Contour detection network for zero-shot sketch-based image retrieval

Zero-shot sketch-based image retrieval (ZS-SBIR) is a challenging task that involves searching natural images related to a given hand-drawn sketch under the zero-shot scene. The previous approach projected image and sketch features into a low-dimensional common space for retrieval, and used semantic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Complex & intelligent systems Jg. 9; H. 6; S. 6781 - 6795
Hauptverfasser: Zhang, Qing, Zhang, Jing, Su, Xiangdong, Bao, Feilong, Gao, Guanglai
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cham Springer International Publishing 01.12.2023
Springer
Schlagworte:
ISSN:2199-4536, 2198-6053
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Zero-shot sketch-based image retrieval (ZS-SBIR) is a challenging task that involves searching natural images related to a given hand-drawn sketch under the zero-shot scene. The previous approach projected image and sketch features into a low-dimensional common space for retrieval, and used semantic features to transfer the knowledge of seen to unseen classes. However, it is not effective enough to align multimodal features when projecting them into a common space, since the styles and contents of sketches and natural images are different and they are not one-to-one correspondence. To solve this problem, we propose a novel three-branch joint training network with contour detection network (called CDNNet) for the ZS-SBIR task, which uses contour maps as a bridge to align sketches and natural images to alleviate the domain gap. Specifically, we use semantic metrics to constrain the relationship between contour images and natural images and between contour images and sketches, so that natural image and sketch features can be aligned in the common space. Meanwhile, we further employ second-order attention to capture target subject information to increase the performance of retrieval descriptors. In addition, we use a teacher model and word embedding method to transfer the knowledge of the seen to the unseen classes. Extensive experiments on two large-scale datasets demonstrate that our proposed approach outperforms state-of-the-art CNN-based models: it improves by 2.6% on the Sketchy and 1.2% on TU-Berlin datasets in terms of mAP.
AbstractList Zero-shot sketch-based image retrieval (ZS-SBIR) is a challenging task that involves searching natural images related to a given hand-drawn sketch under the zero-shot scene. The previous approach projected image and sketch features into a low-dimensional common space for retrieval, and used semantic features to transfer the knowledge of seen to unseen classes. However, it is not effective enough to align multimodal features when projecting them into a common space, since the styles and contents of sketches and natural images are different and they are not one-to-one correspondence. To solve this problem, we propose a novel three-branch joint training network with contour detection network (called CDNNet) for the ZS-SBIR task, which uses contour maps as a bridge to align sketches and natural images to alleviate the domain gap. Specifically, we use semantic metrics to constrain the relationship between contour images and natural images and between contour images and sketches, so that natural image and sketch features can be aligned in the common space. Meanwhile, we further employ second-order attention to capture target subject information to increase the performance of retrieval descriptors. In addition, we use a teacher model and word embedding method to transfer the knowledge of the seen to the unseen classes. Extensive experiments on two large-scale datasets demonstrate that our proposed approach outperforms state-of-the-art CNN-based models: it improves by 2.6% on the Sketchy and 1.2% on TU-Berlin datasets in terms of mAP.
Abstract Zero-shot sketch-based image retrieval (ZS-SBIR) is a challenging task that involves searching natural images related to a given hand-drawn sketch under the zero-shot scene. The previous approach projected image and sketch features into a low-dimensional common space for retrieval, and used semantic features to transfer the knowledge of seen to unseen classes. However, it is not effective enough to align multimodal features when projecting them into a common space, since the styles and contents of sketches and natural images are different and they are not one-to-one correspondence. To solve this problem, we propose a novel three-branch joint training network with contour detection network (called CDNNet) for the ZS-SBIR task, which uses contour maps as a bridge to align sketches and natural images to alleviate the domain gap. Specifically, we use semantic metrics to constrain the relationship between contour images and natural images and between contour images and sketches, so that natural image and sketch features can be aligned in the common space. Meanwhile, we further employ second-order attention to capture target subject information to increase the performance of retrieval descriptors. In addition, we use a teacher model and word embedding method to transfer the knowledge of the seen to the unseen classes. Extensive experiments on two large-scale datasets demonstrate that our proposed approach outperforms state-of-the-art CNN-based models: it improves by 2.6% on the Sketchy and 1.2% on TU-Berlin datasets in terms of mAP.
