Human Gingiva‐Derived Mesenchymal Stem Cells Elicit Polarization of M2 Macrophages and Enhance Cutaneous Wound Healing
Increasing evidence has supported the important role of mesenchymal stem cells (MSCs) in wound healing, however, the underlying mechanism remains unclear. Recently, we have isolated a unique population of MSCs from human gingiva (GMSCs) with similar stem cell‐like properties, immunosuppressive, and...
Saved in:
| Published in: | Stem cells (Dayton, Ohio) Vol. 28; no. 10; pp. 1856 - 1868 |
|---|---|
| Main Authors: | , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.10.2010
|
| Subjects: | |
| ISSN: | 1066-5099, 1549-4918, 1549-4918 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Increasing evidence has supported the important role of mesenchymal stem cells (MSCs) in wound healing, however, the underlying mechanism remains unclear. Recently, we have isolated a unique population of MSCs from human gingiva (GMSCs) with similar stem cell‐like properties, immunosuppressive, and anti‐inflammatory functions as human bone marrow‐derived MSCs (BMSCs). We describe here the interplay between GMSCs and macrophages and the potential relevance in skin wound healing. When cocultured with GMSCs, macrophages acquired an anti‐inflammatory M2 phenotype characterized by an increased expression of mannose receptor (MR; CD206) and secretory cytokines interleukin (IL)‐10 and IL‐6, a suppressed production of tumor necrosis factor (TNF)‐α, and decreased ability to induce Th‐17 cell expansion. In vivo, we demonstrated that systemically infused GMSCs could home to the wound site in a tight spatial interaction with host macrophages, promoted them toward M2 polarization, and significantly enhanced wound repair. Mechanistically, GMSC treatment mitigated local inflammation mediated by a suppressed infiltration of inflammatory cells and production of IL‐6 and TNF‐α, and an increased expression of IL‐10. The GMSC‐induced suppression of TNF‐α secretion by macrophages appears to correlate with impaired activation of NFκB p50. These findings provide first evidence that GMSCs are capable to elicit M2 polarization of macrophages, which might contribute to a marked acceleration of wound healing. STEM CELLS 2010;28:1856–1868 |
|---|---|
| AbstractList | Increasing evidence has supported the important role of mesenchymal stem cells (MSCs) in wound healing, however, the underlying mechanism remains unclear. Recently, we have isolated a unique population of MSCs from human gingiva (GMSCs) with similar stem cell-like properties, immunosuppressive, and anti-inflammatory functions as human bone marrow-derived MSCs (BMSCs). We describe here the interplay between GMSCs and macrophages and the potential relevance in skin wound healing. When cocultured with GMSCs, macrophages acquired an anti-inflammatory M2 phenotype characterized by an increased expression of mannose receptor (MR; CD206) and secretory cytokines interleukin (IL)-10 and IL-6, a suppressed production of tumor necrosis factor (TNF)-α, and decreased ability to induce Th-17 cell expansion. In vivo, we demonstrated that systemically infused GMSCs could home to the wound site in a tight spatial interaction with host macrophages, promoted them toward M2 polarization, and significantly enhanced wound repair. Mechanistically, GMSC treatment mitigated local inflammation mediated by a suppressed infiltration of inflammatory cells and production of IL-6 and TNF-α, and an increased expression of IL-10. The GMSC-induced suppression of TNF-α secretion by macrophages appears to correlate with impaired activation of NFκB p50. These findings provide first evidence that GMSCs are capable to elicit M2 polarization of macrophages, which might contribute to a marked acceleration of wound healing. Increasing evidence has supported the important role of mesenchymal stem cells (MSCs) in wound healing, however, the underlying mechanism remains unclear. Recently, we have isolated a unique population of MSCs from human gingiva (GMSCs) with similar stem cell-like properties, immunosuppressive, and anti-inflammatory functions as human bone marrow-derived MSCs (BMSCs). We describe here the interplay between GMSCs and macrophages and the potential relevance in skin wound healing. When cocultured with GMSCs, macrophages acquired an anti-inflammatory M2 phenotype characterized by an increased expression of mannose receptor (MR; CD206) and secretory cytokines interleukin (IL)-10 and IL-6, a suppressed production of tumor necrosis factor (TNF)-α, and decreased ability to induce Th-17 cell expansion. In vivo, we demonstrated that systemically infused GMSCs could home to the wound site in a tight spatial interaction with host macrophages, promoted them toward M2 polarization, and significantly enhanced wound repair. Mechanistically, GMSC treatment mitigated local inflammation mediated by a suppressed infiltration of inflammatory cells and production of IL-6 and TNF-α, and an increased expression of IL-10. The GMSC-induced suppression of TNF-α secretion by macrophages appears to correlate with impaired activation of NFκB p50. These findings provide first evidence that GMSCs are capable to elicit M2 polarization of macrophages, which might contribute to a marked acceleration of wound healing.Increasing evidence has supported the important role of mesenchymal stem cells (MSCs) in wound healing, however, the underlying mechanism remains unclear. Recently, we have isolated a unique population of MSCs from human gingiva (GMSCs) with similar stem cell-like properties, immunosuppressive, and anti-inflammatory functions as human bone marrow-derived MSCs (BMSCs). We describe here the interplay between GMSCs and macrophages and the potential relevance in skin wound healing. When cocultured with GMSCs, macrophages acquired an anti-inflammatory M2 phenotype characterized by an increased expression of mannose receptor (MR; CD206) and secretory cytokines interleukin (IL)-10 and IL-6, a suppressed production of tumor necrosis factor (TNF)-α, and decreased ability to induce Th-17 cell expansion. In vivo, we demonstrated that systemically infused GMSCs could home to the wound site in a tight spatial interaction with host macrophages, promoted them toward M2 polarization, and significantly enhanced wound repair. Mechanistically, GMSC treatment mitigated local inflammation mediated by a suppressed infiltration of inflammatory cells and production of IL-6 and TNF-α, and an increased expression of IL-10. The GMSC-induced suppression of TNF-α secretion by macrophages appears to correlate with impaired activation of NFκB p50. These findings provide first evidence that GMSCs are capable to elicit M2 polarization of macrophages, which might contribute to a marked acceleration of wound healing. Increasing evidence has supported the important role of mesenchymal stem cells (MSCs) in wound healing, however, the underlying mechanism remains unclear. Recently, we have isolated a unique population of MSCs from human gingiva (GMSCs) with similar stem cell‐like properties, immunosuppressive, and anti‐inflammatory functions as human bone marrow‐derived MSCs (BMSCs). We describe here the interplay between GMSCs and macrophages and the potential relevance in skin wound healing. When cocultured with GMSCs, macrophages acquired an anti‐inflammatory M2 phenotype characterized by an increased expression of mannose receptor (MR; CD206) and secretory cytokines interleukin (IL)‐10 and IL‐6, a suppressed production of tumor necrosis factor (TNF)‐α, and decreased ability to induce Th‐17 cell expansion. In vivo, we demonstrated that systemically infused GMSCs could home to the wound site in a tight spatial interaction with host macrophages, promoted them toward M2 polarization, and significantly enhanced wound repair. Mechanistically, GMSC treatment mitigated local inflammation mediated by a suppressed infiltration of inflammatory cells and production of IL‐6 and TNF‐α, and an increased expression of IL‐10. The GMSC‐induced suppression of TNF‐α secretion by macrophages appears to correlate with impaired activation of NFκB p50. These findings provide first evidence that GMSCs are capable to elicit M2 polarization of macrophages, which might contribute to a marked acceleration of wound healing. STEM CELLS 2010;28:1856–1868 |
