Observed Impacts of Anthropogenic Climate Change on Wildfire in California

Recent fire seasons have fueled intense speculation regarding the effect of anthropogenic climate change on wildfire in western North America and especially in California. During 1972–2018, California experienced a fivefold increase in annual burned area, mainly due to more than an eightfold increas...

Full description

Saved in:
Bibliographic Details
Published in:Earth's future Vol. 7; no. 8; pp. 892 - 910
Main Authors: Williams, A. Park, Abatzoglou, John T., Gershunov, Alexander, Guzman‐Morales, Janin, Bishop, Daniel A., Balch, Jennifer K., Lettenmaier, Dennis P.
Format: Journal Article
Language:English
Published: Bognor Regis John Wiley & Sons, Inc 01.08.2019
Wiley
Subjects:
ISSN:2328-4277, 2328-4277
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Recent fire seasons have fueled intense speculation regarding the effect of anthropogenic climate change on wildfire in western North America and especially in California. During 1972–2018, California experienced a fivefold increase in annual burned area, mainly due to more than an eightfold increase in summer forest‐fire extent. Increased summer forest‐fire area very likely occurred due to increased atmospheric aridity caused by warming. Since the early 1970s, warm‐season days warmed by approximately 1.4 °C as part of a centennial warming trend, significantly increasing the atmospheric vapor pressure deficit (VPD). These trends are consistent with anthropogenic trends simulated by climate models. The response of summer forest‐fire area to VPD is exponential, meaning that warming has grown increasingly impactful. Robust interannual relationships between VPD and summer forest‐fire area strongly suggest that nearly all of the increase in summer forest‐fire area during 1972–2018 was driven by increased VPD. Climate change effects on summer wildfire were less evident in nonforested lands. In fall, wind events and delayed onset of winter precipitation are the dominant promoters of wildfire. While these variables did not change much over the past century, background warming and consequent fuel drying is increasingly enhancing the potential for large fall wildfires. Among the many processes important to California's diverse fire regimes, warming‐driven fuel drying is the clearest link between anthropogenic climate change and increased California wildfire activity to date. Plain Language Summary Since the early 1970s, California's annual wildfire extent increased fivefold, punctuated by extremely large and destructive wildfires in 2017 and 2018. This trend was mainly due to an eightfold increase in summertime forest‐fire area and was very likely driven by drying of fuels promoted by human‐induced warming. Warming effects were also apparent in the fall by enhancing the odds that fuels are dry when strong fall wind events occur. The ability of dry fuels to promote large fires is nonlinear, which has allowed warming to become increasingly impactful. Human‐caused warming has already significantly enhanced wildfire activity in California, particularly in the forests of the Sierra Nevada and North Coast, and will likely continue to do so in the coming decades. Key Points Annual burned area in California increased fivefold during 1972–2018, mainly due to summer forest fire Anthropogenic warming very likely increased summer forest fire by drying fuels; this trend is likely to continue Large fall fires are likely to become increasingly frequent with continued warming and possibly gradual declines in fall precipitation
AbstractList Recent fire seasons have fueled intense speculation regarding the effect of anthropogenic climate change on wildfire in western North America and especially in California. During 1972–2018, California experienced a fivefold increase in annual burned area, mainly due to more than an eightfold increase in summer forest‐fire extent. Increased summer forest‐fire area very likely occurred due to increased atmospheric aridity caused by warming. Since the early 1970s, warm‐season days warmed by approximately 1.4 °C as part of a centennial warming trend, significantly increasing the atmospheric vapor pressure deficit (VPD). These trends are consistent with anthropogenic trends simulated by climate models. The response of summer forest‐fire area to VPD is exponential, meaning that warming has grown increasingly impactful. Robust interannual relationships between VPD and summer forest‐fire area strongly suggest that nearly all of the increase in summer forest‐fire area during 1972–2018 was driven by increased VPD. Climate change effects on summer wildfire were less evident in nonforested lands. In fall, wind events and delayed onset of winter precipitation are the dominant promoters of wildfire. While these variables did not change much over the past century, background warming and consequent fuel drying is increasingly enhancing the potential for large fall wildfires. Among the many processes important to California's diverse fire regimes, warming‐driven fuel drying is the clearest link between anthropogenic climate change and increased California wildfire activity to date.
Recent fire seasons have fueled intense speculation regarding the effect of anthropogenic climate change on wildfire in western North America and especially in California. During 1972–2018, California experienced a fivefold increase in annual burned area, mainly due to more than an eightfold increase in summer forest‐fire extent. Increased summer forest‐fire area very likely occurred due to increased atmospheric aridity caused by warming. Since the early 1970s, warm‐season days warmed by approximately 1.4 °C as part of a centennial warming trend, significantly increasing the atmospheric vapor pressure deficit (VPD). These trends are consistent with anthropogenic trends simulated by climate models. The response of summer forest‐fire area to VPD is exponential, meaning that warming has grown increasingly impactful. Robust interannual relationships between VPD and summer forest‐fire area strongly suggest that nearly all of the increase in summer forest‐fire area during 1972–2018 was driven by increased VPD. Climate change effects on summer wildfire were less evident in nonforested lands. In fall, wind events and delayed onset of winter precipitation are the dominant promoters of wildfire. While these variables did not change much over the past century, background warming and consequent fuel drying is increasingly enhancing the potential for large fall wildfires. Among the many processes important to California's diverse fire regimes, warming‐driven fuel drying is the clearest link between anthropogenic climate change and increased California wildfire activity to date. Plain Language Summary Since the early 1970s, California's annual wildfire extent increased fivefold, punctuated by extremely large and destructive wildfires in 2017 and 2018. This trend was mainly due to an eightfold increase in summertime forest‐fire area and was very likely driven by drying of fuels promoted by human‐induced warming. Warming effects were also apparent in the fall by enhancing the odds that fuels are dry when strong fall wind events occur. The ability of dry fuels to promote large fires is nonlinear, which has allowed warming to become increasingly impactful. Human‐caused warming has already significantly enhanced wildfire activity in California, particularly in the forests of the Sierra Nevada and North Coast, and will likely continue to do so in the coming decades. Key Points Annual burned area in California increased fivefold during 1972–2018, mainly due to summer forest fire Anthropogenic warming very likely increased summer forest fire by drying fuels; this trend is likely to continue Large fall fires are likely to become increasingly frequent with continued warming and possibly gradual declines in fall precipitation
Abstract Recent fire seasons have fueled intense speculation regarding the effect of anthropogenic climate change on wildfire in western North America and especially in California. During 1972–2018, California experienced a fivefold increase in annual burned area, mainly due to more than an eightfold increase in summer forest‐fire extent. Increased summer forest‐fire area very likely occurred due to increased atmospheric aridity caused by warming. Since the early 1970s, warm‐season days warmed by approximately 1.4 °C as part of a centennial warming trend, significantly increasing the atmospheric vapor pressure deficit (VPD). These trends are consistent with anthropogenic trends simulated by climate models. The response of summer forest‐fire area to VPD is exponential, meaning that warming has grown increasingly impactful. Robust interannual relationships between VPD and summer forest‐fire area strongly suggest that nearly all of the increase in summer forest‐fire area during 1972–2018 was driven by increased VPD. Climate change effects on summer wildfire were less evident in nonforested lands. In fall, wind events and delayed onset of winter precipitation are the dominant promoters of wildfire. While these variables did not change much over the past century, background warming and consequent fuel drying is increasingly enhancing the potential for large fall wildfires. Among the many processes important to California's diverse fire regimes, warming‐driven fuel drying is the clearest link between anthropogenic climate change and increased California wildfire activity to date.
Recent fire seasons have fueled intense speculation regarding the effect of anthropogenic climate change on wildfire in western North America and especially in California. During 1972–2018, California experienced a fivefold increase in annual burned area, mainly due to more than an eightfold increase in summer forest‐fire extent. Increased summer forest‐fire area very likely occurred due to increased atmospheric aridity caused by warming. Since the early 1970s, warm‐season days warmed by approximately 1.4 °C as part of a centennial warming trend, significantly increasing the atmospheric vapor pressure deficit (VPD). These trends are consistent with anthropogenic trends simulated by climate models. The response of summer forest‐fire area to VPD is exponential, meaning that warming has grown increasingly impactful. Robust interannual relationships between VPD and summer forest‐fire area strongly suggest that nearly all of the increase in summer forest‐fire area during 1972–2018 was driven by increased VPD. Climate change effects on summer wildfire were less evident in nonforested lands. In fall, wind events and delayed onset of winter precipitation are the dominant promoters of wildfire. While these variables did not change much over the past century, background warming and consequent fuel drying is increasingly enhancing the potential for large fall wildfires. Among the many processes important to California's diverse fire regimes, warming‐driven fuel drying is the clearest link between anthropogenic climate change and increased California wildfire activity to date. Since the early 1970s, California's annual wildfire extent increased fivefold, punctuated by extremely large and destructive wildfires in 2017 and 2018. This trend was mainly due to an eightfold increase in summertime forest‐fire area and was very likely driven by drying of fuels promoted by human‐induced warming. Warming effects were also apparent in the fall by enhancing the odds that fuels are dry when strong fall wind events occur. The ability of dry fuels to promote large fires is nonlinear, which has allowed warming to become increasingly impactful. Human‐caused warming has already significantly enhanced wildfire activity in California, particularly in the forests of the Sierra Nevada and North Coast, and will likely continue to do so in the coming decades. Annual burned area in California increased fivefold during 1972–2018, mainly due to summer forest fire Anthropogenic warming very likely increased summer forest fire by drying fuels; this trend is likely to continue Large fall fires are likely to become increasingly frequent with continued warming and possibly gradual declines in fall precipitation
Author Gershunov, Alexander
Guzman‐Morales, Janin
Bishop, Daniel A.
Balch, Jennifer K.
Williams, A. Park
Lettenmaier, Dennis P.
Abatzoglou, John T.
Author_xml – sequence: 1
  givenname: A. Park
  orcidid: 0000-0001-8176-8166
  surname: Williams
  fullname: Williams, A. Park
  email: williams@ldeo.columbia.edu
  organization: Columbia University
– sequence: 2
  givenname: John T.
  orcidid: 0000-0001-7599-9750
  surname: Abatzoglou
  fullname: Abatzoglou, John T.
  organization: University of Idaho
– sequence: 3
  givenname: Alexander
  orcidid: 0000-0002-6598-6638
  surname: Gershunov
  fullname: Gershunov, Alexander
  organization: University of California, San Diego
– sequence: 4
  givenname: Janin
  orcidid: 0000-0001-6040-454X
  surname: Guzman‐Morales
  fullname: Guzman‐Morales, Janin
  organization: University of California, San Diego
– sequence: 5
  givenname: Daniel A.
  orcidid: 0000-0002-0394-5996
  surname: Bishop
  fullname: Bishop, Daniel A.
  organization: Columbia University
– sequence: 6
  givenname: Jennifer K.
  surname: Balch
  fullname: Balch, Jennifer K.
  organization: University of Colorado Boulder
– sequence: 7
  givenname: Dennis P.
  orcidid: 0000-0002-0914-0726
  surname: Lettenmaier
  fullname: Lettenmaier, Dennis P.