Author Zhang, Jing
Su, Xiangdong
Zhang, Qing
Bao, Feilong
Gao, Guanglai
Author_xml – sequence: 1
  givenname: Qing
  surname: Zhang
  fullname: Zhang, Qing
  organization: College of Computer Science, Inner Mongolia University, Inner Mongolia Key Laboratory of Mongolian Information Processing Technology, National and Local Joint Engineering Research Center of Intelligent Information Processing Technology for Mongolian
– sequence: 2
  givenname: Jing
  surname: Zhang
  fullname: Zhang, Jing
  organization: College of Computer Science, Inner Mongolia University, Inner Mongolia Key Laboratory of Mongolian Information Processing Technology, National and Local Joint Engineering Research Center of Intelligent Information Processing Technology for Mongolian
– sequence: 3
  givenname: Xiangdong
  surname: Su
  fullname: Su, Xiangdong
  email: cssxd@imu.edu.cn
  organization: College of Computer Science, Inner Mongolia University, Inner Mongolia Key Laboratory of Mongolian Information Processing Technology, National and Local Joint Engineering Research Center of Intelligent Information Processing Technology for Mongolian
– sequence: 4
  givenname: Feilong
  surname: Bao
  fullname: Bao, Feilong
  organization: College of Computer Science, Inner Mongolia University, Inner Mongolia Key Laboratory of Mongolian Information Processing Technology, National and Local Joint Engineering Research Center of Intelligent Information Processing Technology for Mongolian
– sequence: 5
  givenname: Guanglai
  surname: Gao
  fullname: Gao, Guanglai
  organization: College of Computer Science, Inner Mongolia University, Inner Mongolia Key Laboratory of Mongolian Information Processing Technology, National and Local Joint Engineering Research Center of Intelligent Information Processing Technology for Mongolian
BookMark eNp9kMtOwzAQRS1UJMrjB1jlBwzjR2J7icqrUiU2sLYmyaSklBjZBgRfT9rChkVXY418ru6cYzYZwkCMnQu4EADmMmkw2nCQioMAV3F5wKZSOMsrKNVk-3Zcl6o6YmcprQBAGGMVyCm7noUhh_dYtJSpyX0YioHyZ4gvRRdi8U0x8PQccpFeKDfPvMZEbdG_4pKKSDn29IHrU3bY4TrR2e88YU-3N4-ze754uJvPrha80UZnTqRMrStNzhlrO4ekHNal0xKhLcEike4MKosgSqk7JWq0dYkAiowUUp2w-S63Dbjyb3GsEb98wN5vFyEuPcbcN2vyxjgrsDRuPFabzjohQNmurpDaypIes-wuq4khpUidb_qMGwE5Yr_2AvxGrt_J9aNcv5XrNzXkP_Svyl5I7aA0fh6WFP1q1D6MuvZRPwPLjWc
CitedBy_id crossref_primary_10_1007_s40747_024_01717_4
Cites_doi 10.1109/TPAMI.2021.3123315
10.1016/j.patcog.2020.107657
10.1109/TPAMI.1986.4767851
10.1109/TPAMI.2018.2857768
10.1016/j.cviu.2013.02.005
10.1016/j.neucom.2022.02.079
10.1109/TPAMI.2004.1273918
10.1088/1361-6501/ac8368
10.1016/j.patcog.2021.108291
10.1109/TIP.2022.3175403
10.1109/TIP.2020.3020383
10.1007/s10489-022-03202-2
10.1016/j.patcog.2022.108528
10.1109/TMM.2020.2987685
10.1145/2897824.2925954
10.1109/TPAMI.2012.193
10.1609/aaai.v34i07.6817
10.1609/aaai.v36i2.20136
10.1007/978-3-030-01225-0_19
10.1109/CVPR.2019.00228
10.1109/ICCV.1999.790410
10.1109/CVPR.2018.00379
10.24963/ijcai.2021/158
10.1109/ICME46284.2020.9102940
10.1007/978-3-030-58595-2_16
10.1109/CVPR.2016.90
10.1109/CVPR52688.2022.00107
10.1088/1361-6501/acb075
10.1109/ICCV.2015.164
10.1109/CVPR.2016.93
10.1109/CVPR.2017.473
10.1109/CVPR.2019.00523
10.1145/3123266.3127939
10.1109/CVPR.2016.575
10.1109/ICCV.2019.00376
10.1145/3343031.3350900
10.1109/CVPR.2017.247
ContentType Journal Article
Copyright The Author(s) 2023
Copyright_xml – notice: The Author(s) 2023
DBID C6C
AAYXX
CITATION
DOA
DOI 10.1007/s40747-023-01096-2
DatabaseName Springer Nature OA Free Journals
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 2198-6053
EndPage 6795
ExternalDocumentID oai_doaj_org_article_77981a57900047f8911038fb6aed68e4