| Author | Kwon, Chan Wook Zhang, Qun‐Zhou Su, Wen‐Ru Nguyen, Andrew L. Xiang, Andy Peng Le, Anh D. Shi, Shi‐Hong Wilder‐Smith, Petra Wong, Alex |
| AuthorAffiliation | b Beckman Laser Institute, University of California, Irvine, California, USA c Center for Stem Cell Biology and Tissue Engineering, Sun Yat-Sen University, Guangzhou, People’s Republic of China a Center for Craniofacial Molecular Biology, The Herman Ostrow School of Dentistry of University of Southern California, Los Angeles, California, USA d Division of Plastic and Reconstructive Surgery, University of Southern California Keck School of Medicine, Los Angeles, California, USA |
| AuthorAffiliation_xml | – name: a Center for Craniofacial Molecular Biology, The Herman Ostrow School of Dentistry of University of Southern California, Los Angeles, California, USA – name: d Division of Plastic and Reconstructive Surgery, University of Southern California Keck School of Medicine, Los Angeles, California, USA – name: c Center for Stem Cell Biology and Tissue Engineering, Sun Yat-Sen University, Guangzhou, People’s Republic of China – name: b Beckman Laser Institute, University of California, Irvine, California, USA |
| Author_xml | – sequence: 1 givenname: Qun‐Zhou surname: Zhang fullname: Zhang, Qun‐Zhou – sequence: 2 givenname: Wen‐Ru surname: Su fullname: Su, Wen‐Ru – sequence: 3 givenname: Shi‐Hong surname: Shi fullname: Shi, Shi‐Hong – sequence: 4 givenname: Petra surname: Wilder‐Smith fullname: Wilder‐Smith, Petra – sequence: 5 givenname: Andy Peng surname: Xiang fullname: Xiang, Andy Peng – sequence: 6 givenname: Alex surname: Wong fullname: Wong, Alex – sequence: 7 givenname: Andrew L. surname: Nguyen fullname: Nguyen, Andrew L. – sequence: 8 givenname: Chan Wook surname: Kwon fullname: Kwon, Chan Wook – sequence: 9 givenname: Anh D. surname: Le fullname: Le, Anh D. email: anhle@usc.edu |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20734355$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kd9u0zAYxS20if0BiSdAvoObFDu2k_gGCXVlRVq1SRvi0nKcL62RY5c4KXRXewSekSfBpdsECK5s2b_vHH3nnKADHzwg9IKSCSUkfxMH6CaCsCfomAouMy5pdZDupCgyQaQ8QicxfiaEclFVT9FRTkrGmRDH6Nt87LTH59Yv7Ub_uPt-Br3dQIMXEMGb1bbTDl8neTwF5yKeOWvsgK-C07291YMNHocWL3K80KYP65VeQsTaN3jmV9obwNNx0B7CGPGnMKb3OWiX3J6hw1a7CM_vz1P08f3sZjrPLi7PP0zfXWSGl4JlrM4LSTUtAcrGtCJvDClqU3LWipYxJqQmsoaasUrrvDWkLjg3RSWNrImoDTtFb_e667HuoDHgh147te5tp_utCtqqP3-8Xall2ChGKSecJYFX9wJ9-DJCHFRno0lh7LdSZUETJqVM5MvfrR49HtJOwGQPpKRi7KFVKctfGSZn6xQlalen2tWpUp1p4PVfAw-a_0CzPfrVOtj-l1PXN7PFjv8JHbyyZg |
| CitedBy_id | crossref_primary_10_1186_s13287_020_01841_1 crossref_primary_10_1002_stem_2551 crossref_primary_10_3389_fmed_2022_822572 crossref_primary_10_3390_ijms22052410 crossref_primary_10_1007_s10103_019_02750_3 crossref_primary_10_1002_term_2193 crossref_primary_10_1089_scd_2018_0094 crossref_primary_10_1002_stem_2433 crossref_primary_10_1016_j_ymthe_2022_07_016 crossref_primary_10_1002_bit_25282 crossref_primary_10_1016_j_semcdb_2016_07_026 crossref_primary_10_3727_096368912X661409 crossref_primary_10_1038_onc_2013_281 crossref_primary_10_1371_journal_pone_0165255 crossref_primary_10_1002_adhm_202302836 crossref_primary_10_1002_1873_3468_12200 crossref_primary_10_1155_2020_8636795 crossref_primary_10_2147_CCID_S298105 crossref_primary_10_1002_stem_1483 crossref_primary_10_1038_s41536_020_00109_9 crossref_primary_10_7717_peerj_13391 crossref_primary_10_1186_s13098_017_0233_1 crossref_primary_10_3389_fimmu_2018_02056 crossref_primary_10_1016_j_burns_2014_08_009 crossref_primary_10_3892_mmr_2018_8457 crossref_primary_10_1016_j_jobcr_2024_07_003 crossref_primary_10_1097_ALN_0000000000000446 crossref_primary_10_1089_scd_2014_0088 crossref_primary_10_1016_j_actbio_2022_09_077 crossref_primary_10_1016_j_isci_2023_108043 crossref_primary_10_1186_s42269_024_01172_8 crossref_primary_10_3390_ijms16059283 crossref_primary_10_3390_ijms19123843 crossref_primary_10_1186_scrt486 crossref_primary_10_1016_j_jconrel_2015_08_038 crossref_primary_10_3727_096368911X601028 crossref_primary_10_3892_mmr_2016_5726 crossref_primary_10_1007_s12015_023_10644_9 crossref_primary_10_1016_j_jpor_2012_06_001 crossref_primary_10_1016_j_jdermsci_2017_12_009 crossref_primary_10_1016_j_bbadis_2017_04_019 crossref_primary_10_1371_journal_pone_0031671 crossref_primary_10_1038_s41598_017_04766_7 crossref_primary_10_1177_0022034512461016 crossref_primary_10_1016_j_intimp_2020_107266 crossref_primary_10_1155_2017_5217967 crossref_primary_10_1038_icb_2012_62 crossref_primary_10_1111_exd_12141 crossref_primary_10_3389_fmolb_2024_1362338 crossref_primary_10_1260_2040_2295_2_4_405 crossref_primary_10_1002_adhm_201601112 crossref_primary_10_3389_fmicb_2023_1251956 crossref_primary_10_1177_0363546515602248 crossref_primary_10_1136_gutjnl_2012_302152 crossref_primary_10_5937_smclk6_58818 crossref_primary_10_1111_odi_12086 crossref_primary_10_1038_icb_2012_56 crossref_primary_10_1016_j_actbio_2020_12_046 crossref_primary_10_1016_j_biomaterials_2014_02_023 crossref_primary_10_1097_FJC_0000000000000760 crossref_primary_10_1111_jcmm_14632 crossref_primary_10_1038_s41598_020_78423_x crossref_primary_10_1155_2020_1327405 crossref_primary_10_1089_scd_2013_0015 crossref_primary_10_3109_10428194_2013_778409 crossref_primary_10_1007_s10517_019_04662_2 crossref_primary_10_1155_2023_4547875 crossref_primary_10_1111_xen_12739 crossref_primary_10_1186_s13287_019_1262_5 crossref_primary_10_1186_s13287_025_04248_y crossref_primary_10_1186_s13287_016_0303_6 crossref_primary_10_1039_C9MH00388F crossref_primary_10_1016_j_bbmt_2017_02_018 crossref_primary_10_1002_stem_2891 crossref_primary_10_1111_ocr_12081 crossref_primary_10_3390_ijms23010249 crossref_primary_10_3389_fcell_2024_1359295 crossref_primary_10_1016_j_clim_2015_07_011 crossref_primary_10_1007_s12015_017_9746_0 crossref_primary_10_3389_fphar_2020_00654 crossref_primary_10_3389_fbioe_2023_1144624 crossref_primary_10_1038_s41423_023_00998_y crossref_primary_10_1155_2020_1031985 crossref_primary_10_1007_s12015_024_10806_3 crossref_primary_10_1016_j_cellimm_2016_10_003 crossref_primary_10_1016_j_intimp_2017_07_019 crossref_primary_10_3390_cells11213398 crossref_primary_10_1038_srep17036 crossref_primary_10_1089_ten_tea_2016_0342 crossref_primary_10_1186_s13287_021_02570_9 crossref_primary_10_1063_5_0240504 crossref_primary_10_3389_fimmu_2023_1104890 crossref_primary_10_1097_MOT_0000000000000032 crossref_primary_10_3389_fimmu_2021_681710 crossref_primary_10_1089_ten_tec_2022_0123 crossref_primary_10_1016_j_biomaterials_2022_121484 crossref_primary_10_1089_rej_2013_1467 crossref_primary_10_1038_s41598_018_26143_8 crossref_primary_10_1111_j_1524_475X_2012_00772_x crossref_primary_10_1155_2020_1802976 crossref_primary_10_1007_s12016_021_08892_z crossref_primary_10_3892_mmr_2015_3323 crossref_primary_10_3390_ijms25041986 crossref_primary_10_1016_j_jdermsci_2016_11_005 crossref_primary_10_3390_ijms21124409 crossref_primary_10_1016_j_ymthe_2020_05_022 crossref_primary_10_1002_art_37894 crossref_primary_10_1016_j_rvsc_2019_06_012 