742 crossref_primary_10_1016_j_jnc_2024_126728 crossref_primary_10_3389_feart_2020_00104 crossref_primary_10_1017_qua_2021_9 crossref_primary_10_1177_0308518X231191930 crossref_primary_10_3390_rs14174362 crossref_primary_10_5194_nhess_24_3315_2024 crossref_primary_10_3390_rs17061038 crossref_primary_10_1073_pnas_2117876118 crossref_primary_10_1088_2752_5295_acb079 crossref_primary_10_3390_ijerph20010815 crossref_primary_10_1038_s41560_020_0548_2 crossref_primary_10_1371_journal_pclm_0000651 crossref_primary_10_1038_s44304_025_00113_3 crossref_primary_10_3389_ffgc_2022_867112 crossref_primary_10_1029_2021GL095496 crossref_primary_10_1088_1748_9326_ad80ad crossref_primary_10_1080_08941920_2022_2041138 crossref_primary_10_1088_1748_9326_acbce8 crossref_primary_10_1080_03036758_2024_2385807 crossref_primary_10_1071_WF22107 crossref_primary_10_1017_S0376892922000388 crossref_primary_10_1088_1748_9326_ac4538 crossref_primary_10_1038_s43017_020_0085_3 crossref_primary_10_1098_rsos_230554 crossref_primary_10_1111_1365_2435_14263 crossref_primary_10_1002_wat2_1592 crossref_primary_10_1007_s10668_022_02624_9 crossref_primary_10_1016_j_joclim_2022_100162 crossref_primary_10_3390_f13071130 crossref_primary_10_1007_s10708_024_11052_3 crossref_primary_10_3390_atmos15101172 crossref_primary_10_3390_fire7100358 crossref_primary_10_1111_mec_17036 crossref_primary_10_1016_j_coesh_2021_100291 crossref_primary_10_1029_2022GL099582 crossref_primary_10_1111_pce_14846 crossref_primary_10_1007_s10584_023_03517_0 crossref_primary_10_1016_j_geomorph_2024_109175 crossref_primary_10_1111_1365_2435_14271 crossref_primary_10_1016_j_ijdrr_2025_105809 crossref_primary_10_1071_WF21024 crossref_primary_10_1016_j_ijdrr_2023_104126 crossref_primary_10_1029_2023EF003763 crossref_primary_10_3733_ca_2023a0006 crossref_primary_10_3389_fpsyg_2022_968243 crossref_primary_10_1002_joc_7513 crossref_primary_10_1080_08941920_2022_2113487 crossref_primary_10_1088_1748_9326_addede crossref_primary_10_1029_2022JB025553 crossref_primary_10_1029_2024JF007725 crossref_primary_10_1016_j_foreco_2024_121848 crossref_primary_10_1016_j_scitotenv_2024_173091 crossref_primary_10_1016_j_foreco_2024_121966 crossref_primary_10_1016_j_wdp_2024_100598 crossref_primary_10_1002_rhc3_12261 crossref_primary_10_1109_JSTARS_2022_3232665 crossref_primary_10_1080_17567505_2024_2425246 crossref_primary_10_1111_een_13216 crossref_primary_10_1038_s41380_023_02122_y crossref_primary_10_1111_gcb_16547 crossref_primary_10_3389_ffgc_2022_957189 crossref_primary_10_1103_PhysRevFluids_10_053801 crossref_primary_10_1016_j_watres_2020_115891 crossref_primary_10_1002_ece3_8158 crossref_primary_10_1016_j_foreco_2024_121916 crossref_primary_10_1088_2752_5309_ad951c crossref_primary_10_1016_j_foreco_2021_119797 crossref_primary_10_3390_rs17071267 crossref_primary_10_1080_0067270X_2020_1792177 crossref_primary_10_3390_fire5020035 crossref_primary_10_1071_WF20112 crossref_primary_10_1029_2021AV000654 crossref_primary_10_1186_s42408_023_00181_8 crossref_primary_10_3390_rs16163050 crossref_primary_10_1038_s41467_024_51305_w crossref_primary_10_1029_2024EF005744 crossref_primary_10_1016_j_ijdrr_2023_104065 crossref_primary_10_3120_0024_9637_69_3_235 crossref_primary_10_1016_j_agrformet_2024_109893 crossref_primary_10_1029_2024AV001395 crossref_primary_10_1080_00049158_2021_1894383 crossref_primary_10_1002_ecy_4265 crossref_primary_10_1007_s10980_022_01427_7 crossref_primary_10_1038_s41598_022_05945_x crossref_primary_10_1038_s41598_024_52481_x crossref_primary_10_1088_1748_9326_ac9a5d crossref_primary_10_3390_f12081023 crossref_primary_10_3390_land12081514 crossref_primary_10_1002_ajim_23191 crossref_primary_10_1186_s13021_025_00309_0 crossref_primary_10_1186_s42408_024_00316_5 crossref_primary_10_5194_essd_16_1395_2024 crossref_primary_10_1038_s41558_021_01224_1 crossref_primary_10_1016_j_oneear_2021_03_002 crossref_primary_10_1016_j_scitotenv_2021_146143 crossref_primary_10_1007_s40641_020_00158_8 crossref_primary_10_1016_j_jag_2021_102491 crossref_primary_10_1088_1748_9326_acff7a crossref_primary_10_1164_rccm_202203_0457OC crossref_primary_10_1038_s41598_022_15262_y crossref_primary_10_1111_risa_13616 crossref_primary_10_1038_s41598_021_88131_9 crossref_primary_10_1007_s40257_023_00770_y crossref_primary_10_1038_s44304_025_00124_0 crossref_primary_10_1016_j_foreco_2022_120129 crossref_primary_10_1016_j_trip_2025_101526 crossref_primary_10_1029_2020RG000726 crossref_primary_10_1016_j_ocecoaman_2020_105298 crossref_primary_10_1038_s43247_021_00299_0 crossref_primary_10_1111_efp_12811 crossref_primary_10_3389_ffgc_2024_1419288 crossref_primary_10_1111_gcb_15591 crossref_primary_10_3346_jkms_2025_40_e115 crossref_primary_10_1038_s44304_025_00090_7 crossref_primary_10_1007_s11069_022_05300_3 crossref_primary_10_1029_2020JF005527 crossref_primary_10_1016_j_ijdrr_2025_105610 crossref_primary_10_1029_2022EF003086 crossref_primary_10_3354_cr01745 crossref_primary_10_1088_1748_9326_ac939b crossref_primary_10_3390_fire6090346 crossref_primary_10_1164_rccm_202204_0657OC crossref_primary_10_1007_s00704_024_04909_7 crossref_primary_10_1016_j_envres_2023_115591 crossref_primary_10_1088_2752_5295_ac84a0 crossref_primary_10_1111_ecog_07127 crossref_primary_10_3390_fire6030086 crossref_primary_10_1021_acs_est_3c04411 crossref_primary_10_1088_1748_9326_ac1e3a crossref_primary_10_3390_su132111754 crossref_primary_10_1007_s11783_024_1890_6 crossref_primary_10_1016_j_foreco_2022_120110 crossref_primary_10_1002_ecs2_4205 crossref_primary_10_1038_s41558_023_01923_x crossref_primary_10_1093_jhered_esac048 crossref_primary_10_1016_j_nanoen_2022_107630 crossref_primary_10_1007_s40823_022_00075_6 crossref_primary_10_5572_KOSAE_2024_40_3_337 crossref_primary_10_1016_j_ijdrr_2025_105628 crossref_primary_10_3390_rs15215118 crossref_primary_10_1088_1748_9326_ad95a4 crossref_primary_10_1061_NHREFO_NHENG_1979 crossref_primary_10_1016_j_scitotenv_2022_155155 crossref_primary_10_7780_kjrs_2025_41_3_6 crossref_primary_10_1088_2634_4505_ad79dd crossref_primary_10_1016_j_foreco_2022_120107 crossref_primary_10_1029_2021GL092830 crossref_primary_10_1016_j_envres_2024_119094 crossref_primary_10_3390_fire4020028 crossref_primary_10_1038_s41561_023_01166_7 crossref_primary_10_1002_eco_2697 crossref_primary_10_1002_ecs2_4793 crossref_primary_10_1038_s41612_024_00706_1 crossref_primary_10_3390_geosciences12050198 crossref_primary_10_1029_2024GL113708 crossref_primary_10_1088_1748_9326_ac1f44 crossref_primary_10_1073_pnas_2110364119 crossref_primary_10_1007_s10346_023_02143_2 crossref_primary_10_1016_j_scitotenv_2024_176543 crossref_primary_10_1038_s43247_025_02314_0 crossref_primary_10_1162_rest_a_01286 crossref_primary_10_3390_fire4030058 crossref_primary_10_3390_fire5010016 crossref_primary_10_1029_2021GH000457 crossref_primary_10_1007_s10708_024_11226_z crossref_primary_10_1007_s11111_023_00416_5 crossref_primary_10_1016_j_habitatint_2023_102815 crossref_primary_10_1088_2515_7620_acbf13 crossref_primary_10_1186_s42408_021_00110_7 crossref_primary_10_1016_j_palaeo_2025_113159 crossref_primary_10_1080_09640568_2022_2150155 crossref_primary_10_1016_j_foreco_2022_120573 crossref_primary_10_1016_j_foreco_2022_120572 crossref_primary_10_1038_s41560_023_01306_8 crossref_primary_10_1007_s10530_021_02661_x crossref_primary_10_1002_lol2_10360 crossref_primary_10_1111_fwb_14212 crossref_primary_10_1088_1748_9326_ad928f crossref_primary_10_1029_2021GL096095 crossref_primary_10_1139_cjfr_2022_0328 crossref_primary_10_1002_joc_8551 crossref_primary_10_3389_fevo_2023_1229123 crossref_primary_10_3390_su17167409 crossref_primary_10_3390_fire4040090 crossref_primary_10_1186_s13705_023_00384_6 crossref_primary_10_1007_s11111_022_00409_w crossref_primary_10_1029_2021JG006442 crossref_primary_10_1016_j_envpol_2022_119888 crossref_primary_10_1029_2021EA001828 crossref_primary_10_1289_EHP10544 