10_1007_s40747_023_01096_2
GrantInformation_xml – fundername: National Key Research and Development Program
  grantid: 2018YFE0122900
– fundername: Achievements Transformation Project of Inner Mongolia Autonomous Region
  grantid: 2019CG028
– fundername: Applied Technology Research and Development Foundation of Inner Mongolia Autonomous Region
  grantid: 2019GG372; 2020GG0046; 2021GG0158; 2020PT0002; 2021GG0165
– fundername: National Natural Science Foundation of China
  grantid: 61773224; 62066033; 61762069
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID 0R~
8FE
8FG
AAJSJ
AAKKN
ABEEZ
ABFTD
ACACY
ACGFS
ACULB
ADINQ
ADMLS
AFGXO
AFKRA
AHBYD
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ARAPS
ASPBG
AVWKF
BAPOH
BENPR
BGLVJ
C24
C6C
CCPQU
EBLON
EBS
EJD
GROUPED_DOAJ
HCIFZ
IAO
ISR
ITC
M~E
OK1
P62
PIMPY
PROAC
RSV
SOJ
AASML
AAYXX
AFFHD
CITATION
PHGZM
PHGZT
PQGLB
ID FETCH-LOGICAL-c474t-ee37b464e99788f9ae39ab5942a0d508aee4f7a38a01524f31ba8b5a003e72123
IEDL.DBID DOA
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000998630600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2199-4536
IngestDate Mon Nov 10 04:32:06 EST 2025
Tue Nov 18 21:47:08 EST 2025
Sat Nov 29 05:49:00 EST 2025
Fri Feb 21 02:42:26 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Sketch-based image retrieval
Cross-modal retrieval
Zero-shot learning
Contour detection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-ee37b464e99788f9ae39ab5942a0d508aee4f7a38a01524f31ba8b5a003e72123
OpenAccessLink https://doaj.org/article/77981a57900047f8911038fb6aed68e4
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_77981a57900047f8911038fb6aed68e4
crossref_citationtrail_10_1007_s40747_023_01096_2
crossref_primary_10_1007_s40747_023_01096_2
springer_journals_10_1007_s40747_023_01096_2
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationTitle Complex & intelligent systems
PublicationTitleAbbrev Complex Intell. Syst
PublicationYear 2023
Publisher Springer International Publishing
Springer
Publisher_xml – name: Springer International Publishing
– name: Springer
References Gong, Lazebnik, Gordo, Perronnin (CR38) 2012; 35
CR19
CR18
CR17
CR39
CR16
CR15
CR37
CR14
CR36
CR13
Tao, Cheng, Qiu, Stojanovic (CR30) 2022; 33
CR35
Deng, Xu, Wang, Yang, Tao (CR10) 2020; 29
CR12
CR11
CR32
CR31
Xian, Lampert, Schiele, Akata (CR23) 2018; 41
Wang, Deng, Liu, Tao (CR6) 2021; 44
Sangkloy, Burnell, Ham, Hays (CR22) 2016; 35
Martin, Fowlkes, Malik (CR29) 2004; 26
Yang, Peng, Al-Huda, Malik, Zhai (CR40) 2022
Hu, Collomosse (CR20) 2013; 117
CR2
Cao, Lin, Li (CR33) 2020; 23
CR4
CR3
Tursun, Denman, Sridharan, Goan, Fookes (CR1) 2022; 126
CR8
CR7
CR9
CR26
CR25
CR24
Chen (CR21) 2022; 122
Liu (CR5) 2022; 31
Lin, Zhang, Hu (CR34) 2022
Zhang, Lin, Li (CR28) 2021; 110
Canny (CR27) 1986; 6
Y Chen (1096_CR21) 2022; 122
1096_CR24
1096_CR25
Y Xian (1096_CR23) 2018; 41
1096_CR26
F Liu (1096_CR5) 2022; 31
C Lin (1096_CR34) 2022
1096_CR8
1096_CR9
Q Zhang (1096_CR28) 2021; 110
1096_CR7
1096_CR4
1096_CR2
1096_CR3
C Deng (1096_CR10) 2020; 29
DR Martin (1096_CR29) 2004; 26
O Tursun (1096_CR1) 2022; 126
P Sangkloy (1096_CR22) 2016; 35
1096_CR13
1096_CR35
1096_CR14
1096_CR36
1096_CR15
1096_CR37
1096_CR16
1096_CR31
1096_CR32
Y-J Cao (1096_CR33) 2020; 23
1096_CR11
1096_CR12
R Hu (1096_CR20) 2013; 117
1096_CR17
1096_CR39
1096_CR18
1096_CR19
Y Gong (1096_CR38) 2012; 35
J Canny (1096_CR27) 1986; 6
H Wang (1096_CR6) 2021; 44
H Tao (1096_CR30) 2022; 33
D Yang (1096_CR40) 2022
References_xml – volume: 44
  start-page: 9181
  issue: 12
  year: 2021
  end-page: 9194
  ident: CR6
  article-title: Transferable coupled network for zero-shot sketch-based image retrieval
