Simulated Stochastic Approximation Annealing for Global Optimization With a Square-Root Cooling Schedule
Simulated annealing has been widely used in the solution of optimization problems. As known by many researchers, the global optima cannot be guaranteed to be located by simulated annealing unless a logarithmic cooling schedule is used. However, the logarithmic cooling schedule is so slow that no one...
Saved in:
| Published in: | Journal of the American Statistical Association Vol. 109; no. 506; pp. 847 - 863 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Alexandria
Taylor & Francis
01.06.2014
Taylor & Francis Group, LLC Taylor & Francis Ltd |
| Subjects: | |
| ISSN: | 1537-274X, 0162-1459, 1537-274X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Simulated annealing has been widely used in the solution of optimization problems. As known by many researchers, the global optima cannot be guaranteed to be located by simulated annealing unless a logarithmic cooling schedule is used. However, the logarithmic cooling schedule is so slow that no one can afford to use this much CPU time. This article proposes a new stochastic optimization algorithm, the so-called simulated stochastic approximation annealing algorithm, which is a combination of simulated annealing and the stochastic approximation Monte Carlo algorithm. Under the framework of stochastic approximation, it is shown that the new algorithm can work with a cooling schedule in which the temperature can decrease much faster than in the logarithmic cooling schedule, for example, a square-root cooling schedule, while guaranteeing the global optima to be reached when the temperature tends to zero. The new algorithm has been tested on a few benchmark optimization problems, including feed-forward neural network training and protein-folding. The numerical results indicate that the new algorithm can significantly outperform simulated annealing and other competitors. Supplementary materials for this article are available online. |
|---|---|
| AbstractList | Simulated annealing has been widely used in the solution of optimization problems. As known by many researchers, the global optima cannot be guaranteed to be located by simulated annealing unless a logarithmic cooling schedule is used. However, the logarithmic cooling schedule is so slow that no one can afford to use this much CPU time. This article proposes a new stochastic optimization algorithm, the so-called simulated stochastic approximation annealing algorithm, which is a combination of simulated annealing and the stochastic approximation Monte Carlo algorithm. Under the framework of stochastic approximation, it is shown that the new algorithm can work with a cooling schedule in which the temperature can decrease much faster than in the logarithmic cooling schedule, for example, a square-root cooling schedule, while guaranteeing the global optima to be reached when the temperature tends to zero. The new algorithm has been tested on a few benchmark optimization problems, including feed-forward neural network training and protein-folding. The numerical results indicate that the new algorithm can significantly outperform simulated annealing and other competitors. Supplementary materials for this article are available online. |