crossref_primary_10_1038_s41559_021_01654_2 crossref_primary_10_3389_ffgc_2025_1519836 crossref_primary_10_1038_s41467_022_34950_x crossref_primary_10_1186_s42408_024_00324_5 crossref_primary_10_1007_s10552_024_01949_2 crossref_primary_10_1029_2022JD036808 crossref_primary_10_1007_s42991_024_00439_x crossref_primary_10_1088_1748_9326_ad86cf crossref_primary_10_3390_fire5040095 crossref_primary_10_1073_pnas_2111875118 crossref_primary_10_1016_j_jenvman_2022_116092 crossref_primary_10_1080_10962247_2023_2291197 crossref_primary_10_3390_f16091423 crossref_primary_10_1525_001c_35472 crossref_primary_10_1029_2021GL092843 crossref_primary_10_1038_s41598_025_08179_9 crossref_primary_10_1161_CIRCULATIONAHA_121_058058 crossref_primary_10_1038_s41569_022_00720_x crossref_primary_10_1016_j_foreco_2022_120315 crossref_primary_10_1029_2020JG005786 crossref_primary_10_1007_s11431_022_2174_9 crossref_primary_10_1029_2024GL109352 crossref_primary_10_1155_2024_3921093 crossref_primary_10_1186_s42408_025_00356_5 crossref_primary_10_1016_j_rse_2020_111797 crossref_primary_10_1175_JCLI_D_22_0101_1 crossref_primary_10_1029_2024EF004922 crossref_primary_10_3390_ijerph18041487 crossref_primary_10_1016_j_rse_2025_114718 crossref_primary_10_1029_2022EF003471 crossref_primary_10_1029_2024EA003939 crossref_primary_10_3390_fire7110419 crossref_primary_10_1111_geb_13555 crossref_primary_10_1038_s44304_025_00067_6 crossref_primary_10_1007_s11069_021_04973_6 crossref_primary_10_1038_s41598_020_76191_2 crossref_primary_10_3389_ffgc_2022_734330 crossref_primary_10_1002_ajim_23218 crossref_primary_10_1016_j_envint_2022_107719 crossref_primary_10_1029_2021EF002518 crossref_primary_10_1088_1748_9326_abae9e crossref_primary_10_1016_j_gloplacha_2025_104948 crossref_primary_10_1080_02723646_2022_2035891 crossref_primary_10_1177_26349825221142293 crossref_primary_10_1029_2024GH001033 crossref_primary_10_1016_j_atmosres_2021_105804 crossref_primary_10_3390_su151813539 crossref_primary_10_1002_env_2873 crossref_primary_10_1007_s10668_020_00863_2 crossref_primary_10_1016_j_ympev_2022_107542 crossref_primary_10_1016_j_rse_2021_112649 crossref_primary_10_3390_environments9080096 crossref_primary_10_1088_1748_9326_acff0d crossref_primary_10_1016_j_scitotenv_2021_147507 crossref_primary_10_1016_j_agrformet_2024_109920 crossref_primary_10_1097_EE9_0000000000000254 crossref_primary_10_1016_j_scitotenv_2023_164987 crossref_primary_10_1029_2020EF001910 crossref_primary_10_3390_su12030995 crossref_primary_10_1126_science_aaz9600 crossref_primary_10_1016_j_isprsjprs_2023_06_007 crossref_primary_10_3390_fire7050161 crossref_primary_10_1029_2023WR036582 crossref_primary_10_1088_1748_9326_ac8c58 crossref_primary_10_1002_hyp_70005 crossref_primary_10_1088_1748_9326_aced17 crossref_primary_10_3390_fire6080289 crossref_primary_10_5194_acp_21_16293_2021 crossref_primary_10_1038_s41586_021_04325_1 crossref_primary_10_1111_csp2_606 crossref_primary_10_3390_rs12162565 crossref_primary_10_1513_AnnalsATS_201902_150OC crossref_primary_10_1002_ecs2_3756 crossref_primary_10_1038_s41598_022_16607_3 crossref_primary_10_3390_fire8010004 crossref_primary_10_1007_s41810_025_00306_3 crossref_primary_10_1016_j_eswa_2021_116380 crossref_primary_10_1371_journal_pone_0321476 crossref_primary_10_1007_s41742_022_00433_6 crossref_primary_10_1038_s41598_022_06050_9 crossref_primary_10_1029_2023JD039136 crossref_primary_10_1088_2515_7620_adf813 crossref_primary_10_1080_07038992_2022_2054405 crossref_primary_10_1007_s10980_020_01118_1 crossref_primary_10_1038_s41598_023_43118_6 crossref_primary_10_1038_s43247_024_01893_8 crossref_primary_10_1111_ddi_13394 crossref_primary_10_1016_j_scitotenv_2022_155723 crossref_primary_10_1016_j_biocon_2022_109819 crossref_primary_10_1111_afe_12587 crossref_primary_10_5194_acp_24_11727_2024 crossref_primary_10_5194_essd_16_3495_2024 crossref_primary_10_1111_jfr3_70054 crossref_primary_10_1097_EE9_0000000000000114 crossref_primary_10_1080_15481603_2025_2510869 crossref_primary_10_1088_1748_9326_aba8c2 crossref_primary_10_1016_j_foreco_2022_120757 crossref_primary_10_3390_f14061229 crossref_primary_10_1001_jamaneurol_2024_4058 crossref_primary_10_1029_2019RG000692 crossref_primary_10_1177_25148486211054334 crossref_primary_10_1080_13505033_2022_2133790 crossref_primary_10_1088_1748_9326_abde09 crossref_primary_10_1111_ddi_13281 crossref_primary_10_3390_rs15174208 crossref_primary_10_1038_s41467_022_34966_3 crossref_primary_10_1016_j_ecolmodel_2023_110277 crossref_primary_10_1016_j_envpol_2022_119213 crossref_primary_10_1088_1748_9326_aba135 crossref_primary_10_5194_nhess_21_2169_2021 crossref_primary_10_1016_j_chemosphere_2024_142950 crossref_primary_10_3390_cli11100207 crossref_primary_10_1002_ecs2_3734 crossref_primary_10_1080_10962247_2022_2050962 crossref_primary_10_3389_fevo_2023_1149509 crossref_primary_10_1021_acs_est_5c03041 crossref_primary_10_1038_s43247_022_00344_6 crossref_primary_10_1080_23311886_2023_2282210 crossref_primary_10_1007_s00704_024_04893_y crossref_primary_10_24857_rgsa_v19n7_116 crossref_primary_10_1016_j_cjca_2023_06_419 crossref_primary_10_1073_pnas_2201954120 crossref_primary_10_1016_j_geopsy_2025_100008 crossref_primary_10_1016_j_atmosenv_2025_121069 crossref_primary_10_1111_jbfa_12674 crossref_primary_10_1016_j_ijdrr_2025_105230 crossref_primary_10_1109_TGRS_2021_3105438 crossref_primary_10_1898_NWN23_18 crossref_primary_10_1016_j_rse_2024_114000 crossref_primary_10_1016_j_scitotenv_2025_179146 crossref_primary_10_1016_j_agrformet_2023_109750 crossref_primary_10_3390_su14020810 crossref_primary_10_1016_j_enggeo_2024_107538 crossref_primary_10_1016_j_scitotenv_2023_165510 crossref_primary_10_1029_2020GL090350 crossref_primary_10_1038_s41467_021_26232_9 crossref_primary_10_3390_f16050779 crossref_primary_10_1016_j_rsase_2024_101346 crossref_primary_10_1093_jcde_qwac027 crossref_primary_10_1016_j_ijdrr_2023_103618 crossref_primary_10_1080_2331186X_2023_2277575 crossref_primary_10_1016_j_jeem_2025_103166 crossref_primary_10_1088_1748_9326_adab86 crossref_primary_10_1016_j_jort_2023_100675 crossref_primary_10_1073_pnas_2109481118 crossref_primary_10_33494_nzjfs552025x405x crossref_primary_10_1007_s10531_020_02101_7 crossref_primary_10_1111_1752_1688_13211 crossref_primary_10_1016_j_erss_2022_102495 crossref_primary_10_1088_1748_9326_ade892 crossref_primary_10_3390_fire8020084 crossref_primary_10_1016_j_scitotenv_2025_179594 crossref_primary_10_1029_2020GL091410 crossref_primary_10_1007_s12524_024_02002_0 crossref_primary_10_1038_s41612_024_00649_7 crossref_primary_10_1016_j_buildenv_2024_112475 crossref_primary_10_1111_pce_14176 crossref_primary_10_1002_joc_8162 crossref_primary_10_1016_j_foreco_2020_118609 crossref_primary_10_1017_qua_2020_48 crossref_primary_10_3390_w13162303 crossref_primary_10_1029_2023EF004172 crossref_primary_10_1016_j_rse_2022_112964 crossref_primary_10_1093_jhered_esab027 crossref_primary_10_1016_j_jenvman_2022_116134 crossref_primary_10_1038_s41612_024_00614_4 crossref_primary_10_1002_eap_2844 crossref_primary_10_1002_ece3_8026 crossref_primary_10_1001_jamanetworkopen_2023_5863 crossref_primary_10_1007_s10584_022_03399_8 crossref_primary_10_1126_science_adl5889 crossref_primary_10_1364_AO_494101 crossref_primary_10_1016_j_scitotenv_2023_162462 crossref_primary_10_1088_2515_7620_abd836 crossref_primary_10_1029_2020JD032657 crossref_primary_10_1111_gcb_15388 crossref_primary_10_3390_cli12070094 crossref_primary_10_3390_fire8090354 crossref_primary_10_1016_j_foreco_2024_122010 crossref_primary_10_1111_afe_12535 crossref_primary_10_1001_jamanetworkopen_2023_56466 crossref_primary_10_1016_j_foreco_2024_122331 crossref_primary_10_1186_s42408_024_00257_z crossref_primary_10_1029_2023GL104626 crossref_primary_10_3390_fire7110379 crossref_primary_10_1093_pnasnexus_pgad004 crossref_primary_10_1093_pnasnexus_pgad005 crossref_primary_10_1001_jamadermatol_2021_0179 