Human Gingiva‐Derived Mesenchymal Stem Cells Elicit Polarization of M2 Macrophages and Enhance Cutaneous Wound Healing

Increasing evidence has supported the important role of mesenchymal stem cells (MSCs) in wound healing, however, the underlying mechanism remains unclear. Recently, we have isolated a unique population of MSCs from human gingiva (GMSCs) with similar stem cell‐like properties, immunosuppressive, and...

Full description

Saved in:
Bibliographic Details
Published in:Stem cells (Dayton, Ohio) Vol. 28; no. 10; pp. 1856 - 1868
Main Authors: Zhang, Qun‐Zhou, Su, Wen‐Ru, Shi, Shi‐Hong, Wilder‐Smith, Petra, Xiang, Andy Peng, Wong, Alex, Nguyen, Andrew L., Kwon, Chan Wook, Le, Anh D.
Format: Journal Article
Language:English
Published: Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.10.2010
Subjects:
ISSN:1066-5099, 1549-4918, 1549-4918
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Increasing evidence has supported the important role of mesenchymal stem cells (MSCs) in wound healing, however, the underlying mechanism remains unclear. Recently, we have isolated a unique population of MSCs from human gingiva (GMSCs) with similar stem cell‐like properties, immunosuppressive, and anti‐inflammatory functions as human bone marrow‐derived MSCs (BMSCs). We describe here the interplay between GMSCs and macrophages and the potential relevance in skin wound healing. When cocultured with GMSCs, macrophages acquired an anti‐inflammatory M2 phenotype characterized by an increased expression of mannose receptor (MR; CD206) and secretory cytokines interleukin (IL)‐10 and IL‐6, a suppressed production of tumor necrosis factor (TNF)‐α, and decreased ability to induce Th‐17 cell expansion. In vivo, we demonstrated that systemically infused GMSCs could home to the wound site in a tight spatial interaction with host macrophages, promoted them toward M2 polarization, and significantly enhanced wound repair. Mechanistically, GMSC treatment mitigated local inflammation mediated by a suppressed infiltration of inflammatory cells and production of IL‐6 and TNF‐α, and an increased expression of IL‐10. The GMSC‐induced suppression of TNF‐α secretion by macrophages appears to correlate with impaired activation of NFκB p50. These findings provide first evidence that GMSCs are capable to elicit M2 polarization of macrophages, which might contribute to a marked acceleration of wound healing. STEM CELLS 2010;28:1856–1868
AbstractList Increasing evidence has supported the important role of mesenchymal stem cells (MSCs) in wound healing, however, the underlying mechanism remains unclear. Recently, we have isolated a unique population of MSCs from human gingiva (GMSCs) with similar stem cell-like properties, immunosuppressive, and anti-inflammatory functions as human bone marrow-derived MSCs (BMSCs). We describe here the interplay between GMSCs and macrophages and the potential relevance in skin wound healing. When cocultured with GMSCs, macrophages acquired an anti-inflammatory M2 phenotype characterized by an increased expression of mannose receptor (MR; CD206) and secretory cytokines interleukin (IL)-10 and IL-6, a suppressed production of tumor necrosis factor (TNF)-α, and decreased ability to induce Th-17 cell expansion. In vivo, we demonstrated that systemically infused GMSCs could home to the wound site in a tight spatial interaction with host macrophages, promoted them toward M2 polarization, and significantly enhanced wound repair. Mechanistically, GMSC treatment mitigated local inflammation mediated by a suppressed infiltration of inflammatory cells and production of IL-6 and TNF-α, and an increased expression of IL-10. The GMSC-induced suppression of TNF-α secretion by macrophages appears to correlate with impaired activation of NFκB p50. These findings provide first evidence that GMSCs are capable to elicit M2 polarization of macrophages, which might contribute to a marked acceleration of wound healing.
Increasing evidence has supported the important role of mesenchymal stem cells (MSCs) in wound healing, however, the underlying mechanism remains unclear. Recently, we have isolated a unique population of MSCs from human gingiva (GMSCs) with similar stem cell-like properties, immunosuppressive, and anti-inflammatory functions as human bone marrow-derived MSCs (BMSCs). We describe here the interplay between GMSCs and macrophages and the potential relevance in skin wound healing. When cocultured with GMSCs, macrophages acquired an anti-inflammatory M2 phenotype characterized by an increased expression of mannose receptor (MR; CD206) and secretory cytokines interleukin (IL)-10 and IL-6, a suppressed production of tumor necrosis factor (TNF)-α, and decreased ability to induce Th-17 cell expansion. In vivo, we demonstrated that systemically infused GMSCs could home to the wound site in a tight spatial interaction with host macrophages, promoted them toward M2 polarization, and significantly enhanced wound repair. Mechanistically, GMSC treatment mitigated local inflammation mediated by a suppressed infiltration of inflammatory cells and production of IL-6 and TNF-α, and an increased expression of IL-10. The GMSC-induced suppression of TNF-α secretion by macrophages appears to correlate with impaired activation of NFκB p50. These findings provide first evidence that GMSCs are capable to elicit M2 polarization of macrophages, which might contribute to a marked acceleration of wound healing.Increasing evidence has supported the important role of mesenchymal stem cells (MSCs) in wound healing, however, the underlying mechanism remains unclear. Recently, we have isolated a unique population of MSCs from human gingiva (GMSCs) with similar stem cell-like properties, immunosuppressive, and anti-inflammatory functions as human bone marrow-derived MSCs (BMSCs). We describe here the interplay between GMSCs and macrophages and the potential relevance in skin wound healing. When cocultured with GMSCs, macrophages acquired an anti-inflammatory M2 phenotype characterized by an increased expression of mannose receptor (MR; CD206) and secretory cytokines interleukin (IL)-10 and IL-6, a suppressed production of tumor necrosis factor (TNF)-α, and decreased ability to induce Th-17 cell expansion. In vivo, we demonstrated that systemically infused GMSCs could home to the wound site in a tight spatial interaction with host macrophages, promoted them toward M2 polarization, and significantly enhanced wound repair. Mechanistically, GMSC treatment mitigated local inflammation mediated by a suppressed infiltration of inflammatory cells and production of IL-6 and TNF-α, and an increased expression of IL-10. The GMSC-induced suppression of TNF-α secretion by macrophages appears to correlate with impaired activation of NFκB p50. These findings provide first evidence that GMSCs are capable to elicit M2 polarization of macrophages, which might contribute to a marked acceleration of wound healing.
Increasing evidence has supported the important role of mesenchymal stem cells (MSCs) in wound healing, however, the underlying mechanism remains unclear. Recently, we have isolated a unique population of MSCs from human gingiva (GMSCs) with similar stem cell‐like properties, immunosuppressive, and anti‐inflammatory functions as human bone marrow‐derived MSCs (BMSCs). We describe here the interplay between GMSCs and macrophages and the potential relevance in skin wound healing. When cocultured with GMSCs, macrophages acquired an anti‐inflammatory M2 phenotype characterized by an increased expression of mannose receptor (MR; CD206) and secretory cytokines interleukin (IL)‐10 and IL‐6, a suppressed production of tumor necrosis factor (TNF)‐α, and decreased ability to induce Th‐17 cell expansion. In vivo, we demonstrated that systemically infused GMSCs could home to the wound site in a tight spatial interaction with host macrophages, promoted them toward M2 polarization, and significantly enhanced wound repair. Mechanistically, GMSC treatment mitigated local inflammation mediated by a suppressed infiltration of inflammatory cells and production of IL‐6 and TNF‐α, and an increased expression of IL‐10. The GMSC‐induced suppression of TNF‐α secretion by macrophages appears to correlate with impaired activation of NFκB p50. These findings provide first evidence that GMSCs are capable to elicit M2 polarization of macrophages, which might contribute to a marked acceleration of wound healing. STEM CELLS 2010;28:1856–1868
Author Kwon, Chan Wook
Zhang, Qun‐Zhou
Su, Wen‐Ru
Nguyen, Andrew L.
Xiang, Andy Peng
Le, Anh D.
Shi, Shi‐Hong
Wilder‐Smith, Petra
Wong, Alex
AuthorAffiliation b Beckman Laser Institute, University of California, Irvine, California, USA
c Center for Stem Cell Biology and Tissue Engineering, Sun Yat-Sen University, Guangzhou, People’s Republic of China
a Center for Craniofacial Molecular Biology, The Herman Ostrow School of Dentistry of University of Southern California, Los Angeles, California, USA
d Division of Plastic and Reconstructive Surgery, University of Southern California Keck School of Medicine, Los Angeles, California, USA
AuthorAffiliation_xml – name: a Center for Craniofacial Molecular Biology, The Herman Ostrow School of Dentistry of University of Southern California, Los Angeles, California, USA
– name: d Division of Plastic and Reconstructive Surgery, University of Southern California Keck School of Medicine, Los Angeles, California, USA
– name: c Center for Stem Cell Biology and Tissue Engineering, Sun Yat-Sen University, Guangzhou, People’s Republic of China
– name: b Beckman Laser Institute, University of California, Irvine, California, USA
Author_xml – sequence: 1
  givenname: Qun‐Zhou
  surname: Zhang
  fullname: Zhang, Qun‐Zhou
– sequence: 2
  givenname: Wen‐Ru
  surname: Su
  fullname: Su, Wen‐Ru
– sequence: 3
  givenname: Shi‐Hong
  surname: Shi
  fullname: Shi, Shi‐Hong
– sequence: 4
  givenname: Petra
  surname: Wilder‐Smith
  fullname: Wilder‐Smith, Petra
– sequence: 5
  givenname: Andy Peng
  surname: Xiang
  fullname: Xiang, Andy Peng
– sequence: 6
  givenname: Alex
  surname: Wong
  fullname: Wong, Alex
– sequence: 7
  givenname: Andrew L.
  surname: Nguyen
  fullname: Nguyen, Andrew L.
