DASNet: Dual Attentive Fully Convolutional Siamese Networks for Change Detection in High-Resolution Satellite Images

Change detection is a basic task of remote sensing image processing. The research objective is to identify the change information of interest and filter out the irrelevant change information as interference factors. Recently, the rise in deep learning has provided new tools for change detection, whi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in applied earth observations and remote sensing Jg. 14; S. 1194 - 1206
Hauptverfasser: Chen, Jie, Yuan, Ziyang, Peng, Jian, Chen, Li, Huang, Haozhe, Zhu, Jiawei, Liu, Yu, Li, Haifeng
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1939-1404, 2151-1535
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Change detection is a basic task of remote sensing image processing. The research objective is to identify the change information of interest and filter out the irrelevant change information as interference factors. Recently, the rise in deep learning has provided new tools for change detection, which have yielded impressive results. However, the available methods focus mainly on the difference information between multitemporal remote sensing images and lack robustness to pseudochange information. To overcome the lack of resistance in current methods to pseudochanges, in this article, we propose a new method, namely, dual attentive fully convolutional Siamese networks, for change detection in high-resolution images. Through the dual attention mechanism, long-range dependencies are captured to obtain more discriminant feature representations to enhance the recognition performance of the model. Moreover, the imbalanced sample is a serious problem in change detection, i.e., unchanged samples are much more abundant than changed samples, which is one of the main reasons for pseudochanges. We propose the weighted double-margin contrastive loss to address this problem by punishing attention to unchanged feature pairs and increasing attention to changed feature pairs. The experimental results of our method on the change detection dataset and the building change detection dataset demonstrate that compared with other baseline methods, the proposed method realizes maximum improvements of 2.9% and 4.2%, respectively, in the F1 score. Our PyTorch implementation is available at https://github.com/lehaifeng/DASNet.
AbstractList Change detection is a basic task of remote sensing image processing. The research objective is to identify the change information of interest and filter out the irrelevant change information as interference factors. Recently, the rise in deep learning has provided new tools for change detection, which have yielded impressive results. However, the available methods focus mainly on the difference information between multitemporal remote sensing images and lack robustness to pseudochange information. To overcome the lack of resistance in current methods to pseudochanges, in this article, we propose a new method, namely, dual attentive fully convolutional Siamese networks, for change detection in high-resolution images. Through the dual attention mechanism, long-range dependencies are captured to obtain more discriminant feature representations to enhance the recognition performance of the model. Moreover, the imbalanced sample is a serious problem in change detection, i.e., unchanged samples are much more abundant than changed samples, which is one of the main reasons for pseudochanges. We propose the weighted double-margin contrastive loss to address this problem by punishing attention to unchanged feature pairs and increasing attention to changed feature pairs. The experimental results of our method on the change detection dataset and the building change detection dataset demonstrate that compared with other baseline methods, the proposed method realizes maximum improvements of 2.9% and 4.2%, respectively, in the F 1 score. Our PyTorch implementation is available at https://github.com/lehaifeng/DASNet .
Change detection is a basic task of remote sensing image processing. The research objective is to identify the change information of interest and filter out the irrelevant change information as interference factors. Recently, the rise in deep learning has provided new tools for change detection, which have yielded impressive results. However, the available methods focus mainly on the difference information between multitemporal remote sensing images and lack robustness to pseudochange information. To overcome the lack of resistance in current methods to pseudochanges, in this article, we propose a new method, namely, dual attentive fully convolutional Siamese networks, for change detection in high-resolution images. Through the dual attention mechanism, long-range dependencies are captured to obtain more