crossref_primary_10_3390_fire5050126 crossref_primary_10_1016_j_wace_2024_100716 crossref_primary_10_3390_fire5060177 crossref_primary_10_1016_j_foreco_2020_118864 crossref_primary_10_1029_2020EF001645 crossref_primary_10_1016_j_envsci_2021_12_015 crossref_primary_10_1002_hyp_13976 crossref_primary_10_1021_acsestair_4c00226 crossref_primary_10_1016_j_rse_2022_112890 crossref_primary_10_1029_2024JD041002 crossref_primary_10_1080_07448481_2022_2047706 crossref_primary_10_1071_WF23190 crossref_primary_10_1080_24694452_2020_1813013 crossref_primary_10_1016_j_foreco_2024_122226 crossref_primary_10_1080_10962247_2021_1942319 crossref_primary_10_1080_15715124_2025_2475804 crossref_primary_10_1016_j_ijdrr_2025_105396 crossref_primary_10_1021_acsestair_4c00232 crossref_primary_10_1002_joc_6607 crossref_primary_10_1016_j_scitotenv_2023_162836 crossref_primary_10_1080_24694452_2024_2400078 crossref_primary_10_1007_s41885_021_00088_1 crossref_primary_10_1038_s43247_024_01404_9 crossref_primary_10_1088_1748_9326_ac02ee crossref_primary_10_1164_rccm_202207_1372ED crossref_primary_10_1186_s42408_024_00331_6 crossref_primary_10_3390_f15071197 crossref_primary_10_1038_s41612_023_00491_3 crossref_primary_10_1007_s11069_025_07458_y crossref_primary_10_1038_s41612_025_01021_z crossref_primary_10_1371_journal_pone_0299937 crossref_primary_10_1016_j_scitotenv_2023_169463 crossref_primary_10_1186_s42408_023_00179_2 crossref_primary_10_3389_fearc_2025_1547180 crossref_primary_10_1007_s11069_023_06367_2 crossref_primary_10_1177_1075547020980443 crossref_primary_10_1126_science_adw1493 crossref_primary_10_3390_ijgi12120474 crossref_primary_10_1111_1365_2745_13764 crossref_primary_10_1080_10962247_2025_2553822 crossref_primary_10_1007_s10745_022_00338_0 crossref_primary_10_1016_j_indenv_2024_100057 crossref_primary_10_1029_2022GL099308 crossref_primary_10_1175_WAF_D_21_0028_1 crossref_primary_10_1038_s41467_020_20570_w crossref_primary_10_1177_00207314211012155 crossref_primary_10_3390_fire5050133 crossref_primary_10_1016_j_jenvman_2021_114255 crossref_primary_10_1093_treephys_tpae004 crossref_primary_10_1016_j_apgeog_2024_103271 crossref_primary_10_1029_2023AV001070 crossref_primary_10_1371_journal_pone_0274428 crossref_primary_10_1038_s41612_024_00821_z crossref_primary_10_1088_1748_9326_ad22b8 crossref_primary_10_1038_s41467_022_30030_2 crossref_primary_10_1029_2024JD041155 crossref_primary_10_1186_s42408_025_00351_w crossref_primary_10_1057_s41599_022_01130_7 crossref_primary_10_1016_j_scitotenv_2022_153654 crossref_primary_10_3390_s24165084 crossref_primary_10_1016_j_foreco_2025_122930 crossref_primary_10_1007_s12145_024_01661_4 crossref_primary_10_1029_2024EF005256 crossref_primary_10_3390_app12042187 crossref_primary_10_3390_risks10060126 crossref_primary_10_1007_s12517_023_11544_5 crossref_primary_10_1038_s43247_025_02387_x crossref_primary_10_1016_j_agrformet_2024_110043 crossref_primary_10_1038_s41467_024_54339_2 crossref_primary_10_1002_hyp_13931 crossref_primary_10_1038_s41558_024_02140_w crossref_primary_10_1029_2023JD039118 crossref_primary_10_1038_s41893_024_01291_0 crossref_primary_10_1016_j_agrformet_2025_110688 crossref_primary_10_1016_j_gloplacha_2023_104069 crossref_primary_10_1016_j_foreco_2021_119919 crossref_primary_10_1071_WF23148 crossref_primary_10_2478_forj_2022_0009 crossref_primary_10_1038_s41598_024_70082_6 crossref_primary_10_1088_1748_9326_ad4fa5 crossref_primary_10_1016_j_jhydrol_2022_128211 crossref_primary_10_3390_fire7070247 crossref_primary_10_1016_j_scitotenv_2021_152453 crossref_primary_10_1038_s43017_022_00329_1 crossref_primary_10_1016_j_scitotenv_2024_170321 crossref_primary_10_1073_pnas_2009717118 crossref_primary_10_1126_sciadv_adt2041 crossref_primary_10_3390_rs12010166 crossref_primary_10_1002_jwmg_70081 crossref_primary_10_1088_1748_9326_ac9704 crossref_primary_10_1186_s12889_025_21295_5 crossref_primary_10_1002_fee_2359 crossref_primary_10_1029_2024EF005030 crossref_primary_10_1038_s41467_025_56218_w crossref_primary_10_1016_j_wace_2023_100622 crossref_primary_10_1016_j_scitotenv_2020_142233 crossref_primary_10_1038_s43247_024_01449_w crossref_primary_10_1029_2019MS001955 crossref_primary_10_1038_s41467_021_21708_0 crossref_primary_10_1016_j_wace_2022_100482 crossref_primary_10_1038_d41586_022_00352_8 crossref_primary_10_1038_s41612_021_00220_8 crossref_primary_10_1071_WF22065 crossref_primary_10_1088_1748_9326_acad15 crossref_primary_10_5194_bg_18_4005_2021 crossref_primary_10_1016_j_agrformet_2025_110456 crossref_primary_10_1038_s41598_022_14480_8 crossref_primary_10_1038_s41586_024_07878_z crossref_primary_10_1016_j_agrformet_2021_108549 crossref_primary_10_1029_2020JD033484 crossref_primary_10_1097_EDE_0000000000001634 crossref_primary_10_1093_treephys_tpad108 crossref_primary_10_1088_1748_9326_ac6886 crossref_primary_10_1088_1748_9326_ac7735 crossref_primary_10_1088_1748_9326_ac80d0 crossref_primary_10_1161_CIRCRESAHA_124_323614 crossref_primary_10_1088_1748_9326_ac39be crossref_primary_10_5194_nhess_22_659_2022 crossref_primary_10_1111_ecog_06401 crossref_primary_10_1029_2020GL091377 crossref_primary_10_1002_ajb2_70012 crossref_primary_10_1016_j_ijdrr_2024_104716 crossref_primary_10_1016_j_jogn_2025_04_006 crossref_primary_10_1080_13549839_2022_2136641 crossref_primary_10_1186_s13021_024_00282_0 crossref_primary_10_1038_s41612_025_00906_3 crossref_primary_10_1038_s43247_020_00065_8 crossref_primary_10_1016_j_erss_2020_101757 crossref_primary_10_1007_s40725_022_00161_2 crossref_primary_10_1038_s41598_021_02844_5 crossref_primary_10_1071_WF22083 crossref_primary_10_5194_acp_21_14427_2021 crossref_primary_10_1007_s00704_025_05589_7 crossref_primary_10_3390_f16071041 crossref_primary_10_1029_2020EF001735 crossref_primary_10_1029_2021EF002528 crossref_primary_10_1007_s10584_024_03825_z crossref_primary_10_1542_peds_2020_027128 crossref_primary_10_1029_2020EF001736 crossref_primary_10_1016_j_foreco_2023_121263 crossref_primary_10_1038_s41586_023_06444_3 |
| Cites_doi | 10.1080/24694452.2018.1470922 10.1371/journal.pone.0127563 10.3390/fire1010004 10.1175/JCLI-D-14-00196.1 10.1890/07-1183.1 10.1371/journal.pone.0188486 10.1071/WF13005 10.1111/j.1466-8238.2009.00512.x 10.1007/0-387-21710-X_6 10.1126/science.1259100 10.1038/s41612-018-0012-1 10.1175/1520-0442(1998)011<3128:MDAERT>2.0.CO;2 10.1093/jof/107.6.287 10.3390/fire1010018 10.1002/2017JD027523 10.1071/WF18026 10.1088/1748-9326/9/12/124009 10.1111/geb.12065 10.1175/BAMS-84-5-595 10.1007/s10584-011-0329-9 10.1038/s41558-019-0505-x 10.1175/JCLI-D-14-00624.1 10.1002/2016GL067887 10.1029/2018GL078312 10.1175/BAMS-D-11-00094.1 10.1007/s10661-010-1385-8 10.1002/2015GL063266 10.1175/JAMC-D-13-0248.1 10.1007/s10021-015-9890-9 10.1029/2009GL041735 10.3390/fire1010017 10.3390/geosciences6030037 10.1029/2018GL080261 10.1175/JAMC-D-18-0150.1 10.1073/pnas.1802316115 10.1038/s41598-019-39284-1 10.1073/pnas.1718850115 10.1038/s41558-018-0140-y 10.1126/science.1128834 10.1073/pnas.1713885114 10.1002/2015GL064924 10.1016/j.gloenvcha.2019.03.007 10.1007/s10584-007-9363-z 10.1038/s41598-017-17966-y 10.1002/joc.3413 10.1071/WF15083 10.1002/2013JG002541 10.1071/WF14023 10.1890/04-1222 10.1007/s40641-016-0031-0 10.1088/1748-9326/11/4/045005 10.1111/j.1466-8238.2011.00748.x 10.1088/1748-9326/aa8fde 10.1038/s41598-017-11285-y 10.1175/JTECH-D-11-00103.1 10.1071/WF13046 10.1071/WF03037 10.1071/WF13019 10.1007/s40641-018-0109-y 10.1080/01621459.1968.10480934 10.1038/nclimate2783 10.1007/s10584-011-0300-9 10.1002/2014GL059576 10.1029/2018EF000878 10.1175/JCLI-D-13-00273.1 10.1175/WAF-D-13-00002.1 10.1046/j.1523-1739.1995.09040902.x 10.1175/1087-3562(2003)007<0001:TSAWOC>2.0.CO;2 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 10.1071/WF16165 10.1073/pnas.1617394114 10.1002/eap.1420 10.1111/gcb.14405 10.1046/j.1523-1739.2001.00097.x 10.1007/s00382-009-0650-4 10.1088/1748-9326/10/9/094005 10.1175/JCLI3837.1 10.1111/gcb.13544 10.1007/s10584-011-0148-z 10.1126/science.262.5135.885 10.1126/science.1152538 10.1371/journal.pone.0153589 10.1038/srep04364 10.1098/rstb.2015.0178 10.1038/sdata.2015.42 10.1890/ES15-00294.1 10.1175/JCLI-D-14-00197.1 10.1175/JCLI-D-12-00508.1 10.1007/s00382-012-1337-9 10.1029/2018GL077319 10.2737/PSW-GTR-82 10.1073/pnas.1607171113 10.1073/pnas.1112839109 10.1890/04-0545 10.1029/2004EO310001 10.1071/WF16102 10.1073/pnas.1609775113 |
