Simulated Stochastic Approximation Annealing for Global Optimization With a Square-Root Cooling Schedule

Simulated annealing has been widely used in the solution of optimization problems. As known by many researchers, the global optima cannot be guaranteed to be located by simulated annealing unless a logarithmic cooling schedule is used. However, the logarithmic cooling schedule is so slow that no one...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Statistical Association Vol. 109; no. 506; pp. 847 - 863
Main Authors: Liang, Faming, Cheng, Yichen, Lin, Guang
Format: Journal Article
Language:English
Published: Alexandria Taylor & Francis 01.06.2014
Taylor & Francis Group, LLC
Taylor & Francis Ltd
Subjects:
ISSN:1537-274X, 0162-1459, 1537-274X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Simulated annealing has been widely used in the solution of optimization problems. As known by many researchers, the global optima cannot be guaranteed to be located by simulated annealing unless a logarithmic cooling schedule is used. However, the logarithmic cooling schedule is so slow that no one can afford to use this much CPU time. This article proposes a new stochastic optimization algorithm, the so-called simulated stochastic approximation annealing algorithm, which is a combination of simulated annealing and the stochastic approximation Monte Carlo algorithm. Under the framework of stochastic approximation, it is shown that the new algorithm can work with a cooling schedule in which the temperature can decrease much faster than in the logarithmic cooling schedule, for example, a square-root cooling schedule, while guaranteeing the global optima to be reached when the temperature tends to zero. The new algorithm has been tested on a few benchmark optimization problems, including feed-forward neural network training and protein-folding. The numerical results indicate that the new algorithm can significantly outperform simulated annealing and other competitors. Supplementary materials for this article are available online.
AbstractList Simulated annealing has been widely used in the solution of optimization problems. As known by many researchers, the global optima cannot be guaranteed to be located by simulated annealing unless a logarithmic cooling schedule is used. However, the logarithmic cooling schedule is so slow that no one can afford to use this much CPU time. This article proposes a new stochastic optimization algorithm, the so-called simulated stochastic approximation annealing algorithm, which is a combination of simulated annealing and the stochastic approximation Monte Carlo algorithm. Under the framework of stochastic approximation, it is shown that the new algorithm can work with a cooling schedule in which the temperature can decrease much faster than in the logarithmic cooling schedule, for example, a square-root cooling schedule, while guaranteeing the global optima to be reached when the temperature tends to zero. The new algorithm has been tested on a few benchmark optimization problems, including feed-forward neural network training and protein-folding. The numerical results indicate that the new algorithm can significantly outperform simulated annealing and other competitors. Supplementary materials for this article are available online.
