Contour detection network for zero-shot sketch-based image retrieval
Zero-shot sketch-based image retrieval (ZS-SBIR) is a challenging task that involves searching natural images related to a given hand-drawn sketch under the zero-shot scene. The previous approach projected image and sketch features into a low-dimensional common space for retrieval, and used semantic...
Gespeichert in:
| Veröffentlicht in: | Complex & intelligent systems Jg. 9; H. 6; S. 6781 - 6795 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Cham
Springer International Publishing
01.12.2023
Springer |
| Schlagworte: | |
| ISSN: | 2199-4536, 2198-6053 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Zero-shot sketch-based image retrieval (ZS-SBIR) is a challenging task that involves searching natural images related to a given hand-drawn sketch under the zero-shot scene. The previous approach projected image and sketch features into a low-dimensional common space for retrieval, and used semantic features to transfer the knowledge of seen to unseen classes. However, it is not effective enough to align multimodal features when projecting them into a common space, since the styles and contents of sketches and natural images are different and they are not one-to-one correspondence. To solve this problem, we propose a novel three-branch joint training network with contour detection network (called CDNNet) for the ZS-SBIR task, which uses contour maps as a bridge to align sketches and natural images to alleviate the domain gap. Specifically, we use semantic metrics to constrain the relationship between contour images and natural images and between contour images and sketches, so that natural image and sketch features can be aligned in the common space. Meanwhile, we further employ second-order attention to capture target subject information to increase the performance of retrieval descriptors. In addition, we use a teacher model and word embedding method to transfer the knowledge of the seen to the unseen classes. Extensive experiments on two large-scale datasets demonstrate that our proposed approach outperforms state-of-the-art CNN-based models: it improves by 2.6% on the Sketchy and 1.2% on TU-Berlin datasets in terms of mAP. |
|---|---|
| AbstractList | Zero-shot sketch-based image retrieval (ZS-SBIR) is a challenging task that involves searching natural images related to a given hand-drawn sketch under the zero-shot scene. The previous approach projected image and sketch features into a low-dimensional common space for retrieval, and used semantic features to transfer the knowledge of seen to unseen classes. However, it is not effective enough to align multimodal features when projecting them into a common space, since the styles and contents of sketches and natural images are different and they are not one-to-one correspondence. To solve this problem, we propose a novel three-branch joint training network with contour detection network (called CDNNet) for the ZS-SBIR task, which uses contour maps as a bridge to align sketches and natural images to alleviate the domain gap. Specifically, we use semantic metrics to constrain the relationship between contour images and natural images and between contour images and sketches, so that natural image and sketch features can be aligned in the common space. Meanwhile, we further employ second-order attention to capture target subject information to increase the performance of retrieval descriptors. In addition, we use a teacher model and word embedding method to transfer the knowledge of the seen to the unseen