  organization: University of California
BookMark eNp9kUtLAzEUhYNU8LnzBwTcWs1NMpNkKUOrFcGN4jLEPNqUMamZqeK_d7QKRdC7uYfLdw4H7gEapZw8QidAzoFQdUEJqMmUEKBAdtA-ZVSOORVitKX30HHXLckwShBWiX10c_fU-fLqHZ49r4ztO5wDvkz9ouRVnvsULW7a-Gx6j5uFSXOPc8KPsXUhFo9jwo1pY8glRXOEdoNpO3_8vQ_Rw3Ry31yPb--uZs3l7dhyUYkxAwMcnAQrgwAuah8or4UDJT5VYK6qGQ9KWlM7x4BwKbkcLnwoLSRjh2i2yXXZLPWqDO3Ku84m6q9DLnNtSh9t63UFztngFbNccsOpIU9BKlHXqmY2KD9knW6yViW_rH3X62VelzTU15RKwQBAVANFN5QtueuKD9rG3vQxp76Y2Gog-vMFevsFg-nsl-mn6h84bPC32Pr3f1k9md7TSgj2AfjAk3s
CitedBy_id crossref_primary_10_1016_j_jaerosci_2023_106316
crossref_primary_10_1029_2023EF003778
crossref_primary_10_1071_WF20190
crossref_primary_10_1093_biosci_biaf144
crossref_primary_10_1098_rstb_2023_0464
crossref_primary_10_3389_fped_2022_891616
crossref_primary_10_1029_2020JD033180
crossref_primary_10_1016_j_apr_2024_102226
crossref_primary_10_1016_j_jclepro_2020_121000
crossref_primary_10_1080_10549811_2024_2448028
crossref_primary_10_1029_2022JF006591
crossref_primary_10_1016_j_jenvman_2022_115920
crossref_primary_10_1016_j_scitotenv_2020_141592
crossref_primary_10_1051_e3sconf_202341504003
crossref_primary_10_1016_j_foreco_2023_121478
crossref_primary_10_1088_1748_9326_adb764
crossref_primary_10_3390_rs15133388
crossref_primary_10_1071_WF22016
crossref_primary_10_1021_acsearthspacechem_5c00003
crossref_primary_10_5194_essd_14_1109_2022
crossref_primary_10_1016_j_landusepol_2021_105502
crossref_primary_10_1016_j_rse_2022_113237
crossref_primary_10_1038_s41586_024_07028_5
crossref_primary_10_1111_ddi_13700
crossref_primary_10_1175_WAF_D_21_0075_1
crossref_primary_10_1007_s10546_020_00562_5
crossref_primary_10_5194_bg_22_2225_2025
crossref_primary_10_1029_2020EF001480
crossref_primary_10_1038_s41467_021_21266_5
crossref_primary_10_1016_j_scitotenv_2020_142788
crossref_primary_10_1088_1748_9326_ac576a
crossref_primary_10_1111_gcb_70481
crossref_primary_10_1007_s00265_025_03629_w
crossref_primary_10_1007_s10584_021_03066_4
crossref_primary_10_1111_head_14442
crossref_primary_10_1016_j_erss_2024_103519
crossref_primary_10_1016_j_foreco_2024_121861
crossref_primary_10_1001_jama_2020_19334
crossref_primary_10_1016_j_joclim_2023_100285
crossref_primary_10_3390_cli13060109
crossref_primary_10_5194_nhess_22_2317_2022
crossref_primary_10_3389_ffgc_2024_1507554
crossref_primary_10_1088_1748_9326_ab83a7
crossref_primary_10_1186_s42408_024_00345_0
crossref_primary_10_1088_2515_7620_ad2e44
crossref_primary_10_1038_s41612_022_00248_4
crossref_primary_10_1029_2021GH000546
crossref_primary_10_1038_d41586_020_00173_7
crossref_primary_10_3390_f16071095
crossref_primary_10_1002_ldr_5335
crossref_primary_10_1016_j_ress_2023_109742
crossref_primary_10_5194_acp_21_16645_2021
crossref_primary_10_1021_acs_est_5c01641
crossref_primary_10_1071_WF22033
crossref_primary_10_1186_s42408_023_00199_y
crossref_primary_10_1071_WF22155
crossref_primary_10_1016_j_agrformet_2024_110268
crossref_primary_10_3389_fenvs_2024_1438262
crossref_primary_10_1021_acs_est_9b05641
crossref_primary_10_1088_1748_9326_ac60da
crossref_primary_10_3390_f16040592
crossref_primary_10_5194_hess_25_3713_2021
crossref_primary_10_1073_pnas_2405458121
crossref_primary_10_1029_2021GL097131
crossref_primary_10_1371_journal_pone_0291026
crossref_primary_10_1088_2752_5295_adec11
crossref_primary_10_3390_su15075973
crossref_primary_10_1038_s41612_024_00862_4
crossref_primary_10_1007_s10584_024_03735_0
crossref_primary_10_3390_s21093047
crossref_primary_10_1542_peds_2023_065505
crossref_primary_10_1038_s43017_020_0060_z
crossref_primary_10_3390_fire6040168
crossref_primary_10_1029_2022GL101235
crossref_primary_10_1080_03036758_2020_1741404
crossref_primary_10_1017_S1049023X22001054
crossref_primary_10_17730_1938_3525_81_3_193
crossref_primary_10_1016_j_atmosres_2023_107199
crossref_primary_10_3390_atmos16040403
crossref_primary_10_1016_j_scitotenv_2023_161954
crossref_primary_10_1175_JCLI_D_20_0084_1
crossref_primary_10_1186_s12989_020_00394_8
crossref_primary_10_1016_j_atmosenv_2021_118431
crossref_primary_10_1126_science_ado1006
crossref_primary_10_1016_j_enggeo_2020_105742
crossref_primary_10_1016_j_jnc_2024_126728
crossref_primary_10_3389_feart_2020_00104
crossref_primary_10_1017_qua_2021_9
crossref_primary_10_1177_0308518X231191930
crossref_primary_10_3390_rs14174362
crossref_primary_10_5194_nhess_24_3315_2024
crossref_primary_10_3390_rs17061038
crossref_primary_10_1073_pnas_2117876118
crossref_primary_10_1088_2752_5295_acb079
crossref_primary_10_3390_ijerph20010815
crossref_primary_10_1038_s41560_020_0548_2
crossref_primary_10_1371_journal_pclm_0000651
crossref_primary_10_1038_s44304_025_00113_3
crossref_primary_10_3389_ffgc_2022_867112
crossref_primary_10_1029_2021GL095496
crossref_primary_10_1088_1748_9326_ad80ad
crossref_primary_10_1080_08941920_2022_2041138
crossref_primary_10_1088_1748_9326_acbce8
crossref_primary_10_1080_03036758_2024_2385807
crossref_primary_10_1071_WF22107
crossref_primary_10_1017_S0376892922000388
crossref_primary_10_1088_1748_9326_ac4538
crossref_primary_10_1038_s43017_020_0085_3
crossref_primary_10_1098_rsos_230554
crossref_primary_10_1111_1365_2435_14263
crossref_primary_10_1002_wat2_1592
crossref_primary_10_1007_s10668_022_02624_9
crossref_primary_10_1016_j_joclim_2022_100162
crossref_primary_10_3390_f13071130
crossref_primary_10_1007_s10708_024_11052_3
crossref_primary_10_3390_atmos15101172
crossref_primary_10_3390_fire7100358
crossref_primary_10_1111_mec_17036
crossref_primary_10_1016_j_coesh_2021_100291
crossref_primary_10_1029_2022GL099582
crossref_primary_10_1111_pce_14846
crossref_primary_10_1007_s10584_023_03517_0
crossref_primary_10_1016_j_geomorph_2024_109175
crossref_primary_10_1111_1365_2435_14271
crossref_primary_10_1016_j_ijdrr_2025_105809
crossref_primary_10_1071_WF21024
crossref_primary_10_1016_j_ijdrr_2023_104126
crossref_primary_10_1029_2023EF003763
crossref_primary_10_3733_ca_2023a0006
crossref_primary_10_3389_fpsyg_2022_968243
crossref_primary_10_1002_joc_7513
crossref_primary_10_1080_08941920_2022_2113487
crossref_primary_10_1088_1748_9326_addede
crossref_primary_10_1029_2022JB025553
crossref_primary_10_1029_2024JF007725
crossref_primary_10_1016_j_foreco_2024_121848
crossref_primary_10_1016_j_scitotenv_2024_173091
crossref_primary_10_1016_j_foreco_2024_121966
crossref_primary_10_1016_j_wdp_2024_100598
crossref_primary_10_1002_rhc3_12261
crossref_primary_10_1109_JSTARS_2022_3232665
crossref_primary_10_1080_17567505_2024_2425246
crossref_primary_10_1111_een_13216
crossref_primary_10_1038_s41380_023_02122_y
crossref_primary_10_1111_gcb_16547
crossref_primary_10_3389_ffgc_2022_957189
crossref_primary_10_1103_PhysRevFluids_10_053801
crossref_primary_10_1016_j_watres_2020_115891
crossref_primary_10_1002_ece3_8158
crossref_primary_10_1016_j_foreco_2024_121916
crossref_primary_10_1088_2752_5309_ad951c
crossref_primary_10_1016_j_foreco_2021_119797
crossref_primary_10_3390_rs17071267
crossref_primary_10_1080_0067270X_2020_1792177
crossref_primary_10_3390_fire5020035
crossref_primary_10_1071_WF20112
crossref_primary_10_1029_2021AV000654
crossref_primary_10_1186_s42408_023_00181_8
crossref_primary_10_3390_rs16163050
crossref_primary_10_1038_s41467_024_51305_w
crossref_primary_10_1029_2024EF005744
crossref_primary_10_1016_j_ijdrr_2023_104065
crossref_primary_10_3120_0024_9637_69_3_235
crossref_primary_10_1016_j_agrformet_2024_109893
crossref_primary_10_1029_2024AV001395
crossref_primary_10_1080_00049158_2021_1894383
crossref_primary_10_1002_ecy_4265
crossref_primary_10_1007_s10980_022_01427_7
crossref_primary_10_1038_s41598_022_05945_x
crossref_primary_10_1038_s41598_024_52481_x
crossref_primary_10_1088_1748_9326_ac9a5d
crossref_primary_10_3390_f12081023
crossref_primary_10_3390_land12081514
crossref_primary_10_1002_ajim_23191
crossref_primary_10_1186_s13021_025_00309_0
crossref_primary_10_1186_s42408_024_00316_5
crossref_primary_10_5194_essd_16_1395_2024
crossref_primary_10_1038_s41558_021_01224_1
crossref_primary_10_1016_j_oneear_2021_03_002
crossref_primary_10_1016_j_scitotenv_2021_146143
crossref_primary_10_1007_s40641_020_00158_8
crossref_primary_10_1016_j_jag_2021_102491
crossref_primary_10_1088_1748_9326_acff7a
crossref_primary_10_1164_rccm_202203_0457OC
crossref_primary_10_1038_s41598_022_15262_y
crossref_primary_10_1111_risa_13616
crossref_primary_10_1038_s41598_021_88131_9
crossref_primary_10_1007_s40257_023_00770_y
crossref_primary_10_1038_s44304_025_00124_0
crossref_primary_10_1016_j_foreco_2022_120129
crossref_primary_10_1016_j_trip_2025_101526
crossref_primary_10_1029_2020RG000726
crossref_primary_10_1016_j_ocecoaman_2020_105298
crossref_primary_10_1038_s43247_021_00299_0
crossref_primary_10_1111_efp_12811
crossref_primary_10_3389_ffgc_2024_1419288
crossref_primary_10_1111_gcb_15591
crossref_primary_10_3346_jkms_2025_40_e115
crossref_primary_10_1038_s44304_025_00090_7
crossref_primary_10_1007_s11069_022_05300_3
crossref_primary_10_1029_2020JF005527
crossref_primary_10_1016_j_ijdrr_2025_105610
crossref_primary_10_1029_2022EF003086
crossref_primary_10_3354_cr01745
crossref_primary_10_1088_1748_9326_ac939b
crossref_primary_10_3390_fire6090346
crossref_primary_10_1164_rccm_202204_0657OC
crossref_primary_10_1007_s00704_024_04909_7
crossref_primary_10_1016_j_envres_2023_115591
crossref_primary_10_1088_2752_5295_ac84a0
crossref_primary_10_1111_ecog_07127
crossref_primary_10_3390_fire6030086
crossref_primary_10_1021_acs_est_3c04411
crossref_primary_10_1088_1748_9326_ac1e3a