crossref_primary_10_1186_s13287_021_02505_4 crossref_primary_10_1186_s13287_019_1546_9 crossref_primary_10_3390_bioengineering11050494 crossref_primary_10_1002_dvg_70024 crossref_primary_10_3389_fphar_2024_1345779 crossref_primary_10_1002_jcp_25871 crossref_primary_10_1016_j_yexcr_2016_08_022 crossref_primary_10_3389_fcell_2022_812262 crossref_primary_10_1016_j_ijbiomac_2021_02_126 crossref_primary_10_1007_s10753_016_0454_8 crossref_primary_10_1002_stem_738 crossref_primary_10_3390_ijms19082366 crossref_primary_10_1093_stcltm_szad043 crossref_primary_10_3389_fphys_2017_00904 crossref_primary_10_1007_s00018_018_2859_z crossref_primary_10_1002_stem_1400 crossref_primary_10_1016_j_injury_2022_09_041 crossref_primary_10_1038_s41598_017_14979_5 crossref_primary_10_1155_2023_7397819 crossref_primary_10_4103_jomfp_JOMFP_162_17 crossref_primary_10_1242_dev_134189 crossref_primary_10_3390_bioengineering5010008 crossref_primary_10_1007_s12015_013_9479_7 crossref_primary_10_1016_j_imlet_2015_05_004 crossref_primary_10_1155_2013_945034 crossref_primary_10_1152_ajplung_00546_2018 crossref_primary_10_3892_mmr_2018_8864 crossref_primary_10_1038_mt_2011_211 crossref_primary_10_1038_nrurol_2017_42 crossref_primary_10_1089_scd_2011_0252 crossref_primary_10_1016_j_coms_2016_08_009 crossref_primary_10_1186_s13287_022_03143_0 crossref_primary_10_5966_sctm_2016_0177 crossref_primary_10_1186_s13287_019_1414_7 crossref_primary_10_1177_0022034518804531 crossref_primary_10_1186_s13287_018_0841_1 crossref_primary_10_1155_2021_8899143 crossref_primary_10_1002_cam4_4521 crossref_primary_10_1155_2021_8834590 crossref_primary_10_1089_scd_2013_0547 crossref_primary_10_1111_j_1582_4934_2010_01251_x crossref_primary_10_1038_s42003_024_06099_4 crossref_primary_10_1007_s00784_016_1867_3 crossref_primary_10_1038_s41598_020_59174_1 crossref_primary_10_2147_IJN_S516533 crossref_primary_10_1007_s13238_012_2036_3 crossref_primary_10_3389_fimmu_2018_01658 crossref_primary_10_1155_2019_9310318 crossref_primary_10_3389_fimmu_2021_667221 crossref_primary_10_3109_14653249_2012_706705 crossref_primary_10_1007_s12015_013_9455_2 crossref_primary_10_3389_fcell_2025_1623959 crossref_primary_10_1089_ten_tea_2014_0102 crossref_primary_10_1007_s00441_021_03563_z crossref_primary_10_3892_etm_2019_8256 crossref_primary_10_1177_2040622321993442 crossref_primary_10_1002_adhm_202001502 crossref_primary_10_3389_fcell_2021_681171 crossref_primary_10_3390_ijms20225680 crossref_primary_10_3389_fimmu_2021_624746 crossref_primary_10_3390_ijms231810719 crossref_primary_10_4252_wjsc_v12_i8_721 crossref_primary_10_1038_s41598_022_17692_0 crossref_primary_10_1002_bit_23233 crossref_primary_10_1016_j_ijbiomac_2024_132387 crossref_primary_10_3390_ijms21051653 crossref_primary_10_1073_pnas_2410579121 crossref_primary_10_1002_jcb_24046 crossref_primary_10_1016_j_bioadv_2022_212993 crossref_primary_10_1002_stem_1966 crossref_primary_10_1089_wound_2012_0421 crossref_primary_10_3390_biomedicines10020253 crossref_primary_10_1016_j_pharmthera_2021_108021 crossref_primary_10_1111_etp_12008 crossref_primary_10_2217_pmt_14_1 crossref_primary_10_1155_2021_6649314 crossref_primary_10_1155_2016_3735452 crossref_primary_10_1111_jcmm_14694 crossref_primary_10_1016_j_heliyon_2021_e06530 crossref_primary_10_2337_db12_1822 crossref_primary_10_1007_s12272_012_0201_0 crossref_primary_10_1177_1535370213518169 crossref_primary_10_1016_j_acthis_2023_152042 crossref_primary_10_1016_j_scr_2013_01_005 crossref_primary_10_1007_s00441_012_1393_9 crossref_primary_10_1002_JLB_3MR0321_766R crossref_primary_10_1007_s00784_018_2712_7 crossref_primary_10_1016_j_nbd_2013_10_014 crossref_primary_10_1038_jid_2013_328 crossref_primary_10_1016_j_jdiacomp_2015_04_018 crossref_primary_10_1155_2016_7121580 crossref_primary_10_3892_mmr_2017_8075 crossref_primary_10_1016_j_jhep_2015_07_035 crossref_primary_10_1016_j_ebiom_2019_04_058 crossref_primary_10_3390_ijms24010641 crossref_primary_10_1371_journal_pone_0116772 crossref_primary_10_1111_ijd_17982 crossref_primary_10_3390_genes11020118 crossref_primary_10_1155_2017_2353240 crossref_primary_10_1089_ten_teb_2021_0114 crossref_primary_10_1016_j_jdent_2025_105820 crossref_primary_10_1186_s12967_025_06627_8 crossref_primary_10_1016_j_jacc_2013_07_057 crossref_primary_10_1126_scitranslmed_aai8524 crossref_primary_10_1186_s13287_017_0607_1 crossref_primary_10_1002_stem_3076 crossref_primary_10_1155_2017_9328347 crossref_primary_10_1007_s11033_023_08826_2 crossref_primary_10_1016_j_bbadis_2020_166014 crossref_primary_10_1016_j_molimm_2021_06_003 crossref_primary_10_4103_jisp_jisp_410_20 crossref_primary_10_1007_s12015_020_10014_9 crossref_primary_10_1186_s13287_023_03428_y crossref_primary_10_1016_j_bioactmat_2024_09_030 crossref_primary_10_3390_jcm9020434 crossref_primary_10_1177_1534734613502052 crossref_primary_10_1161_CIRCRESAHA_115_305373 crossref_primary_10_1016_j_biopha_2025_118292 crossref_primary_10_3389_fbioe_2022_902894 crossref_primary_10_3390_biomedicines11030987 crossref_primary_10_1089_ten_teb_2014_0098 crossref_primary_10_1155_2021_5516521 crossref_primary_10_1002_adhm_202100615 crossref_primary_10_1038_s41598_019_46554_5 crossref_primary_10_1186_s13287_024_03774_5 crossref_primary_10_1186_s13287_022_02914_z crossref_primary_10_5966_sctm_2012_0061 crossref_primary_10_1177_2058738420966092 crossref_primary_10_1186_s13287_021_02270_4 crossref_primary_10_5966_sctm_2011_0019 crossref_primary_10_1016_j_yjmcc_2018_04_011 crossref_primary_10_1007_s13233_016_4107_4 crossref_primary_10_3390_cells8020173 crossref_primary_10_3390_medicines10010009 crossref_primary_10_1089_ten_teb_2021_0131 crossref_primary_10_1186_s13287_017_0608_0 crossref_primary_10_1002_hep_26670 crossref_primary_10_1002_stem_1909 crossref_primary_10_1155_2016_2640746 crossref_primary_10_1002_adbi_201600011 crossref_primary_10_1016_j_jcyt_2016_11_003 crossref_primary_10_1111_jpi_12385 crossref_primary_10_1155_2018_4357865 crossref_primary_10_1039_c7ib00018a crossref_primary_10_3390_cells12101421 crossref_primary_10_4252_wjsc_v6_i5_526 crossref_primary_10_1038_s41598_019_40190_9 crossref_primary_10_3389_fimmu_2021_744738 crossref_primary_10_3390_ijms23084135 crossref_primary_10_1002_hed_23196 crossref_primary_10_1089_wound_2014_0579 crossref_primary_10_1111_wrr_12084 crossref_primary_10_1186_s13287_019_1212_2 crossref_primary_10_1155_2015_989473 crossref_primary_10_3389_fphys_2018_00419 crossref_primary_10_3389_fphar_2018_00179 crossref_primary_10_1002_term_2799 crossref_primary_10_1007_s00018_017_2473_5 crossref_primary_10_3390_ijms231710023 crossref_primary_10_1089_scd_2014_0557 crossref_primary_10_1016_j_yexcr_2017_07_014 crossref_primary_10_1002_JPER_23_0246 crossref_primary_10_2337_db20_1245 crossref_primary_10_1016_j_nano_2022_102616 crossref_primary_10_1016_j_intimp_2019_106030 crossref_primary_10_1007_s12015_023_10571_9 crossref_primary_10_1016_j_omtm_2020_01_005 crossref_primary_10_1016_j_smim_2017_03_001 crossref_primary_10_3390_cells9081916 crossref_primary_10_1111_cpr_12712 crossref_primary_10_1002_term_2772 crossref_primary_10_3389_froh_2021_635055 crossref_primary_10_1111_j_1440_1797_2011_01501_x crossref_primary_10_3389_fimmu_2018_00878 crossref_primary_10_4252_wjsc_v11_i9_604 crossref_primary_10_1089_wound_2011_0294 crossref_primary_10_3390_ma13225303 crossref_primary_10_1002_dvdy_24224 crossref_primary_10_3390_ijms25158388 crossref_primary_10_1002_wsbm_1574 crossref_primary_10_3389_fimmu_2017_00068 crossref_primary_10_1016_j_intimp_2013_05_031 crossref_primary_10_1186_s13287_018_0898_x crossref_primary_10_3390_cells10071729 crossref_primary_10_1016_j_archoralbio_2017_06_030 crossref_primary_10_1177_0022034513497961 