classes. Extensive experiments on two large-scale datasets demonstrate that our proposed approach outperforms state-of-the-art CNN-based models: it improves by 2.6% on the Sketchy and 1.2% on TU-Berlin datasets in terms of mAP. Abstract Zero-shot sketch-based image retrieval (ZS-SBIR) is a challenging task that involves searching natural images related to a given hand-drawn sketch under the zero-shot scene. The previous approach projected image and sketch features into a low-dimensional common space for retrieval, and used semantic features to transfer the knowledge of seen to unseen classes. However, it is not effective enough to align multimodal features when projecting them into a common space, since the styles and contents of sketches and natural images are different and they are not one-to-one correspondence. To solve this problem, we propose a novel three-branch joint training network with contour detection network (called CDNNet) for the ZS-SBIR task, which uses contour maps as a bridge to align sketches and natural images to alleviate the domain gap. Specifically, we use semantic metrics to constrain the relationship between contour images and natural images and between contour images and sketches, so that natural image and sketch features can be aligned in the common space. Meanwhile, we further employ second-order attention to capture target subject information to increase the performance of retrieval descriptors. In addition, we use a teacher model and word embedding method to transfer the knowledge of the seen to the unseen classes. Extensive experiments on two large-scale datasets demonstrate that our proposed approach outperforms state-of-the-art CNN-based models: it improves by 2.6% on the Sketchy and 1.2% on TU-Berlin datasets in terms of mAP. |
| Author | Zhang, Jing Su, Xiangdong Zhang, Qing Bao, Feilong Gao, Guanglai |
| Author_xml | – sequence: 1 givenname: Qing surname: Zhang fullname: Zhang, Qing organization: College of Computer Science, Inner Mongolia University, Inner Mongolia Key Laboratory of Mongolian Information Processing Technology, National and Local Joint Engineering Research Center of Intelligent Information Processing Technology for Mongolian – sequence: 2 givenname: Jing surname: Zhang fullname: Zhang, Jing organization: College of Computer Science, Inner Mongolia University, Inner Mongolia Key Laboratory of Mongolian Information Processing Technology, National and Local Joint Engineering Research Center of Intelligent Information Processing Technology for Mongolian – sequence: 3 givenname: Xiangdong surname: Su fullname: Su, Xiangdong email: cssxd@imu.edu.cn organization: College of Computer Science, Inner Mongolia University, Inner Mongolia Key Laboratory of Mongolian Information Processing Technology, National and Local Joint Engineering Research Center of Intelligent Information Processing Technology for Mongolian – sequence: 4 givenname: Feilong surname: Bao fullname: Bao, Feilong organization: College of Computer Science, Inner Mongolia University, Inner Mongolia Key Laboratory of Mongolian Information Processing Technology, National and Local Joint Engineering Research Center of Intelligent Information Processing Technology for Mongolian – sequence: 5 givenname: Guanglai surname: Gao fullname: Gao, Guanglai organization: College of Computer Science, Inner Mongolia University, Inner Mongolia Key Laboratory of Mongolian Information Processing Technology, National and Local Joint Engineering Research Center of Intelligent Information Processing Technology for Mongolian |