Author Cheng, Yichen
Liang, Faming
Lin, Guang
Author_xml – sequence: 1
  givenname: Faming
  surname: Liang
  fullname: Liang, Faming
– sequence: 2
  givenname: Yichen
  surname: Cheng
  fullname: Cheng, Yichen
– sequence: 3
  givenname: Guang
  surname: Lin
  fullname: Lin, Guang
BookMark eNqFkl9rFDEUxQepYFv9BooDvvRl1vybZNYXWRatQqHgWPQt3Mkk3SyZZJtk0PrpTTsq0pfmJYFzfjf35uSkOvLB66p6idEKow69RZgTzNr1iiBMV50g6zV9Uh3jloqGCPb96L_zs-okpT0qS3TdcbXr7TQ7yHqs-xzUDlK2qt4cDjH8tBNkG3y98V6Ds_66NiHW5y4M4OrLQ7aT_bU4vtm8q6Hub2aIuvkSQq63IdwjvdrpcXb6efXUgEv6xZ_9tLr6-OHr9lNzcXn-ebu5aBQTLDfGcEwwRQqhVmg9cgotFyCoUCPFpjXtsKaUE-BkKOIwMDaCWXfEgOEjR_S0OlvqlgluZp2ynGxS2jnwOsxJ4g5RJDjnXbG-eWDdhzn60p3EvEMECcZZcb1bXCqGlKI2Utl8P3aOYJ3ESN6FIP-GIO9CkEsIBWYP4EMszxpvH8NeLdg-5RD_MYQRJkpbRX-_6NaXSCb4EaIbZYZbF6KJ4JVNkj5yw-ulgoEg4ToW4KovBl4-RtdywulvlNSyuw
CODEN JSTNAL
CitedBy_id crossref_primary_10_1177_03611981211008891
crossref_primary_10_3354_cr01213
crossref_primary_10_1155_2018_9248318
crossref_primary_10_1007_s10596_021_10102_w
crossref_primary_10_1109_TVCG_2016_2598869
crossref_primary_10_3390_jrfm13080174
crossref_primary_10_1002_mp_16126
crossref_primary_10_1002_2017MS001222
crossref_primary_10_1093_jrsssb_qkae082
crossref_primary_10_1016_j_csda_2019_03_011
crossref_primary_10_1080_00401706_2015_1040927
crossref_primary_10_1007_s11222_016_9663_0
crossref_primary_10_1080_01621459_2014_984812
crossref_primary_10_1016_j_dsp_2016_07_013
crossref_primary_10_1038_s41598_018_21865_1
crossref_primary_10_1007_s00180_019_00906_x
crossref_primary_10_1002_wics_1305
crossref_primary_10_1002_wics_1416
crossref_primary_10_3390_rs17030408
Cites_doi 10.1090/S0025-5718-1970-0258249-6
10.1198/016214506000001202
10.1080/00207169408804329
10.1007/s11222-010-9176-1
10.1016/0022-1236(89)90023-2
10.1007/s11222-008-9110-y
10.1007/s10898-004-9972-2
10.1080/07350015.1995.10524579
10.1016/0925-2312(91)90003-T
10.1109/TPAMI.1984.4767596
10.1007/s10994-007-5017-7
10.1073/pnas.95.13.7270
10.1073/pnas.94.26.14220
10.1126/science.220.4598.671
10.1016/0167-6377(96)00030-2
10.2307/1427681
10.1007/978-1-4757-4145-2
10.1016/0893-6080(91)90009-T
10.1017/CBO9780511626630
10.1007/BF01594945
10.1021/bi00327a032
10.1198/106186007X238459
10.1103/PhysRevE.48.1469
10.1093/imamat/6.1.76
10.1016/0304-4076(81)90117-2
10.1017/CBO9780511526237
10.1090/S0025-5718-1970-0274029-X
10.1007/BF00341287
10.1214/aoms/1177729586
10.1002/jcc.20995
10.1103/PhysRevE.71.066705
10.1007/BF00933504
10.1007/BF02551274
10.1103/PhysRevE.68.037703
10.1103/PhysRevE.52.2872
10.1016/j.spl.2008.10.007
10.7551/mitpress/5236.001.0001
10.1137/S0363012902417267
10.1080/01621459.1995.10476548
10.1063/1.1665529
10.1214/07-AOS577
10.1023/A:1008202821328
10.1093/comjnl/13.3.317
10.1007/978-1-4684-9352-8
10.1287/opre.32.6.1296
10.1103/PhysRevLett.86.2050
10.1007/s00186-006-0082-4
10.1007/978-3-642-75894-2
10.1117/12.152626
10.1093/biomet/83.1.95
10.2307/3318737
ContentType Journal Article
Copyright 2014 American Statistical Association 2014
Copyright © 2014 American Statistical Association
Copyright Taylor & Francis Ltd. Jun 2014
Copyright_xml – notice: 2014 American Statistical Association 2014
– notice: Copyright © 2014 American Statistical Association
– notice: Copyright Taylor & Francis Ltd. Jun 2014
DBID FBQ
AAYXX
CITATION
8BJ
FQK
JBE
K9.