crossref_primary_10_1016_j_bcp_2023_115646 crossref_primary_10_1038_nrc3802 crossref_primary_10_1155_2020_8868593 crossref_primary_10_1016_j_trsl_2021_05_001 crossref_primary_10_3389_fcell_2021_654559 crossref_primary_10_3390_ijms24021372 crossref_primary_10_1097_MPH_0000000000001964 crossref_primary_10_1002_sctm_19_0241 crossref_primary_10_1111_iej_13257 crossref_primary_10_1186_s13287_025_04327_0 crossref_primary_10_1177_1074248414534916 crossref_primary_10_1007_s13577_023_00943_1 crossref_primary_10_1038_cddis_2016_442 crossref_primary_10_1016_j_jaut_2020_102491 crossref_primary_10_1039_D0BM00834F crossref_primary_10_1186_s13287_020_01605_x crossref_primary_10_3390_ijms22020781 crossref_primary_10_1586_edm_10_66 crossref_primary_10_1016_j_mtcomm_2021_102744 crossref_primary_10_1016_j_ejcb_2019_04_002 crossref_primary_10_1186_s13287_016_0403_3 crossref_primary_10_1155_2020_4689798 crossref_primary_10_1016_j_bbrc_2015_01_013 crossref_primary_10_3390_ijms222011269 crossref_primary_10_1016_j_jds_2021_08_012 crossref_primary_10_1097_BRS_0000000000001669 crossref_primary_10_1002_stem_3022 crossref_primary_10_1007_s40200_020_00647_5 crossref_primary_10_1371_journal_pone_0030842 crossref_primary_10_4103_1673_5374_244778 crossref_primary_10_1016_j_bioactmat_2021_09_032 crossref_primary_10_1186_s13287_021_02662_6 crossref_primary_10_1016_j_jcyt_2020_02_003 crossref_primary_10_1155_2018_3057624 crossref_primary_10_3389_fendo_2023_1099310 crossref_primary_10_1016_j_diabres_2022_110201 crossref_primary_10_1002_med_22020 crossref_primary_10_3390_ijms22020684 crossref_primary_10_3892_ijmm_2019_4286 crossref_primary_10_1155_2016_7154327 crossref_primary_10_3389_fgene_2024_1427205 crossref_primary_10_1016_j_jdermsci_2017_02_285 crossref_primary_10_1002_JLB_1MA1220_853RR crossref_primary_10_1038_srep38308 crossref_primary_10_1111_nyas_13364 crossref_primary_10_1111_wrr_12072 crossref_primary_10_1186_s13287_019_1366_y crossref_primary_10_1002_lary_27885 crossref_primary_10_1177_0022034519877400 crossref_primary_10_1186_s13287_020_1561_x crossref_primary_10_1089_ten_tea_2018_0176 crossref_primary_10_1186_s13287_023_03337_0 crossref_primary_10_1007_s00395_011_0168_x crossref_primary_10_1155_2016_4612167 crossref_primary_10_1016_j_biomaterials_2012_12_014 crossref_primary_10_4252_wjsc_v8_i9_268 crossref_primary_10_1177_1534734612463935 crossref_primary_10_3390_medsci10020023 crossref_primary_10_1155_2018_9079538 crossref_primary_10_1177_1074248412453875 crossref_primary_10_1016_j_jcyt_2022_07_004 crossref_primary_10_1186_s13287_018_0804_6 crossref_primary_10_1016_j_archoralbio_2018_11_007 crossref_primary_10_1016_j_ijbiomac_2025_146297 crossref_primary_10_1093_stmcls_sxac057 crossref_primary_10_1111_jre_70015 crossref_primary_10_1016_j_jneuroim_2018_11_015 crossref_primary_10_1016_j_neo_2016_01_005 crossref_primary_10_1016_j_bioactmat_2020_08_014 crossref_primary_10_1038_srep39889 crossref_primary_10_1155_2019_7132708 crossref_primary_10_1134_S0362119718010036 crossref_primary_10_3390_bioengineering12090970 crossref_primary_10_1002_stem_2238 crossref_primary_10_1097_MOG_0b013e3283423f20 crossref_primary_10_1016_j_actbio_2018_11_042 crossref_primary_10_1186_scrt469 crossref_primary_10_1002_jor_23553 crossref_primary_10_3390_biom10050707 crossref_primary_10_3390_cells12162021 crossref_primary_10_1186_s13287_022_02947_4 crossref_primary_10_1186_s13287_018_0880_7 crossref_primary_10_1002_ctm2_1094 crossref_primary_10_1007_s43440_020_00166_3 crossref_primary_10_1164_rccm_201410_1765OC crossref_primary_10_1080_14712598_2022_2016695 crossref_primary_10_1002_sctm_20_0284 crossref_primary_10_1016_j_stem_2012_08_013 crossref_primary_10_1016_j_stem_2012_08_010 crossref_primary_10_1002_stem_2254 crossref_primary_10_1186_s13287_016_0361_9 crossref_primary_10_1038_s41392_025_02313_9 crossref_primary_10_1093_ndt_gft463 crossref_primary_10_1186_s12967_019_02167_0 crossref_primary_10_1186_s13287_022_02934_9 crossref_primary_10_1002_jcb_29297 crossref_primary_10_1186_s13287_019_1485_5 crossref_primary_10_1097_SHK_0b013e3182a43651 crossref_primary_10_1186_s13287_022_02791_6 crossref_primary_10_1016_j_exger_2025_112832 crossref_primary_10_1038_s41392_022_00932_0 crossref_primary_10_1089_jir_2018_0093 crossref_primary_10_1016_j_job_2021_02_007 crossref_primary_10_1016_j_cej_2023_146246 crossref_primary_10_7717_peerj_14677 crossref_primary_10_1053_j_pcsu_2021_03_003 crossref_primary_10_3390_ijms25063252 crossref_primary_10_3390_ijms21124389 crossref_primary_10_1002_jnr_24122 crossref_primary_10_1186_s13098_024_01365_1 crossref_primary_10_1007_s13311_018_0629_0 crossref_primary_10_1016_j_jid_2017_08_034 crossref_primary_10_1155_2016_4798639 crossref_primary_10_1186_s13287_016_0406_0 crossref_primary_10_1002_sctm_20_0026 crossref_primary_10_1186_s12989_017_0218_0 crossref_primary_10_1007_s12015_023_10609_y crossref_primary_10_1016_j_ymthe_2020_07_002 crossref_primary_10_3390_ijms24098214 |
| Cites_doi | 10.1074/jbc.M109.042671 10.1038/sj.jid.5700701 10.1371/journal.pone.0001886 10.1126/science.284.5411.143 10.1073/pnas.0803670105 10.1111/j.1524-475X.2008.00440.x 10.1016/j.bbrc.2005.03.137 10.1371/journal.pone.0007119 10.4049/jimmunol.180.4.2581 10.1016/j.jaut.2009.09.012 10.1182/blood-2007-12-129767 10.1002/ibd.20753 10.4049/jimmunol.0902318 10.1111/j.1365-2249.2009.04086.x 10.1182/blood-2007-02-074997 10.2353/ajpath.2010.090735 10.1634/stemcells.2007-0226 10.1517/14712590903039684 10.1182/blood-2007-02-069716 10.1634/stemcells.2007-0554 10.1038/nm.1905 10.1038/cdd.2009.74 10.1073/pnas.0706832104 10.1038/nm1620 10.1016/j.imbio.2005.05.002 10.4049/jimmunol.178.7.4557 10.1111/j.1582-4934.2009.00707.x 10.1053/j.gastro.2009.12.041 10.4049/jimmunol.181.3.2220 10.1186/1479-5876-5-11 10.1146/annurev.immunol.021908.132532 10.1016/j.exphem.2009.09.004 10.1111/j.1365-2249.2007.03422.x 10.2353/ajpath.2009.090248 10.4049/jimmunol.0900864 10.1038/nri2395 10.1152/ajprenal.00374.2009 10.1126/science.1172687 10.1074/jbc.M311516200 10.1371/journal.pone.0009252 10.1189/jlb.0409236 10.1038/sj.ki.5002275 10.2353/ajpath.2007.060595 10.1136/gut.2008.168534 10.1182/blood-2009-02-203943 10.1182/blood-2004-04-1559 |
| ContentType | Journal Article |
| Copyright | Copyright © 2010 AlphaMed Press AlphaMed Press |
| Copyright_xml | – notice: Copyright © 2010 AlphaMed Press – notice: AlphaMed Press |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
| DOI | 10.1002/stem.503 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1549-4918 |
| EndPage | 1868 |
| ExternalDocumentID | PMC3114043 20734355 10_1002_stem_503 STEM503 |
| Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIDCR NIH HHS grantid: R01DE 019932 – fundername: NIDCR NIH HHS grantid: R01 DE019932 – fundername: National Institute of Dental and Craniofacial Research : NIDCR grantid: R01 DE019932-02 || DE |
| GroupedDBID | --- .GJ 05W 0R~ 123 18M 1OB 1OC 24P 2WC 31~ 3WU 4.4 53G 5RE 5WD 8-0 8-1 A00 AABZA AACZT AAESR AAIHA AAONW AAPGJ AAPXW AARHZ AAUAY AAVAP AAWDT AAZKR ABCUV ABDFA ABEJV ABHFT ABLJU ABMNT ABNHQ ABPTD ABXVV ACFRR ACGFO ACGFS ACIWK ACPOU ACPRK ACUFI ACUTJ ACXQS ACZBC ADBBV ADGKP ADIPN ADKYN ADQBN ADVEK ADXAS ADZMN AENEX AEUQT AFBPY AFFZL AFGWE AFRAH AFYAG AFZJQ AGMDO AHMBA AHMMS AIURR AJAOE AJEEA ALMA_UNASSIGNED_HOLDINGS AMNDL AMYDB APJGH ATGXG AVNTJ AZBYB AZVAB BAWUL BCRHZ BEYMZ BMXJE BRXPI CS3 DCZOG DIK DU5 E3Z EBS EJD EMB EMOBN F5P FD6 G-S GODZA GX1 H13 HHY HZ~ IH2 KOP KSI KSN LATKE LEEKS LH4 LITHE LMP LOXES LUTES LW6 LYRES MY~ N9A NNB NOMLY NU- O66 O9- OBOKY OCZFY OIG OJZSN OK1 OPAEJ OVD OWPYF P2P P2W P4E PALCI PQQKQ RAO RIWAO RJQFR ROL ROX RWI SUPJJ SV3 TEORI TMA TR2 WBKPD WOHZO WOQ WYB WYJ XV2 ZGI ZXP ZZTAW ~S- AAMMB AAYXX ABGNP ABJNI ABVGC ABXZS AEFGJ AGXDD AIDQK AIDYY AJNCP ALUQN ALXQX CITATION NTU WIN ACVCV ADMTO AFFQV AGORE AHGBF AJBYB AJDVS CGR CUY CVF ECM EIF NPM OBFPC 7X8 5PM |