| BookMark | eNp9kMtOwzAQRS1UJMrjB1jlBwzjR2J7icqrUiU2sLYmyaSklBjZBgRfT9rChkVXY418ru6cYzYZwkCMnQu4EADmMmkw2nCQioMAV3F5wKZSOMsrKNVk-3Zcl6o6YmcprQBAGGMVyCm7noUhh_dYtJSpyX0YioHyZ4gvRRdi8U0x8PQccpFeKDfPvMZEbdG_4pKKSDn29IHrU3bY4TrR2e88YU-3N4-ze754uJvPrha80UZnTqRMrStNzhlrO4ekHNal0xKhLcEike4MKosgSqk7JWq0dYkAiowUUp2w-S63Dbjyb3GsEb98wN5vFyEuPcbcN2vyxjgrsDRuPFabzjohQNmurpDaypIes-wuq4khpUidb_qMGwE5Yr_2AvxGrt_J9aNcv5XrNzXkP_Svyl5I7aA0fh6WFP1q1D6MuvZRPwPLjWc |
| CitedBy_id | crossref_primary_10_1007_s40747_024_01717_4 |
| Cites_doi | 10.1109/TPAMI.2021.3123315 10.1016/j.patcog.2020.107657 10.1109/TPAMI.1986.4767851 10.1109/TPAMI.2018.2857768 10.1016/j.cviu.2013.02.005 10.1016/j.neucom.2022.02.079 10.1109/TPAMI.2004.1273918 10.1088/1361-6501/ac8368 10.1016/j.patcog.2021.108291 10.1109/TIP.2022.3175403 10.1109/TIP.2020.3020383 10.1007/s10489-022-03202-2 10.1016/j.patcog.2022.108528 10.1109/TMM.2020.2987685 10.1145/2897824.2925954 10.1109/TPAMI.2012.193 10.1609/aaai.v34i07.6817 10.1609/aaai.v36i2.20136 10.1007/978-3-030-01225-0_19 10.1109/CVPR.2019.00228 10.1109/ICCV.1999.790410 10.1109/CVPR.2018.00379 10.24963/ijcai.2021/158 10.1109/ICME46284.2020.9102940 10.1007/978-3-030-58595-2_16 10.1109/CVPR.2016.90 10.1109/CVPR52688.2022.00107 10.1088/1361-6501/acb075 10.1109/ICCV.2015.164 10.1109/CVPR.2016.93 10.1109/CVPR.2017.473 10.1109/CVPR.2019.00523 10.1145/3123266.3127939 10.1109/CVPR.2016.575 10.1109/ICCV.2019.00376 10.1145/3343031.3350900 10.1109/CVPR.2017.247 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2023 |
| Copyright_xml | – notice: The Author(s) 2023 |
| DBID | C6C AAYXX CITATION DOA |
| DOI | 10.1007/s40747-023-01096-2 |
| DatabaseName | Springer Nature OA Free Journals CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISSN | 2198-6053 |
| EndPage | 6795 |
| ExternalDocumentID | oai_doaj_org_article_77981a57900047f8911038fb6aed68e4 10_1007_s40747_023_01096_2 |
| GrantInformation_xml | – fundername: National Key Research and Development Program grantid: 2018YFE0122900 – fundername: Achievements Transformation Project of Inner Mongolia Autonomous Region grantid: 2019CG028 – fundername: Applied Technology Research and Development Foundation of Inner Mongolia Autonomous Region grantid: 2019GG372; 2020GG0046; 2021GG0158; 2020PT0002; 2021GG0165 – fundername: National Natural Science Foundation of China grantid: 61773224; 62066033; 61762069 funderid: http://dx.doi.org/10.13039/501100001809 |
| GroupedDBID | 0R~ 8FE 8FG AAJSJ AAKKN ABEEZ ABFTD ACACY ACGFS ACULB ADINQ ADMLS AFGXO AFKRA AHBYD AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP ARAPS ASPBG AVWKF BAPOH BENPR BGLVJ C24 C6C CCPQU EBLON EBS EJD GROUPED_DOAJ HCIFZ IAO ISR ITC M~E OK1 P62 PIMPY PROAC RSV SOJ AASML AAYXX AFFHD CITATION PHGZM PHGZT PQGLB |
| ID | FETCH-LOGICAL-c474t-ee37b464e99788f9ae39ab5942a0d508aee4f7a38a01524f31ba8b5a003e72123 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000998630600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2199-4536 |
| IngestDate | Mon Nov 10 04:32:06 EST 2025 Tue Nov 18 21:47:08 EST 2025 Sat Nov 29 05:49:00 EST 2025 Fri Feb 21 02:42:26 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Sketch-based image retrieval Cross-modal retrieval Zero-shot learning Contour detection |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c474t-ee37b464e99788f9ae39ab5942a0d508aee4f7a38a01524f31ba8b5a003e72123 |
| OpenAccessLink | https://doaj.org/article/77981a57900047f8911038fb6aed68e4 |