– sequence: 8
  givenname: Chan Wook
  surname: Kwon
  fullname: Kwon, Chan Wook
– sequence: 9
  givenname: Anh D.
  surname: Le
  fullname: Le, Anh D.
  email: anhle@usc.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20734355$$D View this record in MEDLINE/PubMed
BookMark eNp1kd9u0zAYxS20if0BiSdAvoObFDu2k_gGCXVlRVq1SRvi0nKcL62RY5c4KXRXewSekSfBpdsECK5s2b_vHH3nnKADHzwg9IKSCSUkfxMH6CaCsCfomAouMy5pdZDupCgyQaQ8QicxfiaEclFVT9FRTkrGmRDH6Nt87LTH59Yv7Ub_uPt-Br3dQIMXEMGb1bbTDl8neTwF5yKeOWvsgK-C07291YMNHocWL3K80KYP65VeQsTaN3jmV9obwNNx0B7CGPGnMKb3OWiX3J6hw1a7CM_vz1P08f3sZjrPLi7PP0zfXWSGl4JlrM4LSTUtAcrGtCJvDClqU3LWipYxJqQmsoaasUrrvDWkLjg3RSWNrImoDTtFb_e667HuoDHgh147te5tp_utCtqqP3-8Xall2ChGKSecJYFX9wJ9-DJCHFRno0lh7LdSZUETJqVM5MvfrR49HtJOwGQPpKRi7KFVKctfGSZn6xQlalen2tWpUp1p4PVfAw-a_0CzPfrVOtj-l1PXN7PFjv8JHbyyZg
CitedBy_id crossref_primary_10_1186_s13287_020_01841_1
crossref_primary_10_1002_stem_2551
crossref_primary_10_3389_fmed_2022_822572
crossref_primary_10_3390_ijms22052410
crossref_primary_10_1007_s10103_019_02750_3
crossref_primary_10_1002_term_2193
crossref_primary_10_1089_scd_2018_0094
crossref_primary_10_1002_stem_2433
crossref_primary_10_1016_j_ymthe_2022_07_016
crossref_primary_10_1002_bit_25282
crossref_primary_10_1016_j_semcdb_2016_07_026
crossref_primary_10_3727_096368912X661409
crossref_primary_10_1038_onc_2013_281
crossref_primary_10_1371_journal_pone_0165255
crossref_primary_10_1002_adhm_202302836
crossref_primary_10_1002_1873_3468_12200
crossref_primary_10_1155_2020_8636795
crossref_primary_10_2147_CCID_S298105
crossref_primary_10_1002_stem_1483
crossref_primary_10_1038_s41536_020_00109_9
crossref_primary_10_7717_peerj_13391
crossref_primary_10_1186_s13098_017_0233_1
crossref_primary_10_3389_fimmu_2018_02056
crossref_primary_10_1016_j_burns_2014_08_009
crossref_primary_10_3892_mmr_2018_8457
crossref_primary_10_1016_j_jobcr_2024_07_003
crossref_primary_10_1097_ALN_0000000000000446
crossref_primary_10_1089_scd_2014_0088
crossref_primary_10_1016_j_actbio_2022_09_077
crossref_primary_10_1016_j_isci_2023_108043
crossref_primary_10_1186_s42269_024_01172_8
crossref_primary_10_3390_ijms16059283
crossref_primary_10_3390_ijms19123843
crossref_primary_10_1186_scrt486
crossref_primary_10_1016_j_jconrel_2015_08_038
crossref_primary_10_3727_096368911X601028
crossref_primary_10_3892_mmr_2016_5726
crossref_primary_10_1007_s12015_023_10644_9
crossref_primary_10_1016_j_jpor_2012_06_001
crossref_primary_10_1016_j_jdermsci_2017_12_009
crossref_primary_10_1016_j_bbadis_2017_04_019
crossref_primary_10_1371_journal_pone_0031671
crossref_primary_10_1038_s41598_017_04766_7
crossref_primary_10_1177_0022034512461016
crossref_primary_10_1016_j_intimp_2020_107266
crossref_primary_10_1155_2017_5217967
crossref_primary_10_1038_icb_2012_62
crossref_primary_10_1111_exd_12141
crossref_primary_10_3389_fmolb_2024_1362338
crossref_primary_10_1260_2040_2295_2_4_405
crossref_primary_10_1002_adhm_201601112
crossref_primary_10_3389_fmicb_2023_1251956
crossref_primary_10_1177_0363546515602248
crossref_primary_10_1136_gutjnl_2012_302152
crossref_primary_10_5937_smclk6_58818
crossref_primary_10_1111_odi_12086
crossref_primary_10_1038_icb_2012_56
crossref_primary_10_1016_j_actbio_2020_12_046
crossref_primary_10_1016_j_biomaterials_2014_02_023
crossref_primary_10_1097_FJC_0000000000000760
crossref_primary_10_1111_jcmm_14632
crossref_primary_10_1038_s41598_020_78423_x
crossref_primary_10_1155_2020_1327405
crossref_primary_10_1089_scd_2013_0015
crossref_primary_10_3109_10428194_2013_778409
crossref_primary_10_1007_s10517_019_04662_2
crossref_primary_10_1155_2023_4547875
crossref_primary_10_1111_xen_12739
crossref_primary_10_1186_s13287_019_1262_5
crossref_primary_10_1186_s13287_025_04248_y
crossref_primary_10_1186_s13287_016_0303_6
crossref_primary_10_1039_C9MH00388F
crossref_primary_10_1016_j_bbmt_2017_02_018
crossref_primary_10_1002_stem_2891
crossref_primary_10_1111_ocr_12081
crossref_primary_10_3390_ijms23010249
crossref_primary_10_3389_fcell_2024_1359295
crossref_primary_10_1016_j_clim_2015_07_011
crossref_primary_10_1007_s12015_017_9746_0
crossref_primary_10_3389_fphar_2020_00654
crossref_primary_10_3389_fbioe_2023_1144624
crossref_primary_10_1038_s41423_023_00998_y
crossref_primary_10_1155_2020_1031985
crossref_primary_10_1007_s12015_024_10806_3
crossref_primary_10_1016_j_cellimm_2016_10_003
crossref_primary_10_1016_j_intimp_2017_07_019
crossref_primary_10_3390_cells11213398
crossref_primary_10_1038_srep17036
crossref_primary_10_1089_ten_tea_2016_0342
crossref_primary_10_1186_s13287_021_02570_9
crossref_primary_10_1063_5_0240504
crossref_primary_10_3389_fimmu_2023_1104890
crossref_primary_10_1097_MOT_0000000000000032
crossref_primary_10_3389_fimmu_2021_681710
crossref_primary_10_1089_ten_tec_2022_0123
crossref_primary_10_1016_j_biomaterials_2022_121484
crossref_primary_10_1089_rej_2013_1467
crossref_primary_10_1038_s41598_018_26143_8
crossref_primary_10_1111_j_1524_475X_2012_00772_x
crossref_primary_10_1155_2020_1802976
crossref_primary_10_1007_s12016_021_08892_z
crossref_primary_10_3892_mmr_2015_3323
crossref_primary_10_3390_ijms25041986
crossref_primary_10_1016_j_jdermsci_2016_11_005
crossref_primary_10_3390_ijms21124409
crossref_primary_10_1016_j_ymthe_2020_05_022
crossref_primary_10_1002_art_37894
crossref_primary_10_1016_j_rvsc_2019_06_012
crossref_primary_10_1186_s13287_021_02505_4
crossref_primary_10_1186_s13287_019_1546_9
crossref_primary_10_3390_bioengineering11050494
crossref_primary_10_1002_dvg_70024
crossref_primary_10_3389_fphar_2024_1345779
crossref_primary_10_1002_jcp_25871
crossref_primary_10_1016_j_yexcr_2016_08_022
crossref_primary_10_3389_fcell_2022_812262
crossref_primary_10_1016_j_ijbiomac_2021_02_126
crossref_primary_10_1007_s10753_016_0454_8
crossref_primary_10_1002_stem_738
crossref_primary_10_3390_ijms19082366
crossref_primary_10_1093_stcltm_szad043
crossref_primary_10_3389_fphys_2017_00904
crossref_primary_10_1007_s00018_018_2859_z
crossref_primary_10_1002_stem_1400
crossref_primary_10_1016_j_injury_2022_09_041
crossref_primary_10_1038_s41598_017_14979_5
crossref_primary_10_1155_2023_7397819
crossref_primary_10_4103_jomfp_JOMFP_162_17
crossref_primary_10_1242_dev_134189
crossref_primary_10_3390_bioengineering5010008
crossref_primary_10_1007_s12015_013_9479_7
crossref_primary_10_1016_j_imlet_2015_05_004
crossref_primary_10_1155_2013_945034
crossref_primary_10_1152_ajplung_00546_2018
crossref_primary_10_3892_mmr_2018_8864
crossref_primary_10_1038_mt_2011_211
crossref_primary_10_1038_nrurol_2017_42
crossref_primary_10_1089_scd_2011_0252
crossref_primary_10_1016_j_coms_2016_08_009
crossref_primary_10_1186_s13287_022_03143_0
crossref_primary_10_5966_sctm_2016_0177
crossref_primary_10_1186_s13287_019_1414_7
crossref_primary_10_1177_0022034518804531
crossref_primary_10_1186_s13287_018_0841_1
crossref_primary_10_1155_2021_8899143
crossref_primary_10_1002_cam4_4521
crossref_primary_10_1155_2021_8834590
crossref_primary_10_1089_scd_2013_0547
crossref_primary_10_1111_j_1582_4934_2010_01251_x
crossref_primary_10_1038_s42003_024_06099_4
crossref_primary_10_1007_s00784_016_1867_3
crossref_primary_10_1038_s41598_020_59174_1
crossref_primary_10_2147_IJN_S516533
crossref_primary_10_1007_s13238_012_2036_3
crossref_primary_10_3389_fimmu_2018_01658
crossref_primary_10_1155_2019_9310318
crossref_primary_10_3389_fimmu_2021_667221
crossref_primary_10_3109_14653249_2012_706705
crossref_primary_10_1007_s12015_013_9455_2
crossref_primary_10_3389_fcell_2025_1623959
crossref_primary_10_1089_ten_tea_2014_0102
crossref_primary_10_1007_s00441_021_03563_z
crossref_primary_10_3892_etm_2019_8256
crossref_primary_10_1177_2040622321993442
crossref_primary_10_1002_adhm_202001502
crossref_primary_10_3389_fcell_2021_681171
crossref_primary_10_3390_ijms20225680
crossref_primary_10_3389_fimmu_2021_624746
crossref_primary_10_3390_ijms231810719
crossref_primary_10_4252_wjsc_v12_i8_721
crossref_primary_10_1038_s41598_022_17692_0
crossref_primary_10_1002_bit_23233
crossref_primary_10_1016_j_ijbiomac_2024_132387
crossref_primary_10_3390_ijms21051653