discriminant feature representations to enhance the recognition performance of the model. Moreover, the imbalanced sample is a serious problem in change detection, i.e., unchanged samples are much more abundant than changed samples, which is one of the main reasons for pseudochanges. We propose the weighted double-margin contrastive loss to address this problem by punishing attention to unchanged feature pairs and increasing attention to changed feature pairs. The experimental results of our method on the change detection dataset and the building change detection dataset demonstrate that compared with other baseline methods, the proposed method realizes maximum improvements of 2.9% and 4.2%, respectively, in the F1 score. Our PyTorch implementation is available at https://github.com/lehaifeng/DASNet.
Author Liu, Yu
Li, Haifeng
Chen, Jie
Chen, Li
Yuan, Ziyang
Huang, Haozhe
Zhu, Jiawei
Peng, Jian
Author_xml – sequence: 1
  givenname: Jie
  orcidid: 0000-0002-3864-9265
  surname: Chen
  fullname: Chen, Jie
  email: cj2011@csu.edu.cn
  organization: School of Geosciences and Info-Physics, Central South University, Changsha, China
– sequence: 2
  givenname: Ziyang
  surname: Yuan
  fullname: Yuan, Ziyang
  email: yuanziyang@csu.edu.cn
  organization: School of Geosciences and Info-Physics, Central South University, Changsha, China
– sequence: 3
  givenname: Jian
  surname: Peng
  fullname: Peng, Jian
  email: PengJ2017@csu.edu.cn
  organization: School of Geosciences and Info-Physics, Central South University, Changsha, China
– sequence: 4
  givenname: Li
  surname: Chen
  fullname: Chen, Li
  email: vchenlil@csu.edu.cn
  organization: School of Geosciences and Info-Physics, Central South University, Changsha, China
– sequence: 5
  givenname: Haozhe
  surname: Huang
  fullname: Huang, Haozhe
  email: hz_huang@csu.edu.cn
  organization: School of Geosciences and Info-Physics, Central South University, Changsha, China
– sequence: 6
  givenname: Jiawei
  surname: Zhu
  fullname: Zhu, Jiawei
  email: jw_zhu@csu.edu.cn
  organization: School of Geosciences and Info-Physics, Central South University, Changsha, China
– sequence: 7
  givenname: Yu
  orcidid: 0000-0002-3914-1252
  surname: Liu
  fullname: Liu, Yu
  email: jasonyuliu@nudt.edu.cn
  organization: Department of Systems Engineering, National University of Defense Technology, Changsha, China
– sequence: 8
  givenname: Haifeng
  orcidid: 0000-0003-1173-6593
  surname: Li
  fullname: Li, Haifeng
  email: lihaifeng@csu.edu.cn
  organization: School of Geosciences and Info-Physics, Central South University, Changsha, China
BookMark eNqFkU9vEzEQxS1UJNLCJ-jFEucN_rsbc4sSSlNVReqWs-W1x6nDZl1sp1W_PRs26oELp5Fm3u-N9N45OhviAAhdUjKnlKgvN-3D8r6dM8LInBPeLBR_h2aMSlpRyeUZmlHFVUUFER_Qec47QmrWKD5DZb1s76B8xeuD6fGyFBhKeAZ8dej7V7yKw3PsDyXEYby2wewhAx71LzH9ytjHhFePZtgCXkMBe9ThMODrsH2s7iGfUNyaAn0fCuDN3mwhf0TvvekzfDrNC_Tz6tvD6rq6_fF9s1reVlY0olTe2g46YZ1wYFjTCbVQhjDDmPRGdZ5YY2jHWOPALWpSU0-cZMBc7UFR4fgF2ky-Lpqdfkphb9Krjibov4uYttqkEmwP2nMBygkGrnPC27ojTeeokNBw7mVjR6_Pk9dTir8PkIvexUMaY8maiWZBBRNKjio-qWyKOSfwb18p0ceq9FSVPlalT1WNlPqHsqGYY3QlmdD_h72c2AAAb98Uk4oIyf8AlOOmdA
CODEN IJSTHZ
CitedBy_id crossref_primary_10_3390_rs15184609
crossref_primary_10_1109_ACCESS_2022_3162693
crossref_primary_10_1109_TGRS_2022_3169479
crossref_primary_10_1109_TGRS_2025_3608816
crossref_primary_10_1109_JSTARS_2025_3541260
crossref_primary_10_1109_TGRS_2024_3362895
crossref_primary_10_1109_JSTARS_2024_3401581
crossref_primary_10_1109_LGRS_2021_3129771
crossref_primary_10_1109_TGRS_2025_3545040
crossref_primary_10_1109_ACCESS_2022_3160163
crossref_primary_10_1109_TGRS_2021_3139077
crossref_primary_10_1007_s40808_024_02068_2
crossref_primary_10_1049_ipr2_13037
crossref_primary_10_3390_rs15102645
crossref_primary_10_1109_LGRS_2022_3144304
crossref_primary_10_3390_rs16081372
crossref_primary_10_1016_j_compag_2023_107809
crossref_primary_10_3390_rs13152965
crossref_primary_10_1080_15481603_2023_2220525
crossref_primary_10_1109_TGRS_2025_3589090
crossref_primary_10_3390_rs17132249
crossref_primary_10_1109_TGRS_2024_3357085
crossref_primary_10_1117_1_JRS_18_044510
crossref_primary_10_1109_TGRS_2023_3235917
crossref_primary_10_3390_rs14030722
crossref_primary_10_1109_TGRS_2023_3300533
crossref_primary_10_1007_s10845_022_02008_w
crossref_primary_10_1080_22797254_2022_2047795
crossref_primary_10_3390_ijgi10090591
crossref_primary_10_1080_10095020_2024_2448232
crossref_primary_10_1109_TGRS_2022_3215244
crossref_primary_10_1109_TGRS_2023_3347661
crossref_primary_10_1109_JSTARS_2025_3601996
crossref_primary_10_1109_TGRS_2024_3362795
crossref_primary_10_1109_TETCI_2025_3529893
crossref_primary_10_1109_TGRS_2025_3536473
crossref_primary_10_1109_TGRS_2024_3410977
crossref_primary_10_3390_rs14153548
crossref_primary_10_1109_JSTARS_2025_3556723
crossref_primary_10_1364_AO_479955
crossref_primary_10_1109_TGRS_2024_3440001