| PageCount | 15 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_77981a57900047f8911038fb6aed68e4 crossref_citationtrail_10_1007_s40747_023_01096_2 crossref_primary_10_1007_s40747_023_01096_2 springer_journals_10_1007_s40747_023_01096_2 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-12-01 |
| PublicationDateYYYYMMDD | 2023-12-01 |
| PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham |
| PublicationTitle | Complex & intelligent systems |
| PublicationTitleAbbrev | Complex Intell. Syst |
| PublicationYear | 2023 |
| Publisher | Springer International Publishing Springer |
| Publisher_xml | – name: Springer International Publishing – name: Springer |
| References | Gong, Lazebnik, Gordo, Perronnin (CR38) 2012; 35 CR19 CR18 CR17 CR39 CR16 CR15 CR37 CR14 CR36 CR13 Tao, Cheng, Qiu, Stojanovic (CR30) 2022; 33 CR35 Deng, Xu, Wang, Yang, Tao (CR10) 2020; 29 CR12 CR11 CR32 CR31 Xian, Lampert, Schiele, Akata (CR23) 2018; 41 Wang, Deng, Liu, Tao (CR6) 2021; 44 Sangkloy, Burnell, Ham, Hays (CR22) 2016; 35 Martin, Fowlkes, Malik (CR29) 2004; 26 Yang, Peng, Al-Huda, Malik, Zhai (CR40) 2022 Hu, Collomosse (CR20) 2013; 117 CR2 Cao, Lin, Li (CR33) 2020; 23 CR4 CR3 Tursun, Denman, Sridharan, Goan, Fookes (CR1) 2022; 126 CR8 CR7 CR9 CR26 CR25 CR24 Chen (CR21) 2022; 122 Liu (CR5) 2022; 31 Lin, Zhang, Hu (CR34) 2022 Zhang, Lin, Li (CR28) 2021; 110 Canny (CR27) 1986; 6 Y Chen (1096_CR21) 2022; 122 1096_CR24 1096_CR25 Y Xian (1096_CR23) 2018; 41 1096_CR26 F Liu (1096_CR5) 2022; 31 C Lin (1096_CR34) 2022 1096_CR8 1096_CR9 Q Zhang (1096_CR28) 2021; 110 1096_CR7 1096_CR4 1096_CR2 1096_CR3 C Deng (1096_CR10) 2020; 29 DR Martin (1096_CR29) 2004; 26 O Tursun (1096_CR1) 2022; 126 P Sangkloy (1096_CR22) 2016; 35 1096_CR13 1096_CR35 1096_CR14 1096_CR36 1096_CR15 1096_CR37 1096_CR16 1096_CR31 1096_CR32 Y-J Cao (1096_CR33) 2020; 23 1096_CR11 1096_CR12 R Hu (1096_CR20) 2013; 117 1096_CR17 1096_CR39 1096_CR18 1096_CR19 Y Gong (1096_CR38) 2012; 35 J Canny (1096_CR27) 1986; 6 H Wang (1096_CR6) 2021; 44 H Tao (1096_CR30) 2022; 33 D Yang (1096_CR40) 2022 |
| References_xml | – volume: 44 start-page: 9181 issue: 12 year: 2021 end-page: 9194 ident: CR6 article-title: Transferable coupled network for zero-shot sketch-based image retrieval publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2021.3123315 – volume: 110 year: 2021 ident: CR28 article-title: Application of binocular disparity and receptive field dynamics: a biologically-inspired model for contour detection publication-title: Pattern Recogn doi: 10.1016/j.patcog.2020.107657 – ident: CR18 – volume: 6 start-page: 679 year: 1986 end-page: 698 ident: CR27 article-title: A computational approach to edge detection publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.1986.4767851 – ident: CR4 – ident: CR14 – ident: CR39 – ident: CR2 – ident: CR16 – ident: CR37 – volume: 41 start-page: 2251 issue: 9 year: 2018 end-page: 2265 ident: CR23 article-title: Zero-shot learning—a comprehensive evaluation of the good, the bad and the ugly publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2018.2857768 – ident: CR12 – volume: 117 start-page: 790 issue: 7 year: 2013 end-page: 806 ident: CR20 article-title: A performance evaluation of gradient field hog descriptor for sketch based image retrieval publication-title: Comput Vis Image Underst doi: 10.1016/j.cviu.2013.02.005 – year: 2022 ident: CR40 article-title: An overview of edge and object contour detection publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.02.079 – ident: CR35 – ident: CR8 – volume: 26 start-page: 530 issue: 5 year: 2004 end-page: 549 ident: CR29 article-title: Learning to detect natural image boundaries using local brightness, color, and texture cues publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2004.1273918 – ident: CR25 – volume: 33 issue: 11 year: 2022 ident: CR30 article-title: Few shot cross equipment fault diagnosis method based on parameter optimization and feature mertic publication-title: Meas Sci Technol doi: 10.1088/1361-6501/ac8368 – volume: 122 year: 2022 ident: CR21 article-title: AE-Net: fine-grained sketch-based image retrieval via attention-enhanced network publication-title: Pattern Recogn doi: 10.1016/j.patcog.2021.108291 – volume: 31 start-page: 3737 year: 2022 end-page: 3751 ident: CR5 article-title: SceneSketcher-v2: fine-grained scene-level sketch-based image retrieval using adaptive GCNs publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2022.3175403 – ident: CR19 – volume: 29 start-page: 8892 year: 2020 end-page: 8902 ident: CR10 article-title: Progressive cross-modal semantic network for zero-shot sketch-based image retrieval publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2020.3020383 – ident: CR3 – ident: CR15 – year: 2022 ident: CR34 article-title: Bio-inspired feature enhancement network for edge detection publication-title: Appl Intell doi: 10.1007/s10489-022-03202-2 – volume: 126 year: 2022 ident: CR1 article-title: An efficient framework for zero-shot sketch-based image retrieval publication-title: Pattern Recogn doi: 10.1016/j.patcog.2022.108528 – ident: CR17 – ident: CR31 – ident: CR13 – ident: CR11 – ident: CR9 – ident: CR32 – volume: 23 start-page: 761 year: 2020 end-page: 771 ident: CR33 article-title: Learning crisp boundaries using deep refinement network and adaptive weighting loss publication-title: IEEE Trans Multimedia doi: 10.1109/TMM.2020.2987685 – volume: 35 start-page: 1 issue: 4 year: 2016 end-page: 12 ident: CR22 article-title: The sketchy database: learning to retrieve badly drawn bunnies publication-title: ACM Trans Graph (TOG) doi: 10.1145/2897824.2925954 – ident: CR36 – volume: 35 start-page: 2916 issue: 12 year: 2012 end-page: 2929 ident: CR38 article-title: Iterative quantization: a procrustean approach to learning binary codes for large-scale image retrieval publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2012.193 – ident: CR7 – ident: CR26 – ident: CR24 – volume: 110 year: 2021 ident: 1096_CR28 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2020.107657 – ident: 1096_CR14 doi: 10.1609/aaai.v34i07.6817 – ident: 1096_CR2 doi: 10.1609/aaai.v36i2.20136 – ident: 1096_CR13 doi: 10.1007/978-3-030-01225-0_19 – ident: 1096_CR25 – ident: 1096_CR7 doi: 10.1109/CVPR.2019.00228 – ident: 1096_CR19 doi: 10.1109/ICCV.1999.790410 – ident: 1096_CR15 doi: 10.1109/CVPR.2018.00379 – ident: 1096_CR9 doi: 10.24963/ijcai.2021/158 – ident: 1096_CR11 doi: 10.1109/ICME46284.2020.9102940 – volume: 41 start-page: 2251 issue: 9 year: 2018 ident: 1096_CR23 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2018.2857768 – ident: 1096_CR18 doi: 10.1007/978-3-030-58595-2_16 – volume: 117 start-page: 790 issue: 7 year: 2013 ident: 1096_CR20 publication-title: Comput Vis Image Underst doi: 10.1016/j.cviu.2013.02.005 – volume: 26 start-page: 530 issue: 5 year: 2004 ident: 1096_CR29 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2004.1273918 – volume: 35 start-page: 2916 issue: 12 year: 2012 ident: 1096_CR38 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2012.193 – volume: 33 issue: 11 year: 2022 ident: 1096_CR30 publication-title: Meas Sci Technol doi: 10.1088/1361-6501/ac8368 – volume: 44 start-page: 9181 issue: 12 year: 2021 ident: 1096_CR6 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2021.3123315 – ident: 