crossref_primary_10_1073_pnas_2410579121
crossref_primary_10_1002_jcb_24046
crossref_primary_10_1016_j_bioadv_2022_212993
crossref_primary_10_1002_stem_1966
crossref_primary_10_1089_wound_2012_0421
crossref_primary_10_3390_biomedicines10020253
crossref_primary_10_1016_j_pharmthera_2021_108021
crossref_primary_10_1111_etp_12008
crossref_primary_10_2217_pmt_14_1
crossref_primary_10_1155_2021_6649314
crossref_primary_10_1155_2016_3735452
crossref_primary_10_1111_jcmm_14694
crossref_primary_10_1016_j_heliyon_2021_e06530
crossref_primary_10_2337_db12_1822
crossref_primary_10_1007_s12272_012_0201_0
crossref_primary_10_1177_1535370213518169
crossref_primary_10_1016_j_acthis_2023_152042
crossref_primary_10_1016_j_scr_2013_01_005
crossref_primary_10_1007_s00441_012_1393_9
crossref_primary_10_1002_JLB_3MR0321_766R
crossref_primary_10_1007_s00784_018_2712_7
crossref_primary_10_1016_j_nbd_2013_10_014
crossref_primary_10_1038_jid_2013_328
crossref_primary_10_1016_j_jdiacomp_2015_04_018
crossref_primary_10_1155_2016_7121580
crossref_primary_10_3892_mmr_2017_8075
crossref_primary_10_1016_j_jhep_2015_07_035
crossref_primary_10_1016_j_ebiom_2019_04_058
crossref_primary_10_3390_ijms24010641
crossref_primary_10_1371_journal_pone_0116772
crossref_primary_10_1111_ijd_17982
crossref_primary_10_3390_genes11020118
crossref_primary_10_1155_2017_2353240
crossref_primary_10_1089_ten_teb_2021_0114
crossref_primary_10_1016_j_jdent_2025_105820
crossref_primary_10_1186_s12967_025_06627_8
crossref_primary_10_1016_j_jacc_2013_07_057
crossref_primary_10_1126_scitranslmed_aai8524
crossref_primary_10_1186_s13287_017_0607_1
crossref_primary_10_1002_stem_3076
crossref_primary_10_1155_2017_9328347
crossref_primary_10_1007_s11033_023_08826_2
crossref_primary_10_1016_j_bbadis_2020_166014
crossref_primary_10_1016_j_molimm_2021_06_003
crossref_primary_10_4103_jisp_jisp_410_20
crossref_primary_10_1007_s12015_020_10014_9
crossref_primary_10_1186_s13287_023_03428_y
crossref_primary_10_1016_j_bioactmat_2024_09_030
crossref_primary_10_3390_jcm9020434
crossref_primary_10_1177_1534734613502052
crossref_primary_10_1161_CIRCRESAHA_115_305373
crossref_primary_10_1016_j_biopha_2025_118292
crossref_primary_10_3389_fbioe_2022_902894
crossref_primary_10_3390_biomedicines11030987
crossref_primary_10_1089_ten_teb_2014_0098
crossref_primary_10_1155_2021_5516521
crossref_primary_10_1002_adhm_202100615
crossref_primary_10_1038_s41598_019_46554_5
crossref_primary_10_1186_s13287_024_03774_5
crossref_primary_10_1186_s13287_022_02914_z
crossref_primary_10_5966_sctm_2012_0061
crossref_primary_10_1177_2058738420966092
crossref_primary_10_1186_s13287_021_02270_4
crossref_primary_10_5966_sctm_2011_0019
crossref_primary_10_1016_j_yjmcc_2018_04_011
crossref_primary_10_1007_s13233_016_4107_4
crossref_primary_10_3390_cells8020173
crossref_primary_10_3390_medicines10010009
crossref_primary_10_1089_ten_teb_2021_0131
crossref_primary_10_1186_s13287_017_0608_0
crossref_primary_10_1002_hep_26670
crossref_primary_10_1002_stem_1909
crossref_primary_10_1155_2016_2640746
crossref_primary_10_1002_adbi_201600011
crossref_primary_10_1016_j_jcyt_2016_11_003
crossref_primary_10_1111_jpi_12385
crossref_primary_10_1155_2018_4357865
crossref_primary_10_1039_c7ib00018a
crossref_primary_10_3390_cells12101421
crossref_primary_10_4252_wjsc_v6_i5_526
crossref_primary_10_1038_s41598_019_40190_9
crossref_primary_10_3389_fimmu_2021_744738
crossref_primary_10_3390_ijms23084135
crossref_primary_10_1002_hed_23196
crossref_primary_10_1089_wound_2014_0579
crossref_primary_10_1111_wrr_12084
crossref_primary_10_1186_s13287_019_1212_2
crossref_primary_10_1155_2015_989473
crossref_primary_10_3389_fphys_2018_00419
crossref_primary_10_3389_fphar_2018_00179
crossref_primary_10_1002_term_2799
crossref_primary_10_1007_s00018_017_2473_5
crossref_primary_10_3390_ijms231710023
crossref_primary_10_1089_scd_2014_0557
crossref_primary_10_1016_j_yexcr_2017_07_014
crossref_primary_10_1002_JPER_23_0246
crossref_primary_10_2337_db20_1245
crossref_primary_10_1016_j_nano_2022_102616
crossref_primary_10_1016_j_intimp_2019_106030
crossref_primary_10_1007_s12015_023_10571_9
crossref_primary_10_1016_j_omtm_2020_01_005
crossref_primary_10_1016_j_smim_2017_03_001
crossref_primary_10_3390_cells9081916
crossref_primary_10_1111_cpr_12712
crossref_primary_10_1002_term_2772
crossref_primary_10_3389_froh_2021_635055
crossref_primary_10_1111_j_1440_1797_2011_01501_x
crossref_primary_10_3389_fimmu_2018_00878
crossref_primary_10_4252_wjsc_v11_i9_604
crossref_primary_10_1089_wound_2011_0294
crossref_primary_10_3390_ma13225303
crossref_primary_10_1002_dvdy_24224
crossref_primary_10_3390_ijms25158388
crossref_primary_10_1002_wsbm_1574
crossref_primary_10_3389_fimmu_2017_00068
crossref_primary_10_1016_j_intimp_2013_05_031
crossref_primary_10_1186_s13287_018_0898_x
crossref_primary_10_3390_cells10071729
crossref_primary_10_1016_j_archoralbio_2017_06_030
crossref_primary_10_1177_0022034513497961
crossref_primary_10_1016_j_bcp_2023_115646
crossref_primary_10_1038_nrc3802
crossref_primary_10_1155_2020_8868593
crossref_primary_10_1016_j_trsl_2021_05_001
crossref_primary_10_3389_fcell_2021_654559
crossref_primary_10_3390_ijms24021372
crossref_primary_10_1097_MPH_0000000000001964
crossref_primary_10_1002_sctm_19_0241
crossref_primary_10_1111_iej_13257
crossref_primary_10_1186_s13287_025_04327_0
crossref_primary_10_1177_1074248414534916
crossref_primary_10_1007_s13577_023_00943_1
crossref_primary_10_1038_cddis_2016_442
crossref_primary_10_1016_j_jaut_2020_102491
crossref_primary_10_1039_D0BM00834F
crossref_primary_10_1186_s13287_020_01605_x
crossref_primary_10_3390_ijms22020781
crossref_primary_10_1586_edm_10_66
crossref_primary_10_1016_j_mtcomm_2021_102744
crossref_primary_10_1016_j_ejcb_2019_04_002
crossref_primary_10_1186_s13287_016_0403_3
crossref_primary_10_1155_2020_4689798
crossref_primary_10_1016_j_bbrc_2015_01_013
crossref_primary_10_3390_ijms222011269
crossref_primary_10_1016_j_jds_2021_08_012
crossref_primary_10_1097_BRS_0000000000001669
crossref_primary_10_1002_stem_3022
crossref_primary_10_1007_s40200_020_00647_5
crossref_primary_10_1371_journal_pone_0030842
crossref_primary_10_4103_1673_5374_244778
crossref_primary_10_1016_j_bioactmat_2021_09_032
crossref_primary_10_1186_s13287_021_02662_6
crossref_primary_10_1016_j_jcyt_2020_02_003
crossref_primary_10_1155_2018_3057624
crossref_primary_10_3389_fendo_2023_1099310
crossref_primary_10_1016_j_diabres_2022_110201
crossref_primary_10_1002_med_22020
crossref_primary_10_3390_ijms22020684
crossref_primary_10_3892_ijmm_2019_4286
crossref_primary_10_1155_2016_7154327
crossref_primary_10_3389_fgene_2024_1427205
crossref_primary_10_1016_j_jdermsci_2017_02_285
crossref_primary_10_1002_JLB_1MA1220_853RR
crossref_primary_10_1038_srep38308
crossref_primary_10_1111_nyas_13364
crossref_primary_10_1111_wrr_12072
crossref_primary_10_1186_s13287_019_1366_y
crossref_primary_10_1002_lary_27885
crossref_primary_10_1177_0022034519877400
crossref_primary_10_1186_s13287_020_1561_x
crossref_primary_10_1089_ten_tea_2018_0176
crossref_primary_10_1186_s13287_023_03337_0
crossref_primary_10_1007_s00395_011_0168_x
crossref_primary_10_1155_2016_4612167
crossref_primary_10_1016_j_biomaterials_2012_12_014
crossref_primary_10_4252_wjsc_v8_i9_268
crossref_primary_10_1177_1534734612463935
crossref_primary_10_3390_medsci10020023
crossref_primary_10_1155_2018_9079538
crossref_primary_10_1177_1074248412453875
crossref_primary_10_1016_j_jcyt_2022_07_004
crossref_primary_10_1186_s13287_018_0804_6
crossref_primary_10_1016_j_archoralbio_2018_11_007
crossref_primary_10_1016_j_ijbiomac_2025_146297
crossref_primary_10_1093_stmcls_sxac057
crossref_primary_10_1111_jre_70015
crossref_primary_10_1016_j_jneuroim_2018_11_015
crossref_primary_10_1016_j_neo_2016_01_005
crossref_primary_10_1016_j_bioactmat_2020_08_014
crossref_primary_10_1038_srep39889
crossref_primary_10_1155_2019_7132708
crossref_primary_10_1134_S0362119718010036
crossref_primary_10_3390_bioengineering12090970
crossref_primary_10_1002_stem_2238