crossref_primary_10_3390_su132111754
crossref_primary_10_1007_s11783_024_1890_6
crossref_primary_10_1016_j_foreco_2022_120110
crossref_primary_10_1002_ecs2_4205
crossref_primary_10_1038_s41558_023_01923_x
crossref_primary_10_1093_jhered_esac048
crossref_primary_10_1016_j_nanoen_2022_107630
crossref_primary_10_1007_s40823_022_00075_6
crossref_primary_10_5572_KOSAE_2024_40_3_337
crossref_primary_10_1016_j_ijdrr_2025_105628
crossref_primary_10_3390_rs15215118
crossref_primary_10_1088_1748_9326_ad95a4
crossref_primary_10_1061_NHREFO_NHENG_1979
crossref_primary_10_1016_j_scitotenv_2022_155155
crossref_primary_10_7780_kjrs_2025_41_3_6
crossref_primary_10_1088_2634_4505_ad79dd
crossref_primary_10_1016_j_foreco_2022_120107
crossref_primary_10_1029_2021GL092830
crossref_primary_10_1016_j_envres_2024_119094
crossref_primary_10_3390_fire4020028
crossref_primary_10_1038_s41561_023_01166_7
crossref_primary_10_1002_eco_2697
crossref_primary_10_1002_ecs2_4793
crossref_primary_10_1038_s41612_024_00706_1
crossref_primary_10_3390_geosciences12050198
crossref_primary_10_1029_2024GL113708
crossref_primary_10_1088_1748_9326_ac1f44
crossref_primary_10_1073_pnas_2110364119
crossref_primary_10_1007_s10346_023_02143_2
crossref_primary_10_1016_j_scitotenv_2024_176543
crossref_primary_10_1038_s43247_025_02314_0
crossref_primary_10_1162_rest_a_01286
crossref_primary_10_3390_fire4030058
crossref_primary_10_3390_fire5010016
crossref_primary_10_1029_2021GH000457
crossref_primary_10_1007_s10708_024_11226_z
crossref_primary_10_1007_s11111_023_00416_5
crossref_primary_10_1016_j_habitatint_2023_102815
crossref_primary_10_1088_2515_7620_acbf13
crossref_primary_10_1186_s42408_021_00110_7
crossref_primary_10_1016_j_palaeo_2025_113159
crossref_primary_10_1080_09640568_2022_2150155
crossref_primary_10_1016_j_foreco_2022_120573
crossref_primary_10_1016_j_foreco_2022_120572
crossref_primary_10_1038_s41560_023_01306_8
crossref_primary_10_1007_s10530_021_02661_x
crossref_primary_10_1002_lol2_10360
crossref_primary_10_1111_fwb_14212
crossref_primary_10_1088_1748_9326_ad928f
crossref_primary_10_1029_2021GL096095
crossref_primary_10_1139_cjfr_2022_0328
crossref_primary_10_1002_joc_8551
crossref_primary_10_3389_fevo_2023_1229123
crossref_primary_10_3390_su17167409
crossref_primary_10_3390_fire4040090
crossref_primary_10_1186_s13705_023_00384_6
crossref_primary_10_1007_s11111_022_00409_w
crossref_primary_10_1029_2021JG006442
crossref_primary_10_1016_j_envpol_2022_119888
crossref_primary_10_1029_2021EA001828
crossref_primary_10_1289_EHP10544
crossref_primary_10_1038_s41559_021_01654_2
crossref_primary_10_3389_ffgc_2025_1519836
crossref_primary_10_1038_s41467_022_34950_x
crossref_primary_10_1186_s42408_024_00324_5
crossref_primary_10_1007_s10552_024_01949_2
crossref_primary_10_1029_2022JD036808
crossref_primary_10_1007_s42991_024_00439_x
crossref_primary_10_1088_1748_9326_ad86cf
crossref_primary_10_3390_fire5040095
crossref_primary_10_1073_pnas_2111875118
crossref_primary_10_1016_j_jenvman_2022_116092
crossref_primary_10_1080_10962247_2023_2291197
crossref_primary_10_3390_f16091423
crossref_primary_10_1525_001c_35472
crossref_primary_10_1029_2021GL092843
crossref_primary_10_1038_s41598_025_08179_9
crossref_primary_10_1161_CIRCULATIONAHA_121_058058
crossref_primary_10_1038_s41569_022_00720_x
crossref_primary_10_1016_j_foreco_2022_120315
crossref_primary_10_1029_2020JG005786
crossref_primary_10_1007_s11431_022_2174_9
crossref_primary_10_1029_2024GL109352
crossref_primary_10_1155_2024_3921093
crossref_primary_10_1186_s42408_025_00356_5
crossref_primary_10_1016_j_rse_2020_111797
crossref_primary_10_1175_JCLI_D_22_0101_1
crossref_primary_10_1029_2024EF004922
crossref_primary_10_3390_ijerph18041487
crossref_primary_10_1016_j_rse_2025_114718
crossref_primary_10_1029_2022EF003471
crossref_primary_10_1029_2024EA003939
crossref_primary_10_3390_fire7110419
crossref_primary_10_1111_geb_13555
crossref_primary_10_1038_s44304_025_00067_6
crossref_primary_10_1007_s11069_021_04973_6
crossref_primary_10_1038_s41598_020_76191_2
crossref_primary_10_3389_ffgc_2022_734330
crossref_primary_10_1002_ajim_23218
crossref_primary_10_1016_j_envint_2022_107719
crossref_primary_10_1029_2021EF002518
crossref_primary_10_1088_1748_9326_abae9e
crossref_primary_10_1016_j_gloplacha_2025_104948
crossref_primary_10_1080_02723646_2022_2035891
crossref_primary_10_1177_26349825221142293
crossref_primary_10_1029_2024GH001033
crossref_primary_10_1016_j_atmosres_2021_105804
crossref_primary_10_3390_su151813539
crossref_primary_10_1002_env_2873
crossref_primary_10_1007_s10668_020_00863_2
crossref_primary_10_1016_j_ympev_2022_107542
crossref_primary_10_1016_j_rse_2021_112649
crossref_primary_10_3390_environments9080096
crossref_primary_10_1088_1748_9326_acff0d
crossref_primary_10_1016_j_scitotenv_2021_147507
crossref_primary_10_1016_j_agrformet_2024_109920
crossref_primary_10_1097_EE9_0000000000000254
crossref_primary_10_1016_j_scitotenv_2023_164987
crossref_primary_10_1029_2020EF001910
crossref_primary_10_3390_su12030995
crossref_primary_10_1126_science_aaz9600
crossref_primary_10_1016_j_isprsjprs_2023_06_007
crossref_primary_10_3390_fire7050161
crossref_primary_10_1029_2023WR036582
crossref_primary_10_1088_1748_9326_ac8c58
crossref_primary_10_1002_hyp_70005
crossref_primary_10_1088_1748_9326_aced17
crossref_primary_10_3390_fire6080289
crossref_primary_10_5194_acp_21_16293_2021
crossref_primary_10_1038_s41586_021_04325_1
crossref_primary_10_1111_csp2_606
crossref_primary_10_3390_rs12162565
crossref_primary_10_1513_AnnalsATS_201902_150OC
crossref_primary_10_1002_ecs2_3756
crossref_primary_10_1038_s41598_022_16607_3
crossref_primary_10_3390_fire8010004
crossref_primary_10_1007_s41810_025_00306_3
crossref_primary_10_1016_j_eswa_2021_116380
crossref_primary_10_1371_journal_pone_0321476
crossref_primary_10_1007_s41742_022_00433_6
crossref_primary_10_1038_s41598_022_06050_9
crossref_primary_10_1029_2023JD039136
crossref_primary_10_1088_2515_7620_adf813
crossref_primary_10_1080_07038992_2022_2054405
crossref_primary_10_1007_s10980_020_01118_1
crossref_primary_10_1038_s41598_023_43118_6
crossref_primary_10_1038_s43247_024_01893_8
crossref_primary_10_1111_ddi_13394
crossref_primary_10_1016_j_scitotenv_2022_155723
crossref_primary_10_1016_j_biocon_2022_109819
crossref_primary_10_1111_afe_12587
crossref_primary_10_5194_acp_24_11727_2024
crossref_primary_10_5194_essd_16_3495_2024
crossref_primary_10_1111_jfr3_70054
crossref_primary_10_1097_EE9_0000000000000114
crossref_primary_10_1080_15481603_2025_2510869
crossref_primary_10_1088_1748_9326_aba8c2
crossref_primary_10_1016_j_foreco_2022_120757
crossref_primary_10_3390_f14061229
crossref_primary_10_1001_jamaneurol_2024_4058
crossref_primary_10_1029_2019RG000692
crossref_primary_10_1177_25148486211054334
crossref_primary_10_1080_13505033_2022_2133790
crossref_primary_10_1088_1748_9326_abde09
crossref_primary_10_1111_ddi_13281
crossref_primary_10_3390_rs15174208
crossref_primary_10_1038_s41467_022_34966_3
crossref_primary_10_1016_j_ecolmodel_2023_110277
crossref_primary_10_1016_j_envpol_2022_119213
crossref_primary_10_1088_1748_9326_aba135
crossref_primary_10_5194_nhess_21_2169_2021
crossref_primary_10_1016_j_chemosphere_2024_142950
crossref_primary_10_3390_cli11100207
crossref_primary_10_1002_ecs2_3734
crossref_primary_10_1080_10962247_2022_2050962
crossref_primary_10_3389_fevo_2023_1149509
crossref_primary_10_1021_acs_est_5c03041
crossref_primary_10_1038_s43247_022_00344_6
crossref_primary_10_1080_23311886_2023_2282210
crossref_primary_10_1007_s00704_024_04893_y
crossref_primary_10_24857_rgsa_v19n7_116
crossref_primary_10_1016_j_cjca_2023_06_419
crossref_primary_10_1073_pnas_2201954120
crossref_primary_10_1016_j_geopsy_2025_100008
crossref_primary_10_1016_j_atmosenv_2025_121069
crossref_primary_10_1111_jbfa_12674
crossref_primary_10_1016_j_ijdrr_2025_105230
crossref_primary_10_1109_TGRS_2021_3105438
crossref_primary_10_1898_NWN23_18
crossref_primary_10_1016_j_rse_2024_114000
crossref_primary_10_1016_j_scitotenv_2025_179146
crossref_primary_10_1016_j_agrformet_2023_109750
crossref_primary_10_3390_su14020810
crossref_primary_10_1016_j_enggeo_2024_107538
crossref_primary_10_1016_j_scitotenv_2023_165510
crossref_primary_10_1029_2020GL090350
crossref_primary_10_1038_s41467_021_26232_9
crossref_primary_10_3390_f16050779
crossref_primary_10_1016_j_rsase_2024_101346
crossref_primary_10_1093_jcde_qwac027
crossref_primary_10_1016_j_ijdrr_2023_103618
crossref_primary_10_1080_2331186X_2023_2277575
crossref_primary_10_1016_j_jeem_2025_103166
crossref_primary_10_1088_1748_9326_adab86
crossref_primary_10_1016_j_jort_2023_100675
crossref_primary_10_1073_pnas_2109481118
crossref_primary_10_33494_nzjfs552025x405x
crossref_primary_10_1007_s10531_020_02101_7
crossref_primary_10_1111_1752_1688_13211
crossref_primary_10_1016_j_erss_2022_102495
crossref_primary_10_1088_1748_9326_ade892
crossref_primary_10_3390_fire8020084
crossref_primary_10_1016_j_scitotenv_2025_179594
crossref_primary_10_1029_2020GL091410
crossref_primary_10_1007_s12524_024_02002_0
crossref_primary_10_1038_s41612_024_00649_7
crossref_primary_10_1016_j_buildenv_2024_112475
crossref_primary_10_1111_pce_14176
crossref_primary_10_1002_joc_8162
crossref_primary_10_1016_j_foreco_2020_118609
crossref_primary_10_1017_qua_2020_48
crossref_primary_10_3390_w13162303
crossref_primary_10_1029_2023EF004172
crossref_primary_10_1016_j_rse_2022_112964
crossref_primary_10_1093_jhered_esab027