crossref_primary_10_3390_app13106167
crossref_primary_10_1109_TGRS_2024_3497338
crossref_primary_10_1109_JSTARS_2025_3532783
crossref_primary_10_1109_TGRS_2024_3419790
crossref_primary_10_1016_j_engappai_2024_108960
crossref_primary_10_1109_TGRS_2021_3095166
crossref_primary_10_3390_rs15081958
crossref_primary_10_3390_rs16081387
crossref_primary_10_1016_j_isprsjprs_2023_11_023
crossref_primary_10_1080_01431161_2024_2334778
crossref_primary_10_3390_rs15164095
crossref_primary_10_1007_s00530_023_01063_4
crossref_primary_10_1016_j_engappai_2023_106324
crossref_primary_10_1109_JSTARS_2025_3553206
crossref_primary_10_1016_j_patcog_2024_111266
crossref_primary_10_1038_s41598_025_94733_4
crossref_primary_10_1109_TGRS_2024_3368168
crossref_primary_10_1109_JSTARS_2025_3601214
crossref_primary_10_3390_rs13244971
crossref_primary_10_1109_TGRS_2025_3530934
crossref_primary_10_3390_rs14246213
crossref_primary_10_3390_rs17111849
crossref_primary_10_3390_s22124626
crossref_primary_10_1109_TGRS_2023_3286113
crossref_primary_10_1109_TGRS_2024_3492715
crossref_primary_10_1109_JSTARS_2021_3103429
crossref_primary_10_1109_TGRS_2023_3288531
crossref_primary_10_1007_s11554_023_01330_7
crossref_primary_10_1109_JSTARS_2022_3157648
crossref_primary_10_3390_rs14205175
crossref_primary_10_1117_1_JRS_17_034501
crossref_primary_10_3390_s25010103
crossref_primary_10_1007_s12145_024_01523_z
crossref_primary_10_3390_rs13204171
crossref_primary_10_3390_rs14195046
crossref_primary_10_3390_rs17111840
crossref_primary_10_1109_JSTARS_2022_3143464
crossref_primary_10_1109_TGRS_2024_3375807
crossref_primary_10_1109_JSTARS_2023_3314133
crossref_primary_10_1109_TGRS_2021_3066802
crossref_primary_10_1109_JSTARS_2022_3217082
crossref_primary_10_1109_TGRS_2023_3344284
crossref_primary_10_3390_rs14040957
crossref_primary_10_1109_JSTARS_2025_3579330
crossref_primary_10_1109_JSTARS_2025_3594716
crossref_primary_10_1109_TGRS_2023_3325536
crossref_primary_10_1016_j_asoc_2022_109766
crossref_primary_10_3390_app12157903
crossref_primary_10_1109_TGRS_2024_3432771
crossref_primary_10_1016_j_neucom_2024_128080
crossref_primary_10_1007_s00521_022_06999_8
crossref_primary_10_1109_TGRS_2022_3194732
crossref_primary_10_1109_TGRS_2024_3403237
crossref_primary_10_1109_MGRS_2024_3412770
crossref_primary_10_3390_rs13183670
crossref_primary_10_3390_rs14040874
crossref_primary_10_1109_TGRS_2021_3134691
crossref_primary_10_3390_rs14246352
crossref_primary_10_3390_rs15225425
crossref_primary_10_1109_TGRS_2024_3421654
crossref_primary_10_3390_app15063349
crossref_primary_10_1038_s41598_022_16329_6
crossref_primary_10_1016_j_isprsjprs_2022_02_021
crossref_primary_10_1080_01431161_2024_2398225
crossref_primary_10_1109_TGRS_2024_3371463
crossref_primary_10_3390_rs14071580
crossref_primary_10_3390_rs15020463
crossref_primary_10_1109_TGRS_2022_3159544
crossref_primary_10_1016_j_isprsjprs_2024_05_018
crossref_primary_10_1080_01431161_2023_2224100
crossref_primary_10_1109_TGRS_2022_3209972
crossref_primary_10_1109_TAES_2025_3558725
crossref_primary_10_1109_TGRS_2022_3222818
crossref_primary_10_1109_TSM_2023_3289294
crossref_primary_10_1109_JSTARS_2025_3559085
crossref_primary_10_1007_s00371_021_02177_4
crossref_primary_10_1109_LGRS_2021_3121094
crossref_primary_10_1016_j_isprsjprs_2025_01_010
crossref_primary_10_1007_s12524_025_02268_y
crossref_primary_10_1109_JSTARS_2023_3335281
crossref_primary_10_1080_01431161_2024_2337612
crossref_primary_10_1109_TGRS_2021_3131993
crossref_primary_10_1007_s11069_024_06434_2
crossref_primary_10_1109_JSTARS_2022_3204191
crossref_primary_10_1109_JSTARS_2022_3217038
crossref_primary_10_1109_JSTARS_2025_3529529
crossref_primary_10_1109_TGRS_2022_3203769
crossref_primary_10_1002_aisy_202500678
crossref_primary_10_1016_j_sigpro_2023_109203
crossref_primary_10_1109_TGRS_2024_3501303
crossref_primary_10_3390_rs16071169
crossref_primary_10_1016_j_jag_2025_104686
crossref_primary_10_1109_LGRS_2023_3267879
crossref_primary_10_1109_TGRS_2021_3106697
crossref_primary_10_3390_app15168794
crossref_primary_10_1016_j_isprsjprs_2023_05_011
crossref_primary_10_1109_LGRS_2023_3330867
crossref_primary_10_1109_TGRS_2023_3296383
crossref_primary_10_1109_JSTARS_2023_3278726
crossref_primary_10_1134_S1054661824700159
crossref_primary_10_1016_j_isprsjprs_2023_04_001
crossref_primary_10_1109_TGRS_2021_3085870
crossref_primary_10_1109_TGRS_2024_3393422
crossref_primary_10_3390_rs13183750
crossref_primary_10_1109_TCSVT_2022_3176055
crossref_primary_10_3390_math10111898
crossref_primary_10_3390_rs15143566
crossref_primary_10_3390_ijgi11040263
crossref_primary_10_3390_rs15174186
crossref_primary_10_3233_JIFS_233868
crossref_primary_10_1109_ACCESS_2025_3575483
crossref_primary_10_1007_s00138_023_01424_z
crossref_primary_10_1007_s11042_024_19319_0
crossref_primary_10_1038_s41598_024_62636_5
crossref_primary_10_1109_TGRS_2023_3261273