crossref_primary_10_1097_MOG_0b013e3283423f20
crossref_primary_10_1016_j_actbio_2018_11_042
crossref_primary_10_1186_scrt469
crossref_primary_10_1002_jor_23553
crossref_primary_10_3390_biom10050707
crossref_primary_10_3390_cells12162021
crossref_primary_10_1186_s13287_022_02947_4
crossref_primary_10_1186_s13287_018_0880_7
crossref_primary_10_1002_ctm2_1094
crossref_primary_10_1007_s43440_020_00166_3
crossref_primary_10_1164_rccm_201410_1765OC
crossref_primary_10_1080_14712598_2022_2016695
crossref_primary_10_1002_sctm_20_0284
crossref_primary_10_1016_j_stem_2012_08_013
crossref_primary_10_1016_j_stem_2012_08_010
crossref_primary_10_1002_stem_2254
crossref_primary_10_1186_s13287_016_0361_9
crossref_primary_10_1038_s41392_025_02313_9
crossref_primary_10_1093_ndt_gft463
crossref_primary_10_1186_s12967_019_02167_0
crossref_primary_10_1186_s13287_022_02934_9
crossref_primary_10_1002_jcb_29297
crossref_primary_10_1186_s13287_019_1485_5
crossref_primary_10_1097_SHK_0b013e3182a43651
crossref_primary_10_1186_s13287_022_02791_6
crossref_primary_10_1016_j_exger_2025_112832
crossref_primary_10_1038_s41392_022_00932_0
crossref_primary_10_1089_jir_2018_0093
crossref_primary_10_1016_j_job_2021_02_007
crossref_primary_10_1016_j_cej_2023_146246
crossref_primary_10_7717_peerj_14677
crossref_primary_10_1053_j_pcsu_2021_03_003
crossref_primary_10_3390_ijms25063252
crossref_primary_10_3390_ijms21124389
crossref_primary_10_1002_jnr_24122
crossref_primary_10_1186_s13098_024_01365_1
crossref_primary_10_1007_s13311_018_0629_0
crossref_primary_10_1016_j_jid_2017_08_034
crossref_primary_10_1155_2016_4798639
crossref_primary_10_1186_s13287_016_0406_0
crossref_primary_10_1002_sctm_20_0026
crossref_primary_10_1186_s12989_017_0218_0
crossref_primary_10_1007_s12015_023_10609_y
crossref_primary_10_1016_j_ymthe_2020_07_002
crossref_primary_10_3390_ijms24098214
Cites_doi 10.1074/jbc.M109.042671
10.1038/sj.jid.5700701
10.1371/journal.pone.0001886
10.1126/science.284.5411.143
10.1073/pnas.0803670105
10.1111/j.1524-475X.2008.00440.x
10.1016/j.bbrc.2005.03.137
10.1371/journal.pone.0007119
10.4049/jimmunol.180.4.2581
10.1016/j.jaut.2009.09.012
10.1182/blood-2007-12-129767
10.1002/ibd.20753
10.4049/jimmunol.0902318
10.1111/j.1365-2249.2009.04086.x
10.1182/blood-2007-02-074997
10.2353/ajpath.2010.090735
10.1634/stemcells.2007-0226
10.1517/14712590903039684
10.1182/blood-2007-02-069716
10.1634/stemcells.2007-0554
10.1038/nm.1905
10.1038/cdd.2009.74
10.1073/pnas.0706832104
10.1038/nm1620
10.1016/j.imbio.2005.05.002
10.4049/jimmunol.178.7.4557
10.1111/j.1582-4934.2009.00707.x
10.1053/j.gastro.2009.12.041
10.4049/jimmunol.181.3.2220
10.1186/1479-5876-5-11
10.1146/annurev.immunol.021908.132532
10.1016/j.exphem.2009.09.004
10.1111/j.1365-2249.2007.03422.x
10.2353/ajpath.2009.090248
10.4049/jimmunol.0900864
10.1038/nri2395
10.1152/ajprenal.00374.2009
10.1126/science.1172687
10.1074/jbc.M311516200
10.1371/journal.pone.0009252
10.1189/jlb.0409236
10.1038/sj.ki.5002275
10.2353/ajpath.2007.060595
10.1136/gut.2008.168534
10.1182/blood-2009-02-203943
10.1182/blood-2004-04-1559
ContentType Journal Article
Copyright Copyright © 2010 AlphaMed Press
AlphaMed Press
Copyright_xml – notice: Copyright © 2010 AlphaMed Press
– notice: AlphaMed Press
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1002/stem.503
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1549-4918
EndPage 1868
ExternalDocumentID PMC3114043
20734355
10_1002_stem_503
STEM503
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDCR NIH HHS
  grantid: R01DE 019932
– fundername: NIDCR NIH HHS
  grantid: R01 DE019932
– fundername: National Institute of Dental and Craniofacial Research : NIDCR
  grantid: R01 DE019932-02 || DE
GroupedDBID ---
.GJ
05W
0R~
123
18M
1OB
1OC
24P
2WC
31~
3WU
4.4
53G
5RE
5WD
8-0
8-1
A00
AABZA
AACZT
AAESR
AAIHA
AAONW
AAPGJ
AAPXW
AARHZ
AAUAY
AAVAP
AAWDT
AAZKR
ABCUV
ABDFA
ABEJV
ABHFT
ABLJU
ABMNT
ABNHQ
ABPTD
ABXVV
ACFRR
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACUFI
ACUTJ
ACXQS
ACZBC
ADBBV
ADGKP
ADIPN
ADKYN
ADQBN
ADVEK
ADXAS
ADZMN
AENEX
AEUQT
AFBPY
AFFZL
AFGWE
AFRAH
AFYAG
AFZJQ
AGMDO
AHMBA
AHMMS
AIURR
AJAOE
AJEEA
ALMA_UNASSIGNED_HOLDINGS
AMNDL
AMYDB
APJGH
ATGXG
AVNTJ
AZBYB
AZVAB
BAWUL
BCRHZ
BEYMZ
BMXJE
BRXPI
CS3
DCZOG
DIK
DU5
E3Z
EBS
EJD
EMB
EMOBN
F5P
FD6
G-S
GODZA
GX1
H13
HHY
HZ~
IH2
KOP
KSI
KSN
LATKE
LEEKS
LH4
LITHE
LMP
LOXES
LUTES
LW6
LYRES
MY~
N9A
NNB
NOMLY
NU-
O66
O9-
OBOKY
OCZFY
OIG
OJZSN
OK1
OPAEJ
OVD
OWPYF
P2P
P2W
P4E
PALCI
PQQKQ
RAO
RIWAO
RJQFR
ROL
ROX
RWI
SUPJJ
SV3
TEORI
TMA
TR2
WBKPD
WOHZO
WOQ
WYB
WYJ
XV2
ZGI
ZXP
ZZTAW
~S-
AAMMB
AAYXX
ABGNP
ABJNI
ABVGC
ABXZS
AEFGJ
AGXDD
AIDQK
AIDYY
AJNCP
ALUQN
ALXQX
CITATION
NTU
WIN
ACVCV
ADMTO
AFFQV
AGORE
AHGBF
AJBYB
AJDVS
CGR
CUY
CVF
ECM
EIF
NPM
OBFPC
7X8
5PM
ID FETCH-LOGICAL-c4753-3b2691a17ee7dcf52dc06bc743f5f33359a09beb338aa2fc0b644c689c9b05bc3
IEDL.DBID WIN
ISICitedReferencesCount 474
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000284104100015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1066-5099
1549-4918
IngestDate Tue Nov 04 01:38:36 EST 2025
Sun Nov 09 13:52:21 EST 2025
Mon Jul 21 06:01:12 EDT 2025
Tue Nov 18 22:30:11 EST 2025
Sat Nov 29 01:34:58 EST 2025
Wed Jan 22 16:21:34 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4753-3b2691a17ee7dcf52dc06bc743f5f33359a09beb338aa2fc0b644c689c9b05bc3
Notes First published online in STEM CELLS
Author contributions: Q.‐Z.Z.: conception and design, collection and assembly of data, manuscript writing, final approval of the manuscript; W.‐R.S.: collection and assembly of data, final approval of the manuscript; S.‐H.S.: collection and assembly of data; P.W.S.: manuscript writing, final approval of the manuscript; A.P.X.: manuscript writing, final approval of the manuscript; A.W.: manuscript writing, final approval of the manuscript; A.L.N: collection and assembly of data; B.K.: collection and assembly of data; A.D.L.: conception and design, manuscript writing, final approval of the manuscript, financial support.
Disclosure of potential conflicts of interest is found at the end of this article.
Telephone: 323‐442‐2556; Fax: 323‐442‐2981
EXPRESS
August 23, 2010.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://academic.oup.com/stmcls/article-pdf/28/10/1856/41952324/stmcls_28_10_1856.pdf
PMID 20734355
PQID 761043999
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3114043
proquest_miscellaneous_761043999
pubmed_primary_20734355
crossref_citationtrail_10_1002_stem_503
crossref_primary_10_1002_stem_503
wiley_primary_10_1002_stem_503_STEM503
PublicationCentury 2000
PublicationDate October 2010
2010-10-01
2010-Oct
20101001
PublicationDateYYYYMMDD 2010-10-01
PublicationDate_xml – month: 10
  year: 2010
  text: October 2010
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: England
PublicationTitle Stem cells (Dayton, Ohio)
PublicationTitleAlternate Stem Cells
PublicationYear 2010
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References 2007; 104
2007; 149
2007; 127
2005; 210
2005; 331
1975; 78
1999; 284
2008; 8
2009; 113
2008; 105
2007; 72
2008; 3
2009; 175
2010; 160
2009; 27
2007; 13
1970; 3
2008; 181
2009; 33
2008; 180
2007; 178
2010; 87
2009; 58
2009; 13
2004; 279
2010; 138
2007; 170
2007; 110
2005; 105
2010; 176
2008; 26
2010; 298
2009; 9
2009; 183
2007; 5
2009; 284
2009; 4
2008; 112
2008; 111
2010; 5
2009; 16
2009; 15
2009; 37
2009; 324
2007; 25
2009; 17
Wu (2022011218175437300_bib31) 2007; 25
Routley (2022011218175437300_bib38) 2009; 17
Deonarine (2022011218175437300_bib47) 2007; 5
Ohtaki (2022011218175437300_bib22) 2008; 105
Roca (2022011218175437300_bib45) 2009; 284
Kim (2022011218175437300_bib48) 2009; 9
Savage (2022011218175437300_bib40) 2008; 181
Spaggiari (2022011218175437300_bib8) 2008; 111
Fairweather (2022011218175437300_bib11) 2009; 33
Zhang (2022011218175437300_bib32) 2009; 183
Hunter (2022011218175437300_bib17) 2010; 138
Friedenstein (2022011218175437300_bib2) 1970; 3
Uccelli (2022011218175437300_bib4) 2008; 8
O'Brien (2022011218175437300_bib10) 2010; 176
Chen (2022011218175437300_bib43) 2007; 170