| ContentType | Journal Article |
| Copyright | 2019. The Authors. 2019. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2019. The Authors. – notice: 2019. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION 7ST 7TG ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI BKSAR C1K CCPQU DWQXO GNUQQ HCIFZ KL. PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS PYCSY SOI DOA |
| DOI | 10.1029/2019EF001210 |
| DatabaseName | Wiley Online Library Open Access CrossRef Environment Abstracts Meteorological & Geoastrophysical Abstracts ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection Environment Abstracts DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database ProQuest One Academic Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Environmental Sciences |
| EISSN | 2328-4277 |
| EndPage | 910 |
| ExternalDocumentID | oai_doaj_org_article_51ddcfe93c484a42a0bf89766963cf9e 10_1029_2019EF001210 EFT2577 |
| Genre | article |
| GeographicLocations | United States--US California |
| GeographicLocations_xml | – name: United States--US – name: California |
| GrantInformation_xml | – fundername: NOAA via the CNAP RISA – fundername: Columbia University's Center for Climate and Life and the Zegar Family Foundation – fundername: DOI's Southwest Climate Adaptation Science Center funderid: G18AC00320 – fundername: Visiting Scholar Program and Fire Centre Research Hub at the University of Tasmania – fundername: USGS North Central Climate Adaptation Science Center – fundername: University of California Office of the President MRPI funderid: MRP‐17‐446315 – fundername: Earth Lab through CIRES and the University of Colorado, Boulder's Grand Challenge Initiative – fundername: Zegar Family Foundation – fundername: Columbia University's Center for Climate and Life |
| GroupedDBID | 0R~ 1OC 24P 5VS 7XC 8-1 8FE 8FH 8GL AAHBH AAHHS AAZKR ACCFJ ACCMX ACQOY ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AENEX AEQDE AEUYN AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ATCPS AVUZU BCNDV BENPR BHPHI BKSAR CCPQU EBS EDH EJD GICCO GODZA GROUPED_DOAJ HCIFZ IEP ISN ITC LK5 M7R M~E OK1 PATMY PCBAR PIMPY PROAC PYCSY SUPJJ WIN ~OA AAMMB AAYXX AEFGJ AFFHD AGXDD AIDQK AIDYY BANNL CITATION IAO PHGZM PHGZT 7ST 7TG ABUWG AZQEC C1K DWQXO GNUQQ KL. PKEHL PQEST PQQKQ PQUKI PRINS SOI |
| ID | FETCH-LOGICAL-c4757-31a141d81c8f71476ef2467d197ef24f3d5634f98ca6dd3104884834f40977833 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 728 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000490911600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2328-4277 |
| IngestDate | Fri Oct 03 12:42:22 EDT 2025 Fri Jul 25 04:43:11 EDT 2025 Tue Nov 18 22:20:50 EST 2025 Sat Nov 29 04:06:24 EST 2025 Wed Jan 22 16:39:52 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | Attribution-NonCommercial-NoDerivs |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4757-31a141d81c8f71476ef2467d197ef24f3d5634f98ca6dd3104884834f40977833 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0914-0726 0000-0002-0394-5996 0000-0001-7599-9750 0000-0001-8176-8166 0000-0002-6598-6638 0000-0001-6040-454X |
| OpenAccessLink | https://www.proquest.com/docview/2287311175?pq-origsite=%requestingapplication% |
| PQID | 2287311175 |
| PQPubID | 2034575 |
| PageCount | 19 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_51ddcfe93c484a42a0bf89766963cf9e proquest_journals_2287311175 crossref_citationtrail_10_1029_2019EF001210 crossref_primary_10_1029_2019EF001210 wiley_primary_10_1029_2019EF001210_EFT2577 |
| PublicationCentury | 2000 |
| PublicationDate | August 2019 2019-08-00 20190801 2019-08-01 |
| PublicationDateYYYYMMDD | 2019-08-01 |
| PublicationDate_xml | – month: 08 year: 2019 text: August 2019 |
| PublicationDecade | 2010 |
| PublicationPlace | Bognor Regis |
| PublicationPlace_xml | – name: Bognor Regis |
| PublicationTitle | Earth's future |
| PublicationYear | 2019 |
| Publisher | John Wiley & Sons, Inc Wiley |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
| References | 2017; 7 2013; 26 2013; 28 2013; 27 2013; 22 2010; 19 2019; 56 2019; 58 2018; 45 2017; 114 2014; 23 1965; 19 1978 1968; 63 1996; 77 2018; 6 2018; 8 2014; 4 2018; 4 2018; 1 2015; 42 2003; 7 2008; 319 2016; 113 2016; 43 1985 2001; 15 2012; 29 2014; 9 2017; 122 2009; 19 2003; 84 1998; 11 2014; 53 2010; 34 2015; 2 2014; 119 1995; 9 2004; 85 2019; 9 2015; 6 2010; 37 2015; 18 2017; 26 2012 2018; 108 2013; 40 2015; 10 2017; 23 1998 1993; 262 1996 2006; 19 2004 2003 2014; 41 2011; 173 2006; 313 2018; 27 2012; 109 2016; 11 2018; 24 2015; 24 2012; 93 2016; 6 2015; 28 2011; 109 2016; 2 2013; 33 2019; 46 2018; 115 2004; 13 2017; 12 2018 2008; 87 2005; 15 2009; 107 2016; 27 2014; 346 2016; 371 e_1_2_6_53_1 e_1_2_6_76_1 e_1_2_6_95_1 e_1_2_6_30_1 e_1_2_6_72_1 e_1_2_6_91_1 e_1_2_6_110_1 e_1_2_6_19_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_99_1 cr-split#-e_1_2_6_25_1.2 cr-split#-e_1_2_6_25_1.1 e_1_2_6_64_1 e_1_2_6_87_1 e_1_2_6_106_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_83_1 e_1_2_6_102_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_49_1 e_1_2_6_22_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_68_1 e_1_2_6_73_1 e_1_2_6_54_1 e_1_2_6_96_1 e_1_2_6_31_1 e_1_2_6_50_1 Swetnam T. W. (e_1_2_6_89_1) 1996 e_1_2_6_92_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_39_1 e_1_2_6_77_1 e_1_2_6_16_1 e_1_2_6_58_1 e_1_2_6_84_1 e_1_2_6_42_1 e_1_2_6_105_1 e_1_2_6_65_1 e_1_2_6_80_1 e_1_2_6_109_1 e_1_2_6_61_1 e_1_2_6_101_1 e_1_2_6_6_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_88_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_97_1 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_93_1 e_1_2_6_112_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_78_1 e_1_2_6_62_1 e_1_2_6_85_1 e_1_2_6_104_1 e_1_2_6_81_1 e_1_2_6_20_1 e_1_2_6_108_1 e_1_2_6_100_1 Keeley J. E. (e_1_2_6_43_1) 2009; 107 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_28_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_98_1 e_1_2_6_75_1 e_1_2_6_10_1 e_1_2_6_94_1 e_1_2_6_71_1 e_1_2_6_90_1 e_1_2_6_111_1 e_1_2_6_14_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_56_1 Monteith J. L. (e_1_2_6_66_1) 1965; 19 e_1_2_6_37_1 e_1_2_6_79_1 e_1_2_6_103_1 e_1_2_6_63_1 e_1_2_6_86_1 e_1_2_6_21_1 e_1_2_6_107_1 e_1_2_6_40_1 e_1_2_6_82_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_48_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 |