| Author | Cheng, Yichen Liang, Faming Lin, Guang |
| Author_xml | – sequence: 1 givenname: Faming surname: Liang fullname: Liang, Faming – sequence: 2 givenname: Yichen surname: Cheng fullname: Cheng, Yichen – sequence: 3 givenname: Guang surname: Lin fullname: Lin, Guang |
| BookMark | eNqFkl9rFDEUxQepYFv9BooDvvRl1vybZNYXWRatQqHgWPQt3Mkk3SyZZJtk0PrpTTsq0pfmJYFzfjf35uSkOvLB66p6idEKow69RZgTzNr1iiBMV50g6zV9Uh3jloqGCPb96L_zs-okpT0qS3TdcbXr7TQ7yHqs-xzUDlK2qt4cDjH8tBNkG3y98V6Ds_66NiHW5y4M4OrLQ7aT_bU4vtm8q6Hub2aIuvkSQq63IdwjvdrpcXb6efXUgEv6xZ_9tLr6-OHr9lNzcXn-ebu5aBQTLDfGcEwwRQqhVmg9cgotFyCoUCPFpjXtsKaUE-BkKOIwMDaCWXfEgOEjR_S0OlvqlgluZp2ynGxS2jnwOsxJ4g5RJDjnXbG-eWDdhzn60p3EvEMECcZZcb1bXCqGlKI2Utl8P3aOYJ3ESN6FIP-GIO9CkEsIBWYP4EMszxpvH8NeLdg-5RD_MYQRJkpbRX-_6NaXSCb4EaIbZYZbF6KJ4JVNkj5yw-ulgoEg4ToW4KovBl4-RtdywulvlNSyuw |
| CODEN | JSTNAL |
| CitedBy_id | crossref_primary_10_1177_03611981211008891 crossref_primary_10_3354_cr01213 crossref_primary_10_1155_2018_9248318 crossref_primary_10_1007_s10596_021_10102_w crossref_primary_10_1109_TVCG_2016_2598869 crossref_primary_10_3390_jrfm13080174 crossref_primary_10_1002_mp_16126 crossref_primary_10_1002_2017MS001222 crossref_primary_10_1093_jrsssb_qkae082 crossref_primary_10_1016_j_csda_2019_03_011 crossref_primary_10_1080_00401706_2015_1040927 crossref_primary_10_1007_s11222_016_9663_0 crossref_primary_10_1080_01621459_2014_984812 crossref_primary_10_1016_j_dsp_2016_07_013 crossref_primary_10_1038_s41598_018_21865_1 crossref_primary_10_1007_s00180_019_00906_x crossref_primary_10_1002_wics_1305 crossref_primary_10_1002_wics_1416 crossref_primary_10_3390_rs17030408 |
| Cites_doi | 10.1090/S0025-5718-1970-0258249-6 10.1198/016214506000001202 10.1080/00207169408804329 10.1007/s11222-010-9176-1 10.1016/0022-1236(89)90023-2 10.1007/s11222-008-9110-y 10.1007/s10898-004-9972-2 10.1080/07350015.1995.10524579 10.1016/0925-2312(91)90003-T 10.1109/TPAMI.1984.4767596 10.1007/s10994-007-5017-7 10.1073/pnas.95.13.7270 10.1073/pnas.94.26.14220 10.1126/science.220.4598.671 10.1016/0167-6377(96)00030-2 10.2307/1427681 10.1007/978-1-4757-4145-2 10.1016/0893-6080(91)90009-T 10.1017/CBO9780511626630 10.1007/BF01594945 10.1021/bi00327a032 10.1198/106186007X238459 10.1103/PhysRevE.48.1469 10.1093/imamat/6.1.76 10.1016/0304-4076(81)90117-2 10.1017/CBO9780511526237 10.1090/S0025-5718-1970-0274029-X 10.1007/BF00341287 10.1214/aoms/1177729586 10.1002/jcc.20995 10.1103/PhysRevE.71.066705 10.1007/BF00933504 10.1007/BF02551274 10.1103/PhysRevE.68.037703 10.1103/PhysRevE.52.2872 10.1016/j.spl.2008.10.007 10.7551/mitpress/5236.001.0001 10.1137/S0363012902417267 10.1080/01621459.1995.10476548 10.1063/1.1665529 10.1214/07-AOS577 10.1023/A:1008202821328 10.1093/comjnl/13.3.317 10.1007/978-1-4684-9352-8 10.1287/opre.32.6.1296 10.1103/PhysRevLett.86.2050 10.1007/s00186-006-0082-4 10.1007/978-3-642-75894-2 10.1117/12.152626 10.1093/biomet/83.1.95 10.2307/3318737 |
| ContentType | Journal Article |