crossref_primary_10_1016_j_jenvman_2022_116134
crossref_primary_10_1038_s41612_024_00614_4
crossref_primary_10_1002_eap_2844
crossref_primary_10_1002_ece3_8026
crossref_primary_10_1001_jamanetworkopen_2023_5863
crossref_primary_10_1007_s10584_022_03399_8
crossref_primary_10_1126_science_adl5889
crossref_primary_10_1364_AO_494101
crossref_primary_10_1016_j_scitotenv_2023_162462
crossref_primary_10_1088_2515_7620_abd836
crossref_primary_10_1029_2020JD032657
crossref_primary_10_1111_gcb_15388
crossref_primary_10_3390_cli12070094
crossref_primary_10_3390_fire8090354
crossref_primary_10_1016_j_foreco_2024_122010
crossref_primary_10_1111_afe_12535
crossref_primary_10_1001_jamanetworkopen_2023_56466
crossref_primary_10_1016_j_foreco_2024_122331
crossref_primary_10_1186_s42408_024_00257_z
crossref_primary_10_1029_2023GL104626
crossref_primary_10_3390_fire7110379
crossref_primary_10_1093_pnasnexus_pgad004
crossref_primary_10_1093_pnasnexus_pgad005
crossref_primary_10_1001_jamadermatol_2021_0179
crossref_primary_10_3390_fire5050126
crossref_primary_10_1016_j_wace_2024_100716
crossref_primary_10_3390_fire5060177
crossref_primary_10_1016_j_foreco_2020_118864
crossref_primary_10_1029_2020EF001645
crossref_primary_10_1016_j_envsci_2021_12_015
crossref_primary_10_1002_hyp_13976
crossref_primary_10_1021_acsestair_4c00226
crossref_primary_10_1016_j_rse_2022_112890
crossref_primary_10_1029_2024JD041002
crossref_primary_10_1080_07448481_2022_2047706
crossref_primary_10_1071_WF23190
crossref_primary_10_1080_24694452_2020_1813013
crossref_primary_10_1016_j_foreco_2024_122226
crossref_primary_10_1080_10962247_2021_1942319
crossref_primary_10_1080_15715124_2025_2475804
crossref_primary_10_1016_j_ijdrr_2025_105396
crossref_primary_10_1021_acsestair_4c00232
crossref_primary_10_1002_joc_6607
crossref_primary_10_1016_j_scitotenv_2023_162836
crossref_primary_10_1080_24694452_2024_2400078
crossref_primary_10_1007_s41885_021_00088_1
crossref_primary_10_1038_s43247_024_01404_9
crossref_primary_10_1088_1748_9326_ac02ee
crossref_primary_10_1164_rccm_202207_1372ED
crossref_primary_10_1186_s42408_024_00331_6
crossref_primary_10_3390_f15071197
crossref_primary_10_1038_s41612_023_00491_3
crossref_primary_10_1007_s11069_025_07458_y
crossref_primary_10_1038_s41612_025_01021_z
crossref_primary_10_1371_journal_pone_0299937
crossref_primary_10_1016_j_scitotenv_2023_169463
crossref_primary_10_1186_s42408_023_00179_2
crossref_primary_10_3389_fearc_2025_1547180
crossref_primary_10_1007_s11069_023_06367_2
crossref_primary_10_1177_1075547020980443
crossref_primary_10_1126_science_adw1493
crossref_primary_10_3390_ijgi12120474
crossref_primary_10_1111_1365_2745_13764
crossref_primary_10_1080_10962247_2025_2553822
crossref_primary_10_1007_s10745_022_00338_0
crossref_primary_10_1016_j_indenv_2024_100057
crossref_primary_10_1029_2022GL099308
crossref_primary_10_1175_WAF_D_21_0028_1
crossref_primary_10_1038_s41467_020_20570_w
crossref_primary_10_1177_00207314211012155
crossref_primary_10_3390_fire5050133
crossref_primary_10_1016_j_jenvman_2021_114255
crossref_primary_10_1093_treephys_tpae004
crossref_primary_10_1016_j_apgeog_2024_103271
crossref_primary_10_1029_2023AV001070
crossref_primary_10_1371_journal_pone_0274428
crossref_primary_10_1038_s41612_024_00821_z
crossref_primary_10_1088_1748_9326_ad22b8
crossref_primary_10_1038_s41467_022_30030_2
crossref_primary_10_1029_2024JD041155
crossref_primary_10_1186_s42408_025_00351_w
crossref_primary_10_1057_s41599_022_01130_7
crossref_primary_10_1016_j_scitotenv_2022_153654
crossref_primary_10_3390_s24165084
crossref_primary_10_1016_j_foreco_2025_122930
crossref_primary_10_1007_s12145_024_01661_4
crossref_primary_10_1029_2024EF005256
crossref_primary_10_3390_app12042187
crossref_primary_10_3390_risks10060126
crossref_primary_10_1007_s12517_023_11544_5
crossref_primary_10_1038_s43247_025_02387_x
crossref_primary_10_1016_j_agrformet_2024_110043
crossref_primary_10_1038_s41467_024_54339_2
crossref_primary_10_1002_hyp_13931
crossref_primary_10_1038_s41558_024_02140_w
crossref_primary_10_1029_2023JD039118
crossref_primary_10_1038_s41893_024_01291_0
crossref_primary_10_1016_j_agrformet_2025_110688
crossref_primary_10_1016_j_gloplacha_2023_104069
crossref_primary_10_1016_j_foreco_2021_119919
crossref_primary_10_1071_WF23148
crossref_primary_10_2478_forj_2022_0009
crossref_primary_10_1038_s41598_024_70082_6
crossref_primary_10_1088_1748_9326_ad4fa5
crossref_primary_10_1016_j_jhydrol_2022_128211
crossref_primary_10_3390_fire7070247
crossref_primary_10_1016_j_scitotenv_2021_152453
crossref_primary_10_1038_s43017_022_00329_1
crossref_primary_10_1016_j_scitotenv_2024_170321
crossref_primary_10_1073_pnas_2009717118
crossref_primary_10_1126_sciadv_adt2041
crossref_primary_10_3390_rs12010166
crossref_primary_10_1002_jwmg_70081
crossref_primary_10_1088_1748_9326_ac9704
crossref_primary_10_1186_s12889_025_21295_5
crossref_primary_10_1002_fee_2359
crossref_primary_10_1029_2024EF005030
crossref_primary_10_1038_s41467_025_56218_w
crossref_primary_10_1016_j_wace_2023_100622
crossref_primary_10_1016_j_scitotenv_2020_142233
crossref_primary_10_1038_s43247_024_01449_w
crossref_primary_10_1029_2019MS001955
crossref_primary_10_1038_s41467_021_21708_0
crossref_primary_10_1016_j_wace_2022_100482
crossref_primary_10_1038_d41586_022_00352_8
crossref_primary_10_1038_s41612_021_00220_8
crossref_primary_10_1071_WF22065
crossref_primary_10_1088_1748_9326_acad15
crossref_primary_10_5194_bg_18_4005_2021
crossref_primary_10_1016_j_agrformet_2025_110456
crossref_primary_10_1038_s41598_022_14480_8
crossref_primary_10_1038_s41586_024_07878_z
crossref_primary_10_1016_j_agrformet_2021_108549
crossref_primary_10_1029_2020JD033484
crossref_primary_10_1097_EDE_0000000000001634
crossref_primary_10_1093_treephys_tpad108
crossref_primary_10_1088_1748_9326_ac6886
crossref_primary_10_1088_1748_9326_ac7735
crossref_primary_10_1088_1748_9326_ac80d0
crossref_primary_10_1161_CIRCRESAHA_124_323614
crossref_primary_10_1088_1748_9326_ac39be
crossref_primary_10_5194_nhess_22_659_2022
crossref_primary_10_1111_ecog_06401
crossref_primary_10_1029_2020GL091377
crossref_primary_10_1002_ajb2_70012
crossref_primary_10_1016_j_ijdrr_2024_104716
crossref_primary_10_1016_j_jogn_2025_04_006
crossref_primary_10_1080_13549839_2022_2136641
crossref_primary_10_1186_s13021_024_00282_0
crossref_primary_10_1038_s41612_025_00906_3
crossref_primary_10_1038_s43247_020_00065_8
crossref_primary_10_1016_j_erss_2020_101757
crossref_primary_10_1007_s40725_022_00161_2
crossref_primary_10_1038_s41598_021_02844_5
crossref_primary_10_1071_WF22083
crossref_primary_10_5194_acp_21_14427_2021
crossref_primary_10_1007_s00704_025_05589_7
crossref_primary_10_3390_f16071041
crossref_primary_10_1029_2020EF001735
crossref_primary_10_1029_2021EF002528
crossref_primary_10_1007_s10584_024_03825_z
crossref_primary_10_1542_peds_2020_027128
crossref_primary_10_1029_2020EF001736
crossref_primary_10_1016_j_foreco_2023_121263
crossref_primary_10_1038_s41586_023_06444_3
Cites_doi 10.1080/24694452.2018.1470922
10.1371/journal.pone.0127563
10.3390/fire1010004
10.1175/JCLI-D-14-00196.1
10.1890/07-1183.1
10.1371/journal.pone.0188486
10.1071/WF13005
10.1111/j.1466-8238.2009.00512.x
10.1007/0-387-21710-X_6
10.1126/science.1259100
10.1038/s41612-018-0012-1
10.1175/1520-0442(1998)011<3128:MDAERT>2.0.CO;2
10.1093/jof/107.6.287
10.3390/fire1010018
10.1002/2017JD027523
10.1071/WF18026
10.1088/1748-9326/9/12/124009
10.1111/geb.12065
10.1175/BAMS-84-5-595
10.1007/s10584-011-0329-9
10.1038/s41558-019-0505-x
10.1175/JCLI-D-14-00624.1
10.1002/2016GL067887
10.1029/2018GL078312
10.1175/BAMS-D-11-00094.1
10.1007/s10661-010-1385-8
10.1002/2015GL063266
10.1175/JAMC-D-13-0248.1
10.1007/s10021-015-9890-9
10.1029/2009GL041735
10.3390/fire1010017
10.3390/geosciences6030037
10.1029/2018GL080261
10.1175/JAMC-D-18-0150.1
10.1073/pnas.1802316115
10.1038/s41598-019-39284-1
10.1073/pnas.1718850115
10.1038/s41558-018-0140-y
10.1126/science.1128834
10.1073/pnas.1713885114
10.1002/2015GL064924
10.1016/j.gloenvcha.2019.03.007
10.1007/s10584-007-9363-z
10.1038/s41598-017-17966-y
10.1002/joc.3413
10.1071/WF15083
10.1002/2013JG002541
10.1071/WF14023
10.1890/04-1222
10.1007/s40641-016-0031-0
10.1088/1748-9326/11/4/045005
10.1111/j.1466-8238.2011.00748.x
10.1088/1748-9326/aa8fde
10.1038/s41598-017-11285-y
10.1175/JTECH-D-11-00103.1
10.1071/WF13046
10.1071/WF03037
10.1071/WF13019
10.1007/s40641-018-0109-y
10.1080/01621459.1968.10480934
10.1038/nclimate2783
10.1007/s10584-011-0300-9
10.1002/2014GL059576
10.1029/2018EF000878
10.1175/JCLI-D-13-00273.1
10.1175/WAF-D-13-00002.1
10.1046/j.1523-1739.1995.09040902.x
10.1175/1087-3562(2003)007<0001:TSAWOC>2.0.CO;2
10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
10.1071/WF16165
10.1073/pnas.1617394114
10.1002/eap.1420
10.1111/gcb.14405
10.1046/j.1523-1739.2001.00097.x
10.1007/s00382-009-0650-4
10.1088/1748-9326/10/9/094005
10.1175/JCLI3837.1
10.1111/gcb.13544
10.1007/s10584-011-0148-z
10.1126/science.262.5135.885
10.1126/science.1152538
10.1371/journal.pone.0153589
10.1038/srep04364
10.1098/rstb.2015.0178
10.1038/sdata.2015.42
10.1890/ES15-00294.1
10.1175/JCLI-D-14-00197.1
10.1175/JCLI-D-12-00508.1
10.1007/s00382-012-1337-9
10.1029/2018GL077319
10.2737/PSW-GTR-82
10.1073/pnas.1607171113
10.1073/pnas.1112839109
10.1890/04-0545
10.1029/2004EO310001
10.1071/WF16102
10.1073/pnas.1609775113
ContentType Journal Article
Copyright 2019. The Authors.