Mirza (2022011218175437300_bib25) 2009; 175
Smith (2022011218175437300_bib19) 2007; 178
Németh (2022011218175437300_bib15) 2009; 15
Gonzalez-Rey (2022011218175437300_bib34) 2009; 58
Ryan (2022011218175437300_bib6) 2007; 149
Park-Min (2022011218175437300_bib39) 2005; 210
Grant (2022011218175437300_bib42) 2005; 331
Troidl (2022011218175437300_bib12) 2009; 13
Alex (2022011218175437300_bib35) 2009; 15
Aki (2022011218175437300_bib16) 2010; 298
Sasaki (2022011218175437300_bib30) 2008; 180
Wang (2022011218175437300_bib18) 2007; 72
Eming (2022011218175437300_bib23) 2007; 127
Stappenbeck (2022011218175437300_bib24) 2009; 324
Spaggiari (2022011218175437300_bib9) 2009; 113
Chen (2022011218175437300_bib28) 2008; 3
Maggini (2022011218175437300_bib21) 2010; 5
Aggarwal (2022011218175437300_bib5) 2005; 105
Nauta (2022011218175437300_bib3) 2007; 110
Kim (2022011218175437300_bib20) 2009; 37
Chen (2022011218175437300_bib29) 2009; 4
Tiemessen (2022011218175437300_bib36) 2007; 104
Bystrom (2022011218175437300_bib13) 2008; 112
Leibovich (2022011218175437300_bib46) 1975; 78
Menzies (2022011218175437300_bib26) 2010; 160
Selmani (2022011218175437300_bib7) 2008; 26
Kuroda (2022011218175437300_bib44) 2009; 183
Daley (2022011218175437300_bib27) 2010; 87
Martinez (2022011218175437300_bib14) 2009; 27
Weber (2022011218175437300_bib41) 2007; 13
Pittenger (2022011218175437300_bib1) 1999; 284
Puig-Kröger (2022011218175437300_bib33) 2004; 279
Huang (2022011218175437300_bib37) 2009; 16
References_xml – volume: 13
  start-page: 935
  year: 2007
  end-page: 943
  article-title: Type II monocytes modulate T cell‐mediated central nervous system autoimmune disease
  publication-title: Nat Med
– volume: 3
  start-page: e1886
  year: 2008
  article-title: Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing
  publication-title: Plos One
– volume: 284
  start-page: 34342
  year: 2009
  end-page: 34354
  article-title: CCL2 and interleukin‐6 promote survival of human CD11b+ peripheral blood mononuclear cells and induce M2‐type macrophage polarization
  publication-title: J Biol Chem
– volume: 72
  start-page: 290
  year: 2007
  end-page: 299
  article-title: Ex vivo programmed macrophages ameliorate experimental chronic inflammatory renal disease
  publication-title: Kidney Int
– volume: 16
  start-page: 1332
  year: 2009
  end-page: 1343
  article-title: IL‐17 stimulates the proliferation and differentiation of human mesenchymal stem cells: Implications for bone remodeling
  publication-title: Cell Death Differ
– volume: 284
  start-page: 143
  year: 1999
  end-page: 147
  article-title: Multilieage potential of adult human mesenchymal stem cells
  publication-title: Science
– volume: 138
  start-page: 1395
  year: 2010
  end-page: 1405
  article-title: In vitro‐derived alternatively activated macrophages reduce colonic inflammation in mice
  publication-title: Gastroenterology
– volume: 26
  start-page: 212
  year: 2008
  end-page: 222
  article-title: Human leukocyte antigen‐G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4 CD25 FoxP3 regulatory T cells
  publication-title: Stem Cells
– volume: 170
  start-page: 1028
  year: 2007
  end-page: 1040
  article-title: Role of granulocyte macrophage colony‐stimulating factor in host defense against pulmonary Cryptococcus neoformans infection during murine allergic bronchopulmonary mycosis
  publication-title: Am J Pathol
– volume: 78
  start-page: 71
  year: 1975
  end-page: 100
  article-title: The role of the macrophage in wound repair. A study with hydrocortisone and antimacrophage serum
  publication-title: Am J Pathol
– volume: 4
  start-page: e7119
  year: 2009
  article-title: Analysis of allogenicity of mesenchymal stem cells in engraftment and wound healing in mice
  publication-title: Plos One
– volume: 37
  start-page: 1445
  year: 2009
  end-page: 1453
  article-title: Mesenchymal stem cell‐educated macrophages: A novel type of alternatively activated macrophages
  publication-title: Exp Hematol
– volume: 3
  start-page: 393
  year: 1970
  end-page: 403
  article-title: The development of fibroblast colonies in monolayer cultures of guinea‐pig bone marrow and spleen cells
  publication-title: Cell Tissue Kinet
– volume: 27
  start-page: 451
  year: 2009
  end-page: 483
  article-title: Alternative activation of macrophages: An immunologic functional perspective
  publication-title: Annu Rev Immunol
– volume: 15
  start-page: 42
  year: 2009
  end-page: 49
  article-title: Bone marrow stromal cells attenuate sepsis via prostaglandin E (2)‐dependent reprogramming of host macrophages to increase their interleukin‐10 production
  publication-title: Nat Med
– volume: 111
  start-page: 1327
  year: 2008
  end-page: 1333
  article-title: Mesenchymal stem cells inhibit natural killer‐cell proliferation, cytotoxicity, and cytokine production: Role of indoleamine 2,3‐dioxygenase and prostaglandin E2
  publication-title: Blood
– volume: 175
  start-page: 2454
  year: 2009
  end-page: 2462
  article-title: Selective and specific macrophage ablation is detrimental to wound healing in mice
  publication-title: Am J Pathol
– volume: 87
  start-page: 59
  year: 2010
  end-page: 67
  article-title: The phenotype of murine wound macrophages
  publication-title: J Leukoc Biol
– volume: 180
  start-page: 2581
  year: 2008
  end-page: 2587
  article-title: Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type
  publication-title: J Immunol
– volume: 33
  start-page: 222
  year: 2009
  end-page: 230
  article-title: Alternatively activated macrophages in infection and autoimmunity
  publication-title: J Autoimmun
– volume: 324
  start-page: 1666
  year: 2009
  end-page: 1669
  article-title: The role of stromal stem cells in tissue regeneration and wound repair
  publication-title: Science
– volume: 104
  start-page: 19446
  year: 2007
  end-page: 19451
  article-title: CD4+CD25+Foxp3+ regulatory T cells induce alternative activation of human monocytes/macrophages
  publication-title: Proc Natl Acad Sci USA
– volume: 17
  start-page: 42
  year: 2009
  end-page: 50
  article-title: Effect of estrogen and progesterone on macrophage activation during wound healing
  publication-title: Wound Repair Regen
– volume: 5
  start-page: e9252
  year: 2010
  article-title: Mouse bone marrow‐derived mesenchymal stromal cells turn activated macrophages into a regulatory‐like profile
  publication-title: Plos One
– volume: 13
  start-page: 3485
  year: 2009
  end-page: 3496
  article-title: Classically and alternatively activated macrophages contribute to tissue remodelling after myocardial infarction
  publication-title: J Cell Mol Med
– volume: 15
  start-page: 341
  year: 2009
  end-page: 352
  article-title: Distinct cytokine patterns identified from multiplex profiles of murine DSS and TNBS‐induced colitis
  publication-title: Inflamm Bowel Dis
– volume: 5
  start-page: 1
  year: 2007
  end-page: 11
  article-title: Gene expression profiling of cutaneous wound healing
  publication-title: J Transl Med
– volume: 181
  start-page: 2220
  year: 2008
  end-page: 2226
  article-title: Human anti‐inflammatory macrophages induce Foxp3+GITR+ CD25+ regulatory T cells, which suppress via membrane‐bound TGF‐1
  publication-title: J Immunol
– volume: 279
  start-page: 25680
  year: 2004
  end-page: 25688
  article-title: Regulated expression of the pathogen receptor dendritic cell‐specific intercellular adhesion molecule 3 (ICAM‐3)‐grabbing nonintegrin in THP‐1 human leukemic cells, monocytes, and macrophages
  publication-title: J Biol Chem
– volume: 210
  start-page: 77
  year: 2005
  end-page: 86
  article-title: Regulation of macrophage phenotype by long‐term exposure to IL‐10
  publication-title: Immunobiology
– volume: 178
  start-page: 4557
  year: 2007
  end-page: 4566
  article-title: Infection with a helminth parasite prevents experimental colitis via a macrophage‐mediated mechanism
  publication-title: J Immunol
– volume: 25
  start-page: 2648
  year: 2007
  end-page: 2659
  article-title: Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis
  publication-title: Stem Cells
– volume: 113
  start-page: 6576
  year: 2009
  end-page: 6583
  article-title: MSCs inhibit monocyte‐derived DC maturation and function by selectively interfering with the generation of immature DCs: Central role of MSC‐derived prostaglandin E2
  publication-title: Blood
– volume: 331
  start-page: 187
  year: 2005
  end-page: 193
  article-title: PGE/cAMP and GM‐CSF synergise to induce a pro‐tolerance cytokine profile in monocytic cell lines
  publication-title: Biochem Biophys Res Commun
– volume: 105
  start-page: 1815
  year: 2005
  end-page: 1822
  article-title: Human mesenchymal stem cells modulate allogeneic immune cell responses
  publication-title: Blood
– volume: 160
  start-page: 369
  year: 2010
  end-page: 379
  article-title: Sequential expression of macrophage anti‐microbial/inflammatory and wound healing markers following innate, alternative and classical activation
  publication-title: Clin Exp Immunol
– volume: 112
  start-page: 4117
  year: 2008
  end-page: 4127
  article-title: Resolution‐phase macrophages possess a unique inflammatory phenotype that is controlled by cAMP
  publication-title: Blood
– volume: 183
  start-page: 3652
  year: 2009
  end-page: 3660
  article-title: SHIP represses the generation of IL‐3‐induced M2 macrophages by inhibiting IL‐4 production from basophils
  publication-title: J Immunol
– volume: 105
  start-page: 14638
  year: 2008
  end-page: 14643
  article-title: Stem/progenitor cells from bone marrow decrease neuronal death in global ischemia by modulation of inflammatory/immune responses
  publication-title: Proc Natl Acad Sci USA
– volume: 127
  start-page: 514
  year: 2007
  end-page: 525
  article-title: Inflammation in wound repair: Molecular and cellular mechanisms
  publication-title: J Invest Dermatol
– volume: 9
  start-page: 879
  year: 2009
  end-page: 887
  article-title: The wound‐healing and antioxidant effects of adipose‐derived stem cells
  publication-title: Expert Opin Biol Ther
– volume: 8
  start-page: 726
  year: 2008
  end-page: 736
  article-title: Mesenchymal stem cells in health and disease
  publication-title: Nat Rev Immunol
– volume: 176
  start-page: 1241
  year: 2010
  end-page: 1255
  article-title: Alternatively activated macrophages and collagen remodeling characterize the postpartum involuting mammary gland across species
  publication-title: Am J Pathol
– volume: 110
  start-page: 3499
  year: 2007
  end-page: 3506
  article-title: Immunomodulatory properties of mesenchymal stromal cells
  publication-title: Blood
– volume: 183
  start-page: 7787
  year: 2009
  end-page: 7798
  article-title: Mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammation‐related tissue destruction in experimental colitis
  publication-title: J Immunol
– volume: 298
  start-page: F870
  year: 2010
  end-page: F882
  article-title: ANG II receptor blockade enhances anti‐inflammatory macrophages in anti‐glomerular basement membrane glomerulonephritis
  publication-title: Am J Physiol Renal Physiol
– volume: 149
  start-page: 353
  year: 2007
  end-page: 363
  article-title: Interferon‐gamma does not break, but promotes the immunosuppressive capacity of adult human mesenchymal stem cells
  publication-title: Clin Exp Immunol
– volume: 58
  start-page: 929
  year: 2009
  end-page: 939
  article-title: Human adult stem cells derived from adipose tissue protect against experimental colitis and sepsis
  publication-title: Gut
– volume: 284
  start-page: 34342
  year: 2009
  ident: 2022011218175437300_bib45
  article-title: CCL2 and interleukin-6 promote survival of human CD11b+ peripheral blood mononuclear cells and induce M2-type macrophage polarization
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M109.042671
– volume: 127
  start-page: 514
  year: 2007
  ident: 2022011218175437300_bib23
  article-title: Inflammation in wound repair: Molecular and cellular mechanisms
  publication-title: J Invest Dermatol
  doi: 10.1038/sj.jid.5700701
– volume: 3
  start-page: e1886
  year: 2008
  ident: 2022011218175437300_bib28
  article-title: Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing
  publication-title: Plos One
  doi: 10.1371/journal.pone.0001886
– volume: 284
  start-page: 143
  year: 1999
  ident: 2022011218175437300_bib1
  article-title: Multilieage potential of adult human mesenchymal stem cells
  publication-title: Science
  doi: 10.1126/science.284.5411.143
– volume: 105
  start-page: 14638
  year: 2008
  ident: 2022011218175437300_bib22
  article-title: Stem/progenitor cells from bone marrow decrease neuronal death in global ischemia by modulation of inflammatory/immune responses
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0803670105
– volume: 17
  start-page: 42
  year: 2009
  ident: 2022011218175437300_bib38
  article-title: Effect of estrogen and progesterone on macrophage activation during wound healing
  publication-title: Wound Repair Regen
  doi: 10.1111/j.1524-475X.2008.00440.x
– volume: 3
  start-page: 393
  year: 1970
  ident: 2022011218175437300_bib2
  article-title: The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells
  publication-title: Cell Tissue Kinet
– volume: 331
  start-page: 187
  year: 2005
  ident: 2022011218175437300_bib42
  article-title: PGE/cAMP and GM-CSF synergise to induce a pro-tolerance cytokine profile in monocytic cell lines
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2005.03.137
– volume: 4
  start-page: e7119
  year: 2009
  ident: 2022011218175437300_bib29
  article-title: Analysis of allogenicity of mesenchymal stem cells in engraftment and wound healing in mice
  publication-title: Plos One
  doi: 10.1371/journal.pone.0007119
– volume: 180
  start-page: 2581
  year: 2008
  ident: 2022011218175437300_bib30
  article-title: Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type
  publication-title: J Immunol
  doi: 10.4049/jimmunol.180.4.2581
– volume: 33
  start-page: 222
  year: 2009
  ident: 2022011218175437300_bib11
  article-title: Alternatively activated macrophages in infection and autoimmunity
  publication-title: J Autoimmun
  doi: 10.1016/j.jaut.2009.09.012
– volume: 112
  start-page: 4117
  year: 2008
  ident: 2022011218175437300_bib13
  article-title: Resolution-phase macrophages possess a unique inflammatory phenotype that is controlled by cAMP
  publication-title: Blood
  doi: 10.1182/blood-2007-12-129767
– volume: 15
  start-page: 341
  year: 2009
  ident: 2022011218175437300_bib35
  article-title: Distinct cytokine patterns identified from multiplex profiles of murine DSS and TNBS-induced colitis
  publication-title: Inflamm Bowel Dis
  doi: 10.1002/ibd.20753
– volume: 183
  start-page: 7787
  year: 2009
  ident: 2022011218175437300_bib32
  article-title: Mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammation-related tissue destruction in experimental colitis
  publication-title: J Immunol
  doi: 10.4049/jimmunol.0902318
– volume: 160
  start-page: 369
  year: 2010
  ident: 2022011218175437300_bib26
  article-title: Sequential expression of macrophage anti-microbial/inflammatory and wound healing markers following innate, alternative and classical activation
  publication-title: Clin Exp Immunol
  doi: 10.1111/j.1365-2249.2009.04086.x
– volume: 111
  start-page: 1327
  year: 2008
  ident: 2022011218175437300_bib8
  article-title: Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: Role of indoleamine 2,3-dioxygenase and prostaglandin E2
  publication-title: Blood
  doi: 10.1182/blood-2007-02-074997
– volume: 176
  start-page: 1241
  year: 2010
  ident: 2022011218175437300_bib10
  article-title: Alternatively activated macrophages and collagen remodeling characterize the postpartum involuting mammary gland across species
  publication-title: Am J Pathol
  doi: 10.2353/ajpath.2010.090735
– volume: 25
  start-page: 2648
  year: 2007
  ident: 2022011218175437300_bib31
  article-title: Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis
  publication-title: Stem Cells