| ID | FETCH-LOGICAL-c4753-3b2691a17ee7dcf52dc06bc743f5f33359a09beb338aa2fc0b644c689c9b05bc3 |
| IEDL.DBID | WIN |
| ISICitedReferencesCount | 474 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000284104100015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1066-5099 1549-4918 |
| IngestDate | Tue Nov 04 01:38:36 EST 2025 Sun Nov 09 13:52:21 EST 2025 Mon Jul 21 06:01:12 EDT 2025 Tue Nov 18 22:30:11 EST 2025 Sat Nov 29 01:34:58 EST 2025 Wed Jan 22 16:21:34 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4753-3b2691a17ee7dcf52dc06bc743f5f33359a09beb338aa2fc0b644c689c9b05bc3 |
| Notes | First published online in STEM CELLS Author contributions: Q.‐Z.Z.: conception and design, collection and assembly of data, manuscript writing, final approval of the manuscript; W.‐R.S.: collection and assembly of data, final approval of the manuscript; S.‐H.S.: collection and assembly of data; P.W.S.: manuscript writing, final approval of the manuscript; A.P.X.: manuscript writing, final approval of the manuscript; A.W.: manuscript writing, final approval of the manuscript; A.L.N: collection and assembly of data; B.K.: collection and assembly of data; A.D.L.: conception and design, manuscript writing, final approval of the manuscript, financial support. Disclosure of potential conflicts of interest is found at the end of this article. Telephone: 323‐442‐2556; Fax: 323‐442‐2981 EXPRESS August 23, 2010. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://academic.oup.com/stmcls/article-pdf/28/10/1856/41952324/stmcls_28_10_1856.pdf |
| PMID | 20734355 |
| PQID | 761043999 |
| PQPubID | 23479 |
| PageCount | 13 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3114043 proquest_miscellaneous_761043999 pubmed_primary_20734355 crossref_citationtrail_10_1002_stem_503 crossref_primary_10_1002_stem_503 wiley_primary_10_1002_stem_503_STEM503 |
| PublicationCentury | 2000 |
| PublicationDate | October 2010 2010-10-01 2010-Oct 20101001 |
| PublicationDateYYYYMMDD | 2010-10-01 |
| PublicationDate_xml | – month: 10 year: 2010 text: October 2010 |
| PublicationDecade | 2010 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken – name: England |
| PublicationTitle | Stem cells (Dayton, Ohio) |
| PublicationTitleAlternate | Stem Cells |
| PublicationYear | 2010 |
| Publisher | Wiley Subscription Services, Inc., A Wiley Company |
| Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company |
| References | 2007; 104 2007; 149 2007; 127 2005; 210 2005; 331 1975; 78 1999; 284 2008; 8 2009; 113 2008; 105 2007; 72 2008; 3 2009; 175 2010; 160 2009; 27 2007; 13 1970; 3 2008; 181 2009; 33 2008; 180 2007; 178 2010; 87 2009; 58 2009; 13 2004; 279 2010; 138 2007; 170 2007; 110 2005; 105 2010; 176 2008; 26 2010; 298 2009; 9 2009; 183 2007; 5 2009; 284 2009; 4 2008; 112 2008; 111 2010; 5 2009; 16 2009; 15 2009; 37 2009; 324 2007; 25 2009; 17 Wu (2022011218175437300_bib31) 2007; 25 Routley (2022011218175437300_bib38) 2009; 17 Deonarine (2022011218175437300_bib47) 2007; 5 Ohtaki (2022011218175437300_bib22) 2008; 105 Roca (2022011218175437300_bib45) 2009; 284 Kim (2022011218175437300_bib48) 2009; 9 Savage (2022011218175437300_bib40) 2008; 181 Spaggiari (2022011218175437300_bib8) 2008; 111 Fairweather (2022011218175437300_bib11) 2009; 33 Zhang (2022011218175437300_bib32) 2009; 183 Hunter (2022011218175437300_bib17) 2010; 138 Friedenstein (2022011218175437300_bib2) 1970; 3 Uccelli (2022011218175437300_bib4) 2008; 8 O'Brien (2022011218175437300_bib10) 2010; 176 Chen (2022011218175437300_bib43) 2007; 170 Mirza (2022011218175437300_bib25) 2009; 175 Smith (2022011218175437300_bib19) 2007; 178 Németh (2022011218175437300_bib15) 2009; 15 Gonzalez-Rey (2022011218175437300_bib34) 2009; 58 Ryan (2022011218175437300_bib6) 2007; 149 Park-Min (2022011218175437300_bib39) 2005; 210 Grant (2022011218175437300_bib42) 2005; 331 Troidl (2022011218175437300_bib12) 2009; 13 Alex (2022011218175437300_bib35) 2009; 15 Aki (2022011218175437300_bib16) 2010; 298 Sasaki (2022011218175437300_bib30) 2008; 180 Wang (2022011218175437300_bib18) 2007; 72 Eming (2022011218175437300_bib23) 2007; 127 Stappenbeck (2022011218175437300_bib24) 2009; 324 Spaggiari (2022011218175437300_bib9) 2009; 113 Chen (2022011218175437300_bib28) 2008; 3 Maggini (2022011218175437300_bib21) 2010; 5 Aggarwal (2022011218175437300_bib5) 2005; 105 Nauta (2022011218175437300_bib3) 2007; 110 Kim (2022011218175437300_bib20) 2009; 37 Chen (2022011218175437300_bib29) 2009; 4 Tiemessen (2022011218175437300_bib36) 2007; 104 Bystrom (2022011218175437300_bib13) 2008; 112 Leibovich (2022011218175437300_bib46) 1975; 78 Menzies (2022011218175437300_bib26) 2010; 160 Selmani (2022011218175437300_bib7) 2008; 26 Kuroda (2022011218175437300_bib44) 2009; 183 Daley (2022011218175437300_bib27) 2010; 87 Martinez (2022011218175437300_bib14) 2009; 27 Weber (2022011218175437300_bib41) 2007; 13 Pittenger (2022011218175437300_bib1) 1999; 284 Puig-Kröger (2022011218175437300_bib33) 2004; 279 Huang (2022011218175437300_bib37) 2009; 16 |
| References_xml | – volume: 13 start-page: 935 year: 2007 end-page: 943 article-title: Type II monocytes modulate T cell‐mediated central nervous system autoimmune disease publication-title: Nat Med – volume: 3 start-page: e1886 year: 2008 article-title: Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing publication-title: Plos One – volume: 284 start-page: 34342 year: 2009 end-page: 34354 article-title: CCL2 and interleukin‐6 promote survival of human CD11b+ peripheral blood mononuclear cells and induce M2‐type macrophage polarization publication-title: J Biol Chem – volume: 72 start-page: 290 year: 2007 end-page: 299 article-title: Ex vivo programmed macrophages ameliorate experimental chronic inflammatory renal disease publication-title: Kidney Int – volume: 16 start-page: 1332 year: 2009 end-page: 1343 article-title: IL‐17 stimulates the proliferation and differentiation of human mesenchymal stem cells: Implications for bone remodeling publication-title: Cell Death Differ – volume: 284 start-page: 143 year: 1999 end-page: 147 article-title: Multilieage potential of adult human mesenchymal stem cells publication-title: Science – volume: 138 start-page: 1395 year: 2010 end-page: 1405 article-title: In vitro‐derived alternatively activated macrophages reduce colonic inflammation in mice publication-title: Gastroenterology – volume: 26 start-page: 212 year: 2008 end-page: 222 article-title: Human leukocyte antigen‐G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4 CD25 FoxP3 regulatory T cells publication-title: Stem Cells – volume: 170 start-page: 1028 year: 2007 end-page: 1040 article-title: Role of granulocyte macrophage colony‐stimulating factor in host defense against pulmonary Cryptococcus neoformans infection during murine allergic bronchopulmonary mycosis publication-title: Am J Pathol – volume: 78 start-page: 71 year: 1975 end-page: 100 article-title: The role of the macrophage in wound repair. A study with hydrocortisone and antimacrophage serum publication-title: Am J Pathol – volume: 4 start-page: e7119 year: 2009 article-title: Analysis of allogenicity of mesenchymal stem cells in engraftment and wound healing in mice publication-title: Plos One – volume: 37 start-page: 1445 year: 2009 end-page: 1453 article-title: Mesenchymal stem cell‐educated macrophages: A novel type of alternatively activated macrophages publication-title: Exp Hematol – volume: 3 start-page: 393 year: 1970 end-page: 403 article-title: The development of fibroblast colonies in monolayer cultures of