| Copyright | 2014 American Statistical Association 2014 Copyright © 2014 American Statistical Association Copyright Taylor & Francis Ltd. Jun 2014 |
| Copyright_xml | – notice: 2014 American Statistical Association 2014 – notice: Copyright © 2014 American Statistical Association – notice: Copyright Taylor & Francis Ltd. Jun 2014 |
| DBID | FBQ AAYXX CITATION 8BJ FQK JBE K9. 7S9 L.6 |
| DOI | 10.1080/01621459.2013.872993 |
| DatabaseName | AGRIS CrossRef International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences International Bibliography of the Social Sciences ProQuest Health & Medical Complete (Alumni) AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef International Bibliography of the Social Sciences (IBSS) ProQuest Health & Medical Complete (Alumni) AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | International Bibliography of the Social Sciences (IBSS) AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics |
| EISSN | 1537-274X |
| EndPage | 863 |
| ExternalDocumentID | 3681333531 10_1080_01621459_2013_872993 24247207 872993 US201600085626 |
| Genre | Article Feature |
| GroupedDBID | -DZ -~X .-4 ..I .7F .GJ .QJ 07G 0BK 0R~ 1OL 29L 2AX 30N 3R3 4.4 5GY 5RE 692 7WY 7X7 85S 88E 88I 8AF 8C1 8FE 8FG 8FI 8FJ 8FL 8G5 8R4 8R5 AAAVZ AABCJ AAENE AAFWJ AAHBH AAIKQ AAJMT AAKBW AALDU AAMIU AAPUL AAQRR AAWIL ABAWQ ABBHK ABCCY ABEFU ABEHJ ABFAN ABFIM ABJCF ABJNI ABLIJ ABLJU ABPAQ ABPEM ABPFR ABPPZ ABPQH ABRLO ABTAI ABUWG ABXSQ ABXUL ABXYU ABYWD ACAGQ ACGEE ACGFO ACGFS ACGOD ACHJO ACIWK ACMTB ACNCT ACTIO ACTMH ACUBG ADBBV ADCVX ADGTB ADLSF ADMHG ADODI ADULT ADYSH AEISY AENEX AEOZL AEPSL AEUMN AEUPB AEYOC AFFNX AFKRA AFQQW AFRVT AFSUE AFVYC AFXHP AGCQS AGDLA AGLEN AGLNM AGMYJ AGROQ AHDZW AHMOU AI. AIHAF AIJEM AIYEW AKBVH AKOOK ALCKM ALIPV ALMA_UNASSIGNED_HOLDINGS ALQZU ALRMG AMATQ AMEWO AMXXU AQRUH AQUVI AVBZW AWYRJ AZQEC BCCOT BENPR BEZIV BGLVJ BKNYI BKOMP BLEHA BPHCQ BPLKW BVXVI C06 CCCUG CCPQU CJ0 CRFIH CS3 D0L DGEBU DKSSO DMQIW DQDLB DSRWC DU5 DWIFK DWQXO E.L EBS ECEWR EJD E~A E~B F5P FBQ FEDTE FJW FRNLG FVMVE FYUFA GNUQQ GROUPED_ABI_INFORM_RESEARCH GTTXZ GUQSH H13 HCIFZ HF~ HGD HMCUK HQ6 HVGLF HZ~ H~9 H~P IPNFZ IPSME IVXBP J.P JAAYA JAS JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST K60 K6~ K9- KQ8 KYCEM L6V LJTGL LU7 M0C M0R M0T M1P M2O M2P M4Z M7S MS~ MVM MW2 NA5 NHB NUSFT NY~ O9- OFU OK1 P-O P2P PADUT PHGZT PQBIZ PQBZA PQQKQ PRG PROAC PSQYO PTHSS Q2X QCRFL RIG RNANH RNS ROSJB RTWRZ RWL RXW S-T S0X SA0 SJN SNACF TAE TAQ TBQAZ TDBHL TEJ TFL TFMCV TFT TFW TN5 TOXWX TTHFI TUROJ U5U UB9 UKHRP UPT UQL UT5 UU3 VH1 VOH WH7 WHG WZA YQT YXB YYM YYP ZCG ZGI ZGOLN ZUP ZXP ~S~ AAGDL AAHIA ABUFD ADXHL AMVHM AQTUD TASJS AMPGV AAYXX CITATION 8BJ FQK JBE K9. 7S9 L.6 |
| ID | FETCH-LOGICAL-c474t-ff612130c0057eed63a567a737cd31f5f5b93362a62bd63bb44daf982faf6d603 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 23 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000338236000031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1537-274X 0162-1459 |
| IngestDate | Fri Oct 03 00:03:40 EDT 2025 Mon Nov 10 02:42:57 EST 2025 Sat Nov 29 03:56:40 EST 2025 Tue Nov 18 21:36:20 EST 2025 Fri May 30 11:48:53 EDT 2025 Mon Oct 20 23:43:55 EDT 2025 Thu Apr 03 09:42:43 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 506 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c474t-ff612130c0057eed63a567a737cd31f5f5b93362a62bd63bb44daf982faf6d603 |
| Notes | http://dx.doi.org/10.1080/01621459.2013.872993 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1680207464 |
| PQPubID | 41715 |
| PageCount | 17 |
| ParticipantIDs | crossref_citationtrail_10_1080_01621459_2013_872993 proquest_miscellaneous_1803076668 jstor_primary_24247207 proquest_journals_1680207464 fao_agris_US201600085626 crossref_primary_10_1080_01621459_2013_872993 informaworld_taylorfrancis_310_1080_01621459_2013_872993 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-06-01 |
| PublicationDateYYYYMMDD | 2014-06-01 |
| PublicationDate_xml | – month: 06 year: 2014 text: 2014-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Alexandria |
| PublicationPlace_xml | – name: Alexandria |
| PublicationTitle | Journal of the American Statistical Association |
| PublicationYear | 2014 |
| Publisher | Taylor & Francis Taylor & Francis Group, LLC Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Group, LLC – name: Taylor & Francis Ltd |
| References | cit0033 cit0031 cit0030 Chen H.F. (cit0013) 2002 cit0039 Baum E.B. (cit0009) 1991 cit0037 cit0038 Chen H.F. (cit0014) 1986; 29 cit0035 cit0036 cit0022 cit0023 Berger J.O. (cit0011) 1993 cit0021 cit0062 cit0060 cit0061 Rumelhart D.E. (cit0051) 1986 Lang K.J. (cit0034) 1989 cit0028 cit0029 cit0026 cit0027 cit0024 cit0025 cit0055 cit0012 cit0056 cit0053 cit0010 cit0054 cit0052 cit0050 cit0019 cit0017 Tan C.M. (cit0057) 2008 cit0018 Fahlman S.E. (cit0020) 1990 cit0015 cit0059 cit0016 cit0058 cit0044 cit0001 cit0045 cit0042 cit0043 cit0040 Atchadé Y.F. (cit0008) 2010; 20 cit0041 cit0007 cit0048 cit0005 cit0049 cit0002 cit0046 cit0003 cit0047 |
| References_xml | – ident: cit0023 doi: 10.1090/S0025-5718-1970-0258249-6 – ident: cit0042 doi: 10.1198/016214506000001202 – ident: cit0002 doi: 10.1080/00207169408804329 – ident: cit0041 doi: 10.1007/s11222-010-9176-1 – ident: cit0028 doi: 10.1016/0022-1236(89)90023-2 – ident: cit0007 doi: 10.1007/s11222-008-9110-y – ident: cit0001 doi: 10.1007/s10898-004-9972-2 – ident: cit0019 doi: 10.1080/07350015.1995.10524579 – ident: cit0003 doi: 10.1016/0925-2312(91)90003-T – ident: cit0022 doi: 10.1109/TPAMI.1984.4767596 – ident: cit0037 doi: 10.1007/s10994-007-5017-7 – ident: cit0024 doi: 10.1073/pnas.95.13.7270 – ident: cit0061 doi: 10.1073/pnas.94.26.14220 – ident: cit0031 doi: 10.1126/science.220.4598.671 – ident: cit0015 doi: 10.1016/0167-6377(96)00030-2 – ident: cit0025 doi: 10.2307/1427681 – volume-title: Stochastic Approximation and Its Applications year: 2002 ident: cit0013 – ident: cit0048 doi: 10.1007/978-1-4757-4145-2 – ident: cit0029 doi: 10.1016/0893-6080(91)90009-T – ident: cit0043 doi: 10.1017/CBO9780511626630 – start-page: 25 volume-title: Multivariate Analysis: Future Directions year: 1993 ident: cit0011 – volume: 29 start-page: 914 year: 1986 ident: cit0014 publication-title: Scientia Sinica, Series A – ident: cit0017 doi: 10.1007/BF01594945 – ident: cit0018 doi: 10.1021/bi00327a032 – start-page: 524 volume-title: Advances in Neural Information Processing Systems 2 year: 1990 ident: cit0020 – ident: cit0038 doi: 10.1198/106186007X238459 – ident: cit0055 doi: 10.1103/PhysRevE.48.1469 – ident: cit0012 doi: 10.1093/imamat/6.1.76 – ident: cit0027 doi: 10.1016/0304-4076(81)90117-2 – ident: cit0044 doi: 10.1017/CBO9780511526237 – ident: cit0052 doi: 10.1090/S0025-5718-1970-0274029-X – ident: cit0062 doi: 10.1007/BF00341287 – ident: cit0047 doi: 10.1214/aoms/1177729586 – ident: cit0035 doi: 10.1002/jcc.20995 – ident: cit0058 doi: 10.1103/PhysRevE.71.066705 – volume-title: Simulated Annealing year: 2008 ident: cit0057 – start-page: 52 volume-title: Proceedings of the 1988 Connectionist Models year: 1989 ident: cit0034 – ident: cit0046 doi: 10.1007/BF00933504 – ident: cit0016 doi: 10.1007/BF02551274 – ident: cit0030 doi: 10.1103/PhysRevE.68.037703 – ident: cit0054 doi: 10.1103/PhysRevE.52.2872 – ident: cit0039 doi: 10.1016/j.spl.2008.10.007 – start-page: 318 volume-title: Parallel Distributed Processing: Explorations in the Microstructure of Cognition (Vol. 1) year: 1986 ident: cit0051 doi: 10.7551/mitpress/5236.001.0001 – ident: cit0005 doi: 10.1137/S0363012902417267 – ident: cit0050 doi: 10.1080/01621459.1995.10476548 – ident: cit0036 doi: 10.1063/1.1665529 – ident: cit0040 doi: 10.1214/07-AOS577 – ident: cit0056 doi: 10.1023/A:1008202821328 – ident: cit0021 doi: 10.1093/comjnl/13.3.317 – start-page: 904 volume-title: Advances in Neural Information Processing Systems year: 1991 ident: cit0009 – ident: cit0033 doi: 10.1007/978-1-4684-9352-8 – ident: cit0053 doi: 10.1287/opre.32.6.1296 – ident: cit0060 doi: 10.1103/PhysRevLett.86.2050 – ident: cit0059 doi: 10.1007/s00186-006-0082-4 – ident: cit0010 doi: 10.1007/978-3-642-75894-2 – ident: cit0045 doi: 10.1117/12.152626 – ident: cit0049 doi: 10.1093/biomet/83.1.95 – volume: 20 start-page: 209 year: 2010 ident: cit0008 publication-title: Statistica Sinica – ident: cit0026 doi: 10.2307/3318737 |
| SSID | ssj0000788 |
| Score | 2.2605395 |
| Snippet | Simulated annealing has been widely used in the solution of optimization problems. As known by many researchers, the global optima cannot be guaranteed to be... |
| SourceID | proquest crossref jstor informaworld fao |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 847 |
| SubjectTerms | Algorithms Annealing Approximation Competitors Cooling Energy value Evolution Local trap Markov chain Monte Carlo Mathematical minima Monte Carlo simulation Neural networks Optimization protein folding Sampling distributions Simulated annealing Simulation Statistics Stochastic approximation Monte Carlo Stochastic models Stochastic optimization temperature Theory and Methods Truncation |
| Title | Simulated Stochastic Approximation Annealing for Global Optimization With a Square-Root Cooling Schedule |
| URI | https://www.tandfonline.com/doi/abs/10.1080/01621459.2013.872993 https://www.jstor.org/stable/24247207 https://www.proquest.com/docview/1680207464 https://www.proquest.com/docview/1803076668 |