| References_xml | – volume: 109 start-page: 119 issue: 1 year: 2011 end-page: 132 article-title: Human‐induced changes in wind, temperature and relative humidity during Santa Ana events publication-title: Climatic Change – volume: 26 start-page: 253 issue: 4 year: 2017 end-page: 268 article-title: Different historical fire–climate patterns in California publication-title: International Journal of Wildland Fire – volume: 15 start-page: 532 issue: 2 year: 2005 end-page: 542 article-title: Federal forest‐fire policy in the United States publication-title: Ecological Applications – volume: 7 start-page: 10,783 issue: 1 year: 2017 article-title: Precipitation in a warming world: Assessing projected hydro‐climate changes in California and other Mediterranean climate regions publication-title: Scientific Reports – volume: 28 start-page: 4618 year: 2015 end-page: 4636 article-title: A hybrid dynamical‐statistical downscaling technique, part II: End‐of‐century warming projections predict a new climate state in the Los Angeles region publication-title: Journal of Climate – volume: 1 start-page: 17 issue: 1 year: 2018 article-title: Switching on the big burn of 2017 publication-title: Fire – volume: 371 issue: 1696 year: 2016 article-title: Increasing western US forest wildfire activity: Sensitivity to changes in the timing of spring publication-title: Philosophical Transactions of the Royal Society B – volume: 115 start-page: E8349 issue: 36 year: 2018 end-page: E8357 article-title: Decreasing fire season precipitation increased recent western US forest wildfire activity publication-title: Proceedings of the National Academy of Sciences USA – volume: 109 start-page: 445 issue: 1 year: 2011 end-page: 463 article-title: Climate change and growth scenarios for California wildfire publication-title: Climatic Change – volume: 15 start-page: 2109 issue: 6 year: 2005 end-page: 2125 article-title: Alien plant dynamics following fire in Mediterranean‐climate California shrublands publication-title: Ecological Applications – volume: 119 start-page: 432 year: 2014 end-page: 450 article-title: Contrasting controls on wildland fires in Southern California during periods with and without Santa Ana winds publication-title: Journal of Geophysical Research: Biogeosciences – volume: 28 start-page: 3597 year: 2015 end-page: 4617 article-title: A hybrid dynamical‐statistical downscaling technique, part I: Development and validation of a technique publication-title: Journal of Climate – volume: 42 start-page: 1527 year: 2015 end-page: 1536 article-title: Urbanization causes increased cloud‐base height and decreased fog in coastal southern California publication-title: Geophysical Research Letters – year: 1998 – volume: 22 start-page: 1003 issue: 7 year: 2013 end-page: 1020 article-title: Relationships between climate and macroscale area burned in the western United States publication-title: International Journal of Wildland Fire – volume: 45 start-page: 6251 year: 2018 end-page: 6261 article-title: Attributing the US Southwest's recent shift into drier conditions publication-title: Geophysical Research Letters – volume: 9 start-page: 517 year: 2019 end-page: 522 article-title: Strengthening tropical Pacific zonal sea surface temperature gradient consistent with greenhouse gases publication-title: Nature Climate Change – volume: 13 start-page: 173 issue: 2 year: 2004 end-page: 182 article-title: Impact of antecedent climate on fire regimes in coastal California publication-title: International Journal of Wildland Fire – start-page: 11 year: 1996 end-page: 32 – volume: 22 start-page: 264 issue: 3 year: 2013 end-page: 276 article-title: Widespread shifts in the demographic structure of subalpine forests in the Sierra Nevada, California, 1934 to 2007 publication-title: Global Ecology and Biogeography – volume: 84 start-page: 595 issue: 5 year: 2003 end-page: 604 article-title: Climate and wildfire in the western United States publication-title: Bulletin of the American Meteorological Society – volume: 28 start-page: 704 issue: 3 year: 2013 end-page: 710 article-title: Diagnosing Santa Ana winds in Southern California with synoptic‐scale analysis publication-title: Weather and Forecasting – volume: 15 start-page: 1536 issue: 6 year: 2001 end-page: 1548 article-title: Historic fire regime in southern California shrublands publication-title: Conservation Biology – volume: 23 start-page: 2016 issue: 5 year: 2017 end-page: 2030 article-title: Response of Sierra Nevada forests to projected climate‐wildfire interactions publication-title: Global Change Biology – volume: 9 start-page: 902 issue: 4 year: 1995 end-page: 914 article-title: Sixty years of change in Californian conifer forests of the San Bernardino Mountains publication-title: Conservation Biology – volume: 109 start-page: 5 issue: 1‐2 year: 2011 end-page: 31 article-title: The representative concentration pathways: An overview publication-title: Climatic Change – volume: 4 start-page: 4364 year: 2014 article-title: The key role of dry days in changing regional climate and precipitation regimes publication-title: Scientific Reports – volume: 1 issue: 1 year: 2018 article-title: Dramatic declines in snowpack in the western US publication-title: npj Climate and Atmospheric Science – volume: 43 start-page: 2827 year: 2016 end-page: 2834 article-title: Santa Ana Winds of Southern California: Their climatology, extremes, and behavior spanning six and a half decades publication-title: Geophysical Research Letters – volume: 9 start-page: 2838 issue: 1 year: 2019 article-title: Vegetation‐fire feedback reduces projected area burned under climate change publication-title: Scientific reports – volume: 19 start-page: 4308 issue: 17 year: 2006 end-page: 4325 article-title: Local regimes of atmospheric variability: A case study of Southern California publication-title: Journal of Climate – volume: 346 start-page: 851 issue: 6211 year: 2014 end-page: 854 article-title: Projected increase in lightning strikes in the United States due to global warming publication-title: Science – volume: 6 start-page: 37 issue: 3 year: 2016 article-title: Climate change and future fire regimes: Examples from California publication-title: Geosciences – volume: 34 start-page: 847 issue: 6 year: 2010 end-page: 857 article-title: Local and synoptic mechanisms causing Southern California's Santa Ana winds publication-title: Climate Dynamics – volume: 24 start-page: 14 issue: 1 year: 2015 end-page: 26 article-title: Correlations between components of the water balance and burned area reveal new insights for predicting fire activity in the southwest US publication-title: International Journal of Wildland Fire – volume: 113 start-page: 11,770 issue: 42 year: 2016 end-page: 11,775 article-title: Impact of anthropogenic climate change on wildfire across western US forests publication-title: Proceedings of the National Academy of Sciences USA – volume: 42 start-page: 6819 year: 2015 end-page: 6828 article-title: Contribution of anthropogenic warming to California drought during 2012–2014 publication-title: Geophysical Research Letters – volume: 53 start-page: 1232 issue: 5 year: 2014 end-page: 1251 article-title: Improved historical temperature and precipitation time series for US climate divisions publication-title: Journal of Applied Meteorology and Climatology – volume: 28 start-page: 6324 issue: 16 year: 2015 end-page: 6334 article-title: Increased interannual precipitation extremes over California under climate change publication-title: Journal of Climate – volume: 1 start-page: 4 issue: 1 year: 2018 article-title: Human‐related ignitions increase the number of large wildfires across US ecoregions publication-title: Fire – volume: 4 start-page: 396 issue: 4 year: 2018 end-page: 406 article-title: Drought and fire in the Western USA: Is climate attribution enough? publication-title: Current Climate Change Reports – volume: 11 start-page: 3128 issue: 12 year: 1998 end-page: 3147 article-title: Mesoscale disturbance and ecological response to decadal climatic variability in the American Southwest publication-title: Journal of Climate – volume: 56 start-page: 41 year: 2019 end-page: 55 article-title: The relative influence of climate and housing development on current and projected future fire patterns and structure loss across three California landscapes publication-title: Global Environmental Change – volume: 26 start-page: 9384 issue: 23 year: 2013 end-page: 9392 article-title: A long‐term hydrologically based dataset of land surface fluxes and states for the conterminous United States: Update and extensions publication-title: Journal of Climate – volume: 1 start-page: 18 issue: 1 year: 2018 article-title: The 2017 North Bay and Southern California Fires: A case study publication-title: Fire – year: 1978 – volume: 85 start-page: 