guinea‐pig bone marrow and spleen cells publication-title: Cell Tissue Kinet – volume: 27 start-page: 451 year: 2009 end-page: 483 article-title: Alternative activation of macrophages: An immunologic functional perspective publication-title: Annu Rev Immunol – volume: 15 start-page: 42 year: 2009 end-page: 49 article-title: Bone marrow stromal cells attenuate sepsis via prostaglandin E (2)‐dependent reprogramming of host macrophages to increase their interleukin‐10 production publication-title: Nat Med – volume: 111 start-page: 1327 year: 2008 end-page: 1333 article-title: Mesenchymal stem cells inhibit natural killer‐cell proliferation, cytotoxicity, and cytokine production: Role of indoleamine 2,3‐dioxygenase and prostaglandin E2 publication-title: Blood – volume: 175 start-page: 2454 year: 2009 end-page: 2462 article-title: Selective and specific macrophage ablation is detrimental to wound healing in mice publication-title: Am J Pathol – volume: 87 start-page: 59 year: 2010 end-page: 67 article-title: The phenotype of murine wound macrophages publication-title: J Leukoc Biol – volume: 180 start-page: 2581 year: 2008 end-page: 2587 article-title: Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type publication-title: J Immunol – volume: 33 start-page: 222 year: 2009 end-page: 230 article-title: Alternatively activated macrophages in infection and autoimmunity publication-title: J Autoimmun – volume: 324 start-page: 1666 year: 2009 end-page: 1669 article-title: The role of stromal stem cells in tissue regeneration and wound repair publication-title: Science – volume: 104 start-page: 19446 year: 2007 end-page: 19451 article-title: CD4+CD25+Foxp3+ regulatory T cells induce alternative activation of human monocytes/macrophages publication-title: Proc Natl Acad Sci USA – volume: 17 start-page: 42 year: 2009 end-page: 50 article-title: Effect of estrogen and progesterone on macrophage activation during wound healing publication-title: Wound Repair Regen – volume: 5 start-page: e9252 year: 2010 article-title: Mouse bone marrow‐derived mesenchymal stromal cells turn activated macrophages into a regulatory‐like profile publication-title: Plos One – volume: 13 start-page: 3485 year: 2009 end-page: 3496 article-title: Classically and alternatively activated macrophages contribute to tissue remodelling after myocardial infarction publication-title: J Cell Mol Med – volume: 15 start-page: 341 year: 2009 end-page: 352 article-title: Distinct cytokine patterns identified from multiplex profiles of murine DSS and TNBS‐induced colitis publication-title: Inflamm Bowel Dis – volume: 5 start-page: 1 year: 2007 end-page: 11 article-title: Gene expression profiling of cutaneous wound healing publication-title: J Transl Med – volume: 181 start-page: 2220 year: 2008 end-page: 2226 article-title: Human anti‐inflammatory macrophages induce Foxp3+GITR+ CD25+ regulatory T cells, which suppress via membrane‐bound TGF‐1 publication-title: J Immunol – volume: 279 start-page: 25680 year: 2004 end-page: 25688 article-title: Regulated expression of the pathogen receptor dendritic cell‐specific intercellular adhesion molecule 3 (ICAM‐3)‐grabbing nonintegrin in THP‐1 human leukemic cells, monocytes, and macrophages publication-title: J Biol Chem – volume: 210 start-page: 77 year: 2005 end-page: 86 article-title: Regulation of macrophage phenotype by long‐term exposure to IL‐10 publication-title: Immunobiology – volume: 178 start-page: 4557 year: 2007 end-page: 4566 article-title: Infection with a helminth parasite prevents experimental colitis via a macrophage‐mediated mechanism publication-title: J Immunol – volume: 25 start-page: 2648 year: 2007 end-page: 2659 article-title: Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis publication-title: Stem Cells – volume: 113 start-page: 6576 year: 2009 end-page: 6583 article-title: MSCs inhibit monocyte‐derived DC maturation and function by selectively interfering with the generation of immature DCs: Central role of MSC‐derived prostaglandin E2 publication-title: Blood – volume: 331 start-page: 187 year: 2005 end-page: 193 article-title: PGE/cAMP and GM‐CSF synergise to induce a pro‐tolerance cytokine profile in monocytic cell lines publication-title: Biochem Biophys Res Commun – volume: 105 start-page: 1815 year: 2005 end-page: 1822 article-title: Human mesenchymal stem cells modulate allogeneic immune cell responses publication-title: Blood – volume: 160 start-page: 369 year: 2010 end-page: 379 article-title: Sequential expression of macrophage anti‐microbial/inflammatory and wound healing markers following innate, alternative and classical activation publication-title: Clin Exp Immunol – volume: 112 start-page: 4117 year: 2008 end-page: 4127 article-title: Resolution‐phase macrophages possess a unique inflammatory phenotype that is controlled by cAMP publication-title: Blood – volume: 183 start-page: 3652 year: 2009 end-page: 3660 article-title: SHIP represses the generation of IL‐3‐induced M2 macrophages by inhibiting IL‐4 production from basophils publication-title: J Immunol – volume: 105 start-page: 14638 year: 2008 end-page: 14643 article-title: Stem/progenitor cells from bone marrow decrease neuronal death in global ischemia by modulation of inflammatory/immune responses publication-title: Proc Natl Acad Sci USA – volume: 127 start-page: 514 year: 2007 end-page: 525 article-title: Inflammation in wound repair: Molecular and cellular mechanisms publication-title: J Invest Dermatol – volume: 9 start-page: 879 year: 2009 end-page: 887 article-title: The wound‐healing and antioxidant effects of adipose‐derived stem cells publication-title: Expert Opin Biol Ther – volume: 8 start-page: 726 year: 2008 end-page: 736 article-title: Mesenchymal stem cells in health and disease publication-title: Nat Rev Immunol – volume: 176 start-page: 1241 year: 2010 end-page: 1255 article-title: Alternatively activated macrophages and collagen remodeling characterize the postpartum involuting mammary gland across species publication-title: Am J Pathol – volume: 110 start-page: 3499 year: 2007 end-page: 3506 article-title: Immunomodulatory properties of mesenchymal stromal cells publication-title: Blood – volume: 183 start-page: 7787 year: 2009 end-page: 7798 article-title: Mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammation‐related tissue destruction in experimental colitis publication-title: J Immunol – volume: 298 start-page: F870 year: 2010 end-page: F882 article-title: ANG II receptor blockade enhances anti‐inflammatory macrophages in anti‐glomerular basement membrane glomerulonephritis publication-title: Am J Physiol Renal Physiol – volume: 149 start-page: 353 year: 2007 end-page: 363 article-title: Interferon‐gamma does not break, but promotes the immunosuppressive capacity of adult human mesenchymal stem cells publication-title: Clin Exp Immunol – volume: 58 start-page: 929 year: 2009 end-page: 939 article-title: Human adult stem cells derived from adipose tissue protect against experimental colitis and sepsis publication-title: Gut – volume: 284 start-page: 34342 year: 2009 ident: 2022011218175437300_bib45 article-title: CCL2 and interleukin-6 promote survival of human CD11b+ peripheral blood mononuclear cells and induce M2-type macrophage polarization publication-title: J Biol Chem doi: 10.1074/jbc.M109.042671 – volume: 127 start-page: 514 year: 2007 ident: 2022011218175437300_bib23 article-title: Inflammation in wound repair: Molecular and cellular mechanisms publication-title: J Invest Dermatol doi: 10.1038/sj.jid.5700701 – volume: 3 start-page: e1886 year: 2008 ident: 2022011218175437300_bib28 