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2021.3123315
– volume: 110
  year: 2021
  ident: CR28
  article-title: Application of binocular disparity and receptive field dynamics: a biologically-inspired model for contour detection
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2020.107657
– ident: CR18
– volume: 6
  start-page: 679
  year: 1986
  end-page: 698
  ident: CR27
  article-title: A computational approach to edge detection
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.1986.4767851
– ident: CR4
– ident: CR14
– ident: CR39
– ident: CR2
– ident: CR16
– ident: CR37
– volume: 41
  start-page: 2251
  issue: 9
  year: 2018
  end-page: 2265
  ident: CR23
  article-title: Zero-shot learning—a comprehensive evaluation of the good, the bad and the ugly
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2018.2857768
– ident: CR12
– volume: 117
  start-page: 790
  issue: 7
  year: 2013
  end-page: 806
  ident: CR20
  article-title: A performance evaluation of gradient field hog descriptor for sketch based image retrieval
  publication-title: Comput Vis Image Underst
  doi: 10.1016/j.cviu.2013.02.005
– year: 2022
  ident: CR40
  article-title: An overview of edge and object contour detection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.02.079
– ident: CR35
– ident: CR8
– volume: 26
  start-page: 530
  issue: 5
  year: 2004
  end-page: 549
  ident: CR29
  article-title: Learning to detect natural image boundaries using local brightness, color, and texture cues
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2004.1273918
– ident: CR25
– volume: 33
  issue: 11
  year: 2022
  ident: CR30
  article-title: Few shot cross equipment fault diagnosis method based on parameter optimization and feature mertic
  publication-title: Meas Sci Technol
  doi: 10.1088/1361-6501/ac8368
– volume: 122
  year: 2022
  ident: CR21
  article-title: AE-Net: fine-grained sketch-based image retrieval via attention-enhanced network
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2021.108291
– volume: 31
  start-page: 3737
  year: 2022
  end-page: 3751
  ident: CR5
  article-title: SceneSketcher-v2: fine-grained scene-level sketch-based image retrieval using adaptive GCNs
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2022.3175403
– ident: CR19
– volume: 29
  start-page: 8892
  year: 2020
  end-page: 8902
  ident: CR10
  article-title: Progressive cross-modal semantic network for zero-shot sketch-based image retrieval
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2020.3020383
– ident: CR3
– ident: CR15
– year: 2022
  ident: CR34
  article-title: Bio-inspired feature enhancement network for edge detection
  publication-title: Appl Intell
  doi: 10.1007/s10489-022-03202-2
– volume: 126
  year: 2022
  ident: CR1
  article-title: An efficient framework for zero-shot sketch-based image retrieval
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2022.108528
– ident: CR17
– ident: CR31
– ident: CR13
– ident: CR11
– ident: CR9
– ident: CR32
– volume: 23
  start-page: 761
  year: 2020
  end-page: 771
  ident: CR33
  article-title: Learning crisp boundaries using deep refinement network and adaptive weighting loss
  publication-title: IEEE Trans Multimedia
  doi: 10.1109/TMM.2020.2987685
– volume: 35
  start-page: 1
  issue: 4
  year: 2016
  end-page: 12
  ident: CR22
  article-title: The sketchy database: learning to retrieve badly drawn bunnies
  publication-title: ACM Trans Graph (TOG)
  doi: 10.1145/2897824.2925954
– ident: CR36
– volume: 35
  start-page: 2916
  issue: 12
  year: 2012
  end-page: 2929