289 issue: 31 year: 2004 end-page: 296 article-title: Climate, Santa Ana winds and autumn wildfires in southern California, publication-title: Transactions American Geophysical Union – volume: 109 start-page: E535 issue: 9 year: 2012 end-page: E543 article-title: Long‐term perspective on wildfires in the western USA publication-title: Proceedings of the National Academy of Sciences USA – volume: 93 start-page: 485 issue: 4 year: 2012 end-page: 498 article-title: An overview of CMIP5 and the experiment design publication-title: Bulletin of the American Meteorological Society – volume: 9 issue: 12 year: 2014 article-title: Modeling very large‐fire occurrences over the continental United States from weather and climate forcing publication-title: Environmental Research Letters – year: 1985 – volume: 262 start-page: 885 issue: 5135 year: 1993 end-page: 889 article-title: Fire history and climate change in giant sequoia groves publication-title: Science – volume: 108 start-page: 1635 issue: 6 year: 2018 end-page: 1654 article-title: Using paleolandscape modeling to investigate the impact of Native American–Set fires on pre‐Columbian forests in the Southern Sierra Nevada, California, USA publication-title: Annals of the American Association of Geographers – volume: 6 start-page: 1097 issue: 8 year: 2018 end-page: 1111 article-title: Climate change and future wildfire in the western United States: An ecological approach to nonstationarity publication-title: Earth's Future – volume: 7 start-page: 1 issue: 8 year: 2003 end-page: 13 article-title: The Santa Ana winds of California publication-title: Earth Interactions – volume: 114 start-page: 13,750 issue: 52 year: 2017 end-page: 13,755 article-title: Human presence diminishes the importance of climate in driving fire activity across the United States publication-title: Proceedings of the National Academy of Sciences USA – volume: 10 issue: 6 year: 2015 article-title: The changing strength and nature of fire‐climate relationships in the Northern Rocky Mountains, USA, 1902‐2008 publication-title: PloS ONE – volume: 19 start-page: 1003 issue: 4 year: 2009 end-page: 1021 article-title: Climate and wildfire area burned in Western US ecoprovinces, 1916‐2003 publication-title: Ecological Applications – volume: 313 start-page: 940 issue: 5789 year: 2006 end-page: 943 article-title: Warming and earlier spring increase western US forest wildfire activity publication-title: Science – year: 2018 – volume: 10 issue: 9 year: 2015 article-title: Identification of two distinct fire regimes in Southern California: Implications for economic impact and future change publication-title: Environmental Research Letters – volume: 2 issue: 1 year: 2015 article-title: A spatially comprehensive, hydrometeorological data set for Mexico, the US, and Southern Canada 1950–2013 publication-title: Scientific Data – volume: 87 start-page: 231 issue: 1 year: 2008 end-page: 249 article-title: Climate change and wildfire in California publication-title: Climatic Change – volume: 12 start-page: 114008 issue: 11 year: 2017 article-title: The 2015 drought in Washington State: A harbinger of things to come? publication-title: Environmental Research Letters – start-page: 158 year: 2003 end-page: 195 – volume: 26 start-page: 269 issue: 4 year: 2017 end-page: 275 article-title: Climatic influences on interannual variability in regional burn severity across western US forests publication-title: International Journal of Wildland Fire – volume: 41 start-page: 2928 year: 2014 end-page: 2933 article-title: Large wildfire trends in the western United States, 1984–2011 publication-title: Geophysical Research Letters – volume: 24 start-page: 5164 issue: 11 year: 2018 end-page: 5175 article-title: Global patterns of interannual climate‐fire relationships publication-title: Global Change Biology – volume: 29 start-page: 897 issue: 7 year: 2012 end-page: 910 article-title: An overview of the global historical climatology network‐daily database publication-title: Journal of Atmospheric and Oceanic Technology – year: 2004 – volume: 8 start-page: 427 year: 2018 end-page: 433 article-title: Increasing precipitation volatility in twenty‐first‐century California publication-title: Nature Climate Change – volume: 77 start-page: 437 issue: 3 year: 1996 end-page: 471 article-title: The NCEP/NCAR 40‐year reanalysis project publication-title: Bulletin of the American Meteorological Society – volume: 113 start-page: 13,684 issue: 48 year: 2016 end-page: 13,689 article-title: Socioecological transitions trigger fire regime shifts and modulate fire–climate interactions in the Sierra Nevada, USA, 1600–2015 CE publication-title: Proceedings of the National Academy of Sciences USA – volume: 19 start-page: 145 issue: 2 year: 2010 end-page: 158 article-title: A biogeographic model of fire regimes in Australia: Current and future implications publication-title: Global Ecology and Biogeography – volume: 45 start-page: 5653 year: 2018 end-page: 5662 article-title: Effect of reduced summer cloud shading on evaporative demand and wildfire in coastal southern California publication-title: Geophysical Research Letters – volume: 27 start-page: 2230 issue: 6 year: 2013 end-page: 2270 article-title: North American climate in CMIP5 experiments: Part III: Assessment of twenty‐first century projections publication-title: Journal of Climate – volume: 23 start-page: 78 issue: 1 year: 2014 end-page: 92 article-title: Dead fuel moisture research: 1991–2012 publication-title: International Journal of Wildland Fire – volume: 37 year: 2010 article-title: Spatial variation in extreme winds predicts large wildfire locations in chaparral ecosystems publication-title: Geophysical Research Letters – volume: 22 start-page: 1118 issue: 10 year: 2013 end-page: 1129 article-title: Climate change‐induced shifts in fire for Mediterranean ecosystems publication-title: Global Ecology and Biogeography – volume: 122 start-page: 10,888 year: 2017 end-page: 10,905 article-title: The 2016 southeastern US drought: An extreme departure from centennial wetting and cooling publication-title: Journal of Geophysical Research: Atmospheres – volume: 40 start-page: 839 issue: 3‐4 year: 2013 end-page: 856 article-title: Probabilistic estimates of future changes in California temperature and precipitation using statistical and dynamical downscaling publication-title: Climate Dynamics – volume: 19 start-page: 205 year: 1965 end-page: 234 article-title: Evaporation and environment publication-title: Symoposia of the Society for Experimental Biology – volume: 7 start-page: 17,966 issue: 1 year: 2017 article-title: Precipitation variability increases in a warmer climate publication-title: Scientific Reports – volume: 63 start-page: 1379 issue: 324 year: 1968 end-page: 1389 article-title: Estimates of the regression coefficient based on Kendall's Tau publication-title: Journal of the American Statistical Association – volume: 107 start-page: 287 issue: 6 year: 2009 end-page: 296 article-title: The 2007 southern California wildfires: Lessons in complexity publication-title: Journal of Forestry – volume: 24 start-page: 892 issue: 7 year: 2015 end-page: 899 article-title: Climate change presents increased potential for very large fires in the contiguous United States publication-title: International Journal of Wildland Fire – volume: 115 start-page: 3314 issue: 13 year: 2018 end-page: 3319 article-title: Rapid growth of the US wildland‐urban interface raises wildfire risk publication-title: Proceedings of the National Academy of Sciences USA – volume: 33 start-page: 121 issue: 1 year: 2013 end-page: 131 article-title: Development of gridded surface meteorological data for ecological applications and modelling publication-title: International Journal of Climatology – volume: 11 issue: 4 year: 2016 article-title: Incorporating