1096_CR35 doi: 10.1109/CVPR.2016.90 – volume: 126 year: 2022 ident: 1096_CR1 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2022.108528 – ident: 1096_CR3 doi: 10.1109/CVPR52688.2022.00107 – ident: 1096_CR31 doi: 10.1088/1361-6501/acb075 – ident: 1096_CR32 doi: 10.1109/ICCV.2015.164 – year: 2022 ident: 1096_CR40 publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.02.079 – ident: 1096_CR39 – ident: 1096_CR16 doi: 10.1109/CVPR.2016.93 – ident: 1096_CR24 doi: 10.1109/CVPR.2017.473 – volume: 35 start-page: 1 issue: 4 year: 2016 ident: 1096_CR22 publication-title: ACM Trans Graph (TOG) doi: 10.1145/2897824.2925954 – year: 2022 ident: 1096_CR34 publication-title: Appl Intell doi: 10.1007/s10489-022-03202-2 – ident: 1096_CR12 doi: 10.1109/CVPR.2019.00523 – ident: 1096_CR4 doi: 10.1145/3123266.3127939 – ident: 1096_CR26 doi: 10.1109/CVPR.2016.575 – volume: 23 start-page: 761 year: 2020 ident: 1096_CR33 publication-title: IEEE Trans Multimedia doi: 10.1109/TMM.2020.2987685 – ident: 1096_CR36 – ident: 1096_CR8 doi: 10.1109/ICCV.2019.00376 – volume: 6 start-page: 679 year: 1986 ident: 1096_CR27 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.1986.4767851 – volume: 29 start-page: 8892 year: 2020 ident: 1096_CR10 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2020.3020383 – ident: 1096_CR17 doi: 10.1145/3343031.3350900 – volume: 122 year: 2022 ident: 1096_CR21 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2021.108291 – volume: 31 start-page: 3737 year: 2022 ident: 1096_CR5 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2022.3175403 – ident: 1096_CR37 doi: 10.1109/CVPR.2017.247 |
| SSID | ssj0001778302 ssib044733412 ssib045327741 |
| Score | 2.253923 |
| Snippet | Zero-shot sketch-based image retrieval (ZS-SBIR) is a challenging task that involves searching natural images related to a given hand-drawn sketch under the... Abstract Zero-shot sketch-based image retrieval (ZS-SBIR) is a challenging task that involves searching natural images related to a given hand-drawn sketch... |
| SourceID | doaj crossref springer |
| SourceType | Open Website Enrichment Source Index Database Publisher |
| StartPage | 6781 |
| SubjectTerms | Complexity Computational Intelligence Contour detection Cross-modal retrieval Data Structures and Information Theory Engineering Original Article Sketch-based image retrieval Zero-shot learning |
| SummonAdditionalLinks | – databaseName: Springer Journals Complete - Open Access dbid: C24 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8QwDI4QMMDAG8HxUAY2iHRt3CYZeYoBTgyA2KqkTQABPdQWBn49Tq5XQAgkGFs5TWQ7ths7nwnZEcZpcOCY4v2cQeIEM31jWCTQ-dkc91g4Grg-E4OBvLlRF-2lsHpc7T5OSQZL3V12A4_1ztDHMJ_OSRka3qkkksrr9eEH5jiA4Bxapx1OWoTwIFe-y1ykFK7H5yt7P3_2i4cKQP7fsqTB-ZzM_2_ZC2SuDTbp_kg7FsmELZfI7CcIQnw673Bb62Vy5MGqcBQtbBNqtEpajurEKQa39M1WQ1bfDRtaP3hxM-8DC3r_hEaJVqE3FyruCrk6Ob48PGVtnwWWg4CGWcuFgRSswl9K6ZS2XGmTKIh1v8AATlsLTmguNcYOMTgeGS1NotEgWOFd3yqZLIelXSOUp04aiSFY4SwgheE6x0niJE78lXtYJ9GYt1negpD7XhiPWQefHPiVIb-ywK8sXie73ZjnEQTHr9QHXmQdpYfPDi-G1W3W7sZMCCUjnQjfMRWEk2jx-1w6k2pbpNLiMvfGwszaPV3_Mmfvb-QbZMY3rR8VxWySyaZ6sVtkOn9t7utqOyjzO5CE6Dc priority: 102 providerName: Springer Nature |
| Title | Contour detection network for zero-shot sketch-based image retrieval |
| URI | https://link.springer.com/article/10.1007/s40747-023-01096-2 https://doaj.org/article/77981a57900047f8911038fb6aed68e4 |
| Volume | 9 |
