Fast, Exact, Linear Booleans

We present a new system for robustly performing Boolean operations on linear, 3D polyhedra. Our system is exact, meaning that all internal numeric predicates are exactly decided in the sense of exact geometric computation. Our BSP‐tree based system is 16‐28× faster at performing iterative computatio...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computer graphics forum Ročník 28; číslo 5; s. 1269 - 1278
Hlavní autoři: Bernstein, Gilbert, Fussell, Don
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford, UK Blackwell Publishing Ltd 01.07.2009
Témata:
ISSN:0167-7055, 1467-8659
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We present a new system for robustly performing Boolean operations on linear, 3D polyhedra. Our system is exact, meaning that all internal numeric predicates are exactly decided in the sense of exact geometric computation. Our BSP‐tree based system is 16‐28× faster at performing iterative computations than CGAL's Nef Polyhedra based system, the current best practice in robust Boolean operations, while being only twice as slow as the non‐robust modeler Maya. Meanwhile, we achieve a much smaller substrate of geometric subroutines than previous work, comprised of only 4 predicates, a convex polygon constructor, and a convex polygon splitting routine. The use of a BSP‐tree based Boolean algorithm atop this substrate allows us to explicitly handle all geometric degeneracies without treating a large number of cases.
Bibliografie:ark:/67375/WNG-456HWJMS-2
ArticleID:CGF1504
istex:2EC9ABBFBEE6F618456EA6004FE53082690C62D0
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0167-7055
1467-8659
DOI:10.1111/j.1467-8659.2009.01504.x