crossref_primary_10_3390_s22030888
crossref_primary_10_1109_TGRS_2020_3033009
crossref_primary_10_3390_rs15112741
crossref_primary_10_3390_rs15082092
crossref_primary_10_1007_s11220_022_00404_3
crossref_primary_10_1007_s13349_025_00977_z
crossref_primary_10_1109_TGRS_2023_3295386
crossref_primary_10_1109_TGRS_2023_3280902
crossref_primary_10_1117_1_JRS_16_046509
crossref_primary_10_3390_app14135415
crossref_primary_10_1109_TGRS_2022_3147513
crossref_primary_10_1109_TGRS_2022_3218921
crossref_primary_10_3390_rs14194972
crossref_primary_10_1109_JSTARS_2024_3361507
crossref_primary_10_1007_s12145_024_01315_5
crossref_primary_10_1109_TGRS_2023_3290817
crossref_primary_10_1007_s41651_024_00202_3
crossref_primary_10_1109_TGRS_2023_3238327
crossref_primary_10_1109_LGRS_2025_3572791
crossref_primary_10_3390_rs14143464
crossref_primary_10_1016_j_jag_2021_102591
crossref_primary_10_1109_ACCESS_2023_3292531
crossref_primary_10_1016_j_future_2025_107985
crossref_primary_10_1109_TGRS_2024_3432819
crossref_primary_10_3390_s23198235
crossref_primary_10_1016_j_jag_2021_102597
crossref_primary_10_1117_1_JRS_19_016515
crossref_primary_10_1109_TGRS_2022_3157721
crossref_primary_10_3390_rs16132341
crossref_primary_10_3390_rs14215379
crossref_primary_10_3390_rs16101665
crossref_primary_10_3390_rs15215127
crossref_primary_10_1109_TGRS_2024_3486787
crossref_primary_10_1109_TGRS_2024_3405025
crossref_primary_10_1080_01431161_2024_2343139
crossref_primary_10_1109_TGRS_2023_3345645
crossref_primary_10_3390_electronics12061347
crossref_primary_10_3390_rs13245094
crossref_primary_10_1080_01431161_2022_2123721
crossref_primary_10_1109_LGRS_2020_3041530
crossref_primary_10_3390_rs15143482
crossref_primary_10_3390_rs17101749
crossref_primary_10_1109_TGRS_2025_3560977
crossref_primary_10_3390_rs14133100
crossref_primary_10_1016_j_dsp_2025_105594
crossref_primary_10_1109_TGRS_2023_3325829
crossref_primary_10_1038_s41598_025_00750_8
crossref_primary_10_1109_JSTARS_2024_3373753
crossref_primary_10_1109_TGRS_2022_3145652
crossref_primary_10_1109_TGRS_2024_3362914
crossref_primary_10_3390_rs14143394
crossref_primary_10_3390_rs13183707
crossref_primary_10_3390_rs16214109
crossref_primary_10_3390_rs15225268
crossref_primary_10_1109_TGRS_2023_3272006
crossref_primary_10_1038_s41598_025_15468_w
crossref_primary_10_3390_rs14215598
crossref_primary_10_1007_s00521_022_08122_3
crossref_primary_10_1049_ipr2_13133
crossref_primary_10_1109_ACCESS_2023_3307642
crossref_primary_10_1109_JSTARS_2022_3159528
crossref_primary_10_1109_LGRS_2021_3103991
crossref_primary_10_1109_TGRS_2023_3344583
crossref_primary_10_3390_rs16071269
crossref_primary_10_3390_electronics13030630
crossref_primary_10_1080_22797254_2023_2196641
crossref_primary_10_1109_JSTARS_2024_3434966
crossref_primary_10_3390_rs17132226
crossref_primary_10_1117_1_JRS_19_016504
crossref_primary_10_1109_TGRS_2021_3113912
crossref_primary_10_1007_s10514_022_10069_2
crossref_primary_10_1109_JSTARS_2024_3400925
crossref_primary_10_3390_rs16193651
crossref_primary_10_1109_JSTARS_2025_3526785
crossref_primary_10_1109_TGRS_2023_3268294
crossref_primary_10_1109_TGRS_2023_3272550
crossref_primary_10_1109_TGRS_2023_3297850
crossref_primary_10_3390_rs15082145
crossref_primary_10_3390_rs15061682
crossref_primary_10_1109_TGRS_2024_3468008
crossref_primary_10_1109_JSTARS_2023_3241157
crossref_primary_10_1109_TGRS_2024_3381971
crossref_primary_10_1109_TGRS_2021_3130940
crossref_primary_10_1109_JSTARS_2024_3468949
crossref_primary_10_3390_rs16193642
crossref_primary_10_1109_TGRS_2024_3480122
crossref_primary_10_3390_rs17081463
crossref_primary_10_1109_JSTARS_2025_3574755
crossref_primary_10_1016_j_jag_2022_103132
crossref_primary_10_1109_JSTARS_2024_3358298
crossref_primary_10_3390_rs14215577
crossref_primary_10_1109_TGRS_2023_3275819
crossref_primary_10_1109_TGRS_2023_3305554
crossref_primary_10_3390_rs15010087
crossref_primary_10_1109_JSTARS_2023_3337999
crossref_primary_10_3390_rs15082035
crossref_primary_10_3390_electronics10040377
crossref_primary_10_1109_JSTARS_2025_3561656
crossref_primary_10_1109_TGRS_2023_3264811
crossref_primary_10_1109_JSTARS_2023_3346454
crossref_primary_10_1109_JSTARS_2025_3595585
crossref_primary_10_3390_rs15153766
crossref_primary_10_1109_ACCESS_2024_3520428
crossref_primary_10_1109_ACCESS_2025_3559992
crossref_primary_10_1109_TGRS_2023_3327139
crossref_primary_10_1109_TGRS_2024_3413677
crossref_primary_10_1109_TGRS_2021_3080580
crossref_primary_10_1109_TGRS_2025_3575591
crossref_primary_10_1109_TGRS_2023_3272694
crossref_primary_10_1109_TGRS_2024_3425540
crossref_primary_10_1109_TGRS_2024_3357524
crossref_primary_10_1016_j_patcog_2024_110515
crossref_primary_10_1109_TGRS_2022_3196040
crossref_primary_10_3390_rs15030842
crossref_primary_10_3390_rs15245670
crossref_primary_10_1109_TGRS_2024_3381751
crossref_primary_10_1109_TGRS_2025_3544651
crossref_primary_10_1016_j_eswa_2023_120169
