Multi-protein spatial signatures in ductal carcinoma in situ (DCIS) of breast

Background There is limited knowledge about DCIS cellular composition and relationship with breast cancer events (BCE). Methods Immunofluorescence multiplexing (MxIF) was used to image and quantify 32 cellular biomarkers in FFPE DCIS tissue microarrays. Over 75,000 DCIS cells from 51 patients (media...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:British journal of cancer Ročník 124; číslo 6; s. 1150 - 1159
Hlavní autoři: Badve, Sunil S., Cho, Sanghee, Gökmen-Polar, Yesim, Sui, Yunxia, Chadwick, Chrystal, McDonough, Elizabeth, Sood, Anup, Taylor, Marian, Zavodszky, Maria, Tan, Puay Hoon, Gerdes, Michael, Harris, Adrian L., Ginty, Fiona
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 16.03.2021
Nature Publishing Group
Témata:
ISSN:0007-0920, 1532-1827, 1532-1827
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Background There is limited knowledge about DCIS cellular composition and relationship with breast cancer events (BCE). Methods Immunofluorescence multiplexing (MxIF) was used to image and quantify 32 cellular biomarkers in FFPE DCIS tissue microarrays. Over 75,000 DCIS cells from 51 patients (median 9 years follow-up for non-BCE cases) were analysed for profiles predictive of BCE. K-means clustering was used to evaluate cellular co-expression of epithelial markers with ER and HER2. Results Only ER, PR and HER2 significantly correlated with BCE. Cluster analysis identified 6 distinct cell groups with different levels of ER, Her2, cMET and SLC7A5. Clusters 1 and 3 were not significant. Clusters 2 and 4 (high ER/low HER2 and SLC7A5/mixed cMET) significantly correlated with low BCE risk ( P  = 0.001 and P  = 0.034), while cluster 6 (high HER2/low ER, cMET and SLC7A5) correlated with increased risk ( P  = 0.018). Cluster 5 (similar to cluster 6, except high SLC7A5) trended towards significance ( P  = 0.072). A continuous expression score (Escore) based on these 4 clusters predicted likelihood of BCE (AUC = 0.79, log-rank test P  = 5E–05; LOOCV AUC = 0.74, log-rank test P  = 0.006). Conclusion Multiplexed spatial analysis of limited tissue is a novel method for biomarker analysis and predicting BCEs. Further validation of Escore is needed in a larger cohort.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0007-0920
1532-1827
1532-1827
DOI:10.1038/s41416-020-01216-6