article-title: Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing publication-title: Plos One doi: 10.1371/journal.pone.0001886 – volume: 284 start-page: 143 year: 1999 ident: 2022011218175437300_bib1 article-title: Multilieage potential of adult human mesenchymal stem cells publication-title: Science doi: 10.1126/science.284.5411.143 – volume: 105 start-page: 14638 year: 2008 ident: 2022011218175437300_bib22 article-title: Stem/progenitor cells from bone marrow decrease neuronal death in global ischemia by modulation of inflammatory/immune responses publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0803670105 – volume: 17 start-page: 42 year: 2009 ident: 2022011218175437300_bib38 article-title: Effect of estrogen and progesterone on macrophage activation during wound healing publication-title: Wound Repair Regen doi: 10.1111/j.1524-475X.2008.00440.x – volume: 3 start-page: 393 year: 1970 ident: 2022011218175437300_bib2 article-title: The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells publication-title: Cell Tissue Kinet – volume: 331 start-page: 187 year: 2005 ident: 2022011218175437300_bib42 article-title: PGE/cAMP and GM-CSF synergise to induce a pro-tolerance cytokine profile in monocytic cell lines publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2005.03.137 – volume: 4 start-page: e7119 year: 2009 ident: 2022011218175437300_bib29 article-title: Analysis of allogenicity of mesenchymal stem cells in engraftment and wound healing in mice publication-title: Plos One doi: 10.1371/journal.pone.0007119 – volume: 180 start-page: 2581 year: 2008 ident: 2022011218175437300_bib30 article-title: Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type publication-title: J Immunol doi: 10.4049/jimmunol.180.4.2581 – volume: 33 start-page: 222 year: 2009 ident: 2022011218175437300_bib11 article-title: Alternatively activated macrophages in infection and autoimmunity publication-title: J Autoimmun doi: 10.1016/j.jaut.2009.09.012 – volume: 112 start-page: 4117 year: 2008 ident: 2022011218175437300_bib13 article-title: Resolution-phase macrophages possess a unique inflammatory phenotype that is controlled by cAMP publication-title: Blood doi: 10.1182/blood-2007-12-129767 – volume: 15 start-page: 341 year: 2009 ident: 2022011218175437300_bib35 article-title: Distinct cytokine patterns identified from multiplex profiles of murine DSS and TNBS-induced colitis publication-title: Inflamm Bowel Dis doi: 10.1002/ibd.20753 – volume: 183 start-page: 7787 year: 2009 ident: 2022011218175437300_bib32 article-title: Mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammation-related tissue destruction in experimental colitis publication-title: J Immunol doi: 10.4049/jimmunol.0902318 – volume: 160 start-page: 369 year: 2010 ident: 2022011218175437300_bib26 article-title: Sequential expression of macrophage anti-microbial/inflammatory and wound healing markers following innate, alternative and classical activation publication-title: Clin Exp Immunol doi: 10.1111/j.1365-2249.2009.04086.x – volume: 111 start-page: 1327 year: 2008 ident: 2022011218175437300_bib8 article-title: Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: Role of indoleamine 2,3-dioxygenase and prostaglandin E2 publication-title: Blood doi: 10.1182/blood-2007-02-074997 – volume: 176 start-page: 1241 year: 2010 ident: 2022011218175437300_bib10 article-title: Alternatively activated macrophages and collagen remodeling characterize the postpartum involuting mammary gland across species publication-title: Am J Pathol doi: 10.2353/ajpath.2010.090735 – volume: 25 start-page: 2648 year: 2007 ident: 2022011218175437300_bib31 article-title: Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis publication-title: Stem Cells doi: 10.1634/stemcells.2007-0226 – volume: 9 start-page: 879 year: 2009 ident: 2022011218175437300_bib48 article-title: The wound-healing and antioxidant effects of adipose-derived stem cells publication-title: Expert Opin Biol Ther doi: 10.1517/14712590903039684 – volume: 110 start-page: 3499 year: 2007 ident: 2022011218175437300_bib3 article-title: Immunomodulatory properties of mesenchymal stromal cells publication-title: Blood doi: 10.1182/blood-2007-02-069716 – volume: 26 start-page: 212 year: 2008 ident: 2022011218175437300_bib7 article-title: Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+CD25highFoxP3+ regulatory T cells publication-title: Stem Cells doi: 10.1634/stemcells.2007-0554 – volume: 15 start-page: 42 year: 2009 ident: 2022011218175437300_bib15 article-title: Bone marrow stromal cells attenuate sepsis via prostaglandin E (2)-dependent reprogramming of host macrophages to increase their interleukin-10 production publication-title: Nat Med doi: 10.1038/nm.1905 – volume: 16 start-page: 1332 year: 2009 ident: 2022011218175437300_bib37 article-title: IL-17 stimulates the proliferation and differentiation of human mesenchymal stem cells: Implications for bone remodeling publication-title: Cell Death Differ doi: 10.1038/cdd.2009.74 – volume: 104 start-page: 19446 year: 2007 ident: 2022011218175437300_bib36 article-title: CD4+CD25+Foxp3+ regulatory T cells induce alternative activation of human monocytes/macrophages publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0706832104 – volume: 13 start-page: 935 year: 2007 ident: 2022011218175437300_bib41 article-title: Type II monocytes modulate T cell-mediated central nervous system autoimmune disease publication-title: Nat Med doi: 10.1038/nm1620 – volume: 210 start-page: 77 year: 2005 ident: 2022011218175437300_bib39 article-title: Regulation of macrophage phenotype by long-term exposure to IL-10 publication-title: Immunobiology doi: 10.1016/j.imbio.2005.05.002 – volume: 178 start-page: 4557 year: 2007 ident: 2022011218175437300_bib19 article-title: Infection with a helminth parasite prevents experimental colitis via a macrophage-mediated mechanism publication-title: J Immunol doi: 10.4049/jimmunol.178.7.4557 – volume: 13 start-page: 3485 year: 2009 ident: 2022011218175437300_bib12 article-title: Classically and alternatively activated macrophages contribute to tissue remodelling after myocardial infarction publication-title: J Cell Mol Med doi: 10.1111/j.1582-4934.2009.00707.x – volume: 78 start-page: 71 year: 1975 ident: 2022011218175437300_bib46 article-title: The role of the macrophage in wound repair. A study with hydrocortisone and antimacrophage serum publication-title: Am J Pathol – volume: 138 start-page: 1395 year: 2010 ident: 2022011218175437300_bib17 article-title: In vitro-derived alternatively activated macrophages reduce colonic inflammation in mice publication-title: Gastroenterology doi: 10.1053/j.gastro.2009.12.041 – volume: 181 start-page: 2220 year: 2008 ident: 2022011218175437300_bib40 article-title: Human anti-inflammatory macrophages induce Foxp3+GITR+ CD25+ regulatory T cells, which suppress via membrane-bound TGF-1 publication-title: J Immunol doi: 10.4049/jimmunol.181.3.2220 – volume: 5 start-page: 1 year: 2007 ident: 2022011218175437300_bib47 article-title: Gene expression profiling of cutaneous wound healing publication-title: J Transl Med doi: 10.1186/1479-5876-5-11 – volume: 27 start-page: 451 year: 2009 ident: 2022011218175437300_bib14 article-title: Alternative activation of macrophages: An immunologic functional perspective publication-title: Annu Rev Immunol doi: 10.1146/annurev.immunol.021908.132532 – volume: 37 start-page: 1445 year: 2009 ident: 2022011218175437300_bib20 article-title: Mesenchymal stem cell-educated macrophages: A novel type of alternatively activated macrophages publication-title: Exp Hematol doi: 10.1016/j.exphem.2009.09.004 – volume: 149 start-page: 353 year: 2007 