crossref_primary_10_1016_j_isprsjprs_2022_05_001
crossref_primary_10_1007_s13042_023_01880_z
crossref_primary_10_3390_ijgi10110734
crossref_primary_10_1016_j_imavis_2024_105294
crossref_primary_10_1109_TGRS_2023_3344948
crossref_primary_10_1109_JSTARS_2022_3192251
crossref_primary_10_1109_TGRS_2022_3190504
crossref_primary_10_3390_rs15153896
crossref_primary_10_1080_01431161_2023_2221797
crossref_primary_10_1109_TGRS_2022_3221492
crossref_primary_10_1109_JSTARS_2023_3326958
crossref_primary_10_1109_TGRS_2024_3408274
crossref_primary_10_3390_rs13040548
crossref_primary_10_1007_s41064_023_00258_8
crossref_primary_10_1007_s41748_025_00577_3
crossref_primary_10_1109_JSTARS_2024_3450287
crossref_primary_10_1109_JSTARS_2021_3113831
crossref_primary_10_3390_ijgi13040125
crossref_primary_10_1109_TGRS_2024_3383800
crossref_primary_10_3390_electronics11091486
crossref_primary_10_1109_TGRS_2024_3379431
crossref_primary_10_1109_JSTARS_2024_3354944
crossref_primary_10_1109_TGRS_2022_3200684
crossref_primary_10_1109_LGRS_2023_3323367
crossref_primary_10_1109_JSTARS_2023_3298097
crossref_primary_10_1109_LGRS_2023_3283505
crossref_primary_10_1109_TGRS_2023_3349069
crossref_primary_10_1109_TGRS_2025_3545760
crossref_primary_10_1117_1_JRS_18_016513
crossref_primary_10_1109_TGRS_2024_3496994
crossref_primary_10_1109_JSTARS_2024_3445908
crossref_primary_10_1117_1_JRS_17_016515
crossref_primary_10_1109_TGRS_2021_3127580
crossref_primary_10_1111_phor_12492
crossref_primary_10_1109_JSTARS_2022_3174780
crossref_primary_10_1111_phor_12495
crossref_primary_10_3390_rs15092395
crossref_primary_10_1109_JSTARS_2025_3540925
crossref_primary_10_1007_s10489_025_06728_3
crossref_primary_10_3390_rs16203852
crossref_primary_10_1080_01431161_2023_2173033
crossref_primary_10_1016_j_isprsjprs_2021_10_001
crossref_primary_10_1109_ACCESS_2022_3161978
crossref_primary_10_3390_rs15040949
crossref_primary_10_1016_j_isprsjprs_2023_07_001
crossref_primary_10_1007_s11227_025_07344_1
crossref_primary_10_1109_ACCESS_2022_3201129
crossref_primary_10_3390_rs14215402
crossref_primary_10_1109_TGRS_2024_3523128
crossref_primary_10_1109_ACCESS_2023_3320792
crossref_primary_10_1109_JSTARS_2024_3350044
crossref_primary_10_1109_JSTARS_2022_3204576
crossref_primary_10_3390_rs15143517
crossref_primary_10_1109_JSTARS_2024_3372386
crossref_primary_10_1109_LGRS_2021_3056416
crossref_primary_10_1109_TGRS_2022_3174009
crossref_primary_10_1109_JSTARS_2024_3439340
crossref_primary_10_3390_rs15092237
crossref_primary_10_3390_sym14061138
crossref_primary_10_3390_rs13071236
crossref_primary_10_1016_j_patcog_2022_108960
crossref_primary_10_1109_JSTARS_2021_3077545
crossref_primary_10_1109_JSTARS_2022_3181155
crossref_primary_10_1109_TGRS_2022_3153679
crossref_primary_10_1109_TGRS_2024_3367778
crossref_primary_10_3390_rs17152575
crossref_primary_10_1109_TGRS_2023_3321752
crossref_primary_10_3390_rs14092253
crossref_primary_10_1109_TGRS_2023_3241097
crossref_primary_10_3390_rs14071552
crossref_primary_10_1109_TGRS_2022_3233849
crossref_primary_10_1007_s00138_023_01451_w
crossref_primary_10_1016_j_jag_2024_103761
crossref_primary_10_1007_s11042_024_18766_z
crossref_primary_10_1109_TGRS_2023_3235401
crossref_primary_10_1109_TGRS_2022_3176603
crossref_primary_10_3390_su15043034
crossref_primary_10_1016_j_eswa_2023_122089
crossref_primary_10_3390_rs13163336
crossref_primary_10_3390_rs15092351
crossref_primary_10_1109_ACCESS_2023_3333360
crossref_primary_10_1109_TGRS_2023_3325220
crossref_primary_10_1109_JPROC_2022_3219376
crossref_primary_10_1117_1_JRS_18_034523
crossref_primary_10_1109_LGRS_2021_3082630
crossref_primary_10_3390_agronomy13030635
crossref_primary_10_3390_rs16162881
crossref_primary_10_1038_s41598_025_14751_0
crossref_primary_10_7232_JKIIE_2024_50_4_222
crossref_primary_10_1109_TGRS_2022_3228016
crossref_primary_10_1109_JSTARS_2023_3306274
crossref_primary_10_1109_JSTARS_2023_3289293
crossref_primary_10_1109_LGRS_2022_3154894
crossref_primary_10_1109_JSTARS_2024_3418632
crossref_primary_10_1016_j_neucom_2021_06_059
crossref_primary_10_1109_JSTARS_2022_3176858
crossref_primary_10_1109_TGRS_2022_3165851
crossref_primary_10_1016_j_isprsjprs_2022_07_016
crossref_primary_10_1080_10106049_2024_2353253
crossref_primary_10_1109_TGRS_2023_3348479
crossref_primary_10_3390_rs15020395
crossref_primary_10_3390_rs17020217
crossref_primary_10_1109_TGRS_2024_3356711
crossref_primary_10_3390_electronics12234823
crossref_primary_10_1109_TGRS_2023_3262928
crossref_primary_10_1109_JSTARS_2023_3280589
crossref_primary_10_3390_rs15163972
crossref_primary_10_1109_JSTARS_2023_3268104
crossref_primary_10_1109_LGRS_2022_3154745
crossref_primary_10_3390_rs14092228
crossref_primary_10_1016_j_isprsjprs_2021_05_001
crossref_primary_10_1109_TGRS_2021_3091758
crossref_primary_10_1109_TGRS_2025_3604400
crossref_primary_10_1109_ACCESS_2022_3170704