7S9
L.6
DOI 10.1080/01621459.2013.872993
DatabaseName AGRIS
CrossRef
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Health & Medical Complete (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
ProQuest Health & Medical Complete (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList


International Bibliography of the Social Sciences (IBSS)
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 1537-274X
EndPage 863
ExternalDocumentID 3681333531
10_1080_01621459_2013_872993
24247207
872993
US201600085626
Genre Article
Feature
GroupedDBID -DZ
-~X
.-4
..I
.7F
.GJ
.QJ
07G
0BK
0R~
1OL
29L
2AX
30N
3R3
4.4
5GY
5RE
692
7WY
7X7
85S
88E
88I
8AF
8C1
8FE
8FG
8FI
8FJ
8FL
8G5
8R4
8R5
AAAVZ
AABCJ
AAENE
AAFWJ
AAHBH
AAIKQ
AAJMT
AAKBW
AALDU
AAMIU
AAPUL
AAQRR
AAWIL
ABAWQ
ABBHK
ABCCY
ABEFU
ABEHJ
ABFAN
ABFIM
ABJCF
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABPFR
ABPPZ
ABPQH
ABRLO
ABTAI
ABUWG
ABXSQ
ABXUL
ABXYU
ABYWD
ACAGQ
ACGEE
ACGFO
ACGFS
ACGOD
ACHJO
ACIWK
ACMTB
ACNCT
ACTIO
ACTMH
ACUBG
ADBBV
ADCVX
ADGTB
ADLSF
ADMHG
ADODI
ADULT
ADYSH
AEISY
AENEX
AEOZL
AEPSL
AEUMN
AEUPB
AEYOC
AFFNX
AFKRA
AFQQW
AFRVT
AFSUE
AFVYC
AFXHP
AGCQS
AGDLA
AGLEN
AGLNM
AGMYJ
AGROQ
AHDZW
AHMOU
AI.
AIHAF
AIJEM
AIYEW
AKBVH
AKOOK
ALCKM
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALQZU
ALRMG
AMATQ
AMEWO
AMXXU
AQRUH
AQUVI
AVBZW
AWYRJ
AZQEC
BCCOT
BENPR
BEZIV
BGLVJ
BKNYI
BKOMP
BLEHA
BPHCQ
BPLKW
BVXVI
C06
CCCUG
CCPQU
CJ0
CRFIH
CS3
D0L
DGEBU
DKSSO
DMQIW
DQDLB
DSRWC
DU5
DWIFK
DWQXO
E.L
EBS
ECEWR
EJD
E~A
E~B
F5P
FBQ
FEDTE
FJW
FRNLG
FVMVE
FYUFA
GNUQQ
GROUPED_ABI_INFORM_RESEARCH
GTTXZ
GUQSH
H13
HCIFZ
HF~
HGD
HMCUK
HQ6
HVGLF
HZ~
H~9
H~P
IPNFZ
IPSME
IVXBP
J.P
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K60
K6~
K9-
KQ8
KYCEM
L6V
LJTGL
LU7
M0C
M0R
M0T
M1P
M2O
M2P
M4Z
M7S
MS~
MVM
MW2
NA5
NHB
NUSFT
NY~
O9-
OFU
OK1
P-O
P2P
PADUT
PHGZT
PQBIZ
PQBZA
PQQKQ
PRG
PROAC
PSQYO
PTHSS
Q2X
QCRFL
RIG
RNANH
RNS
ROSJB
RTWRZ
RWL
RXW
S-T
S0X
SA0
SJN
SNACF
TAE
TAQ
TBQAZ
TDBHL
TEJ
TFL
TFMCV
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
U5U
UB9
UKHRP
UPT
UQL
UT5
UU3
VH1
VOH
WH7
WHG
WZA
YQT
YXB
YYM
YYP
ZCG
ZGI
ZGOLN
ZUP
ZXP
~S~
AAGDL
AAHIA
ABUFD
ADXHL
AMVHM
AQTUD
TASJS
AMPGV
AAYXX
CITATION
8BJ
FQK
JBE
K9.