ident: 2022011218175437300_bib6 article-title: Interferon-gamma does not break, but promotes the immunosuppressive capacity of adult human mesenchymal stem cells publication-title: Clin Exp Immunol doi: 10.1111/j.1365-2249.2007.03422.x – volume: 175 start-page: 2454 year: 2009 ident: 2022011218175437300_bib25 article-title: Selective and specific macrophage ablation is detrimental to wound healing in mice publication-title: Am J Pathol doi: 10.2353/ajpath.2009.090248 – volume: 183 start-page: 3652 year: 2009 ident: 2022011218175437300_bib44 article-title: SHIP represses the generation of IL-3-induced M2 macrophages by inhibiting IL-4 production from basophils publication-title: J Immunol doi: 10.4049/jimmunol.0900864 – volume: 8 start-page: 726 year: 2008 ident: 2022011218175437300_bib4 article-title: Mesenchymal stem cells in health and disease publication-title: Nat Rev Immunol doi: 10.1038/nri2395 – volume: 298 start-page: F870 year: 2010 ident: 2022011218175437300_bib16 article-title: ANG II receptor blockade enhances anti-inflammatory macrophages in anti-glomerular basement membrane glomerulonephritis publication-title: Am J Physiol Renal Physiol doi: 10.1152/ajprenal.00374.2009 – volume: 324 start-page: 1666 year: 2009 ident: 2022011218175437300_bib24 article-title: The role of stromal stem cells in tissue regeneration and wound repair publication-title: Science doi: 10.1126/science.1172687 – volume: 279 start-page: 25680 year: 2004 ident: 2022011218175437300_bib33 article-title: Regulated expression of the pathogen receptor dendritic cell-specific intercellular adhesion molecule 3 (ICAM-3)-grabbing nonintegrin in THP-1 human leukemic cells, monocytes, and macrophages publication-title: J Biol Chem doi: 10.1074/jbc.M311516200 – volume: 5 start-page: e9252 year: 2010 ident: 2022011218175437300_bib21 article-title: Mouse bone marrow-derived mesenchymal stromal cells turn activated macrophages into a regulatory-like profile publication-title: Plos One doi: 10.1371/journal.pone.0009252 – volume: 87 start-page: 59 year: 2010 ident: 2022011218175437300_bib27 article-title: The phenotype of murine wound macrophages publication-title: J Leukoc Biol doi: 10.1189/jlb.0409236 – volume: 72 start-page: 290 year: 2007 ident: 2022011218175437300_bib18 article-title: Ex vivo programmed macrophages ameliorate experimental chronic inflammatory renal disease publication-title: Kidney Int doi: 10.1038/sj.ki.5002275 – volume: 170 start-page: 1028 year: 2007 ident: 2022011218175437300_bib43 article-title: Role of granulocyte macrophage colony-stimulating factor in host defense against pulmonary Cryptococcus neoformans infection during murine allergic bronchopulmonary mycosis publication-title: Am J Pathol doi: 10.2353/ajpath.2007.060595 – volume: 58 start-page: 929 year: 2009 ident: 2022011218175437300_bib34 article-title: Human adult stem cells derived from adipose tissue protect against experimental colitis and sepsis publication-title: Gut doi: 10.1136/gut.2008.168534 – volume: 113 start-page: 6576 year: 2009 ident: 2022011218175437300_bib9 article-title: MSCs inhibit monocyte-derived DC maturation and function by selectively interfering with the generation of immature DCs: Central role of MSC-derived prostaglandin E2 publication-title: Blood doi: 10.1182/blood-2009-02-203943 – volume: 105 start-page: 1815 year: 2005 ident: 2022011218175437300_bib5 article-title: Human mesenchymal stem cells modulate allogeneic immune cell responses publication-title: Blood doi: 10.1182/blood-2004-04-1559 |
| SSID | ssj0014588 |
| Score | 2.5343347 |
| Snippet | Increasing evidence has supported the important role of mesenchymal stem cells (MSCs) in wound healing, however, the underlying mechanism remains unclear.... |
| SourceID | pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1856 |
| SubjectTerms | Animals Blotting, Western Cell Line Cells, Cultured Coculture Techniques Enzyme-Linked Immunosorbent Assay Flow Cytometry Gingiva - cytology Human gingival Humans M2 macrophages Macrophages - cytology Macrophages - immunology Male Mesenchymal stem cells Mesenchymal Stem Cells - cytology Mesenchymal Stem Cells - metabolism Mice Mice, Inbred C57BL Wound healing Wound Healing - immunology |
| Title | Human Gingiva‐Derived Mesenchymal Stem Cells Elicit Polarization of M2 Macrophages and Enhance Cutaneous Wound Healing |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fstem.503 https://www.ncbi.nlm.nih.gov/pubmed/20734355 https://www.proquest.com/docview/761043999 https://pubmed.ncbi.nlm.nih.gov/PMC3114043 |
| Volume | 28 |
| WOSCitedRecordID | wos000284104100015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1549-4918 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0014588 issn: 1066-5099 databaseCode: WIN dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BBRIXWv5KClRGQnAKTew4jo9ouwUOu6rUou4tchxHu9KSRc3uit54hD5jn4QZJxtYFSQkTjnEdhzPjOfzz3wD8AZdvKmkM2FSKhEm1qYhotY4TDMdWe4y9KCFTzahxuNsMtGn3a1KioVp-SH6DTeyDD9fk4Gbojn6RRpKPMfvpSf6jJOYkhdcfB73BwgUgOkPOtM0RJ-oN7yzET_aVNz2RLfg5e1bkr-jV-9-Tnb_p-N78LADnexDqyWP4I6rH8P9Ng3l1RP47nfy2UfKXbQ2Nz-uj1Et165kIwpNstOrr1j5DNtjAzefN2w4n9nZkp3SqrgL42SLio04GxnKCDbFOaphpi7ZsJ6SVrHBCjGoW6wadkFpnBgFP-HXnsKXk-H54FPYZWQIbYLrmlAUPNWxiZVzqrSV5KWN0sIiCqlkJYSQ2kS6wPW5yIzhlY0KhFsW5W51EcnCimewUy9q9xwYIlVhEgTNUonElImOykpJbo0zicJpJYB3G-nktqMrp6wZ87wlWuY5jWOO4xjA677kt5ai4w9l2EbAOdoPHYq0v50rxI-0JtMB7Lfy7hvhOP0hmpQBqC1N6AsQNff2m3o29RTdIva0RQG89Zrw137lZ-fDET4P_rXgC3jg7y_464QvYWd5uXKv4J5dL2fN5SHcVZPs0FvCT5IvD6k |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5VLQgu5U3D00gITmmzdhyvxQktW1rRrCp1UXuLHMfRrrRkq-5D9MZP4Df2l3TG2QRWBQmJUw6xHceex-fHfAPwFl28KaUzYVwoEcbWJiGi1k6YdHVkueuiB819sgk1GHTPzvTxBnxoYmFqfoh2w400w9trUnDakN77xRpKRMe7kpg-t2LEGZS34fRw0B4hUAimP-pMkhC9om6YZyO-19Rc90U3AObNe5K_41fvgPbv_VfX78P2Cneyj7WgPIANVz2E23UmystH8N1v5rPPlL5oaa5-_PyEkrl0BUspOsmOLr9h5RNsj_XcZDJj_cnYjufsmBbGq0hONi1ZyllqKCnYCM3UjJmqYP1qRILFeguEoW66mLFTyuTEKP4Jv_YYvu73h72DcJWUIbQxLm1CkfNEd0xHOacKW0pe2CjJLQKRUpZCCKlNpHNcoouuMby0UY6Iy-LUW51HMrfiCWxW08rtAEOwKkyMuFkqEZsi1lFRKsmtcSZWaFkCeN9MT2ZXjOWUOGOS1VzLPKNxzHAcA3jTljyvWTr-UIY1M5yhCtG5SP3bmUIIScsyHcDTesLbRjhaQASUMgC1JgptAWLnXn9TjUeepVt0PHNRAO-8KPy1X9nJsJ_i89m_FnwNdw6G6VF2dDj48hzu-usM_nbhC9icXyzcS7hll_Px7OKVV4hrAuoS3w |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED9NGyBexvi7DAZGQvAUltpxXIsn1LUwQatKG2JvkeM4aqUundY_2t72EfYZ-STcOU2gGkhIPOUhtuP4zr7f2b7fAbxBE28K6UwY50qEsbVJiKi1FSZtHVnu2mhBM59sQg0G7dNTPdyAD3UsTMUP0Wy40czw6zVNcHeeFwe_WEOJ6Pi9JKbPrThBd5zCSY4GzREChWD6o84kCdEq6pp5NuIHdc11W3QLYN6-J_k7fvUGqPfgv7q-A9sr3Mk-VoryEDZc-QjuVpkorx7Dpd_MZ58ofdHS_Li-OUTNXLqc9Sk6yY6uzrDyMbbHOm4ymbHuZGzHczYkx3gVycmmBetz1jeUFGyEy9SMmTJn3XJEisU6C4ShbrqYse-UyYlR_BN-7Ql863VPOp_DVVKG0Mbo2oQi44lumZZyTuW2kDy3UZJZBCKFLIQQUptIZ-iii7YxvLBRhojLouitziKZWfEUNstp6XaBIVgVJkbcLJWITR7rKC-U5NY4EytcWQJ4V4sntSvGckqcMUkrrmWe0jimOI4BvG5KnlcsHX8ow2oJpziF6Fyk-u1UIYQkt0wH8KwSeNMIxxUQAaUMQK2pQlOA2LnX35TjkWfpFi3PXBTAW68Kf-1XenzS7eNz718LvoJ7w8Ne-vVo8OU53Pe3GfzlwhewOb9YuH24Y5fz8ezipZ8PPwGSHhJj |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human+gingiva-derived+mesenchymal+stem+cells+elicit+polarization+of+m2+macrophages+and+enhance+cutaneous+wound+healing&rft.jtitle=Stem+cells+%28Dayton%2C+Ohio%29&rft.au=Zhang%2C+Qun-Zhou&rft.au=Su%2C+Wen-Ru&rft.au=Shi%2C+Shi-Hong&rft.au=Wilder-Smith%2C+Petra&rft.date=2010-10-01&rft.eissn=1549-4918&rft.volume=28&rft.issue=10&rft.spage=1856&rft_id=info:doi/10.1002%2Fstem.503&rft_id=info%3Apmid%2F20734355&rft.externalDocID=20734355 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1066-5099&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1066-5099&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1066-5099&client=summon |