crossref_primary_10_3390_rs15092433
crossref_primary_10_1109_TGRS_2023_3305499
crossref_primary_10_3390_s23239337
crossref_primary_10_1080_2150704X_2023_2264493
crossref_primary_10_1016_j_jag_2023_103256
crossref_primary_10_1109_JSTARS_2024_3407972
crossref_primary_10_1109_TGRS_2025_3600397
crossref_primary_10_1111_phor_12462
crossref_primary_10_1016_j_ijepes_2023_109607
crossref_primary_10_3390_rs15071724
crossref_primary_10_3390_rs14153775
crossref_primary_10_1109_ACCESS_2024_3350641
crossref_primary_10_1016_j_jag_2023_103206
crossref_primary_10_1109_JSTARS_2023_3344635
crossref_primary_10_1109_JSTARS_2024_3439510
crossref_primary_10_3390_rs15153740
crossref_primary_10_3390_electronics13050923
crossref_primary_10_1109_JSTARS_2024_3508692
crossref_primary_10_1109_TIP_2024_3349868
crossref_primary_10_1109_LGRS_2023_3324946
crossref_primary_10_1109_TGRS_2022_3227098
crossref_primary_10_1109_LGRS_2025_3574068
crossref_primary_10_1109_JSTARS_2024_3390427
crossref_primary_10_1109_TGRS_2024_3434427
crossref_primary_10_1109_JSTARS_2022_3198517
crossref_primary_10_3390_rs15010045
crossref_primary_10_1109_JSTARS_2023_3317488
crossref_primary_10_1109_TGRS_2022_3213925
crossref_primary_10_1109_TITS_2022_3181095
crossref_primary_10_1080_10095020_2022_2157762
crossref_primary_10_3390_rs15071860
crossref_primary_10_1109_TIM_2024_3387494
crossref_primary_10_5194_esd_14_223_2023
crossref_primary_10_1109_TGRS_2023_3245674
crossref_primary_10_1109_LGRS_2023_3310676
crossref_primary_10_1080_17538947_2024_2316109
crossref_primary_10_1109_JSTARS_2024_3374290
crossref_primary_10_1109_JSTARS_2024_3435372
crossref_primary_10_1109_JSTARS_2024_3452948
crossref_primary_10_3390_rs15092406
crossref_primary_10_1109_TAI_2022_3207112
crossref_primary_10_1109_TVLSI_2024_3438728
crossref_primary_10_1109_TGRS_2022_3160007
crossref_primary_10_1109_JSTARS_2024_3374050
crossref_primary_10_1109_TGRS_2024_3424532
crossref_primary_10_1109_JSTARS_2025_3551093
crossref_primary_10_1016_j_imavis_2021_104283
crossref_primary_10_1117_1_JRS_18_024516
crossref_primary_10_1109_LGRS_2025_3581725
crossref_primary_10_3390_electronics12010035
crossref_primary_10_1109_TCSVT_2024_3494820
crossref_primary_10_1109_JSTARS_2024_3482559
crossref_primary_10_1007_s41870_023_01167_0
crossref_primary_10_1080_01431161_2023_2225712
crossref_primary_10_1109_TIM_2024_3373089
crossref_primary_10_3390_info12090364
crossref_primary_10_1016_j_yofte_2024_104030
crossref_primary_10_1016_j_jag_2024_103991
crossref_primary_10_1016_j_autcon_2024_105410
crossref_primary_10_1007_s40031_024_01084_1
crossref_primary_10_1109_JSTARS_2023_3283524
crossref_primary_10_1109_ACCESS_2024_3415054
crossref_primary_10_1109_LGRS_2021_3119885
crossref_primary_10_1109_JSTARS_2023_3335907
Cites_doi 10.1109/TPAMI.2017.2712691
10.1109/ACCESS.2016.2529723
10.1109/TGRS.2009.2038274
10.1109/JSTARS.2013.2294322
10.1080/01431161.2014.951740
10.1109/TGRS.2018.2858817
10.1109/CVPR.2015.7298965
10.1016/S0034-4257(97)00162-4
10.1109/CVPR.2017.189
10.1109/CVPR.2018.00813
10.1109/CVPR.2017.667
10.1016/j.jag.2011.10.013
10.1109/CVPR.2015.7298977
10.1007/s10514-018-9734-5
10.1109/CVPR.2019.00326
10.1080/0143116031000139863
10.1080/01431168908903939
10.3390/rs8090761
10.1109/LGRS.2009.2025059
10.1109/IGARSS.2019.8900330
10.1109/ACCESS.2019.2922839
10.3390/rs10070980
10.1016/j.rse.2009.02.004
10.1080/01431161.2013.805282
10.1007/978-3-030-01234-2_1
10.1007/978-3-030-11012-3_10
10.1109/TMM.2015.2476660
10.1109/CVPR.2016.348
10.1109/TGRS.2013.2266673
10.1109/JSTARS.2016.2542074
10.1109/JSTARS.2018.2803784
10.1109/JSTARS.2018.2817121
10.1109/LGRS.2017.2763182
10.1109/ICCV.2015.164
10.1109/CVPR.2006.100
10.1109/CVPR.2017.660
10.1109/LGRS.2017.2738149
10.1145/1899412.1899418
10.1080/01431160801950162
10.1016/j.isprsjprs.2016.08.010
10.5194/isprs-archives-XLII-2-565-2018
10.1109/CVPR.2016.90
10.1016/j.rse.2017.07.009
10.1162/neco.1997.9.8.1735
10.1109/TNNLS.2016.2636227
10.1038/nature14539
10.1109/36.843009
10.1016/j.isprsjprs.2013.03.006
10.1016/j.rse.2007.07.023
10.1080/0143116031000101675
10.1109/ACCESS.2018.2854922
10.1109/JPROC.2012.2197169
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOA
DOI 10.1109/JSTARS.2020.3037893
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2151-1535
EndPage 1206
ExternalDocumentID oai_doaj_org_article_f34e9d42edbd4fc6b07bd145e733f57c
10_1109_JSTARS_2020_3037893
9259045
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 41671357; 41871364; 41871276; 41871302
  funderid: 10.13039/501100001809
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACIWK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
DU5
EBS
EJD
ESBDL
GROUPED_DOAJ
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c474t-fccbeb4cd4dea27b4989a02a225fa9bf0caa1b227ded86061f0d52e2d6fe914d3
IEDL.DBID RIE
ISICitedReferencesCount 522
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000607810600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1939-1404