7S9
L.6
ID FETCH-LOGICAL-c474t-ff612130c0057eed63a567a737cd31f5f5b93362a62bd63bb44daf982faf6d603
IEDL.DBID TFW
ISICitedReferencesCount 23
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000338236000031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1537-274X
0162-1459
IngestDate Fri Oct 03 00:03:40 EDT 2025
Mon Nov 10 02:42:57 EST 2025
Sat Nov 29 03:56:40 EST 2025
Tue Nov 18 21:36:20 EST 2025
Fri May 30 11:48:53 EDT 2025
Mon Oct 20 23:43:55 EDT 2025
Thu Apr 03 09:42:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 506
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-ff612130c0057eed63a567a737cd31f5f5b93362a62bd63bb44daf982faf6d603
Notes http://dx.doi.org/10.1080/01621459.2013.872993
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1680207464
PQPubID 41715
PageCount 17
ParticipantIDs crossref_citationtrail_10_1080_01621459_2013_872993
proquest_miscellaneous_1803076668
jstor_primary_24247207
proquest_journals_1680207464
fao_agris_US201600085626
crossref_primary_10_1080_01621459_2013_872993
informaworld_taylorfrancis_310_1080_01621459_2013_872993
PublicationCentury 2000
PublicationDate 2014-06-01
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 06
  year: 2014
  text: 2014-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Alexandria
PublicationPlace_xml – name: Alexandria
PublicationTitle Journal of the American Statistical Association
PublicationYear 2014
Publisher Taylor & Francis
Taylor & Francis Group, LLC
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Group, LLC
– name: Taylor & Francis Ltd
References cit0033
cit0031
cit0030
Chen H.F. (cit0013) 2002
cit0039
Baum E.B. (cit0009) 1991
cit0037
cit0038
Chen H.F. (cit0014) 1986; 29
cit0035
cit0036
cit0022
cit0023
Berger J.O. (cit0011) 1993
cit0021
cit0062
cit0060
cit0061
Rumelhart D.E. (cit0051) 1986
Lang K.J. (cit0034) 1989
cit0028
cit0029
cit0026
cit0027
cit0024
cit0025
cit0055
cit0012
cit0056
cit0053
cit0010
cit0054
cit0052
cit0050
cit0019
cit0017
Tan C.M. (cit0057) 2008
cit0018
Fahlman S.E. (cit0020) 1990
cit0015
cit0059
cit0016
cit0058
cit0044
cit0001
cit0045
cit0042
cit0043
cit0040
Atchadé Y.F. (cit0008) 2010; 20
cit0041
cit0007
cit0048
cit0005
cit0049
cit0002
cit0046
cit0003
cit0047
References_xml – ident: cit0023
  doi: 10.1090/S0025-5718-1970-0258249-6
– ident: cit0042
  doi: 10.1198/016214506000001202
– ident: cit0002
  doi: 10.1080/00207169408804329
– ident: cit0041
  doi: 10.1007/s11222-010-9176-1
– ident: cit0028
  doi: 10.1016/0022-1236(89)90023-2
– ident: cit0007
  doi: 10.1007/s11222-008-9110-y
– ident: cit0001
  doi: 10.1007/s10898-004-9972-2
– ident: cit0019
  doi: 10.1080/07350015.1995.10524579
– ident: cit0003
  doi: 10.1016/0925-2312(91)90003-T
– ident: cit0022
  doi: 10.1109/TPAMI.1984.4767596
– ident: cit0037
  doi: 10.1007/s10994-007-5017-7
– ident: cit0024
  doi: 10.1073/pnas.95.13.7270
– ident: cit0061
  doi: 10.1073/pnas.94.26.14220
– ident: cit0031
  doi: 10.1126/science.220.4598.671
– ident: cit0015
  doi: 10.1016/0167-6377(96)00030-2
– ident: cit0025
  doi: 10.2307/1427681
– volume-title: Stochastic Approximation and Its Applications
  year: 2002
  ident: cit0013
– ident: cit0048
  doi: 10.1007/978-1-4757-4145-2
– ident: cit0029
  doi: 10.1016/0893-6080(91)90009-T