| WOSCitedRecordID | wos000998630600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2198-6053 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001778302 issn: 2199-4536 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2198-6053 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib044733412 issn: 2199-4536 databaseCode: M~E dateStart: 20150101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2198-6053 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001778302 issn: 2199-4536 databaseCode: P5Z dateStart: 20151201 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2198-6053 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001778302 issn: 2199-4536 databaseCode: BENPR dateStart: 20151201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2198-6053 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001778302 issn: 2199-4536 databaseCode: PIMPY dateStart: 20151201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerOpen customDbUrl: eissn: 2198-6053 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001778302 issn: 2199-4536 databaseCode: C24 dateStart: 20151201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BTtwwEB21tIf2gAptxS505QO31uomnsT2ERZQD2W1QgVxi-zEVhGQrTaBQ7--YycbqJDopddoIifjmbxxPH4PYF9ab9Cj51pMS46Zl9xOreWJJPBzJeVY_DVw8V3O5-ryUi8eSX2FnrCOHrhz3FcptUpMJoO4JUqvKDmnQnmbG1flykUmUKp6Hi2mKJIQpRD4ANyYiVSuNWbi3xcpA_FVUJ5LtKZnDHuY4-FcHQZaeU5wxsPOUc7Tv1Arkvs_2TmNgHTyDjb7SpIddG-wBS9cvQ1vTwca1uY9HAXuKbJjlWtjy1XN6q7tm1Gtyn671ZI3P5cta67D7PEAaRW7uqVvDFtFqS2Kww9wfnL8Y_aN97IJvESJLXdOSIs5Ok0rROW1cUIbm2lMzbSiesw4h14aoQyVAil6kVijbGYov50MSPYRNupl7XaAidwrq6iiqrxDsrDClDRImqVZOEGPI0jWbinKnlM8SFvcFAMbcnRlQa4soiuLdASfh3t-dYwaz1ofBm8PloENO16gGCn6GCn-FSMj-LKeq6JP0eaZMcf_Y8xdeBOU6bvOlz3YaFd37hO8Lu_bq2Y1gVeHx_PF2QRezlKcxNj9A7GT5Ok |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Bb9UwDI7QQGI7MAZM29hYDtwg0mvjNskRBtMQb08cBtotStpkTGx9U9vtwK_HzusrIMSk7djKaSLbsd3Y-czYa-WjgwhRGDmpBBRRCT_xXmQKnV-ocI-lo4FvUzWb6dNT82W4FNYtq92XKclkqcfLbkBY7wJ9jKB0TinQ8D4k6BXS64PfmOMASkoYnHY6aVGKQK6oy1xmDK6H8pU7___sXx4qAfn_kyVNzudw_X7LfsqeDMEmf7fQjg32IDTP2NofEIT4dDzitnbP2QcCq8JRvA59qtFqeLOoE-cY3PKfoZ2L7vu8590PErcgH1jz80s0SrxNvblQcV-wr4cfTw6OxNBnQVSgoBchSOWhhGDwl1JH44I0zhcGcjepMYBzIUBUTmqHsUMOUWbeaV84NAhBkevbZCvNvAlbjMsyaq8xBKtjAKTw0lU4SV7kBV25h22WLXlrqwGEnHphXNgRPjnxyyK_bOKXzbfZm3HM1QKC41bq9ySykZLgs9OLeXtmh91olTI6c4WijqmgokaLP5E6-tKFutQBl_l2KUw77Onuljl37ka-zx4fnRxP7fTT7PNLtkoN7BcFMrtspW-vwx57VN305137Kin2L4Gh6xw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9UwDI-mMSF2AMaHtvGVw24Q7bVxm-QIG0-bNp52ALRblLQJTEDf1BYO_PXYaV8ZQpuEOLZymtRxYie2f2ZsT_noIEIURs4qAUVUws-8F5lC5RcqXGPpauDjqVos9Pm5ObuSxZ-i3VcuySGngVCamn7_so77U-IbEO67QH0jyLVTCtyEb5FHio5fB7_xxwGUlDAq8HTrohQBXlHFucwYHBv5Lnev_-wf2iqB-v_lMU2KaH7v_3_hPrs7GqH89SA1W2wtNA_Y5hVoQnx6N-G5dg_ZIYFYYStehz7FbjW8GeLHORq9_Gdol6L7vOx594XEQJBurPnFN9yseJtqdqFAP2If5m_fHxyJsf6CqEBBL0KQykMJweBRU0fjgjTOFwZyN6vRsHMhQFROaoc2RQ5RZt5pXzjcKIIilfiYrTfLJmwzLsuovUbTrI4BkMJLV2EneZEXlIoPOyxb8dlWIzg51cj4aidY5cQvi_yyiV8232EvpzaXAzTHjdRvaPomSoLVTi-W7Sc7rlKrlNGZKxRVUgUVNWqCmdTRly7UpQ44zFeribXjWu9u6HP338hfsNtnh3N7erw4ecLuUF37IW7mKVvv2-_hGduofvQXXfs8yfgvgW70AA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Contour+detection+network+for+zero-shot+sketch-based+image+retrieval&rft.jtitle=Complex+%26+intelligent+systems&rft.au=Zhang%2C+Qing&rft.au=Zhang%2C+Jing&rft.au=Su%2C+Xiangdong&rft.au=Bao%2C+Feilong&rft.date=2023-12-01&rft.issn=2199-4536&rft.eissn=2198-6053&rft.volume=9&rft.issue=6&rft.spage=6781&rft.epage=6795&rft_id=info:doi/10.1007%2Fs40747-023-01096-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s40747_023_01096_2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-4536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-4536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-4536&client=summon |