  ident: CR38
  article-title: Iterative quantization: a procrustean approach to learning binary codes for large-scale image retrieval
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2012.193
– ident: CR7
– ident: CR26
– ident: CR24
– volume: 110
  year: 2021
  ident: 1096_CR28
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2020.107657
– ident: 1096_CR14
  doi: 10.1609/aaai.v34i07.6817
– ident: 1096_CR2
  doi: 10.1609/aaai.v36i2.20136
– ident: 1096_CR13
  doi: 10.1007/978-3-030-01225-0_19
– ident: 1096_CR25
– ident: 1096_CR7
  doi: 10.1109/CVPR.2019.00228
– ident: 1096_CR19
  doi: 10.1109/ICCV.1999.790410
– ident: 1096_CR15
  doi: 10.1109/CVPR.2018.00379
– ident: 1096_CR9
  doi: 10.24963/ijcai.2021/158
– ident: 1096_CR11
  doi: 10.1109/ICME46284.2020.9102940
– volume: 41
  start-page: 2251
  issue: 9
  year: 2018
  ident: 1096_CR23
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2018.2857768
– ident: 1096_CR18
  doi: 10.1007/978-3-030-58595-2_16
– volume: 117
  start-page: 790
  issue: 7
  year: 2013
  ident: 1096_CR20
  publication-title: Comput Vis Image Underst
  doi: 10.1016/j.cviu.2013.02.005
– volume: 26
  start-page: 530
  issue: 5
  year: 2004
  ident: 1096_CR29
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2004.1273918
– volume: 35
  start-page: 2916
  issue: 12
  year: 2012
  ident: 1096_CR38
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2012.193
– volume: 33
  issue: 11
  year: 2022
  ident: 1096_CR30
  publication-title: Meas Sci Technol
  doi: 10.1088/1361-6501/ac8368
– volume: 44
  start-page: 9181
  issue: 12
  year: 2021
  ident: 1096_CR6
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2021.3123315
– ident: 1096_CR35
  doi: 10.1109/CVPR.2016.90
– volume: 126
  year: 2022
  ident: 1096_CR1
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2022.108528
– ident: 1096_CR3
  doi: 10.1109/CVPR52688.2022.00107
– ident: 1096_CR31
  doi: 10.1088/1361-6501/acb075
– ident: 1096_CR32
  doi: 10.1109/ICCV.2015.164
– year: 2022
  ident: 1096_CR40
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.02.079
– ident: 1096_CR39
– ident: 1096_CR16
  doi: 10.1109/CVPR.2016.93
– ident: 1096_CR24
  doi: 10.1109/CVPR.2017.473
– volume: 35
  start-page: 1
  issue: 4
  year: 2016
  ident: 1096_CR22
  publication-title: ACM Trans Graph (TOG)
  doi: 10.1145/2897824.2925954
– year: 2022
  ident: 1096_CR34
  publication-title: Appl Intell
  doi: 10.1007/s10489-022-03202-2
– ident: 1096_CR12
  doi: 10.1109/CVPR.2019.00523
– ident: 1096_CR4
  doi: 10.1145/3123266.3127939
– ident: 1096_CR26
  doi: 10.1109/CVPR.2016.575
– volume: 23
  start-page: 761
  year: 2020
  ident: 1096_CR33
  publication-title: IEEE Trans Multimedia
  doi: 10.1109/TMM.2020.2987685
– ident: 1096_CR36
– ident: 1096_CR8
  doi: 10.1109/ICCV.2019.00376
– volume: 6
  start-page: 679
  year: 1986
  ident: 1096_CR27
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.1986.4767851
– volume: 29
  start-page: 8892
  year: 2020
  ident: 1096_CR10
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2020.3020383
– ident: 1096_CR17
  doi: 10.1145/3343031.3350900
– volume: 122
  year: 2022
  ident: 1096_CR21
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2021.108291
– volume: 31
  start-page: 3737
  year: 2022
  ident: 1096_CR5
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2022.3175403
– ident: 1096_CR37
  doi: 10.1109/CVPR.2017.247
SSID ssj0001778302
ssib044733412
ssib045327741
Score 2.253923
Snippet Zero-shot sketch-based image retrieval (ZS-SBIR) is a challenging task that involves searching natural images related to a given hand-drawn sketch under the...
Abstract Zero-shot sketch-based image retrieval (ZS-SBIR) is a challenging task that involves searching natural images related to a given hand-drawn sketch...
SourceID doaj
crossref
springer
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 6781
SubjectTerms Complexity
Computational Intelligence
Contour detection
Cross-modal retrieval
Data Structures and Information Theory
Engineering
Original Article
Sketch-based image retrieval
Zero-shot learning
SummonAdditionalLinks – databaseName: Springer Journals Complete - Open Access
  dbid: C24
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8QwDI4QMMDAG8HxUAY2iHRt3CYZeYoBTgyA2KqkTQABPdQWBn49Tq5XQAgkGFs5TWQ7ths7nwnZEcZpcOCY4v2cQeIEM31jWCTQ-dkc91g4Grg-E4OBvLlRF-2lsHpc7T5OSQZL3V12A4_1ztDHMJ_OSRka3qkkksrr9eEH5jiA4Bxapx1OWoTwIFe-y1ykFK7H5yt7P3_2i4cKQP7fsqTB-ZzM_2_ZC2SuDTbp_kg7FsmELZfI7CcIQnw673Bb62Vy5MGqcBQtbBNqtEpajurEKQa39M1WQ1bfDRtaP3hxM-8DC3r_hEaJVqE3FyruCrk6Ob48PGVtnwWWg4CGWcuFgRSswl9K6ZS2XGmTKIh1v8AATlsLTmguNcYOMTgeGS1NotEgWOFd3yqZLIelXSOUp04aiSFY4SwgheE6x0niJE78lXtYJ9GYt1negpD7XhiPWQefHPiVIb-ywK8sXie73ZjnEQTHr9QHXmQdpYfPDi-G1W3W7sZMCCUjnQjfMRWEk2jx-1w6k2pbpNLiMvfGwszaPV3_Mmfvb-QbZMY3rR8VxWySyaZ6sVtkOn9t7utqOyjzO5CE6Dc
  priority: 102
  providerName: Springer Nature
Title Contour detection network for zero-shot sketch-based image retrieval
URI https://link.springer.com/article/10.1007/s40747-023-01096-2
https://doaj.org/article/77981a57900047f8911038fb6aed68e4
Volume 9
WOSCitedRecordID wos000998630600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2198-6053
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001778302
  issn: 2199-4536
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2198-6053
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044733412
  issn: 2199-4536
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2198-6053
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001778302
  issn: 2199-4536
  databaseCode: P5Z
  dateStart: 20151201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2198-6053
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001778302
  issn: 2199-4536
  databaseCode: BENPR
  dateStart: 20151201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2198-6053
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001778302
  issn: 2199-4536
  databaseCode: PIMPY
  dateStart: 20151201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerOpen
  customDbUrl:
  eissn: 2198-6053
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001778302
  issn: 2199-4536
  databaseCode: C24
  dateStart: 20151201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BTtwwEB21tIf2gAptxS505QO31uomnsT2ERZQD2W1QgVxi-zEVhGQrTaBQ7--YycbqJDopddoIifjmbxxPH4PYF9ab9Cj51pMS46Zl9xOreWJJPBzJeVY_DVw8V3O5-ryUi8eSX2FnrCOHrhz3FcptUpMJoO4JUqvKDmnQnmbG1flykUmUKp6Hi2mKJIQpRD4ANyYiVSuNWbi3xcpA_FVUJ5LtKZnDHuY4-FcHQZaeU5wxsPOUc7Tv1Arkvs_2TmNgHTyDjb7SpIddG-wBS9cvQ1vTwca1uY9HAXuKbJjlWtjy1XN6q7tm1Gtyn671ZI3P5cta67D7PEAaRW7uqVvDFtFqS2Kww9wfnL8Y_aN97IJvESJLXdOSIs5Ok0rROW1cUIbm2lMzbSiesw4h14aoQyVAil6kVijbGYov50MSPYRNupl7XaAidwrq6iiqrxDsrDClDRImqVZOEGPI0jWbinKnlM8SFvcFAMbcnRlQa4soiuLdASfh3t-dYwaz1ofBm8PloENO16gGCn6GCn-FSMj-LKeq6JP0eaZMcf_Y8xdeBOU6bvOlz3YaFd37hO8Lu_bq2Y1gVeHx_PF2QRezlKcxNj9A7GT5Ok
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Bb9UwDI7QQGI7MAZM29hYDtwg0mvjNskRBtMQb08cBtotStpkTGx9U9vtwK_HzusrIMSk7djKaSLbsd3Y-czYa-WjgwhRGDmpBBRRCT_xXmQKnV-ocI-lo4FvUzWb6dNT82W4FNYtq92XKclkqcfLbkBY7wJ9jKB0TinQ8D4k6BXS64PfmOMASkoYnHY6aVGKQK6oy1xmDK6H8pU7___sXx4qAfn_kyVNzudw_X7LfsqeDMEmf7fQjg32IDTP2NofEIT4dDzitnbP2QcCq8JRvA59qtFqeLOoE-cY3PKfoZ2L7vu8590PErcgH1jz80s0SrxNvblQcV-wr4cfTw6OxNBnQVSgoBchSOWhhGDwl1JH44I0zhcGcjepMYBzIUBUTmqHsUMOUWbeaV84NAhBkevbZCvNvAlbjMsyaq8xBKtjAKTw0lU4SV7kBV25h22WLXlrqwGEnHphXNgRPjnxyyK_bOKXzbfZm3HM1QKC41bq9ySykZLgs9OLeXtmh91olTI6c4WijqmgokaLP5E6-tKFutQBl_l2KUw77Onuljl37ka-zx4fnRxP7fTT7PNLtkoN7BcFMrtspW-vwx57VN305137Kin2L4Gh6xw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9UwDI-mMSF2AMaHtvGVw24Q7bVxm-QIG0-bNp52ALRblLQJTEDf1BYO_PXYaV8ZQpuEOLZymtRxYie2f2ZsT_noIEIURs4qAUVUws-8F5lC5RcqXGPpauDjqVos9Pm5ObuSxZ-i3VcuySGngVCamn7_so77U-IbEO67QH0jyLVTCtyEb5FHio5fB7_xxwGUlDAq8HTrohQBXlHFucwYHBv5Lnev_-wf2iqB-v_lMU2KaH7v_3_hPrs7GqH89SA1W2wtNA_Y5hVoQnx6N-G5dg_ZIYFYYStehz7FbjW8GeLHORq9_Gdol6L7vOx594XEQJBurPnFN9yseJtqdqFAP2If5m_fHxyJsf6CqEBBL0KQykMJweBRU0fjgjTOFwZyN6vRsHMhQFROaoc2RQ5RZt5pXzjcKIIilfiYrTfLJmwzLsuovUbTrI4BkMJLV2EneZEXlIoPOyxb8dlWIzg51cj4aidY5cQvi_yyiV8232EvpzaXAzTHjdRvaPomSoLVTi-W7Sc7rlKrlNGZKxRVUgUVNWqCmdTRly7UpQ44zFeribXjWu9u6HP338hfsNtnh3N7erw4ecLuUF37IW7mKVvv2-_hGduofvQXXfs8yfgvgW70AA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Contour+detection+network+for+zero-shot+sketch-based+image+retrieval&rft.jtitle=Complex+%26+intelligent+systems&rft.au=Zhang%2C+Qing&rft.au=Zhang%2C+Jing&rft.au=Su%2C+Xiangdong&rft.au=Bao%2C+Feilong&rft.date=2023-12-01&rft.issn=2199-4536&rft.eissn=2198-6053&rft.volume=9&rft.issue=6&rft.spage=6781&rft.epage=6795&rft_id=info:doi/10.1007%2Fs40747-023-01096-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s40747_023_01096_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-4536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-4536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-4536&client=summon