– ident: cit0043
  doi: 10.1017/CBO9780511626630
– start-page: 25
  volume-title: Multivariate Analysis: Future Directions
  year: 1993
  ident: cit0011
– volume: 29
  start-page: 914
  year: 1986
  ident: cit0014
  publication-title: Scientia Sinica, Series A
– ident: cit0017
  doi: 10.1007/BF01594945
– ident: cit0018
  doi: 10.1021/bi00327a032
– start-page: 524
  volume-title: Advances in Neural Information Processing Systems 2
  year: 1990
  ident: cit0020
– ident: cit0038
  doi: 10.1198/106186007X238459
– ident: cit0055
  doi: 10.1103/PhysRevE.48.1469
– ident: cit0012
  doi: 10.1093/imamat/6.1.76
– ident: cit0027
  doi: 10.1016/0304-4076(81)90117-2
– ident: cit0044
  doi: 10.1017/CBO9780511526237
– ident: cit0052
  doi: 10.1090/S0025-5718-1970-0274029-X
– ident: cit0062
  doi: 10.1007/BF00341287
– ident: cit0047
  doi: 10.1214/aoms/1177729586
– ident: cit0035
  doi: 10.1002/jcc.20995
– ident: cit0058
  doi: 10.1103/PhysRevE.71.066705
– volume-title: Simulated Annealing
  year: 2008
  ident: cit0057
– start-page: 52
  volume-title: Proceedings of the 1988 Connectionist Models
  year: 1989
  ident: cit0034
– ident: cit0046
  doi: 10.1007/BF00933504
– ident: cit0016
  doi: 10.1007/BF02551274
– ident: cit0030
  doi: 10.1103/PhysRevE.68.037703
– ident: cit0054
  doi: 10.1103/PhysRevE.52.2872
– ident: cit0039
  doi: 10.1016/j.spl.2008.10.007
– start-page: 318
  volume-title: Parallel Distributed Processing: Explorations in the Microstructure of Cognition (Vol. 1)
  year: 1986
  ident: cit0051
  doi: 10.7551/mitpress/5236.001.0001
– ident: cit0005
  doi: 10.1137/S0363012902417267
– ident: cit0050
  doi: 10.1080/01621459.1995.10476548
– ident: cit0036
  doi: 10.1063/1.1665529
– ident: cit0040
  doi: 10.1214/07-AOS577
– ident: cit0056
  doi: 10.1023/A:1008202821328
– ident: cit0021
  doi: 10.1093/comjnl/13.3.317
– start-page: 904
  volume-title: Advances in Neural Information Processing Systems
  year: 1991
  ident: cit0009
– ident: cit0033
  doi: 10.1007/978-1-4684-9352-8
– ident: cit0053
  doi: 10.1287/opre.32.6.1296
– ident: cit0060
  doi: 10.1103/PhysRevLett.86.2050
– ident: cit0059
  doi: 10.1007/s00186-006-0082-4
– ident: cit0010
  doi: 10.1007/978-3-642-75894-2
– ident: cit0045
  doi: 10.1117/12.152626
– ident: cit0049
  doi: 10.1093/biomet/83.1.95
– volume: 20
  start-page: 209
  year: 2010
  ident: cit0008
  publication-title: Statistica Sinica
– ident: cit0026
  doi: 10.2307/3318737
SSID ssj0000788
Score 2.2605395
Snippet Simulated annealing has been widely used in the solution of optimization problems. As known by many researchers, the global optima cannot be guaranteed to be...
SourceID proquest
crossref
jstor
informaworld
fao
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 847
SubjectTerms Algorithms
Annealing
Approximation
Competitors
Cooling
Energy value
Evolution
Local trap
Markov chain Monte Carlo
Mathematical minima
Monte Carlo simulation
Neural networks
Optimization
protein folding
Sampling distributions
Simulated annealing
Simulation
Statistics
Stochastic approximation Monte Carlo
Stochastic models
Stochastic optimization
temperature
Theory and Methods
Truncation
Title Simulated Stochastic Approximation Annealing for Global Optimization With a Square-Root Cooling Schedule