2019. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019. The Authors.
– notice: 2019. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7ST
7TG
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
GNUQQ
HCIFZ
KL.
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
SOI
DOA
DOI 10.1029/2019EF001210
DatabaseName Wiley Online Library Open Access
CrossRef
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
Environment Abstracts
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest One Academic
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database


CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ (Directory of Open Access Journals)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
EISSN 2328-4277
EndPage 910
ExternalDocumentID oai_doaj_org_article_51ddcfe93c484a42a0bf89766963cf9e
10_1029_2019EF001210
EFT2577
Genre article
GeographicLocations United States--US
California
GeographicLocations_xml – name: United States--US
– name: California
GrantInformation_xml – fundername: NOAA via the CNAP RISA
– fundername: Columbia University's Center for Climate and Life and the Zegar Family Foundation
– fundername: DOI's Southwest Climate Adaptation Science Center
  funderid: G18AC00320
– fundername: Visiting Scholar Program and Fire Centre Research Hub at the University of Tasmania
– fundername: USGS North Central Climate Adaptation Science Center
– fundername: University of California Office of the President MRPI
  funderid: MRP‐17‐446315
– fundername: Earth Lab through CIRES and the University of Colorado, Boulder's Grand Challenge Initiative
– fundername: Zegar Family Foundation
– fundername: Columbia University's Center for Climate and Life
GroupedDBID 0R~
1OC
24P
5VS
7XC
8-1
8FE
8FH
8GL
AAHBH
AAHHS
AAZKR
ACCFJ
ACCMX
ACQOY
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AEUYN
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ATCPS
AVUZU
BCNDV
BENPR
BHPHI
BKSAR
CCPQU
EBS
EDH
EJD
GICCO
GODZA
GROUPED_DOAJ
HCIFZ
IEP
ISN
ITC
LK5
M7R
M~E
OK1
PATMY
PCBAR
PIMPY
PROAC
PYCSY
SUPJJ
WIN
~OA
AAMMB
AAYXX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
BANNL
CITATION
IAO
PHGZM
PHGZT
7ST
7TG
ABUWG
AZQEC
C1K
DWQXO
GNUQQ
KL.
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
SOI
ID FETCH-LOGICAL-c4757-31a141d81c8f71476ef2467d197ef24f3d5634f98ca6dd3104884834f40977833
IEDL.DBID DOA
ISICitedReferencesCount 728
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000490911600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2328-4277
IngestDate Fri Oct 03 12:42:22 EDT 2025
Fri Jul 25 04:43:11 EDT 2025
Tue Nov 18 22:20:50 EST 2025
Sat Nov 29 04:06:24 EST 2025
Wed Jan 22 16:39:52 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4757-31a141d81c8f71476ef2467d197ef24f3d5634f98ca6dd3104884834f40977833
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0914-0726
0000-0002-0394-5996
0000-0001-7599-9750
0000-0001-8176-8166
0000-0002-6598-6638
0000-0001-6040-454X
OpenAccessLink https://doaj.org/article/51ddcfe93c484a42a0bf89766963cf9e
PQID 2287311175
PQPubID 2034575
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_51ddcfe93c484a42a0bf89766963cf9e
proquest_journals_2287311175
crossref_citationtrail_10_1029_2019EF001210
crossref_primary_10_1029_2019EF001210
wiley_primary_10_1029_2019EF001210_EFT2577
PublicationCentury 2000
PublicationDate August 2019
2019-08-00
20190801
2019-08-01
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: August 2019
PublicationDecade 2010
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle Earth's future
PublicationYear 2019
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2017; 7
2013; 26
2013; 28
2013; 27
2013; 22
2010; 19
2019; 56
2019; 58
2018; 45
2017; 114
2014; 23
1965; 19
1978
1968; 63
1996; 77
2018; 6
2018; 8
2014; 4
2018; 4
2018; 1
2015; 42
2003; 7
2008; 319
2016; 113
2016; 43
1985
2001; 15
2012; 29
2014; 9
2017; 122
2009; 19
2003; 84
1998; 11
2014; 53
2010; 34
2015; 2
2014; 119
1995; 9
2004; 85
2019; 9
2015; 6
2010; 37
2015; 18
2017; 26
2012
2018; 108
2013; 40
2015; 10
2017; 23
1998
1993; 262
1996
2006; 19
2004
2003
2014; 41
2011; 173
2006; 313
2018; 27
2012; 109
2016; 11
2018; 24
2015; 24
2012; 93
2016; 6
2015; 28
2011; 109
2016; 2
2013; 33
2019; 46
2018; 115
2004; 13
2017; 12
2018
2008; 87
2005; 15
2009; 107
2016; 27
2014; 346
2016; 371
e_1_2_6_53_1
e_1_2_6_76_1
e_1_2_6_95_1
e_1_2_6_30_1
e_1_2_6_72_1
e_1_2_6_91_1
e_1_2_6_110_1
e_1_2_6_19_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_99_1
cr-split#-e_1_2_6_25_1.2
cr-split#-e_1_2_6_25_1.1
e_1_2_6_64_1
e_1_2_6_87_1
e_1_2_6_106_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_83_1
e_1_2_6_102_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_49_1
e_1_2_6_22_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_68_1
e_1_2_6_73_1
e_1_2_6_54_1
e_1_2_6_96_1
e_1_2_6_31_1
e_1_2_6_50_1
Swetnam T. W. (e_1_2_6_89_1) 1996
e_1_2_6_92_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_39_1
e_1_2_6_77_1
e_1_2_6_16_1
e_1_2_6_58_1
e_1_2_6_84_1
e_1_2_6_42_1
e_1_2_6_105_1
e_1_2_6_65_1
e_1_2_6_80_1
e_1_2_6_109_1
e_1_2_6_61_1
e_1_2_6_101_1
e_1_2_6_6_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_88_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_97_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_93_1
e_1_2_6_112_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_78_1
e_1_2_6_62_1
e_1_2_6_85_1
e_1_2_6_104_1
e_1_2_6_81_1
e_1_2_6_20_1
e_1_2_6_108_1
e_1_2_6_100_1
Keeley J. E. (e_1_2_6_43_1) 2009; 107
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_28_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_98_1
e_1_2_6_75_1
e_1_2_6_10_1
e_1_2_6_94_1
e_1_2_6_71_1
e_1_2_6_90_1
e_1_2_6_111_1
e_1_2_6_14_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_56_1
Monteith J. L. (e_1_2_6_66_1) 1965; 19
e_1_2_6_37_1
e_1_2_6_79_1
e_1_2_6_103_1
e_1_2_6_63_1
e_1_2_6_86_1
e_1_2_6_21_1
e_1_2_6_107_1
e_1_2_6_40_1
e_1_2_6_82_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_48_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
References_xml – volume: 109
  start-page: 119
  issue: 1
  year: 2011
  end-page: 132
  article-title: Human‐induced changes in wind, temperature and relative humidity during Santa Ana events
  publication-title: Climatic Change
– volume: 26
  start-page: 253
  issue: 4
  year: 2017
  end-page: 268
  article-title: Different historical fire–climate patterns in California
  publication-title: International Journal of Wildland Fire
– volume: 15
  start-page: 532
  issue: 2
  year: 2005
  end-page: 542
  article-title: Federal forest‐fire policy in the United States
  publication-title: Ecological Applications
– volume: 7
  start-page: 10,783
  issue: 1
  year: 2017
  article-title: Precipitation in a warming world: Assessing projected hydro‐climate changes in California and other Mediterranean climate regions
  publication-title: Scientific Reports
– volume: 28
  start-page: 4618
  year: 2015
  end-page: 4636
  article-title: A hybrid dynamical‐statistical downscaling technique, part II: End‐of‐century warming projections predict a new climate state in the Los Angeles region
  publication-title: Journal of Climate
– volume: 1
  start-page: 17
  issue: 1
  year: 2018
  article-title: Switching on the big burn of 2017
  publication-title: Fire
– volume: 371
  issue: 1696
  year: 2016
  article-title: Increasing western US forest wildfire activity: Sensitivity to changes in the timing of spring
  publication-title: Philosophical Transactions of the Royal Society B
– volume: 115
  start-page: E8349
  issue: 36
  year: 2018
  end-page: E8357
  article-title: Decreasing fire season precipitation increased recent western US forest wildfire activity
  publication-title: Proceedings of the National Academy of Sciences USA
– volume: 109
  start-page: 445
  issue: 1
  year: 2011
  end-page: 463
  article-title: Climate change and growth scenarios for California wildfire
  publication-title: Climatic Change
– volume: 15
  start-page: 2109
  issue: 6
  year: 2005
  end-page: 2125
  article-title: Alien plant dynamics following fire in Mediterranean‐climate California shrublands
  publication-title: Ecological Applications
– volume: 119
  start-page: 432
  year: 2014
  end-page: 450
  article-title: Contrasting controls on wildland fires in Southern California during periods with and without Santa Ana winds
  publication-title: Journal of Geophysical Research: Biogeosciences
– volume: 28
  start-page: 3597
  year: 2015
  end-page: 4617
  article-title: A hybrid dynamical‐statistical downscaling technique, part I: Development and validation of a technique
  publication-title: Journal of Climate
– volume: 42
  start-page: 1527
  year: 2015
  end-page: 1536
  article-title: Urbanization causes increased cloud‐base height and decreased fog in coastal southern California
  publication-title: Geophysical Research Letters
– year: 1998
– volume: 22
  start-page: 1003
  issue: 7
  year: 2013
  end-page: 1020
  article-title: Relationships between climate and macroscale area burned in the western United States
  publication-title: International Journal of Wildland Fire
– volume: 45
  start-page: 6251
  year: 2018
  end-page: 6261
  article-title: Attributing the US Southwest's recent shift into drier conditions
  publication-title: Geophysical Research Letters
– volume: 9
  start-page: 517
  year: 2019
  end-page: 522
  article-title: Strengthening tropical Pacific zonal sea surface temperature gradient consistent with greenhouse gases
  publication-title: Nature Climate Change
– volume: 13
  start-page: 173
  issue: 2
  year: 2004
  end-page: 182
  article-title: Impact of antecedent climate on fire regimes in coastal California
  publication-title: International Journal of Wildland Fire
– start-page: 11
  year: 1996
  end-page: 32
– volume: 22
  start-page: 264
  issue: 3
  year: 2013
  end-page: 276
  article-title: Widespread shifts in the demographic structure of subalpine forests in the Sierra Nevada, California, 1934 to 2007
  publication-title: Global Ecology and Biogeography
– volume: 84
  start-page: 595
  issue: 5
  year: 2003
  end-page: 604
  article-title: Climate and wildfire in the western United States
  publication-title: Bulletin of the American Meteorological Society
– volume: 28
  start-page: 704
  issue: 3
  year: 2013
  end-page: 710
  article-title: Diagnosing Santa Ana winds in Southern California with synoptic‐scale analysis
  publication-title: Weather and Forecasting
– volume: 15
  start-page: 1536
  issue: 6
  year: 2001
  end-page: 1548
  article-title: Historic fire regime in southern California shrublands
  publication-title: Conservation Biology
– volume: 23
  start-page: 2016
  issue: 5
  year: 2017
  end-page: 2030
  article-title: Response of Sierra Nevada forests to projected climate‐wildfire interactions
  publication-title: Global Change Biology
– volume: 9
  start-page: 902
  issue: 4
  year: 1995
  end-page: 914
  article-title: Sixty years of change in Californian conifer forests of the San Bernardino Mountains
  publication-title: Conservation Biology
– volume: 109
  start-page: 5
  issue: 1‐2
  year: 2011
  end-page: 31
  article-title: The representative concentration pathways: An overview
  publication-title: Climatic Change
– volume: 4
  start-page: 4364
  year: 2014
  article-title: The key role of dry days in changing regional climate and precipitation regimes
  publication-title: Scientific Reports
– volume: 1
  issue: 1
  year: 2018
  article-title: Dramatic declines in snowpack in the western US
  publication-title: npj Climate and Atmospheric Science
– volume: 43
  start-page: 2827
  year: 2016
  end-page: 2834
  article-title: Santa Ana Winds of Southern California: Their climatology, extremes, and behavior spanning six and a half decades
  publication-title: Geophysical Research Letters
– volume: 9
  start-page: 2838
  issue: 1
  year: 2019
  article-title: Vegetation‐fire feedback reduces projected area burned under climate change
  publication-title: Scientific reports
– volume: 19
  start-page: 4308
  issue: 17
  year: 2006
  end-page: 4325