anthropogenic influences into fire probability models: Effects of human activity and climate change on fire activity in California publication-title: PLoS One – volume: 27 start-page: 781 issue: 12 year: 2018 end-page: 799 article-title: Historical patterns of wildfire ignition sources in California ecosystems publication-title: International Journal of Wildland Fire – volume: 27 start-page: 26 issue: 1 year: 2016 end-page: 36 article-title: Climate change and the eco‐hydrology of fire: Will area burned increase in a warming western USA? publication-title: Ecological Applications – volume: 173 start-page: 251 issue: 1‐4 year: 2011 end-page: 266 article-title: Estimation of late twentieth century land‐cover change in California publication-title: Environmental Monitoring and Assessment – year: 2012 – volume: 114 start-page: 2946 issue: 11 year: 2017 end-page: 2951 article-title: Human‐started wildfires expand the fire niche across the United States publication-title: Proceedings of the National Academy of Sciences USA – volume: 23 start-page: 1119 issue: 8 year: 2014 end-page: 1129 article-title: Santa Ana winds and predictors of wildfire progression in southern California publication-title: International Journal of Wildland Fire – volume: 11 issue: 4 year: 2016 article-title: Controls on interannual variability in lightning‐caused fire activity in the western US publication-title: Environmental Research Letters – volume: 6 start-page: 65 year: 2016 end-page: 70 article-title: Causes of change in Northern Hemisphere winter meridional winds and regional hydroclimate publication-title: Nature Climate Change – volume: 12 issue: 12 year: 2017 article-title: Direct and indirect climate controls predict heterogeneous early‐mid 21st century wildfire burned area across western and boreal North America publication-title: PloS one – volume: 58 start-page: 131 year: 2019 end-page: 143 article-title: A new method to characterize changes in the seasonal cycle of snowpack publication-title: Journal of Applied Meteorology and Climatology – volume: 46 start-page: 2772 issue: 5 year: 2019 end-page: 2780 article-title: Climate change suppresses Santa Ana winds of Southern California and sharpens their seasonality publication-title: Geophysical Research Letters – volume: 6 start-page: 1 issue: 12 year: 2015 end-page: 13 article-title: Wildland fire deficit and surplus in the western United States, 1984‐2012 publication-title: Ecosphere – volume: 2 start-page: 1 issue: 1 year: 2016 end-page: 14 article-title: Recent advances and remaining uncertainties in resolving past and future climate effects on global fire activity publication-title: Current Climate Change Reports – volume: 18 start-page: 1192 issue: 7 year: 2015 end-page: 1208 article-title: Topography, fuels, and fire exclusion drive fire severity of the Rim Fire in an old Growth mixed‐conifer forest, Yosemite National Park, USA publication-title: Ecosystems – volume: 319 start-page: 1080 issue: 5866 year: 2008 end-page: 1083 article-title: Human‐induced changes in the hydrology of the western United States publication-title: Science – ident: e_1_2_6_48_1 doi: 10.1080/24694452.2018.1470922 – ident: e_1_2_6_101_1 – ident: e_1_2_6_32_1 doi: 10.1371/journal.pone.0127563 – ident: e_1_2_6_69_1 doi: 10.3390/fire1010004 – ident: e_1_2_6_99_1 doi: 10.1175/JCLI-D-14-00196.1 – ident: e_1_2_6_28_1 – ident: #cr-split#-e_1_2_6_25_1.1 – ident: e_1_2_6_54_1 doi: 10.1890/07-1183.1 – ident: e_1_2_6_75_1 – ident: e_1_2_6_47_1 doi: 10.1371/journal.pone.0188486 – ident: e_1_2_6_62_1 doi: 10.1071/WF13005 – ident: e_1_2_6_19_1 doi: 10.1111/j.1466-8238.2009.00512.x – ident: e_1_2_6_90_1 doi: 10.1007/0-387-21710-X_6 – volume: 19 start-page: 205 year: 1965 ident: e_1_2_6_66_1 article-title: Evaporation and environment publication-title: Symoposia of the Society for Experimental Biology – ident: e_1_2_6_80_1 doi: 10.1126/science.1259100 – ident: e_1_2_6_68_1 doi: 10.1038/s41612-018-0012-1 – ident: e_1_2_6_91_1 doi: 10.1175/1520-0442(1998)011<3128:MDAERT>2.0.CO;2 – volume: 107 start-page: 287 issue: 6 year: 2009 ident: e_1_2_6_43_1 article-title: The 2007 southern California wildfires: Lessons in complexity publication-title: Journal of Forestry doi: 10.1093/jof/107.6.287 – ident: e_1_2_6_70_1 doi: 10.3390/fire1010018 – ident: e_1_2_6_108_1 doi: 10.1002/2017JD027523 – ident: e_1_2_6_46_1 doi: 10.1071/WF18026 – ident: e_1_2_6_14_1 doi: 10.1088/1748-9326/9/12/124009 – ident: e_1_2_6_50_1 – ident: e_1_2_6_9_1 – ident: e_1_2_6_16_1 doi: 10.1111/geb.12065 – ident: e_1_2_6_105_1 doi: 10.1175/BAMS-84-5-595 – ident: e_1_2_6_103_1 doi: 10.1007/s10584-011-0329-9 – ident: e_1_2_6_81_1 doi: 10.1038/s41558-019-0505-x – ident: e_1_2_6_17_1 doi: 10.1175/JCLI-D-14-00624.1 – ident: e_1_2_6_30_1 doi: 10.1002/2016GL067887 – ident: e_1_2_6_51_1 doi: 10.1029/2018GL078312 – start-page: 11 volume-title: Fire Effects in Southwestern Fortest: Proceedings of the 2nd La Mesa Fire Symposium year: 1996 ident: e_1_2_6_89_1 – ident: e_1_2_6_96_1 doi: 10.1175/BAMS-D-11-00094.1 – ident: e_1_2_6_84_1 doi: 10.1007/s10661-010-1385-8 – ident: e_1_2_6_110_1 doi: 10.1002/2015GL063266 – ident: e_1_2_6_98_1 doi: 10.1175/JAMC-D-13-0248.1 – ident: e_1_2_6_31_1 doi: 10.1007/s10021-015-9890-9 – ident: e_1_2_6_67_1 doi: 10.1029/2009GL041735 – ident: e_1_2_6_11_1 doi: 10.3390/fire1010017 – ident: e_1_2_6_44_1 doi: 10.3390/geosciences6030037 – ident: e_1_2_6_74_1 – ident: e_1_2_6_29_1 doi: 10.1029/2018GL080261 – ident: e_1_2_6_27_1 doi: 10.1175/JAMC-D-18-0150.1 – ident: e_1_2_6_33_1 doi: 10.1073/pnas.1802316115 – ident: e_1_2_6_36_1 doi: 10.1038/s41598-019-39284-1 – ident: e_1_2_6_78_1 doi: 10.1073/pnas.1718850115 – ident: e_1_2_6_87_1 doi: 10.1038/s41558-018-0140-y – ident: e_1_2_6_106_1 doi: 10.1126/science.1128834 – ident: e_1_2_6_93_1 doi: 10.1073/pnas.1713885114 – ident: e_1_2_6_111_1 doi: 10.1002/2015GL064924 – ident: e_1_2_6_94_1 doi: 10.1016/j.gloenvcha.2019.03.007 – ident: e_1_2_6_102_1 doi: 10.1007/s10584-007-9363-z – ident: #cr-split#-e_1_2_6_25_1.2 – ident: e_1_2_6_72_1 doi: 10.1038/s41598-017-17966-y – ident: e_1_2_6_2_1 doi: 10.1002/joc.3413 – ident: e_1_2_6_13_1 doi: 10.1071/WF15083 – ident: e_1_2_6_38_1 doi: 10.1002/2013JG002541 – ident: e_1_2_6_112_1 doi: 10.1071/WF14023 – ident: e_1_2_6_49_1 – ident: e_1_2_6_41_1 doi: 10.1890/04-1222 – ident: e_1_2_6_23_1 – ident: e_1_2_6_107_1 doi: 10.1007/s40641-016-0031-0 – ident: e_1_2_6_5_1 doi: 10.1088/1748-9326/11/4/045005 – ident: e_1_2_6_26_1 doi: 10.1111/j.1466-8238.2011.00748.x – ident: e_1_2_6_60_1 doi: 10.1088/1748-9326/aa8fde – ident: e_1_2_6_76_1 doi: 10.1038/s41598-017-11285-y – ident: e_1_2_6_64_1 doi: 10.1175/JTECH-D-11-00103.1 – ident: e_1_2_6_18_1 doi: 10.1071/WF13046 – ident: e_1_2_6_40_1 doi: 10.1071/WF03037 – ident: e_1_2_6_4_1 doi: 10.1071/WF13019 – ident: e_1_2_6_53_1 doi: 10.1007/s40641-018-0109-y – ident: e_1_2_6_82_1 doi: 10.1080/01621459.1968.10480934 – ident: e_1_2_6_83_1 doi: 10.1038/nclimate2783 – ident: e_1_2_6_35_1 doi: 10.1007/s10584-011-0300-9 – ident: e_1_2_6_24_1 doi: 10.1002/2014GL059576 – ident: e_1_2_6_55_1 doi: 10.1029/2018EF000878 – ident: e_1_2_6_58_1 doi: 10.1175/JCLI-D-13-00273.1 – ident: e_1_2_6_3_1 doi: 10.1175/WAF-D-13-00002.1 – ident: e_1_2_6_65_1 doi: 10.1046/j.1523-1739.1995.09040902.x – ident: e_1_2_6_79_1 doi: 10.1175/1087-3562(2003)007<0001:TSAWOC>2.0.CO;2 – ident: e_1_2_6_39_1 doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 – ident: e_1_2_6_6_1 doi: 10.1071/WF16165 – ident: e_1_2_6_12_1 doi: 10.1073/pnas.1617394114 – ident: e_1_2_6_63_1 doi: 10.1002/eap.1420 – ident: e_1_2_6_8_1 doi: 10.1111/gcb.14405 – ident: e_1_2_6_42_1 doi: 10.1046/j.1523-1739.2001.00097.x – ident: e_1_2_6_34_1 doi: 10.1007/s00382-009-0650-4 – ident: e_1_2_6_37_1 doi: 10.1088/1748-9326/10/9/094005 – ident: e_1_2_6_22_1 doi: 10.1175/JCLI3837.1 – ident: e_1_2_6_52_1 doi: 10.1111/gcb.13544 – ident: e_1_2_6_97_1 doi: 10.1007/s10584-011-0148-z – ident: e_1_2_6_88_1 doi: 10.1126/science.262.5135.885 – ident: e_1_2_6_15_1 doi: 10.1126/science.1152538 – ident: e_1_2_6_20_1 – ident: e_1_2_6_59_1 doi: 10.1371/journal.pone.0153589 – ident: e_1_2_6_77_1 doi: 10.1038/srep04364 – ident: e_1_2_6_100_1 doi: 10.1098/rstb.2015.0178 – ident: e_1_2_6_56_1 doi: 10.1038/sdata.2015.42 – ident: e_1_2_6_71_1 doi: 10.1890/ES15-00294.1 – ident: e_1_2_6_86_1 doi: 10.1175/JCLI-D-14-00197.1 – ident: e_1_2_6_57_1 doi: 10.1175/JCLI-D-12-00508.1 – ident: e_1_2_6_73_1 doi: 10.1007/s00382-012-1337-9 – ident: e_1_2_6_109_1 doi: 10.1029/2018GL077319 – ident: e_1_2_6_21_1 doi: 10.2737/PSW-GTR-82 – ident: e_1_2_6_10_1 – ident: e_1_2_6_7_1 doi: 10.1073/pnas.1607171113 – ident: e_1_2_6_61_1 doi: 10.1073/pnas.1112839109 – ident: e_1_2_6_85_1 doi: 10.1890/04-0545 – ident: e_1_2_6_92_1 – ident: e_1_2_6_104_1 doi: 10.1029/2004EO310001 – ident: e_1_2_6_45_1 doi: 10.1071/WF16102 – ident: e_1_2_6_95_1 doi: 10.1073/pnas.1609775113 |
| SSID | ssj0000970357 |
| Score | 2.62197 |
| Snippet | Recent fire seasons have fueled intense speculation regarding the effect of anthropogenic climate change on wildfire in western North America and especially in... Abstract Recent fire seasons have fueled intense speculation regarding the effect of anthropogenic climate change on wildfire in western North America and... |
| SourceID | doaj proquest crossref wiley |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 892 |
| SubjectTerms | Anthropogenic climate changes Anthropogenic factors Aridity Atmospheric models California Climate change Climate effects Climate models Coasts Computer simulation Drying Environmental impact Fatalities Forest & brush fires Forest fires Forests Fuels Human influences Offshore open climate campaign Precipitation Seasons Summer Summer climate Trends Vapor pressure Vegetation Warm seasons wildfire Wildfires Wind Winter Winter precipitation |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV05T8MwFLYQYmBBXBWBgjzAAoqIYye2R6haAUNhKFI3K_EhRapS1BZ-P89Oeg3AwhYlTmS987Pj9z2ErmliHWQGF1NNXMykTcDndBHn1JSCcCq0EaHZBB8OxXgs3zZaffkzYQ09cCO4-4wYo52VVDPBCpYWSekE5NAcLEc7aX30BdSzsZgKMViCJWe8PemepBIW-UT2B4HCLNnKQYGqfwtfbqLUkGYGh-igxYf4oZnXEdqx9THq9NflaPCw9cf5CXp5Lf2uqjX4OVQ7zvHU4WXvAzCNSuPepAJQanFTRoCnNYZAYBxEOlzVeF2adYreB_1R7yluuyPEmvHMby4WhBEjiBaOE8ZzEDpEPUMk91eOmiynzEmhi9wYQHHgqn7n0HmGKy4o7aDdelrbM4TTkgGO0qIsDGfwktSFAxxiYalROpuQCN0t5aV0Sx3uO1hMVPiFnUq1Kd0I3axGfzSUGT-Me_SiX43xRNfhBqhftepXf6k_Qt2l4lTrfXOVwjKQEk9CGqHboMxfJ6L6gxFELn7-HxO6QPv-280ZwS7aXcw-7SXa01-Laj67Clb6DfF15tE priority: 102 providerName: Directory of Open Access Journals – databaseName: Wiley Online Library Open Access dbid: 24P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA8yPXjxezidkoNelGLTZE1y1LGhHuYOE3YrbT5kMDpZp3-_L2k2t4OCeCtpGkLyPn55zfs9hK5obCx4BhtRRWzEpIlB51QepVQXgnAqlBa-2AQfDMR4LIch4OZyYWp-iFXAzWmGt9dOwfOiCmQDjiMTPJfs9T0nGRzZtwmhwpVuSNhwFWOJJcizJ_sE3CAilnAe7r7DEHfrA2x4JU_ev4E413Grdzz9_f9O-QDtBciJ72sZOURbpjxCzd53hhu8DCpeHaPnl8IFao3GTz6BssIzi5flFEDaJgp3pxPAuQbXmQl4VmKwLdqC8cSTEn9ne52g135v1H2MQsGFSDHecfHKnDCiBVHCcsJ4CvsIhlQTyd2TpbqTUmalUHmqNQBD0H4XjLSONIsLSpuoUc5Kc4pwUjCAZkoUueYMPpIqtwBtDJxeCmti0kK3ywXPVGAjd0Uxppn_K57IbH2xWuh61fu9ZuH4od-D27tVH8ed7Rtm87csqGLWIVorayRVTLCcJXlcWAGoLAVbpKw0LdRe7nwWFLrKEjhZUuJ4TVvoxu_xrxPJev0RGEN-9pfO52jXNdfXC9uosZh_mAu0oz4Xk2p-6UX7C0YS8zA priority: 102 providerName: Wiley-Blackwell |
| Title | Observed Impacts of Anthropogenic Climate Change on Wildfire in California |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2019EF001210 https://www.proquest.com/docview/2287311175 https://doaj.org/article/51ddcfe93c484a42a0bf89766963cf9e |
| Volume | 7 |
| WOSCitedRecordID | wos000490911600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2328-4277 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000970357 issn: 2328-4277 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2328-4277 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000970357 issn: 2328-4277 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 2328-4277 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000970357 issn: 2328-4277 databaseCode: PCBAR dateStart: 20131201 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 2328-4277 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000970357 issn: 2328-4277 databaseCode: PATMY dateStart: 20131201 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2328-4277 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000970357 issn: 2328-4277 databaseCode: BENPR dateStart: 20131201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2328-4277 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000970357 issn: 2328-4277 databaseCode: PIMPY dateStart: 20131201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 2328-4277 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000970357 issn: 2328-4277 databaseCode: WIN dateStart: 20130101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 2328-4277 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000970357 issn: 2328-4277 databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFH-CwmGXDdjQukHlw3bZFBHHbmyfpoFSUaR1EWICTlHij6kSSljD9vfv2XVbOIzLbnHiRFbeh39-9vs9gA8stQ5nBpcwTV3ClU3R5nSd5Mw0kgomtZGh2ISYzeTNjSpjwK2PxypXPjE4atNpHyM_yRDaM-qJJb_c_0p81Si_uxpLaGzDjmcq4wPYOS1m5eU6ypIq1OixiCfe00zhYp-qYhKozNInc1Gg7H-CMx-j1TDdTF7970D34GUEmuTrUjP2Ycu2B3BYbPLa8GE07P41XHxvfHjWGjINaZM96RxZFVFAHZtrcnY3R3RryTIfgXQtQY9iHLpMMm_JJsfrDfyYFFdn50kss5BoLsY-SllTTo2kWjpBuchReug-DVXCXzlmxjnjTkld58YgHESb9yFI56myhGTsEAZt19q3QLKGIyDTsqmN4PiS0rVDQGNxzdI4m9IhfF798EpHDnJfCuOuCnvhmaoei2cIH9e975fcG__od-plt-7jGbPDjW7xs4oGWI2pMdpZxTSXvOZZnTZOIhbL0QNpp-wQjlbirKIZ99VGlkP4FLTh2YFUxeQKXaB49_y33sML_9byGOERDB4Wv-0x7Oo_D_N-MYLtjJejqMijECPAVjn9Vt5i63o6-wtKLfoT |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB1VWyS4UL6qLm3BB3oBRY1jb2wfUFXKrrq0XfawSOUUEn-glaqkbAqIP8Vv7NhJdtsDvfXALUocy0me3zxPPDMAb1hsHVoGFzFNXcSVjXHO6TxKmSkkFUxqI0OxCTGZyPNzNV2Dv10sjN9W2XFiIGpTae8j309Q2jPqE0seXP6IfNUo_3e1K6HRwOLE_vmNS7b6_fgjft-9JBkNZ0fHUVtVINJcDLxTLqecGkm1dIJykeJgkS0MVcIfOWYGKeNOSZ2nxqD6QYh7j5vzmaGE9A5QpPx1jmCXPVifjs-mX5deHWwSs4Fod9jHidpHA6uGo5A6Lb5l-0KJgFu69qY6DuZttPG_vZgn8LgV0uSwQf5TWLPlM9gcruL28GJLXPVz-PS58O5na8g4hIXWpHKkKxKBc2iuydHFHNW7JU28BalKgoxpHJoEMi_JKobtBXy5l-fahF5ZlXYLSFJwFJxaFrkRHG9SOnco2CyuyQpnY9qHd90HznSbY92X-rjIwr_-RGU34dCHvWXryya3yD_affBYWbbxGcHDiWrxPWsJJhtQY7Szimkuec6TPC6cRK2ZIsNqp2wfdjr4ZC1N1dkKO314G9B350Cy4WiGFC9e3t3Xa3h4PDs7zU7Hk5NteOR7aLZM7kDvavHT7sID_etqXi9etdOHwLf7BuY1EPlOKQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL2qWoTY8K4YaMELugFFEyee2F6gqrQTMRSGWQxSWYXEDzRSlZRJAfFr_bpeO85Mu6C7LthFiRPlcXzu8c19ALxOY2PRMtgoVdRGTJoY55wqoyzVlaA8FUoL32yCT6fi5ETONuCiz4VxYZU9J3qi1o1yPvJhgtI-pa6w5NCGsIjZUb5_9jNyHaTcn9a-nUYHkWPz9w8u39p3kyP81ntJko_nhx-i0GEgUoyPnIOupIxqQZWwnDKe4Y0jc2gquduyqR5lKbNSqDLTGpUQwt1536yrEsWFc4Yi_W-5GnFICluzg_nnbysPDw6J0xEP0fZxIodobOU492XU4mt20LcLuKZxryplb-ryB__zS3oI94PAJgfdjHgEG6Z-DNvjdT4fHgyE1j6Bj18q55Y2mkx8umhLGkv65hE4txaKHJ4uUNUb0uVhkKYmyKTaoqkgi5qsc9uewtdbea5t2Kyb2jwDklQMhagSVak5w5OkKi0KOYNrtcqamA7gbf-xCxVqr7sWIKeFjwFIZHEVGgPYW40-62qO_GPce4eb1RhXKdzvaJY_ikA8xYhqrayRqWKClSwp48oK1KAZMq-y0gxgp4dSEeirLdY4GsAbj8Qbb6QY53Okfv785mu9gruIxuLTZHr8Au65C3SRlDuweb78ZXbhjvp9vmiXL8NMIvD9tnF5CX9GVt8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Observed+Impacts+of+Anthropogenic+Climate+Change+on+Wildfire+in+California&rft.jtitle=Earth%27s+future&rft.au=A.+Park+Williams&rft.au=Abatzoglou%2C+John+T&rft.au=Gershunov%2C+Alexander&rft.au=Janin+Guzman%E2%80%90Morales&rft.date=2019-08-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2328-4277&rft.volume=7&rft.issue=8&rft.spage=892&rft.epage=910&rft_id=info:doi/10.1029%2F2019EF001210&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2328-4277&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2328-4277&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2328-4277&client=summon |