  doi: 10.1634/stemcells.2007-0226
– volume: 9
  start-page: 879
  year: 2009
  ident: 2022011218175437300_bib48
  article-title: The wound-healing and antioxidant effects of adipose-derived stem cells
  publication-title: Expert Opin Biol Ther
  doi: 10.1517/14712590903039684
– volume: 110
  start-page: 3499
  year: 2007
  ident: 2022011218175437300_bib3
  article-title: Immunomodulatory properties of mesenchymal stromal cells
  publication-title: Blood
  doi: 10.1182/blood-2007-02-069716
– volume: 26
  start-page: 212
  year: 2008
  ident: 2022011218175437300_bib7
  article-title: Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+CD25highFoxP3+ regulatory T cells
  publication-title: Stem Cells
  doi: 10.1634/stemcells.2007-0554
– volume: 15
  start-page: 42
  year: 2009
  ident: 2022011218175437300_bib15
  article-title: Bone marrow stromal cells attenuate sepsis via prostaglandin E (2)-dependent reprogramming of host macrophages to increase their interleukin-10 production
  publication-title: Nat Med
  doi: 10.1038/nm.1905
– volume: 16
  start-page: 1332
  year: 2009
  ident: 2022011218175437300_bib37
  article-title: IL-17 stimulates the proliferation and differentiation of human mesenchymal stem cells: Implications for bone remodeling
  publication-title: Cell Death Differ
  doi: 10.1038/cdd.2009.74
– volume: 104
  start-page: 19446
  year: 2007
  ident: 2022011218175437300_bib36
  article-title: CD4+CD25+Foxp3+ regulatory T cells induce alternative activation of human monocytes/macrophages
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0706832104
– volume: 13
  start-page: 935
  year: 2007
  ident: 2022011218175437300_bib41
  article-title: Type II monocytes modulate T cell-mediated central nervous system autoimmune disease
  publication-title: Nat Med
  doi: 10.1038/nm1620
– volume: 210
  start-page: 77
  year: 2005
  ident: 2022011218175437300_bib39
  article-title: Regulation of macrophage phenotype by long-term exposure to IL-10
  publication-title: Immunobiology
  doi: 10.1016/j.imbio.2005.05.002
– volume: 178
  start-page: 4557
  year: 2007
  ident: 2022011218175437300_bib19
  article-title: Infection with a helminth parasite prevents experimental colitis via a macrophage-mediated mechanism
  publication-title: J Immunol
  doi: 10.4049/jimmunol.178.7.4557
– volume: 13
  start-page: 3485
  year: 2009
  ident: 2022011218175437300_bib12
  article-title: Classically and alternatively activated macrophages contribute to tissue remodelling after myocardial infarction
  publication-title: J Cell Mol Med
  doi: 10.1111/j.1582-4934.2009.00707.x
– volume: 78
  start-page: 71
  year: 1975
  ident: 2022011218175437300_bib46
  article-title: The role of the macrophage in wound repair. A study with hydrocortisone and antimacrophage serum
  publication-title: Am J Pathol
– volume: 138
  start-page: 1395
  year: 2010
  ident: 2022011218175437300_bib17
  article-title: In vitro-derived alternatively activated macrophages reduce colonic inflammation in mice
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2009.12.041
– volume: 181
  start-page: 2220
  year: 2008
  ident: 2022011218175437300_bib40
  article-title: Human anti-inflammatory macrophages induce Foxp3+GITR+ CD25+ regulatory T cells, which suppress via membrane-bound TGF-1
  publication-title: J Immunol
  doi: 10.4049/jimmunol.181.3.2220
– volume: 5
  start-page: 1
  year: 2007
  ident: 2022011218175437300_bib47
  article-title: Gene expression profiling of cutaneous wound healing
  publication-title: J Transl Med
  doi: 10.1186/1479-5876-5-11
– volume: 27
  start-page: 451
  year: 2009
  ident: 2022011218175437300_bib14
  article-title: Alternative activation of macrophages: An immunologic functional perspective
  publication-title: Annu Rev Immunol
  doi: 10.1146/annurev.immunol.021908.132532
– volume: 37
  start-page: 1445
  year: 2009
  ident: 2022011218175437300_bib20
  article-title: Mesenchymal stem cell-educated macrophages: A novel type of alternatively activated macrophages
  publication-title: Exp Hematol
  doi: 10.1016/j.exphem.2009.09.004
– volume: 149
  start-page: 353
  year: 2007
  ident: 2022011218175437300_bib6
  article-title: Interferon-gamma does not break, but promotes the immunosuppressive capacity of adult human mesenchymal stem cells
  publication-title: Clin Exp Immunol
  doi: 10.1111/j.1365-2249.2007.03422.x
– volume: 175
  start-page: 2454
  year: 2009
  ident: 2022011218175437300_bib25
  article-title: Selective and specific macrophage ablation is detrimental to wound healing in mice
  publication-title: Am J Pathol
  doi: 10.2353/ajpath.2009.090248
– volume: 183
  start-page: 3652
  year: 2009
  ident: 2022011218175437300_bib44
  article-title: SHIP represses the generation of IL-3-induced M2 macrophages by inhibiting IL-4 production from basophils
  publication-title: J Immunol
  doi: 10.4049/jimmunol.0900864
– volume: 8
  start-page: 726
  year: 2008
  ident: 2022011218175437300_bib4
  article-title: Mesenchymal stem cells in health and disease
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri2395
– volume: 298
  start-page: F870
  year: 2010
  ident: 2022011218175437300_bib16
  article-title: ANG II receptor blockade enhances anti-inflammatory macrophages in anti-glomerular basement membrane glomerulonephritis
  publication-title: Am J Physiol Renal Physiol
  doi: 10.1152/ajprenal.00374.2009
– volume: 324
  start-page: 1666
  year: 2009
  ident: 2022011218175437300_bib24
  article-title: The role of stromal stem cells in tissue regeneration and wound repair
  publication-title: Science
  doi: 10.1126/science.1172687
– volume: 279
  start-page: 25680
  year: 2004
  ident: 2022011218175437300_bib33
  article-title: Regulated expression of the pathogen receptor dendritic cell-specific intercellular adhesion molecule 3 (ICAM-3)-grabbing nonintegrin in THP-1 human leukemic cells, monocytes, and macrophages
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M311516200
– volume: 5
  start-page: e9252
  year: 2010
  ident: 2022011218175437300_bib21
  article-title: Mouse bone marrow-derived mesenchymal stromal cells turn activated macrophages into a regulatory-like profile
  publication-title: Plos One
  doi: 10.1371/journal.pone.0009252
– volume: 87
  start-page: 59
  year: 2010
  ident: 2022011218175437300_bib27
  article-title: The phenotype of murine wound macrophages
  publication-title: J Leukoc Biol
  doi: 10.1189/jlb.0409236
– volume: 72
  start-page: 290
  year: 2007
  ident: 2022011218175437300_bib18
  article-title: Ex vivo programmed macrophages ameliorate experimental chronic inflammatory renal disease
  publication-title: Kidney Int
  doi: 10.1038/sj.ki.5002275
– volume: 170
  start-page: 1028
  year: 2007
  ident: 2022011218175437300_bib43
  article-title: Role of granulocyte macrophage colony-stimulating factor in host defense against pulmonary Cryptococcus neoformans infection during murine allergic bronchopulmonary mycosis
  publication-title: Am J Pathol
  doi: 10.2353/ajpath.2007.060595
– volume: 58
  start-page: 929
  year: 2009
  ident: 2022011218175437300_bib34
  article-title: Human adult stem cells derived from adipose tissue protect against experimental colitis and sepsis
  publication-title: Gut
  doi: 10.1136/gut.2008.168534
– volume: 113
  start-page: 6576
  year: 2009
  ident: 2022011218175437300_bib9
  article-title: MSCs inhibit monocyte-derived DC maturation and function by selectively interfering with the generation of immature DCs: Central role of MSC-derived prostaglandin E2
  publication-title: Blood
  doi: 10.1182/blood-2009-02-203943
– volume: 105
  start-page: 1815
  year: 2005
  ident: 2022011218175437300_bib5
  article-title: Human mesenchymal stem cells modulate allogeneic immune cell responses
  publication-title: Blood
  doi: 10.1182/blood-2004-04-1559
SSID ssj0014588
Score 2.5343347
Snippet Increasing evidence has supported the important role of mesenchymal stem cells (MSCs) in wound healing, however, the underlying mechanism remains unclear....
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1856
SubjectTerms Animals
Blotting, Western
Cell Line
Cells, Cultured
Coculture Techniques
Enzyme-Linked Immunosorbent Assay
Flow Cytometry
Gingiva - cytology
Human gingival
Humans
M2 macrophages
Macrophages - cytology
Macrophages - immunology
Male
Mesenchymal stem cells
Mesenchymal Stem Cells - cytology
Mesenchymal Stem Cells - metabolism
Mice
Mice, Inbred C57BL
Wound healing
Wound Healing - immunology
Title Human Gingiva‐Derived Mesenchymal Stem Cells Elicit Polarization of M2 Macrophages and Enhance Cutaneous Wound Healing
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fstem.503
https://www.ncbi.nlm.nih.gov/pubmed/20734355
https://www.proquest.com/docview/761043999
https://pubmed.ncbi.nlm.nih.gov/PMC3114043
Volume 28
WOSCitedRecordID wos000284104100015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1549-4918
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0014588
  issn: 1066-5099
  databaseCode: WIN
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BBRIXWv5KClRGQnAKTew4jo9ouwUOu6rUou4tchxHu9KSRc3uit54hD5jn4QZJxtYFSQkTjnEdhzPjOfzz3wD8AZdvKmkM2FSKhEm1qYhotY4TDMdWe4y9KCFTzahxuNsMtGn3a1KioVp-SH6DTeyDD9fk4Gbojn6RRpKPMfvpSf6jJOYkhdcfB73BwgUgOkPOtM0RJ-oN7yzET_aVNz2RLfg5e1bkr-jV-9-Tnb_p-N78LADnexDqyWP4I6rH8P9Ng3l1RP47nfy2UfKXbQ2Nz-uj1Et165kIwpNstOrr1j5DNtjAzefN2w4n9nZkp3SqrgL42SLio04GxnKCDbFOaphpi7ZsJ6SVrHBCjGoW6wadkFpnBgFP-HXnsKXk-H54FPYZWQIbYLrmlAUPNWxiZVzqrSV5KWN0sIiCqlkJYSQ2kS6wPW5yIzhlY0KhFsW5W51EcnCimewUy9q9xwYIlVhEgTNUonElImOykpJbo0zicJpJYB3G-nktqMrp6wZ87wlWuY5jWOO4xjA677kt5ai4w9l2EbAOdoPHYq0v50rxI-0JtMB7Lfy7hvhOP0hmpQBqC1N6AsQNff2m3o29RTdIva0RQG89Zrw137lZ-fDET4P_rXgC3jg7y_464QvYWd5uXKv4J5dL2fN5SHcVZPs0FvCT5IvD6k
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5VLQgu5U3D00gITmmzdhyvxQktW1rRrCp1UXuLHMfRrrRkq-5D9MZP4Df2l3TG2QRWBQmJUw6xHceex-fHfAPwFl28KaUzYVwoEcbWJiGi1k6YdHVkueuiB819sgk1GHTPzvTxBnxoYmFqfoh2w400w9trUnDakN77xRpKRMe7kpg-t2LEGZS34fRw0B4hUAimP-pMkhC9om6YZyO-19Rc90U3AObNe5K_41fvgPbv_VfX78P2Cneyj7WgPIANVz2E23UmystH8N1v5rPPlL5oaa5-_PyEkrl0BUspOsmOLr9h5RNsj_XcZDJj_cnYjufsmBbGq0hONi1ZyllqKCnYCM3UjJmqYP1qRILFeguEoW66mLFTyuTEKP4Jv_YYvu73h72DcJWUIbQxLm1CkfNEd0xHOacKW0pe2CjJLQKRUpZCCKlNpHNcoouuMby0UY6Iy-LUW51HMrfiCWxW08rtAEOwKkyMuFkqEZsi1lFRKsmtcSZWaFkCeN9MT2ZXjOWUOGOS1VzLPKNxzHAcA3jTljyvWTr-UIY1M5yhCtG5SP3bmUIIScsyHcDTesLbRjhaQASUMgC1JgptAWLnXn9TjUeepVt0PHNRAO-8KPy1X9nJsJ_i89m_FnwNdw6G6VF2dDj48hzu-usM_nbhC9icXyzcS7hll_Px7OKVV4hrAuoS3w
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED9NGyBexvi7DAZGQvAUltpxXIsn1LUwQatKG2JvkeM4aqUundY_2t72EfYZ-STcOU2gGkhIPOUhtuP4zr7f2b7fAbxBE28K6UwY50qEsbVJiKi1FSZtHVnu2mhBM59sQg0G7dNTPdyAD3UsTMUP0Wy40czw6zVNcHeeFwe_WEOJ6Pi9JKbPrThBd5zCSY4GzREChWD6o84kCdEq6pp5NuIHdc11W3QLYN6-J_k7fvUGqPfgv7q-A9sr3Mk-VoryEDZc-QjuVpkorx7Dpd_MZ58ofdHS_Li-OUTNXLqc9Sk6yY6uzrDyMbbHOm4ymbHuZGzHczYkx3gVycmmBetz1jeUFGyEy9SMmTJn3XJEisU6C4ShbrqYse-UyYlR_BN-7Ql863VPOp_DVVKG0Mbo2oQi44lumZZyTuW2kDy3UZJZBCKFLIQQUptIZ-iii7YxvLBRhojLouitziKZWfEUNstp6XaBIVgVJkbcLJWITR7rKC-U5NY4EytcWQJ4V4sntSvGckqcMUkrrmWe0jimOI4BvG5KnlcsHX8ow2oJpziF6Fyk-u1UIYQkt0wH8KwSeNMIxxUQAaUMQK2pQlOA2LnX35TjkWfpFi3PXBTAW68Kf-1XenzS7eNz718LvoJ7w8Ne-vVo8OU53Pe3GfzlwhewOb9YuH24Y5fz8ezipZ8PPwGSHhJj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human+gingiva-derived+mesenchymal+stem+cells+elicit+polarization+of+m2+macrophages+and+enhance+cutaneous+wound+healing&rft.jtitle=Stem+cells+%28Dayton%2C+Ohio%29&rft.au=Zhang%2C+Qun-Zhou&rft.au=Su%2C+Wen-Ru&rft.au=Shi%2C+Shi-Hong&rft.au=Wilder-Smith%2C+Petra&rft.date=2010-10-01&rft.eissn=1549-4918&rft.volume=28&rft.issue=10&rft.spage=1856&rft_id=info:doi/10.1002%2Fstem.503&rft_id=info%3Apmid%2F20734355&rft.externalDocID=20734355
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1066-5099&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1066-5099&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1066-5099&client=summon