IngestDate Fri Oct 03 12:39:43 EDT 2025
Fri Jul 25 10:41:45 EDT 2025
Sat Nov 29 04:51:06 EST 2025
Tue Nov 18 22:23:56 EST 2025
Wed Aug 27 02:50:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-fccbeb4cd4dea27b4989a02a225fa9bf0caa1b227ded86061f0d52e2d6fe914d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3914-1252
0000-0003-1173-6593
0000-0002-3864-9265
OpenAccessLink https://ieeexplore.ieee.org/document/9259045
PQID 2478142495
PQPubID 75722
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_JSTARS_2020_3037893
ieee_primary_9259045
doaj_primary_oai_doaj_org_article_f34e9d42edbd4fc6b07bd145e733f57c
proquest_journals_2478142495
crossref_primary_10_1109_JSTARS_2020_3037893
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE journal of selected topics in applied earth observations and remote sensing
PublicationTitleAbbrev JSTARS
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref12
ref59
guo (ref52) 2018
ref15
ref14
ref53
selvaraju (ref61) 0
ref55
ref11
ref54
ref10
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
simonyan (ref58) 0
ref49
shen (ref38) 0
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
lee (ref56) 0
ref35
ronneberger (ref63) 0
ref34
ref36
ref30
ref33
ref32
ref2
ref1
daudt (ref31) 0
vaswani (ref39) 0
ref24
ref23
lin (ref37) 0
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
van der maaten (ref60) 2008; 9
ref62
zhang (ref43) 0
References_xml – ident: ref35
  doi: 10.1109/TPAMI.2017.2712691
– ident: ref25
  doi: 10.1109/ACCESS.2016.2529723
– ident: ref8
  doi: 10.1109/TGRS.2009.2038274
– ident: ref9
  doi: 10.1109/JSTARS.2013.2294322
– ident: ref17
  doi: 10.1080/01431161.2014.951740
– ident: ref49
  doi: 10.1109/TGRS.2018.2858817
– ident: ref27
  doi: 10.1109/CVPR.2015.7298965
– ident: ref50
  doi: 10.1016/S0034-4257(97)00162-4
– ident: ref54
  doi: 10.1109/CVPR.2017.189
– start-page: 1
  year: 0
  ident: ref58
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: Proc Int Conf Learn Represent
– ident: ref42
  doi: 10.1109/CVPR.2018.00813
– ident: ref44
  doi: 10.1109/CVPR.2017.667
– ident: ref18
  doi: 10.1016/j.jag.2011.10.013
– ident: ref34
  doi: 10.1109/CVPR.2015.7298977
– ident: ref30
  doi: 10.1007/s10514-018-9734-5
– ident: ref46
  doi: 10.1109/CVPR.2019.00326
– start-page: 4063
  year: 0
  ident: ref31
  article-title: Fully convolutional Siamese networks for change detection
  publication-title: Proc 25th IEEE Int Conf Image Process
– ident: ref7
  doi: 10.1080/0143116031000139863
– ident: ref1
  doi: 10.1080/01431168908903939
– ident: ref23
  doi: 10.3390/rs8090761
– ident: ref13
  doi: 10.1109/LGRS.2009.2025059
– ident: ref32
  doi: 10.1109/IGARSS.2019.8900330
– ident: ref33
  doi: 10.1109/ACCESS.2019.2922839
– ident: ref6
  doi: 10.3390/rs10070980
– ident: ref2
  doi: 10.1016/j.rse.2009.02.004
– ident: ref22
  doi: 10.1080/01431161.2013.805282
– ident: ref45
  doi: 10.1007/978-3-030-01234-2_1
– start-page: 562
  year: 0
  ident: ref56
  article-title: Deeply-supervised nets
  publication-title: Proc Artif Intell Statist
– ident: ref53
  doi: 10.1007/978-3-030-11012-3_10
– ident: ref41
  doi: 10.1109/TMM.2015.2476660
– ident: ref36
  doi: 10.1109/CVPR.2016.348
– volume: 9
  start-page: 2579
  year: 2008
  ident: ref60
  article-title: Visualizing data using t-SNE
  publication-title: J Mach Learn Res
– ident: ref51
  doi: 10.1109/TGRS.2013.2266673
– ident: ref4
  doi: 10.1109/JSTARS.2016.2542074
– ident: ref3
  doi: 10.1109/JSTARS.2018.2803784
– ident: ref20
  doi: 10.1109/JSTARS.2018.2817121
– ident: ref19
  doi: 10.1109/LGRS.2017.2763182
– ident: ref57
  doi: 10.1109/ICCV.2015.164
– start-page: 234
  year: 0
  ident: ref63
  article-title: U-Net: Convolutional networks for biomedical image segmentation
  publication-title: Proc Int Conf Med Image Comput Comput -Assist Intervention
– start-page: 1
  year: 0
  ident: ref37
  article-title: A structured self-attentive sentence embedding
  publication-title: Proc Int Conf Learn Represent
– ident: ref47
  doi: 10.1109/CVPR.2006.100
– ident: ref55
  doi: 10.1109/CVPR.2017.660
– ident: ref29
  doi: 10.1109/LGRS.2017.2738149
– ident: ref40
  doi: 10.1145/1899412.1899418
– ident: ref14
  doi: 10.1080/01431160801950162
– start-page: 7354
  year: 0
  ident: ref43
  article-title: Self-attention generative adversarial networks
  publication-title: Proc Int Conf Mach Learn
– year: 2018
  ident: ref52
  article-title: Learning to measure change: Fully convolutional Siamese metric networks for scene change detection
  publication-title: arXiv 1810 09111
– ident: ref21
  doi: 10.1016/j.isprsjprs.2016.08.010
– ident: ref48
  doi: 10.5194/isprs-archives-XLII-2-565-2018
– ident: ref59
  doi: 10.1109/CVPR.2016.90
– start-page: 5998
  year: 0
  ident: ref39
  article-title: Attention is all you need
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref15