  article-title: Local regimes of atmospheric variability: A case study of Southern California
  publication-title: Journal of Climate
– volume: 346
  start-page: 851
  issue: 6211
  year: 2014
  end-page: 854
  article-title: Projected increase in lightning strikes in the United States due to global warming
  publication-title: Science
– volume: 6
  start-page: 37
  issue: 3
  year: 2016
  article-title: Climate change and future fire regimes: Examples from California
  publication-title: Geosciences
– volume: 34
  start-page: 847
  issue: 6
  year: 2010
  end-page: 857
  article-title: Local and synoptic mechanisms causing Southern California's Santa Ana winds
  publication-title: Climate Dynamics
– volume: 24
  start-page: 14
  issue: 1
  year: 2015
  end-page: 26
  article-title: Correlations between components of the water balance and burned area reveal new insights for predicting fire activity in the southwest US
  publication-title: International Journal of Wildland Fire
– volume: 113
  start-page: 11,770
  issue: 42
  year: 2016
  end-page: 11,775
  article-title: Impact of anthropogenic climate change on wildfire across western US forests
  publication-title: Proceedings of the National Academy of Sciences USA
– volume: 42
  start-page: 6819
  year: 2015
  end-page: 6828
  article-title: Contribution of anthropogenic warming to California drought during 2012–2014
  publication-title: Geophysical Research Letters
– volume: 53
  start-page: 1232
  issue: 5
  year: 2014
  end-page: 1251
  article-title: Improved historical temperature and precipitation time series for US climate divisions
  publication-title: Journal of Applied Meteorology and Climatology
– volume: 28
  start-page: 6324
  issue: 16
  year: 2015
  end-page: 6334
  article-title: Increased interannual precipitation extremes over California under climate change
  publication-title: Journal of Climate
– volume: 1
  start-page: 4
  issue: 1
  year: 2018
  article-title: Human‐related ignitions increase the number of large wildfires across US ecoregions
  publication-title: Fire
– volume: 4
  start-page: 396
  issue: 4
  year: 2018
  end-page: 406
  article-title: Drought and fire in the Western USA: Is climate attribution enough?
  publication-title: Current Climate Change Reports
– volume: 11
  start-page: 3128
  issue: 12
  year: 1998
  end-page: 3147
  article-title: Mesoscale disturbance and ecological response to decadal climatic variability in the American Southwest
  publication-title: Journal of Climate
– volume: 56
  start-page: 41
  year: 2019
  end-page: 55
  article-title: The relative influence of climate and housing development on current and projected future fire patterns and structure loss across three California landscapes
  publication-title: Global Environmental Change
– volume: 26
  start-page: 9384
  issue: 23
  year: 2013
  end-page: 9392
  article-title: A long‐term hydrologically based dataset of land surface fluxes and states for the conterminous United States: Update and extensions
  publication-title: Journal of Climate
– volume: 1
  start-page: 18
  issue: 1
  year: 2018
  article-title: The 2017 North Bay and Southern California Fires: A case study
  publication-title: Fire
– year: 1978
– volume: 85
  start-page: 289
  issue: 31
  year: 2004
  end-page: 296
  article-title: Climate, Santa Ana winds and autumn wildfires in southern California,
  publication-title: Transactions American Geophysical Union
– volume: 109
  start-page: E535
  issue: 9
  year: 2012
  end-page: E543
  article-title: Long‐term perspective on wildfires in the western USA
  publication-title: Proceedings of the National Academy of Sciences USA
– volume: 93
  start-page: 485
  issue: 4
  year: 2012
  end-page: 498
  article-title: An overview of CMIP5 and the experiment design
  publication-title: Bulletin of the American Meteorological Society
– volume: 9
  issue: 12
  year: 2014
  article-title: Modeling very large‐fire occurrences over the continental United States from weather and climate forcing
  publication-title: Environmental Research Letters
– year: 1985
– volume: 262
  start-page: 885
  issue: 5135
  year: 1993
  end-page: 889
  article-title: Fire history and climate change in giant sequoia groves
  publication-title: Science
– volume: 108
  start-page: 1635
  issue: 6
  year: 2018
  end-page: 1654
  article-title: Using paleolandscape modeling to investigate the impact of Native American–Set fires on pre‐Columbian forests in the Southern Sierra Nevada, California, USA
  publication-title: Annals of the American Association of Geographers
– volume: 6
  start-page: 1097
  issue: 8
  year: 2018
  end-page: 1111
  article-title: Climate change and future wildfire in the western United States: An ecological approach to nonstationarity
  publication-title: Earth's Future
– volume: 7
  start-page: 1
  issue: 8
  year: 2003
  end-page: 13
  article-title: The Santa Ana winds of California
  publication-title: Earth Interactions
– volume: 114
  start-page: 13,750
  issue: 52
  year: 2017
  end-page: 13,755
  article-title: Human presence diminishes the importance of climate in driving fire activity across the United States
  publication-title: Proceedings of the National Academy of Sciences USA
– volume: 10
  issue: 6
  year: 2015
  article-title: The changing strength and nature of fire‐climate relationships in the Northern Rocky Mountains, USA, 1902‐2008
  publication-title: PloS ONE
– volume: 19
  start-page: 1003
  issue: 4
  year: 2009
  end-page: 1021
  article-title: Climate and wildfire area burned in Western US ecoprovinces, 1916‐2003
  publication-title: Ecological Applications
– volume: 313
  start-page: 940
  issue: 5789
  year: 2006
  end-page: 943
  article-title: Warming and earlier spring increase western US forest wildfire activity
  publication-title: Science
– year: 2018
– volume: 10
  issue: 9
  year: 2015
  article-title: Identification of two distinct fire regimes in Southern California: Implications for economic impact and future change
  publication-title: Environmental Research Letters
– volume: 2
  issue: 1
  year: 2015
  article-title: A spatially comprehensive, hydrometeorological data set for Mexico, the US, and Southern Canada 1950–2013
  publication-title: Scientific Data
– volume: 87
  start-page: 231
  issue: 1
  year: 2008
  end-page: 249
  article-title: Climate change and wildfire in California
  publication-title: Climatic Change
– volume: 12
  start-page: 114008
  issue: 11
  year: 2017
  article-title: The 2015 drought in Washington State: A harbinger of things to come?
  publication-title: Environmental Research Letters
– start-page: 158
  year: 2003
  end-page: 195
– volume: 26
  start-page: 269
  issue: 4
  year: 2017
  end-page: 275
  article-title: Climatic influences on interannual variability in regional burn severity across western US forests
  publication-title: International Journal of Wildland Fire
– volume: 41
  start-page: 2928
  year: 2014
  end-page: 2933
  article-title: Large wildfire trends in the western United States, 1984–2011
  publication-title: Geophysical Research Letters
– volume: 24
  start-page: 5164
  issue: 11
  year: 2018
  end-page: 5175
  article-title: Global patterns of interannual climate‐fire relationships
  publication-title: Global Change Biology
– volume: 29
  start-page: 897
  issue: 7
  year: 2012
  end-page: 910
  article-title: An overview of the global historical climatology network‐daily database
  publication-title: Journal of Atmospheric and Oceanic Technology
– year: 2004
– volume: 8
  start-page: 427
  year: 2018
  end-page: 433
  article-title: Increasing precipitation volatility in twenty‐first‐century California
  publication-title: Nature Climate Change
– volume: 77
  start-page: 437
  issue: 3
  year: 1996
  end-page: 471
  article-title: The NCEP/NCAR 40‐year reanalysis project
  publication-title: Bulletin of the American Meteorological Society
– volume: 113
  start-page: 13,684
  issue: 48
  year: 2016
  end-page: 13,689
  article-title: Socioecological transitions trigger fire regime shifts and modulate fire–climate interactions in the Sierra Nevada, USA, 1600–2015 CE
  publication-title: Proceedings of the National Academy of Sciences USA
– volume: 19
  start-page: 145
  issue: 2
  year: 2010
  end-page: 158
  article-title: A biogeographic model of fire regimes in Australia: Current and future implications
  publication-title: Global Ecology and Biogeography
– volume: 45
  start-page: 5653
  year: 2018
  end-page: 5662
  article-title: Effect of reduced summer cloud shading on evaporative demand and wildfire in coastal southern California
  publication-title: Geophysical Research Letters
– volume: 27
  start-page: 2230
  issue: 6
  year: 2013
  end-page: 2270
  article-title: North American climate in CMIP5 experiments: Part III: Assessment of twenty‐first century projections
  publication-title: Journal of Climate
– volume: 23
  start-page: 78
  issue: 1
  year: 2014
  end-page: 92
  article-title: Dead fuel moisture research: 1991–2012
  publication-title: International Journal of Wildland Fire
– volume: 37
  year: 2010
  article-title: Spatial variation in extreme winds predicts large wildfire locations in chaparral ecosystems
  publication-title: Geophysical Research Letters
– volume: 22
  start-page: 1118
  issue: 10
  year: 2013
  end-page: 1129
  article-title: Climate change‐induced shifts in fire for Mediterranean ecosystems
  publication-title: Global Ecology and Biogeography
– volume: 122
  start-page: 10,888
  year: 2017
  end-page: 10,905
  article-title: The 2016 southeastern US drought: An extreme departure from centennial wetting and cooling
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 40
  start-page: 839
  issue: 3‐4
  year: 2013
  end-page: 856
  article-title: Probabilistic estimates of future changes in California temperature and precipitation using statistical and dynamical downscaling
  publication-title: Climate Dynamics
– volume: 19
  start-page: 205
  year: 1965
  end-page: 234
  article-title: Evaporation and environment
  publication-title: Symoposia of the Society for Experimental Biology
– volume: 7
  start-page: 17,966
  issue: 1
  year: 2017
  article-title: Precipitation variability increases in a warmer climate
  publication-title: Scientific Reports
– volume: 63
  start-page: 1379
  issue: 324
  year: 1968
  end-page: 1389
  article-title: Estimates of the regression coefficient based on Kendall's Tau
  publication-title: Journal of the American Statistical Association
– volume: 107
  start-page: 287
  issue: 6
  year: 2009
  end-page: 296
  article-title: The 2007 southern California wildfires: Lessons in complexity
  publication-title: Journal of Forestry
– volume: 24
  start-page: 892
  issue: 7
  year: 2015
  end-page: 899
  article-title: Climate change presents increased potential for very large fires in the contiguous United States
  publication-title: International Journal of Wildland Fire
– volume: 115
  start-page: 3314
  issue: 13
  year: 2018
  end-page: 3319
  article-title: Rapid growth of the US wildland‐urban interface raises wildfire risk
  publication-title: Proceedings of the National Academy of Sciences USA
– volume: 33
  start-page: 121
  issue: 1
  year: 2013
  end-page: 131
  article-title: Development of gridded surface meteorological data for ecological applications and modelling
  publication-title: International Journal of Climatology
– volume: 11
  issue: 4
  year: 2016
  article-title: Incorporating anthropogenic influences into fire probability models: Effects of human activity and climate change on fire activity in California
  publication-title: PLoS One
– volume: 27
  start-page: 781
  issue: 12
  year: 2018
  end-page: 799
  article-title: Historical patterns of wildfire ignition sources in California ecosystems
  publication-title: International Journal of Wildland Fire
– volume: 27
  start-page: 26
  issue: 1
  year: 2016
  end-page: 36
  article-title: Climate change and the eco‐hydrology of fire: Will area burned increase in a warming western USA?
  publication-title: Ecological Applications
– volume: 173
  start-page: 251
  issue: 1‐4
  year: 2011
  end-page: 266
  article-title: Estimation of late twentieth century land‐cover change in California
  publication-title: Environmental Monitoring and Assessment
– year: 2012
– volume: 114
  start-page: 2946
  issue: 11
  year: 2017
  end-page: 2951
  article-title: Human‐started wildfires expand the fire niche across the United States
  publication-title: Proceedings of the National Academy of Sciences USA
– volume: 23
  start-page: 1119
  issue: 8
  year: 2014
  end-page: 1129
  article-title: Santa Ana winds and predictors of wildfire progression in southern California
  publication-title: International Journal of Wildland Fire
– volume: 11
  issue: 4
  year: 2016
  article-title: Controls on interannual variability in lightning‐caused fire activity in the western US
  publication-title: Environmental Research Letters
– volume: 6
  start-page: 65
  year: 2016
  end-page: 70
  article-title: Causes of change in Northern Hemisphere winter meridional winds and regional hydroclimate
  publication-title: Nature Climate Change
– volume: 12
  issue: 12
  year: 2017
  article-title: Direct and indirect climate controls predict heterogeneous early‐mid 21st century wildfire burned area across western and boreal North America
  publication-title: PloS one
– volume: 58
  start-page: 131
  year: 2019
  end-page: 143
  article-title: A new method to characterize changes in the seasonal cycle of snowpack
  publication-title: Journal of Applied Meteorology and Climatology
– volume: 46
  start-page: 2772
  issue: 5
  year: 2019
  end-page: 2780
  article-title: Climate change suppresses Santa Ana winds of Southern California and sharpens their seasonality
  publication-title: Geophysical Research Letters
– volume: 6
  start-page: 1
  issue: 12
  year: 2015
  end-page: 13
  article-title: Wildland fire deficit and surplus in the western United States, 1984‐2012
  publication-title: Ecosphere
– volume: 2
  start-page: 1
  issue: 1
  year: 2016
  end-page: 14
  article-title: Recent advances and remaining uncertainties in resolving past and future climate effects on global fire activity
  publication-title: Current Climate Change Reports
– volume: 18
  start-page: 1192
  issue: 7
  year: 2015
  end-page: 1208
  article-title: Topography, fuels, and fire exclusion drive fire severity of the Rim Fire in an old Growth mixed‐conifer forest, Yosemite National Park, USA
  publication-title: Ecosystems
– volume: 319
  start-page: 1080
  issue: 5866
  year: 2008
  end-page: 1083
  article-title: Human‐induced changes in the hydrology of the western United States
  publication-title: Science
– ident: e_1_2_6_48_1
  doi: 10.1080/24694452.2018.1470922
– ident: e_1_2_6_101_1
– ident: e_1_2_6_32_1
  doi: 10.1371/journal.pone.0127563
– ident: e_1_2_6_69_1
  doi: 10.3390/fire1010004
– ident: e_1_2_6_99_1
  doi: 10.1175/JCLI-D-14-00196.1
– ident: e_1_2_6_28_1
– ident: #cr-split#-e_1_2_6_25_1.1
– ident: e_1_2_6_54_1
  doi: 10.1890/07-1183.1
– ident: e_1_2_6_75_1
– ident: e_1_2_6_47_1
  doi: 10.1371/journal.pone.0188486
– ident: e_1_2_6_62_1
  doi: 10.1071/WF13005
– ident: e_1_2_6_19_1
  doi: 10.1111/j.1466-8238.2009.00512.x
– ident: e_1_2_6_90_1
  doi: 10.1007/0-387-21710-X_6
– volume: 19
  start-page: 205
  year: 1965
  ident: e_1_2_6_66_1
  article-title: Evaporation and environment
  publication-title: Symoposia of the Society for Experimental Biology
– ident: e_1_2_6_80_1
  doi: 10.1126/science.1259100
– ident: e_1_2_6_68_1
  doi: 10.1038/s41612-018-0012-1
– ident: e_1_2_6_91_1
  doi: 10.1175/1520-0442(1998)011<3128:MDAERT>2.0.CO;2
– volume: 107
  start-page: 287
  issue: 6
  year: 2009
  ident: e_1_2_6_43_1
  article-title: The 2007 southern California wildfires: Lessons in complexity
  publication-title: Journal of Forestry
  doi: 10.1093/jof/107.6.287
– ident: e_1_2_6_70_1
  doi: 10.3390/fire1010018
– ident: e_1_2_6_108_1
  doi: 10.1002/2017JD027523
– ident: e_1_2_6_46_1
  doi: 10.1071/WF18026
– ident: e_1_2_6_14_1
  doi: 10.1088/1748-9326/9/12/124009
– ident: e_1_2_6_50_1
– ident: e_1_2_6_9_1
– ident: e_1_2_6_16_1
  doi: 10.1111/geb.12065
– ident: e_1_2_6_105_1
  doi: 10.1175/BAMS-84-5-595
– ident: e_1_2_6_103_1
  doi: 10.1007/s10584-011-0329-9
– ident: e_1_2_6_81_1
  doi: 10.1038/s41558-019-0505-x
– ident: e_1_2_6_17_1
  doi: 10.1175/JCLI-D-14-00624.1
– ident: e_1_2_6_30_1
  doi: 10.1002/2016GL067887
– ident: e_1_2_6_51_1
  doi: 10.1029/2018GL078312
– start-page: 11
  volume-title: Fire Effects in Southwestern Fortest: Proceedings of the 2nd La Mesa Fire Symposium
  year: 1996
  ident: e_1_2_6_89_1
– ident: e_1_2_6_96_1
  doi: 10.1175/BAMS-D-11-00094.1
– ident: e_1_2_6_84_1
  doi: 10.1007/s10661-010-1385-8
– ident: e_1_2_6_110_1
  doi: 10.1002/2015GL063266
– ident: e_1_2_6_98_1
  doi: 10.1175/JAMC-D-13-0248.1
– ident: e_1_2_6_31_1
  doi: 10.1007/s10021-015-9890-9
– ident: e_1_2_6_67_1
  doi: 10.1029/2009GL041735
– ident: e_1_2_6_11_1
  doi: 10.3390/fire1010017
– ident: e_1_2_6_44_1
  doi: 10.3390/geosciences6030037
– ident: e_1_2_6_74_1
– ident: e_1_2_6_29_1
  doi: 10.1029/2018GL080261
– ident: e_1_2_6_27_1
  doi: 10.1175/JAMC-D-18-0150.1
– ident: e_1_2_6_33_1
  doi: 10.1073/pnas.1802316115
– ident: e_1_2_6_36_1
  doi: 10.1038/s41598-019-39284-1
– ident: e_1_2_6_78_1
  doi: 10.1073/pnas.1718850115
– ident: e_1_2_6_87_1
  doi: 10.1038/s41558-018-0140-y
– ident: e_1_2_6_106_1
  doi: 10.1126/science.1128834
– ident: e_1_2_6_93_1
  doi: 10.1073/pnas.1713885114
– ident: e_1_2_6_111_1
  doi: 10.1002/2015GL064924
– ident: e_1_2_6_94_1
  doi: 10.1016/j.gloenvcha.2019.03.007
– ident: e_1_2_6_102_1
  doi: 10.1007/s10584-007-9363-z
– ident: #cr-split#-e_1_2_6_25_1.2
– ident: e_1_2_6_72_1
  doi: 10.1038/s41598-017-17966-y
– ident: e_1_2_6_2_1
  doi: 10.1002/joc.3413
– ident: e_1_2_6_13_1
  doi: 10.1071/WF15083
– ident: e_1_2_6_38_1
  doi: 10.1002/2013JG002541
– ident: e_1_2_6_112_1
  doi: 10.1071/WF14023
– ident: e_1_2_6_49_1
– ident: e_1_2_6_41_1
  doi: 10.1890/04-1222
– ident: e_1_2_6_23_1
– ident: e_1_2_6_107_1
  doi: 10.1007/s40641-016-0031-0
– ident: e_1_2_6_5_1
  doi: 10.1088/1748-9326/11/4/045005
– ident: e_1_2_6_26_1
  doi: 10.1111/j.1466-8238.2011.00748.x
– ident: e_1_2_6_60_1
  doi: 10.1088/1748-9326/aa8fde
– ident: e_1_2_6_76_1
  doi: 10.1038/s41598-017-11285-y
– ident: e_1_2_6_64_1
  doi: 10.1175/JTECH-D-11-00103.1
– ident: e_1_2_6_18_1
  doi: 10.1071/WF13046
– ident: e_1_2_6_40_1
  doi: 10.1071/WF03037
– ident: e_1_2_6_4_1
  doi: 10.1071/WF13019
– ident: e_1_2_6_53_1
  doi: 10.1007/s40641-018-0109-y
– ident: e_1_2_6_82_1
  doi: 10.1080/01621459.1968.10480934
– ident: e_1_2_6_83_1
  doi: 10.1038/nclimate2783
– ident: e_1_2_6_35_1
  doi: 10.1007/s10584-011-0300-9
– ident: e_1_2_6_24_1
  doi: 10.1002/2014GL059576
– ident: e_1_2_6_55_1
  doi: 10.1029/2018EF000878
– ident: e_1_2_6_58_1
  doi: 10.1175/JCLI-D-13-00273.1
– ident: e_1_2_6_3_1
  doi: 10.1175/WAF-D-13-00002.1
– ident: e_1_2_6_65_1
  doi: 10.1046/j.1523-1739.1995.09040902.x
– ident: e_1_2_6_79_1
  doi: 10.1175/1087-3562(2003)007<0001:TSAWOC>2.0.CO;2
– ident: e_1_2_6_39_1
  doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
– ident: e_1_2_6_6_1
  doi: 10.1071/WF16165
– ident: e_1_2_6_12_1
  doi: 10.1073/pnas.1617394114
– ident: e_1_2_6_63_1
  doi: 10.1002/eap.1420
– ident: e_1_2_6_8_1
  doi: 10.1111/gcb.14405
– ident: e_1_2_6_42_1
  doi: 10.1046/j.1523-1739.2001.00097.x
– ident: e_1_2_6_34_1
  doi: 10.1007/s00382-009-0650-4
– ident: e_1_2_6_37_1
  doi: 10.1088/1748-9326/10/9/094005
– ident: e_1_2_6_22_1
  doi: 10.1175/JCLI3837.1
– ident: e_1_2_6_52_1
  doi: 10.1111/gcb.13544
– ident: e_1_2_6_97_1
  doi: 10.1007/s10584-011-0148-z
– ident: e_1_2_6_88_1
  doi: 10.1126/science.262.5135.885
– ident: e_1_2_6_15_1
  doi: 10.1126/science.1152538
– ident: e_1_2_6_20_1
– ident: e_1_2_6_59_1
  doi: 10.1371/journal.pone.0153589
– ident: e_1_2_6_77_1
  doi: 10.1038/srep04364
– ident: e_1_2_6_100_1
  doi: 10.1098/rstb.2015.0178
– ident: e_1_2_6_56_1
  doi: 10.1038/sdata.2015.42
– ident: e_1_2_6_71_1
  doi: 10.1890/ES15-00294.1
– ident: e_1_2_6_86_1
  doi: 10.1175/JCLI-D-14-00197.1
– ident: e_1_2_6_57_1
  doi: 10.1175/JCLI-D-12-00508.1
– ident: e_1_2_6_73_1
  doi: 10.1007/s00382-012-1337-9
– ident: e_1_2_6_109_1
  doi: 10.1029/2018GL077319
– ident: e_1_2_6_21_1
  doi: 10.2737/PSW-GTR-82
– ident: e_1_2_6_10_1
– ident: e_1_2_6_7_1
  doi: 10.1073/pnas.1607171113
– ident: e_1_2_6_61_1
  doi: 10.1073/pnas.1112839109
– ident: e_1_2_6_85_1
  doi: 10.1890/04-0545
– ident: e_1_2_6_92_1
– ident: e_1_2_6_104_1
  doi: 10.1029/2004EO310001
– ident: e_1_2_6_45_1
  doi: 10.1071/WF16102
– ident: e_1_2_6_95_1
  doi: 10.1073/pnas.1609775113
SSID ssj0000970357
Score 2.62197
Snippet Recent fire seasons have fueled intense speculation regarding the effect of anthropogenic climate change on wildfire in western North America and especially in...
Abstract Recent fire seasons have fueled intense speculation regarding the effect of anthropogenic climate change on wildfire in western North America and...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 892
SubjectTerms Anthropogenic climate changes
Anthropogenic factors
Aridity
Atmospheric models
California
Climate change
Climate effects
Climate models
Coasts
Computer simulation
Drying
Environmental impact
Fatalities
Forest & brush fires
Forest fires
Forests
Fuels
Human influences
Offshore
open climate campaign
Precipitation
Seasons
Summer
Summer climate
Trends
Vapor pressure
Vegetation
Warm seasons
wildfire
Wildfires
Wind
Winter
Winter precipitation
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6VpQcu0JYiFijygV6KosaxE8cnBCgrWqEtqmjFLXL8QCuhBDbA72fs9e7CAS7cosSJrMzDn8cz3wAccM2EafI0kcqmie_lkJSIIxLFrWXCCatCMub_czEel1dX8iIG3PqYVjn3icFRm077GPnPDKE9o55Y8uj2LvFdo_zpamyhsQKrnqmMD2D1pBpf_F1EWVKJGp2LmPGeZhI3-1RWo0Bllr5YiwJl_wuc-RythuVmtPHeiX6C9Qg0yfFMMz7DB9t-ga1qWdeGD6Nh95vw-0_jw7PWkF-hbLInnSPzJgqoYxNNTm8miG4tmdUjkK4l6FGMQ5dJJi1Z1nh9hX-j6vL0LIltFhLNRe6jlIpyakqqSycoF4V1GbpPQ6XwV46ZvGDcyVKrwhiEg2jzPgTpPFWWKBnbgkHbtXYbiHWpwz0NE4o2XFEUtMldphsui4Y5xodwOP_htY4c5L4Vxk0dzsIzWT8XzxC-L0bfzrg3Xhl34mW3GOMZs8ONbnpdRwOsc2qMdlYyzUuueKbSxpWIxQr0QNpJO4S9uTjraMZ9vZTlEH4EbXhzInU1ukQXKHbe_tYurPm3ZmmEezC4nz7Yb_BRP95P-ul-VOEn_gn1qA
  priority: 102
  providerName: ProQuest
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS-QwFA-iHvay6yc7rkoOelHKNk3aJEeVGVREPah4K2k-lgHpyFT379_30sw4HhQWbyV9hND3kV9e836PkANhuXRNmWfa-DzDXg6ZAhyRGeE9l0F6Ey9jPlzJ62v1-KhvU8INa2F6foh5wg09I8ZrdHDTdIlsADkyYefSw1HkJIMj-wpjXGHrhkLcznMsuQZ7jmSfgBsUrkSmu-8wxe_FCd7tSpG8_x3iXMStceMZ_fjqktfI9wQ56UlvI-tkybcbZHv4VuEGL5OLd5vk8qbBRK139CIWUHZ0EuisnQJY29jSs6cx4FxP-8oEOmkpxBYXIHjScUvfqr22yP1oeHd2nqWGC5kVssR8pWGCOcWsCpIJWflQQCB1TEt8CtyVFRdBK2sq5wAYgvdjMjIgaZZUnG-T5XbS-p-E-pAHON1waVgjDAOVuzIUthG6anjgYkCOZx-8tomNHJtiPNXxr3ih68WPNSCHc-nnnoXjA7lT1N1cBrmz48Bk-qdOrliXzDkbvOZWKGFEYfImKEBlFcQiG7QfkN2Z5uvk0F1dwMmSM-Q1HZCjqONPF1IPR3cQDOXO_wj_It9wuL9euEuWX6avfo-s2r8v4266H037Hx0081I
  priority: 102
  providerName: Wiley-Blackwell
Title Observed Impacts of Anthropogenic Climate Change on Wildfire in California
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2019EF001210
https://www.proquest.com/docview/2287311175
https://doaj.org/article/51ddcfe93c484a42a0bf89766963cf9e
Volume 7
WOSCitedRecordID wos000490911600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ (Directory of Open Access Journals)
  customDbUrl:
  eissn: 2328-4277
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000970357
  issn: 2328-4277
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2328-4277
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000970357
  issn: 2328-4277
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2328-4277
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000970357
  issn: 2328-4277
  databaseCode: PCBAR
  dateStart: 20131201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 2328-4277
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000970357
  issn: 2328-4277
  databaseCode: PATMY
  dateStart: 20131201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2328-4277
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000970357
  issn: 2328-4277
  databaseCode: BENPR
  dateStart: 20131201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2328-4277
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000970357
  issn: 2328-4277
  databaseCode: PIMPY
  dateStart: 20131201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 2328-4277
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000970357
  issn: 2328-4277
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2328-4277
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000970357
  issn: 2328-4277
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT-MwEB7xOnBBwIK2PCof2MuiiDh24vgIKBVF0I0Qu8ApcvyQKqEUUeD3M3ZSKAfYC7c8rMiaGY-_cWa-ATjgmglTp3EklY0j38shyhFHRIpby4QTVoVkzH8XYjTKb29lOdfqy-eEtfTAreCOUmqMdlYyzXOueKLi2uW4h2ZoOdpJ670vop65YCr4YImWnIou0z1OJAb5VBaDQGEWf9iDAlX_B3w5j1LDNjNYh7UOH5Ljdl4bsGCbTdgu3svR8GW3Hqc_4PxP7U9VrSHDUO04JRNHZr0P0DTGmpzejxGUWtKWEZBJQ9ARGIeejowb8l6atQV_B8X16VnUdUeINBepP1xUlFOTU507QbnIrEvQ6xkqhb9yzKQZ407mWmXGIIrDpepPDp1nuBI5Y9uw1Ewa-xOIdbHDUIQJRWuuKOrHpC7RNZdZzRzjPTicyavSHXW472BxX4Vf2Ims5qXbg19vox9ayoxPxp140b-N8UTX4QGqv-rUX_1P_T3Ymymu6lbftEowDGTUk5D24HdQ5pcTqYrBNXousfMdE9qFVf_tNkdwD5aeHp_tPqzol6fx9LEPiwkv-7B8UozKq36wWbwrh5flHd7dDEevYcHsJQ
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VWyS48K5YKOADvYCixrET2weEoOyqS7fLHhZUTsHxA61UJWVTQPwpfiPjPHbbA731wC1KRlYSf_5mPJ4HwAtumLBFGkdKuzgKvRwiiXZEpLlzTHjhdBOM-XkqZjN5cqLmW_Cnz4UJYZU9JzZEbSsTfOT7CZr2jIbCkm_Ovkeha1Q4Xe1baLSwOHK_f-GWrX49eY_zu5ck49Hi4DDqugpEhos0OOU05dRKaqQXlIvM-QTZwlIlwpVnNs0Y90oanVmL1g9CPHjcfKgMJWRwgCLlb3MEuxzA9nxyPP-y9uqgSMxS0UXYx4naRwWrRuOmdFp8Sfc1LQIu2bUXreNGvY3v_G8_5i7c7gxp8rZF_j3YcuV92Blt8vbwYUdc9QP48LEI7mdnyaRJC61J5UnfJALX0NKQg9MlWu-OtPkWpCoJMqb1qBLIsiSbHLaH8OlavmsHBmVVukdAnI897tmY0LTgmiKQbeoTU3CVFcwzPoRX_QTnpquxHlp9nObNWX-i8otwGMLeWvqsrS3yD7l3AStrmVARvLlRrb7lHcHkKbXWeKeY4ZJrnui48BJtzQwZ1njlhrDbwyfvaKrON9gZwssGfVe-SD4aL5DixeOrx3oONw8Xx9N8OpkdPYFbYYQ2ZHIXBuerH-4p3DA_z5f16lm3fAh8vW5g_gXRQE5L
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL2qWoTY8K4YKMULugFFE8dOHC9Q1cdEDC3DLAZUViHxA41UJWVSQP21fl2vnWSmXdBdF-yi5MpK4uPjk5v7AHjLFRO6jMNAFiYMXC-HIEUdERTcGCasMIUPxvx2LCaT9ORETtfgss-FcWGVPSd6ota1cj7yYYTSnlFXWHJou7CI6WG2e_YrcB2k3J_Wvp1GC5Ejc_EXP9-aD-NDnOudKMpGs4OPQddhIFBcxM5BV1BOdUpVagXlIjE2QubQVAp3ZJmOE8atTFWRaI1KCOHuvG_WVYkSqXOGIv1vuBpxSAob073Z5-9LDw-ahCwWXbR9GMkhbrZylPkyauGNfdC3C7ihca8rZb_VZY_-55f0GB52ApvstSviCayZ6ilsjlb5fHixI7TmGXz6Ujq3tNFk7NNFG1Jb0jePwLU1V-TgdI6q3pA2D4PUFUEm1Ra3CjKvyCq37Tl8vZPn2oT1qq7MCyDGhha_5ZgoaMkLigDXsY1UyWVSMsv4AN73k52rrva6awFymvsYgEjm16ExgJ2l9Vlbc-QfdvsON0sbVyncn6gXP_OOePKYaq2skUzxlBc8KsLSpqhBE2ReZaUZwFYPpbyjryZf4WgA7zwSb72RfJTNkPrFy9vHegP3EY358Xhy9AoeuAHaSMotWD9f_Dav4Z76cz5vFtvdSiLw465xeQU7clcB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Observed+Impacts+of+Anthropogenic+Climate+Change+on+Wildfire+in+California&rft.jtitle=Earth%27s+future&rft.au=A.+Park+Williams&rft.au=John+T.+Abatzoglou&rft.au=Alexander+Gershunov&rft.au=Janin+Guzman%E2%80%90Morales&rft.date=2019-08-01&rft.pub=Wiley&rft.eissn=2328-4277&rft.volume=7&rft.issue=8&rft.spage=892&rft.epage=910&rft_id=info:doi/10.1029%2F2019EF001210&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_51ddcfe93c484a42a0bf89766963cf9e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2328-4277&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2328-4277&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2328-4277&client=summon