URI https://www.tandfonline.com/doi/abs/10.1080/01621459.2013.872993
https://www.jstor.org/stable/24247207
https://www.proquest.com/docview/1680207464
https://www.proquest.com/docview/1803076668
Volume 109
WOSCitedRecordID wos000338236000031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 1537-274X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000788
  issn: 1537-274X
  databaseCode: TFW
  dateStart: 19220301
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYo6oFLoQ_E8qhciavbJPbayXGFWPVEqwYEN8txPN2VYNNCFvHzmYmThYLaSu0xscfyYzyPZOYbxg6lBggAlahAeaGK1AnU46mATPnEa5m41HfFJszJSX5xUXx9lMVPYZXkQ0MEiuhkNV1uV90MEXGf0EohfG1KM0nlxxzNw4LgPlHz0808nZ4_iGLTFZ4kAkEUQ-7cbwb5RTe9ANc8wS8dYhafye1OGU03_38ZW-xVb4jySeSc12wtLN6wDbI9I3TzWzYr51dU3CvUvGwbP3P0nk8IhPxuHjMe-QTFtKOMdo7z57GAAP-CYuiqz-_k5_N2xh0vfyIvBvGtaVp-1DQdSYkMUy8vwzt2Nj0-Pfos-sIMwiujWgFAuGMy8ZTKikpWSzfWxhlpfC1TGMO4KiRqRqezChurSqnaQZFn4EDXOpHbbH3RLMIO4x6QiTIkzgzaRkmO9qau01Arh65pFsyIyeFIrO9Ry6l4xqVNB3DTfhstbaON2zhiYkX1I6J2_KX_Dp62dd9RsNqzMiPYPTJG0dsbsfwxC9i2-5ACseqJlX8edbtjl9UUKBXHZAkuan_gH9uLjBub6hxNd6O0GrEPq2a87PQHxy1Cs8Q-Oclk9Djz3X-f1h7bwCcV49322Xp7vQwH7KW_Rf66ft9doHvHPxPC
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7RgkQvvKsuFDASV0MSe-3kuKpYFVEWRLZqb5bj2N2V2g20WcTPZyZOlpcACXGNPZYf43k4M98APBcqBB9CxasgHZdFajnq8ZSHTLrEKZHY1HXFJvRslp-eFu_7aMKrPqySfOgQgSI6WU2Xmx6jh5C4l2imEMA25Zmk4kWO9mEhtuD6GFUtwefPpyffhLHuSk8SBSeSIXvuN6P8oJ22gm1-QjAdohZ_kdydOpre_g8LuQO3eluUTSLz3IVrfnUPdsj8jOjN92FRLi-ovpevWdk2bmHpO5sQDvmXZUx6ZBOU1JaS2hkugMUaAuwdSqKLPsWTnSzbBbOs_ITs6PmHpmnZQdN0JCXyTL0-9w_gePpqfnDI-9oM3EktWx4CQY-JxFE2K-pZJexYaauFdrVIwziMq0KgcrQqq7CxqqSsbSjyLNigapWIXdheNSu_B8wF5KMMiTON5lGSo8mp6tTX0qJ3mnk9AjGciXE9cDnVzzg36YBv2m-joW00cRtHwDdUHyNwx1_67-FxG3uGstUclxkh75E9ig7fCPLvecC03VtKiIVPjPjzqLsdv2ymQNk4OktwUfsDA5lealyZVOVovWup5AiebZrxvtNPHLvyzRr75CSW0enMH_77tJ7CzcP52yNz9Hr25hHsYIuM4W_7sN1erv1juOE-I69dPulu01c_7Bfs
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVoQagXvqtuKWAkroYk9trJcVVYgUBLRVq1N8txPN2V2k0p2Yqfz0ycLAUESHCNM5FjP888J543jL2QGiAAVKIC5YUqUicwjqcCMuUTr2XiUt8VmzCzWX5yUhxcy-KnY5W0h4YoFNH5alrcFzUMJ-JeIUshfW1KM0nlyxzpYSE32E1kzpowfjg9_u6LTVd5kiwEmQzJc795yg_BaQNc85OA6XBo8RfH3UWj6d3_f4977E7PRPkkQuc-uxGWD9gWkc-o3fyQzcvFOVX3CjUv28bPHV3nE1Ih_7qIKY98gn7aUUo7x_7zWEGAf0Q_dN4nePLjRTvnjpefEYxBfGqalu83TWdSImLq1Vl4xI6mbw7334q-MoPwyqhWAJDwmEw85bJilNXSjbVxRhpfyxTGMK4KiaHR6azCxqpSqnZQ5Bk40LVO5DbbXDbLsMO4B0RRhsaZQXKU5Eg4dZ2GWjncm2bBjJgcpsT6Xracqmec2XRQN-2H0dIw2jiMIybWVhdRtuMv9-_gbFt3ip7VHpUZ6e4RG8Xt3ojl1yFg2-5LCsSyJ1b--anbHVzWXaBcHJMl-FJ7A35s7zO-2FTnyN2N0mrEnq-bcbXTLxy3DM0K78nJKSPO891_79Yzdvvg9dR-eDd7_5htYYOKJxr32GZ7uQpP2C1_hVC7fNqtpW_UYBag
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simulated+Stochastic+Approximation+Annealing+for+Global+Optimization+With+a+Square-Root+Cooling+Schedule&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Liang%2C+Faming&rft.au=Cheng%2C+Yichen&rft.au=Lin%2C+Guang&rft.date=2014-06-01&rft.issn=1537-274X&rft.volume=109&rft.issue=506+p.847-863&rft.spage=847&rft.epage=863&rft_id=info:doi/10.1080%2F01621459.2013.872993&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1537-274X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1537-274X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1537-274X&client=summon