| Volume | 109 |
| WOSCitedRecordID | wos000338236000031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Journals Complete customDbUrl: eissn: 1537-274X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000788 issn: 1537-274X databaseCode: TFW dateStart: 19220301 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYo6oFLoQ_E8qhciavbJPbayXGFWPVEqwYEN8txPN2VYNNCFvHzmYmThYLaSu0xscfyYzyPZOYbxg6lBggAlahAeaGK1AnU46mATPnEa5m41HfFJszJSX5xUXx9lMVPYZXkQ0MEiuhkNV1uV90MEXGf0EohfG1KM0nlxxzNw4LgPlHz0808nZ4_iGLTFZ4kAkEUQ-7cbwb5RTe9ANc8wS8dYhafye1OGU03_38ZW-xVb4jySeSc12wtLN6wDbI9I3TzWzYr51dU3CvUvGwbP3P0nk8IhPxuHjMe-QTFtKOMdo7z57GAAP-CYuiqz-_k5_N2xh0vfyIvBvGtaVp-1DQdSYkMUy8vwzt2Nj0-Pfos-sIMwiujWgFAuGMy8ZTKikpWSzfWxhlpfC1TGMO4KiRqRqezChurSqnaQZFn4EDXOpHbbH3RLMIO4x6QiTIkzgzaRkmO9qau01Arh65pFsyIyeFIrO9Ry6l4xqVNB3DTfhstbaON2zhiYkX1I6J2_KX_Dp62dd9RsNqzMiPYPTJG0dsbsfwxC9i2-5ACseqJlX8edbtjl9UUKBXHZAkuan_gH9uLjBub6hxNd6O0GrEPq2a87PQHxy1Cs8Q-Oclk9Djz3X-f1h7bwCcV49322Xp7vQwH7KW_Rf66ft9doHvHPxPC |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7RgkQvvKsuFDASV0MSe-3kuKpYFVEWRLZqb5bj2N2V2g20WcTPZyZOlpcACXGNPZYf43k4M98APBcqBB9CxasgHZdFajnq8ZSHTLrEKZHY1HXFJvRslp-eFu_7aMKrPqySfOgQgSI6WU2Xmx6jh5C4l2imEMA25Zmk4kWO9mEhtuD6GFUtwefPpyffhLHuSk8SBSeSIXvuN6P8oJ22gm1-QjAdohZ_kdydOpre_g8LuQO3eluUTSLz3IVrfnUPdsj8jOjN92FRLi-ovpevWdk2bmHpO5sQDvmXZUx6ZBOU1JaS2hkugMUaAuwdSqKLPsWTnSzbBbOs_ITs6PmHpmnZQdN0JCXyTL0-9w_gePpqfnDI-9oM3EktWx4CQY-JxFE2K-pZJexYaauFdrVIwziMq0KgcrQqq7CxqqSsbSjyLNigapWIXdheNSu_B8wF5KMMiTON5lGSo8mp6tTX0qJ3mnk9AjGciXE9cDnVzzg36YBv2m-joW00cRtHwDdUHyNwx1_67-FxG3uGstUclxkh75E9ig7fCPLvecC03VtKiIVPjPjzqLsdv2ymQNk4OktwUfsDA5lealyZVOVovWup5AiebZrxvtNPHLvyzRr75CSW0enMH_77tJ7CzcP52yNz9Hr25hHsYIuM4W_7sN1erv1juOE-I69dPulu01c_7Bfs |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVoQagXvqtuKWAkroYk9trJcVVYgUBLRVq1N8txPN2V2k0p2Yqfz0ycLAUESHCNM5FjP888J543jL2QGiAAVKIC5YUqUicwjqcCMuUTr2XiUt8VmzCzWX5yUhxcy-KnY5W0h4YoFNH5alrcFzUMJ-JeIUshfW1KM0nlyxzpYSE32E1kzpowfjg9_u6LTVd5kiwEmQzJc795yg_BaQNc85OA6XBo8RfH3UWj6d3_f4977E7PRPkkQuc-uxGWD9gWkc-o3fyQzcvFOVX3CjUv28bPHV3nE1Ih_7qIKY98gn7aUUo7x_7zWEGAf0Q_dN4nePLjRTvnjpefEYxBfGqalu83TWdSImLq1Vl4xI6mbw7334q-MoPwyqhWAJDwmEw85bJilNXSjbVxRhpfyxTGMK4KiaHR6azCxqpSqnZQ5Bk40LVO5DbbXDbLsMO4B0RRhsaZQXKU5Eg4dZ2GWjncm2bBjJgcpsT6Xracqmec2XRQN-2H0dIw2jiMIybWVhdRtuMv9-_gbFt3ip7VHpUZ6e4RG8Xt3ojl1yFg2-5LCsSyJ1b--anbHVzWXaBcHJMl-FJ7A35s7zO-2FTnyN2N0mrEnq-bcbXTLxy3DM0K78nJKSPO891_79Yzdvvg9dR-eDd7_5htYYOKJxr32GZ7uQpP2C1_hVC7fNqtpW_UYBag |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simulated+Stochastic+Approximation+Annealing+for+Global+Optimization+With+a+Square-Root+Cooling+Schedule&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Liang%2C+Faming&rft.au=Cheng%2C+Yichen&rft.au=Lin%2C+Guang&rft.date=2014-06-01&rft.issn=1537-274X&rft.volume=109&rft.issue=506+p.847-863&rft.spage=847&rft.epage=863&rft_id=info:doi/10.1080%2F01621459.2013.872993&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1537-274X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1537-274X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1537-274X&client=summon |