  doi: 10.1016/j.rse.2017.07.009
– ident: ref62
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref28
  doi: 10.1109/TNNLS.2016.2636227
– ident: ref24
  doi: 10.1038/nature14539
– start-page: 618
  year: 0
  ident: ref61
  article-title: GRAD-CAM: Why did you say that? Visual explanations from deep networks via gradient-based localization
  publication-title: Proc IEEE Int Conf Comput Vis
– ident: ref12
  doi: 10.1109/36.843009
– ident: ref11
  doi: 10.1016/j.isprsjprs.2013.03.006
– start-page: 5446
  year: 0
  ident: ref38
  article-title: DiSAN: Directional self-attention network for RNN/CNN-free language understanding
  publication-title: Proc 32nd AAAI Conf Artif Intell
– ident: ref16
  doi: 10.1016/j.rse.2007.07.023
– ident: ref5
  doi: 10.1080/0143116031000101675
– ident: ref26
  doi: 10.1109/ACCESS.2018.2854922
– ident: ref10
  doi: 10.1109/JPROC.2012.2197169
SSID ssj0062793
Score 2.68804
Snippet Change detection is a basic task of remote sensing image processing. The research objective is to identify the change information of interest and filter out...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1194
SubjectTerms Change detection
Data mining
Datasets
Deep learning
Detection
dual attention
Feature extraction
High resolution
high-resolution images
Image processing
Image resolution
Methods
Remote sensing
Resolution
Robustness
Satellite imagery
Siamese network
Spaceborne remote sensing
Task analysis
Wavelength division multiplexing
weighted double-margin contrastive (WDMC) loss
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Ri9QwEA5yKPgi553ieqfkwUfLtWnaNL6tt54nyCKuwr2FJpnAgvbkNrdw_96ZJLsogr742iZtmfk6mS98mWHsVUC25pxQVQNDV8lGYRyUg6_a0DVWhBGXpOTpj2q5HK6u9KdfWn2RJiyXB86GOwutBO2lAG-9DK63tbK-kR2oFp-nHEVfzHp2ZCrH4F4g7EqNoabWZwjy-ecVskGBJLVu1aDb39ahVK6_9Ff5IyinlebikD0qKSKf5097zO7BdMQevE8teO-OWVzMV0uIb_jilkbFSHqfLXAik3f8_HraFjTh3dWaRLDAl1nsveGYovJ8oIAvICYZ1sTXEye5R0Vb-XkqX42pUmcE_uE7RpzNE_b14t2X88uq9E6onFQyVsE5C1Y6Lz2MQlmpBz3WAm3fhVHbULtxRGcI5cEPSGKaUPtOgPB9AN1I3z5lB9P1BM8YF1o1oraYmvQtbT2OOBUwMeq9lJ3twoyJnSWNK4XFqb_FN5MIRq1NNr8h85ti_hl7vZ_0I9fV-Pvwt-Si_VAqip0uIFRMgYr5F1Rm7JgcvH-IRuqHGe2Mne4cbsoPvDGCjuBKasz9_H-8-oQ9FCSGSXs3p-wg3tzCC3bfbeN6c_MyYfcnoKrzHg
  priority: 102
  providerName: Directory of Open Access Journals
Title DASNet: Dual Attentive Fully Convolutional Siamese Networks for Change Detection in High-Resolution Satellite Images
URI https://ieeexplore.ieee.org/document/9259045
https://www.proquest.com/docview/2478142495
https://doaj.org/article/f34e9d42edbd4fc6b07bd145e733f57c
Volume 14
WOSCitedRecordID wos000607810600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2151-1535
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062793
  issn: 1939-1404
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2151-1535
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062793
  issn: 1939-1404
  databaseCode: RIE
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fi9QwEA53h4Iv_jrF1fPIg49Xr03Tprm39dZTQRZxFe4tNMkEFrQrt9mF--9vJs0uiCL4VtpMKf2mk5npzDeMvQkYrTknVFFB1xSyUmgHZeeLOjSVFaHHLSkh_VnN5931tf5ywM72vTAAkIrP4C0dpn_5fuU2lCo71-irowtyyA6VUmOv1s7qtkIlgl30R3RBlDGZYagq9Tmq-PTrAmNBgSFqWatO17_tQomsP09X-cMkp33m6tH_PeFj9jD7k3w6KsATdgDDU3b_Q5rXe3vM4my6mEO84LMNrYqRioO2wCnyvOWXq2GbVQ-vLpZUMQt8PlaGrzn6s3zsPuAziKlma-DLgVNtSEF5_1GUL_pE6xmBf_qJ5mn9jH2_ev_t8mORBy0UTioZi-CcBSudlx56oazUne5LgUA1odc2lK7vETmhPPgOI54qlL4RIHwbQFfS18_Z0bAa4AXjQqtKlBb9mLamPGWPooBeVOulbGwTJkzsXrxxmYWchmH8MCkaKbUZ0TKElsloTdjZXujXSMLx7-XvCNH9UmLQTicQKpM_SBNqCdpLAd56GVxrS2V9JRtQNeqpchN2TPDub5KRnbCTnX6Y_LWvjaB-XUlTvF_-XeoVeyCoFialbk7YUbzZwGt2z23jcn1zmvIAp0md7wB4PPHP
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6NAYIXfm2IwgA_8LiwxHHimLeyMjZRKkSHtDcrts9SJUjRmlbaf8_ZcSshEBJvUeKLonyX893l7juAN56iNWu5zApsqkwUkuygaFxW-qow3Le0JUWkp3I2a66u1Jc9ON71wiBiLD7Dt-Ew_st3S7sOqbITRb46uSC34HYlBC-Gbq2t3a25jBS75JGoLJDGJI6hIlcnpOTjr3OKBjkFqXkpG1X-tg9Fuv40X-UPoxx3mrOH__eMj-BB8ijZeFCBx7CH3RO4-zFO7L05gH4yns-wf8cm67Cq70N50AZZiD1v2Omy2yTlo6vzRaiZRTYbasNXjDxaNvQfsAn2sWqrY4uOheqQLGT-B1E2byOxZ4_s4gcZqNUhfDv7cHl6nqVRC5kVUvSZt9agEdYJhy2XRqhGtTknqCrfKuNz27aEHZcOXUMxT-FzV3HkrvaoCuHKp7DfLTt8BowrWfDckCdTlyFT2ZIokh9VOyEqU_kR8O2L1zbxkIdxGN91jEdypQe0dEBLJ7RGcLwT-jnQcPx7-fuA6G5p4NCOJwgqnT5J7UuBygmOzjjhbW1yaVwhKpQlaaq0IzgI8O5ukpAdwdFWP3T63leah45dEeZ4P_-71Gu4d375eaqnF7NPL-A-D5UxMZFzBPv99Rpfwh276Rer61dRqX8BeNH0IQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DASNet%3A+Dual+Attentive+Fully+Convolutional+Siamese+Networks+for+Change+Detection+in+High-Resolution+Satellite+Images&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Chen%2C+Jie&rft.au=Yuan%2C+Ziyang&rft.au=Peng%2C+Jian&rft.au=Chen%2C+Li&rft.date=2021&rft.pub=IEEE&rft.issn=1939-1404&rft.volume=14&rft.spage=1194&rft.epage=1206&rft_id=info:doi/10.1109%2FJSTARS.2020.3037893&rft.externalDocID=9259045
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon