Arabic Fake News Detection Based on Textual Analysis
Over the years, social media has had a considerable impact on the way we share information and send messages. With this comes the problem of the rapid distribution of fake news which can have negative impacts on both individuals and society. Given the potential negative influence, detecting unmonito...
Uloženo v:
| Vydáno v: | Arabian journal for science and engineering Ročník 47; číslo 8; s. 10453 - 10469 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.08.2022
Springer Nature B.V |
| Témata: | |
| ISSN: | 2193-567X, 1319-8025, 2191-4281 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Over the years, social media has had a considerable impact on the way we share information and send messages. With this comes the problem of the rapid distribution of fake news which can have negative impacts on both individuals and society. Given the potential negative influence, detecting unmonitored ‘fake news’ has become a critical issue in mainstream media. While there are recent studies that built machine learning models that detect fake news in several languages, lack of studies in detecting fake news in the Arabic language is scare. Hence, in this paper, we study the issue of fake news detection in the Arabic language based on textual analysis. In an attempt to address the challenges of authenticating news, we introduce a supervised machine learning model that classifies Arabic news articles based on their context’s credibility. We also introduce the first dataset of Arabic fake news articles composed through crowdsourcing. Subsequently, to extract textual features from the articles, we create a unique approach of forming Arabic lexical wordlists and design an Arabic Natural Language Processing tool to perform textual features extraction. The findings of this study promises great results and outperformed human performance in the same task. |
|---|---|
| AbstractList | Over the years, social media has had a considerable impact on the way we share information and send messages. With this comes the problem of the rapid distribution of fake news which can have negative impacts on both individuals and society. Given the potential negative influence, detecting unmonitored ‘fake news’ has become a critical issue in mainstream media. While there are recent studies that built machine learning models that detect fake news in several languages, lack of studies in detecting fake news in the Arabic language is scare. Hence, in this paper, we study the issue of fake news detection in the Arabic language based on textual analysis. In an attempt to address the challenges of authenticating news, we introduce a supervised machine learning model that classifies Arabic news articles based on their context’s credibility. We also introduce the first dataset of Arabic fake news articles composed through crowdsourcing. Subsequently, to extract textual features from the articles, we create a unique approach of forming Arabic lexical wordlists and design an Arabic Natural Language Processing tool to perform textual features extraction. The findings of this study promises great results and outperformed human performance in the same task. Over the years, social media has had a considerable impact on the way we share information and send messages. With this comes the problem of the rapid distribution of fake news which can have negative impacts on both individuals and society. Given the potential negative influence, detecting unmonitored 'fake news' has become a critical issue in mainstream media. While there are recent studies that built machine learning models that detect fake news in several languages, lack of studies in detecting fake news in the Arabic language is scare. Hence, in this paper, we study the issue of fake news detection in the Arabic language based on textual analysis. In an attempt to address the challenges of authenticating news, we introduce a supervised machine learning model that classifies Arabic news articles based on their context's credibility. We also introduce the first dataset of Arabic fake news articles composed through crowdsourcing. Subsequently, to extract textual features from the articles, we create a unique approach of forming Arabic lexical wordlists and design an Arabic Natural Language Processing tool to perform textual features extraction. The findings of this study promises great results and outperformed human performance in the same task.Over the years, social media has had a considerable impact on the way we share information and send messages. With this comes the problem of the rapid distribution of fake news which can have negative impacts on both individuals and society. Given the potential negative influence, detecting unmonitored 'fake news' has become a critical issue in mainstream media. While there are recent studies that built machine learning models that detect fake news in several languages, lack of studies in detecting fake news in the Arabic language is scare. Hence, in this paper, we study the issue of fake news detection in the Arabic language based on textual analysis. In an attempt to address the challenges of authenticating news, we introduce a supervised machine learning model that classifies Arabic news articles based on their context's credibility. We also introduce the first dataset of Arabic fake news articles composed through crowdsourcing. Subsequently, to extract textual features from the articles, we create a unique approach of forming Arabic lexical wordlists and design an Arabic Natural Language Processing tool to perform textual features extraction. The findings of this study promises great results and outperformed human performance in the same task. |
| Author | Al-Barhamtoshy, Hassanin Himdi, Hanen Weir, George Assiri, Fatmah |
| Author_xml | – sequence: 1 givenname: Hanen orcidid: 0000-0002-0182-2511 surname: Himdi fullname: Himdi, Hanen email: hanen.himdi@strath.ac.uk, hhimdi@uj.edu.sa organization: Department of Computer and Information Sciences, University of Strathclyde – sequence: 2 givenname: George surname: Weir fullname: Weir, George organization: Department of Computer and Information Sciences, University of Strathclyde – sequence: 3 givenname: Fatmah surname: Assiri fullname: Assiri, Fatmah organization: Department of Software Engineering, College of Computer Science and Engineering, University of Jeddah – sequence: 4 givenname: Hassanin surname: Al-Barhamtoshy fullname: Al-Barhamtoshy, Hassanin organization: IT Department, Faculty of Computing and Information Technology, King Abdulaziz University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35194540$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU9PGzEQxa2KqtCUL9BDtRIXLtt6PPaufUEKodBKqL1QqTfLcWapy2YX7N2WfHscQvqHQ04eyb_39Gbea7bX9R0x9hb4e-C8_pAAsTIlF1DySkpTrl6wAwEGSik07D3OWKqq_r7PDlMKcy41GgWAr9g-KjBSSX7A5DS6efDFubuh4gv9TsUZDeSH0HfFqUu0KPJwRffD6Npi2rl2lUJ6w142rk10-PRO2Lfzj1ezT-Xl14vPs-ll6WUth5J0rRolvKwWkiogVxnuNVace-UUEqGWoE0NjVZAMJew4KZRyjjMqAScsJON7-04X9LCUzdE19rbGJYurmzvgv3_pws_7HX_y2qNoGuRDY6fDGJ_N1Ia7DIkT23rOurHZEWFAqSGzE_Y0TP0Zz_GvHCmas5RocA19e7fRH-ibA-aAb0BfOxTitRYHwa3PmcOGFoL3K7rs5v6bK7PPtZnV1kqnkm37jtFuBGlDHfXFP_G3qF6AGsIqw0 |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3518204 crossref_primary_10_3390_app13148209 crossref_primary_10_1007_s42979_023_02382_z crossref_primary_10_1109_ACCESS_2023_3340520 crossref_primary_10_1145_3747290 crossref_primary_10_1109_TCSS_2022_3223786 crossref_primary_10_2478_acss_2024_0017 crossref_primary_10_7717_peerj_cs_2345 crossref_primary_10_1038_s41598_024_82111_5 crossref_primary_10_1007_s10462_024_10778_3 crossref_primary_10_1109_ACCESS_2024_3451128 crossref_primary_10_1007_s40031_025_01254_9 crossref_primary_10_1016_j_osnem_2025_100322 crossref_primary_10_1109_ACCESS_2023_3240373 crossref_primary_10_3390_app132413276 crossref_primary_10_1093_llc_fqae016 crossref_primary_10_3390_electronics12173676 crossref_primary_10_1007_s42979_025_04240_6 crossref_primary_10_1109_ACCESS_2022_3217522 crossref_primary_10_1109_ACCESS_2025_3595750 crossref_primary_10_1109_ACCESS_2024_3424531 crossref_primary_10_3390_app13127074 crossref_primary_10_3390_app12115720 crossref_primary_10_7717_peerj_cs_2432 crossref_primary_10_7717_peerj_cs_2693 crossref_primary_10_1016_j_neucom_2024_128078 crossref_primary_10_1109_ACCESS_2024_3392297 crossref_primary_10_3390_info13110527 crossref_primary_10_1016_j_eswa_2024_125024 crossref_primary_10_1016_j_knosys_2023_111023 crossref_primary_10_3390_app131910616 crossref_primary_10_58496_MJCSC_2025_016 |
| Cites_doi | 10.1111/lnc3.12275 10.2139/ssrn.3517916 10.21786/bbrc/12.2/10 10.1109/ICCCI48352.2020.9104177 10.1109/HICSS.2003.1173793 10.1023/B:GRUP.0000011944.62889.6f 10.1016/B978-0-12-386491-8.00004-9 10.1016/j.procs.2017.10.105 10.1002/pra2.2015.145052010083 10.1145/1644879.1644881 10.3115/v1/P14-1147 10.1109/IRI.2018.00073 10.1109/ICSSD47982.2019.9002823 10.1177/0146167203029005010 10.1177/2053951719843310 10.1109/ICOEI.2019.8862770 10.1080/07421222.2004.11045779 10.1177/2053168018786848 10.1163/9789004334113_020 10.1371/journal.pone.0105937 10.3115/1220575.1220619 10.1109/MIS.2019.2899143 10.18653/v1/2020.fever-1.2 10.1109/ACCESS.2020.3022867 10.1109/ISI.2019.8823378 10.1609/icwsm.v11i1.14976 10.1037/0022-3514.77.6.1296 10.1016/j.ins.2019.05.035 10.1080/01638530701739181 10.1016/j.procs.2020.04.247 10.1007/3-540-44853-5_7 10.1146/annurev.psych.54.101601.145041 10.18653/v1/P17-2067 10.1145/1363686.1364052 10.1109/MITP.2020.2978043 10.1109/SP.2012.34 10.1016/j.knosys.2019.104945 10.3115/1667583.1667679 10.18653/v1/P17-2102 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2022 The Author(s) 2022. The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION NPM 7X8 5PM |
| DOI | 10.1007/s13369-021-06449-y |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2191-4281 |
| EndPage | 10469 |
| ExternalDocumentID | PMC8831872 35194540 10_1007_s13369_021_06449_y |
| Genre | News |
| GroupedDBID | -EM 0R~ 203 2KG 406 AAAVM AACDK AAHNG AAIAL AAJBT AANZL AARHV AASML AATNV AATVU AAUYE AAYTO AAYZH ABAKF ABDBF ABDZT ABECU ABFTD ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTKH ABTMW ABXPI ACAOD ACBXY ACDTI ACHSB ACMDZ ACMLO ACOKC ACPIV ACUHS ACZOJ ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEJRE AEMSY AEOHA AESKC AEVLU AEXYK AFBBN AFLOW AFQWF AGAYW AGJBK AGMZJ AGQEE AGQMX AGRTI AHAVH AHBYD AHSBF AIAKS AIGIU AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF AOCGG AXYYD BGNMA C6C CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESX FERAY FIGPU FINBP FNLPD FSGXE GGCAI GQ6 GQ7 H13 HG6 I-F IKXTQ IWAJR J-C JBSCW JZLTJ L8X LLZTM M4Y MK~ NPVJJ NQJWS NU0 O9J PT4 ROL RSV SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG TUS UOJIU UTJUX UZXMN VFIZW Z5O Z7R Z7V Z7X Z7Y Z7Z Z81 Z83 Z85 Z88 ZMTXR ~8M AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION NPM 06D 0VY 23M 29~ 2KM 30V 408 5GY 96X AAJKR AARTL AAYIU AAYQN AAZMS ABTHY ACGFS ACKNC ADHHG ADHIR AEGNC AEJHL AENEX AEPYU AETCA AFWTZ AFZKB AGDGC AGWZB AGYKE AHYZX AIIXL AMKLP AMYQR ANMIH AYJHY ESBYG FFXSO FRRFC FYJPI GGRSB GJIRD GX1 HMJXF HRMNR HZ~ I0C IXD J9A KOV O93 OVT P9P R9I RLLFE S27 S3B SEG SHX T13 U2A UG4 VC2 W48 WK8 ~A9 7X8 5PM |
| ID | FETCH-LOGICAL-c474t-e875f52c46d4e61ea690c83600c5a53ee38418971f851e1b41d09f559a3a69413 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 39 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000754143100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2193-567X 1319-8025 |
| IngestDate | Tue Nov 04 01:41:13 EST 2025 Thu Jul 10 23:15:23 EDT 2025 Mon Jun 30 09:00:29 EDT 2025 Thu Jan 02 22:55:15 EST 2025 Sat Nov 29 02:51:44 EST 2025 Tue Nov 18 21:57:09 EST 2025 Fri Feb 21 02:46:07 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | Natural language processing Deceptive text Fake news Machine learning |
| Language | English |
| License | The Author(s) 2022. Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c474t-e875f52c46d4e61ea690c83600c5a53ee38418971f851e1b41d09f559a3a69413 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-News-1 |
| ORCID | 0000-0002-0182-2511 |
| OpenAccessLink | https://link.springer.com/10.1007/s13369-021-06449-y |
| PMID | 35194540 |
| PQID | 2700353238 |
| PQPubID | 2044268 |
| PageCount | 17 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8831872 proquest_miscellaneous_2632148188 proquest_journals_2700353238 pubmed_primary_35194540 crossref_citationtrail_10_1007_s13369_021_06449_y crossref_primary_10_1007_s13369_021_06449_y springer_journals_10_1007_s13369_021_06449_y |
| PublicationCentury | 2000 |
| PublicationDate | 2022-08-01 |
| PublicationDateYYYYMMDD | 2022-08-01 |
| PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
| PublicationTitle | Arabian journal for science and engineering |
| PublicationTitleAbbrev | Arab J Sci Eng |
| PublicationTitleAlternate | Arab J Sci Eng |
| PublicationYear | 2022 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | ZhouLBurgoonJKNunamakerJFTwitchellDAutomating linguistics-based cues for detecting deception in text-based asynchronous computer-mediated communicationGroup Decis. Negot.20041318110610.1023/B:GRUP.0000011944.62889.6f KapustaJHájekPMunkMBenkoĽComparison of fake and real news based on morphological analysisProcedia Comput. Sci.20201712285229310.1016/j.procs.2020.04.247 Ibrahim, M.: Al-Mu’jam al-Waseet. Instanbul: al Maktaba al Islamiyah, 1976 ZhouLBurgoonJKTwitchellDPQinTNunamakerJFA comparison of classification methods for predicting deception in computer-mediated communicationJ. Manag. Inf. Syst.200420413916610.1080/07421222.2004.11045779 ReisJCSCorreiaAMuraiFVelosoABenevenutoFCambriaESupervised learning for fake news detectionIEEE Intell. Syst.2019342768110.1109/MIS.2019.2899143 Weir, G.R.S.: The posit text profiling toolset. In: Proceedings of the 12th Conference on Association of Applied Linguistics, 2007 RaysonPWilsonALeechGPetersPCollinsPSmithAGrammatical word class variation within the British national corpus samplerNew Frontiers of Corpus Research2002AmsterdamRodopi295306 Manzoor, S.I.; Singla, J.; Nikita: Fake news detection using machine learning approaches: a systematic review. In: Proceedings of the International Conference on Trends Electron. Informatics, ICOEI 2019, ICOEI, pp. 230–234, 2019 Vinit Bhoir, S.: An efficient fake news detector. In: 2020 International Conference on Computer Communication and Informatics, ICCCI 2020, 2020. Zhou, X.; Zafarani, R.: Fake news: a survey of research, detection methods, and opportunities, 2018 Ireton, C.; Posetti, J.: Journalism. ‘FAKE NEWS’ & Handbook for Journalism Education and Training, 2018 Alsudias, L.; Rayson, P.: Classifying information sources in Arabic Twitter to support online monitoring of infectious diseases. In: Proceedings of the 3rd Working in Arabic Corpus Linguistics, pp. 22–30, 2019 Haouari, F.; Hasanain, M.; Suwaileh, R.; Elsayed, T.: ArCOV19-rumors: Arabic COVID-19 Twitter dataset for misinformation detection, 2020 Strapparava, C.; Mihalcea, R.: Learning to identify emotions in text. In: Proceedings of the ACM Symposium on Applied computing, pp. 1556–1560, 2008 Li, J.; Ott, M.; Cardie, C.; Hovy, E.: Towards a general rule for identifying deceptive opinion spam. In: 52nd Annual Meeting of the Association for Computational Linguistics, ACL 2014—Proceedings of the Conference, vol. 1, pp. 1566–1576, 2014. ElhadadMKLiKFGebaliFDetecting misleading information on COVID-19IEEE Access2020816520116521510.1109/ACCESS.2020.3022867 ElarnaotyMAbdelrahmanSFahmyAA machine learning approach for opinion holder extraction in Arabic languageInt. J. Artif. Intell. Appl.2012324563 Volkova, S.; Shaffer, K.; Jang, J.Y.; Hodas, N.: Separating facts from fiction: linguistic models to classify suspicious and trusted news posts on twitter. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 647–653, 2017 Torabi AsrFTaboadaMBig data and quality data for fake news and misinformation detectionBig Data Soc20196111410.1177/2053951719843310 LevineTRTruth-detection theory (TDT): a theory of human deception and deception detectionJ. Lang. Soc. Psychol.201433115 Mihalcea, R.; Strapparava, C.: The lie detector: explorations in the automatic recognition of deceptive language. In: ACL-IJCNLP 2009—Joint Conference of the 47th Annual Meeting of the Association for Computational Linguistics, 4th International Joint Conference on Natural Language Processing. AFNLP, Proceedings Conference, pp. 309–312, 2009 BondielliAMarcelloniFA survey on fake news and rumour detection techniquesInf. Sci.2019497385510.1016/j.ins.2019.05.035 FarghalyAShaalanKArabic natural language processing: challenges and solutionsACM Trans. Asian Lang. Inf. Process.20098412210.1145/1644879.1644881 Horne, B.D.; Adali, S.: This just in: fake news packs a lot in title, uses simpler, repetitive content in text body, more similar to satire than real news, 2017 Johansson, V.: Lexical diversity and lexical density in speech and writing: a developmental perspective. In: Lund University, Department of Linguistics and Phonetics Working Papers, vol. 53, pp. 61–79, 2008 ʻAbd al-Ghanī Abū al-ʻAzm, Muʿjam al-Ghanī al-zāhir. al-Rabāṭ: Muʼassasat al-Ghanī lil-Nashr, 2013 LimCChecking how fact-checkers checkRes. Polit.20185320531680187868410.1177/2053168018786848 Pérez-Rosas, V.; Kleinberg, B.; Lefevre, A.; Mihalcea, R.: Automatic detection of fake news, 2017 RubinVLChenYConroyNKDeception detection for news: three types of fakesProc. Assoc. Inf. Sci. Technol.20155211410.1002/pra2.2015.145052010083 DemestichasKRemoundouKAdamopoulouEFood for thought: fighting fake news and online disinformationIT Prof.2020222283410.1109/MITP.2020.2978043 Zhou, L.; Twitchell, D.P.; Qin, T.; Burgoon, J.K.; Nunamaker, J.F.: An exploratory study into deception detection in text-based computer-mediated communication. In: Proceedings of the 36th Annual Hawaii International Conference on System Sciences, 2003 NewmanMLPennebakerJWBerryDSRichardsJMLying words: predicting deception from linguistic stylesPersonal. Soc. Psychol. Bull.200329566567510.1177/0146167203029005010 MarkowitzDMHancockJTLinguistic traces of a scientific fraud: the case of diederik stapelPLoS ONE2014981510.1371/journal.pone.0105937 Afroz, S.; Brennan, M.; Greenstadt, R.: Detecting hoaxes, frauds, and deception in writing style online. In: Proceedings of the IEEE Symposium on Security and Privacy, pp. 461–475, 2012 BerenzenkoVMVerbal and nonverbal cues to deception in modern English discourseNauk. visnyk Kafedr. UNESCO KNLU2018366471 Nagoudi, E.M.B.; Elmadany, A.R.; Abdul-Mageed, M.; Alhindi, T.; Cavusoglu, H.: Machine generation and detection of Arabic manipulated and fake news. arXiv, pp. 69–84, 2020 Mohammad, S.M.; Salameh, M.; Kiritchenko, S.: Sentiment lexicons for Arabic social media. In: Proceedings of the 10th International Conference on Language Resources and Evaluation, LR 2016, pp. 33–37, 2016 TalwarVCrossmanAFrom little white lies to filthy liars: the evolution of honesty and deception in young childrenAdv. Child Dev. Behav.20114013917910.1016/B978-0-12-386491-8.00004-9 MustafaMEldeenASBani-AhmadSElfakiAOA comparative survey on Arabic stemming: approaches and challengesIntell. Inf. Manag.201709023967 Mubarak, H.: Build fast and accurate lemmatization for arabic, pp. 1128–1132, 2017 FleissJLLevinBPaikMCStatistical Methods for Rates and Proportions2013HobokenWiley1034.62113 Alqurashi, S.; Hamoui, B.; Alashaikh, A.; Alhindi, A.; Alanazi, E.: Eating garlic prevents COVID-19 infection: detecting misinformation on the Arabic content of Twitter, 2021 Mubarak, H.; Hassan, S.: ArCorona: analyzing Arabic tweets in the early days of coronavirus (COVID-19) pandemic, vol. 19, 2020 Wang, W.Y.: ‘Liar, liar pants on fire’: a new benchmark dataset for fake news detection. In: ACL 2017—55th Annual Meeting of the Association for Computational Linguistics Proceedings Conference (Long Papers), vol. 2, pp. 422–426, 2017 Lahlou, Y.; El Fkihi, S.; Faizi, R.: Automatic detection of fake news on online platforms: a survey. In: ICSSD 2019—International Conference on Smart Systems and Data science, pp. 0–3, 2019 Al-BarhamtoshyHMHemdiHTKhamisMMHimdiTFSemantic and sentiment analysis for Arabic texts using intelligent modelBiosci. Biotechnol. Res. Commun.201912226627410.21786/bbrc/12.2/10 Wilson, T.; Wiebe, J.; Hoffman, P.: Recognizing contextual polarity in phrase-level sentiment analysis. In: Proceedings of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing, pp. 347–354, 2005 CollinsBHoangDTNguyenNTHwangDFake News Types and Detection Models on Social Media A State-of-the-Art Survey, CCIS2020SingaporeSpringer Sheikh Ali, Z.; Mansour, W.; Elsayed, T.; Al‐Ali, A.: AraFacts: the first large arabic dataset of naturally occurring claims. In: Proceedings of the Sixth Arabic Natural Language Processing Workshop, pp. 231–236, 2021. M. ibn M. Ibn Manzur, Lisan al-’Arab. Bayrut: Dar sadir, 2007 HancockJTCurryLEGoorhaSWoodworthMOn lying and being lied to: a linguistic analysis of deception in computer-mediated communicationDiscourse Process.200845112310.1080/01638530701739181 Rangel, F.; Rosso, P.; Charfi, A.; Zaghouani, W.: Detecting deceptive tweets in Arabic for cyber-security. In: 2019 IEEE International Conference on Intelligence and Security Informatics, ISI 2019, pp. 86–91, 2019 Strapparava, C.; Valitutti, A.: Wordnet affect: an effective extension of wordnet. In: Fourth International Conference on Language Resources and Evaluation, vol. 4, pp. 1083–1086, 2004 RossoPRangelFFaríasIHCagninaLZaghouaniWCharfiAA survey on author profiling, deception, and irony detection for the Arabic languageLang. Linguist. Compass201812412110.1111/lnc3.12275 PennebakerJWMehlMRNiederhofferKGPsychological aspects of natural language use: our words, our selvesAnnu. Rev. Psychol.200354154757710.1146/annurev.psych.54.101601.145041 AlkhairMMeftouhKSmaïliKOthmanNAn Arabic corpus of fake news: collection, analysis and classificationCommun. Comput. Inf. Sci.20191108292302 SabbehSFBaatwahSYArabic news credibility on Twitter: an enhanced model using hybrid featuresJ. Theor. Appl. Inf. Technol.201896823272338 Mourad, A.; Darwish, K.: Subjectivity and sentiment annotation of modern standard Arabic newswire. In: Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pp. 55–64, 2013 KarouiJZitouneFBMoriceauVSOUKHRIA: towards an irony detection system for Arabic in social mediaProcedia Comput. Sci.201711716116810.1016/j.procs.2017.10.105 PennebakerJWKingLALinguistic styles: language use as an individual differenceJ. Pers. Soc. Psychol.19997761296131210.1037/0022-3514.77.6.1296 Burgoon, J.K.; Blair, J.P.; Qin, T.; Nunamaker, J.F.: Detecting deception through linguistic analysis. In Intelligence and Security Informatics: 1st NSF/NIJ Symposium, ISI 2003 Tucson, AZ, USA, June 2003, Proceedings, pp. 91–101. Springer, Berlin, 2003 Khouja, J.: Stance prediction and claim ve JT Hancock (6449_CR17) 2008; 45 6449_CR37 6449_CR36 6449_CR35 6449_CR34 JW Pennebaker (6449_CR24) 2003; 54 6449_CR33 P Rosso (6449_CR9) 2018; 12 6449_CR31 L Zhou (6449_CR61) 2004; 20 JW Pennebaker (6449_CR23) 1999; 77 JCS Reis (6449_CR65) 2019; 34 M Alkhair (6449_CR25) 2019; 1108 ML Newman (6449_CR18) 2003; 29 J Karoui (6449_CR41) 2017; 117 M Attia (6449_CR28) 2008 6449_CR39 6449_CR38 M Mustafa (6449_CR50) 2017; 09 6449_CR47 6449_CR45 6449_CR42 6449_CR40 L Zhou (6449_CR68) 2004; 13 C Lim (6449_CR32) 2018; 5 B Collins (6449_CR5) 2020 ML Newman (6449_CR63) 2003; 29 J Kapusta (6449_CR30) 2020; 171 6449_CR15 6449_CR59 6449_CR57 VL Rubin (6449_CR10) 2015; 52 6449_CR56 6449_CR11 MK Elhadad (6449_CR43) 2020; 8 6449_CR55 6449_CR54 6449_CR53 DM Markowitz (6449_CR22) 2014; 9 6449_CR52 6449_CR51 SM Alzanin (6449_CR44) 2019; 185 F Torabi Asr (6449_CR19) 2019; 6 VM Berenzenko (6449_CR20) 2018; 36 HM Al-Barhamtoshy (6449_CR46) 2019; 12 TR Levine (6449_CR12) 2014; 33 SF Sabbeh (6449_CR48) 2018; 96 6449_CR16 6449_CR26 6449_CR7 K Demestichas (6449_CR14) 2020; 22 6449_CR8 6449_CR67 6449_CR66 6449_CR3 6449_CR64 6449_CR4 6449_CR1 6449_CR62 6449_CR2 6449_CR60 JL Fleiss (6449_CR49) 2013 A Farghaly (6449_CR6) 2009; 8 P Rayson (6449_CR21) 2002 M Elarnaoty (6449_CR58) 2012; 3 A Bondielli (6449_CR29) 2019; 497 V Talwar (6449_CR13) 2011; 40 6449_CR27 |
| References_xml | – reference: DemestichasKRemoundouKAdamopoulouEFood for thought: fighting fake news and online disinformationIT Prof.2020222283410.1109/MITP.2020.2978043 – reference: PennebakerJWMehlMRNiederhofferKGPsychological aspects of natural language use: our words, our selvesAnnu. Rev. Psychol.200354154757710.1146/annurev.psych.54.101601.145041 – reference: Lagutina, K., et al.: A survey on stylometric text features, pp. 184–195, 2020 – reference: ReisJCSCorreiaAMuraiFVelosoABenevenutoFCambriaESupervised learning for fake news detectionIEEE Intell. Syst.2019342768110.1109/MIS.2019.2899143 – reference: Mohammad, S.M.; Salameh, M.; Kiritchenko, S.: Sentiment lexicons for Arabic social media. In: Proceedings of the 10th International Conference on Language Resources and Evaluation, LR 2016, pp. 33–37, 2016 – reference: Haouari, F.; Hasanain, M.; Suwaileh, R.; Elsayed, T.: ArCOV19-rumors: Arabic COVID-19 Twitter dataset for misinformation detection, 2020 – reference: Weir, G.R.S.: The posit text profiling toolset. In: Proceedings of the 12th Conference on Association of Applied Linguistics, 2007 – reference: Mubarak, H.; Hassan, S.: ArCorona: analyzing Arabic tweets in the early days of coronavirus (COVID-19) pandemic, vol. 19, 2020 – reference: RossoPRangelFFaríasIHCagninaLZaghouaniWCharfiAA survey on author profiling, deception, and irony detection for the Arabic languageLang. Linguist. Compass201812412110.1111/lnc3.12275 – reference: RubinVLChenYConroyNKDeception detection for news: three types of fakesProc. Assoc. Inf. Sci. Technol.20155211410.1002/pra2.2015.145052010083 – reference: Mihalcea, R.; Strapparava, C.: The lie detector: explorations in the automatic recognition of deceptive language. In: ACL-IJCNLP 2009—Joint Conference of the 47th Annual Meeting of the Association for Computational Linguistics, 4th International Joint Conference on Natural Language Processing. AFNLP, Proceedings Conference, pp. 309–312, 2009 – reference: AlkhairMMeftouhKSmaïliKOthmanNAn Arabic corpus of fake news: collection, analysis and classificationCommun. Comput. Inf. Sci.20191108292302 – reference: KarouiJZitouneFBMoriceauVSOUKHRIA: towards an irony detection system for Arabic in social mediaProcedia Comput. Sci.201711716116810.1016/j.procs.2017.10.105 – reference: M. ibn M. Ibn Manzur, Lisan al-’Arab. Bayrut: Dar sadir, 2007 – reference: MustafaMEldeenASBani-AhmadSElfakiAOA comparative survey on Arabic stemming: approaches and challengesIntell. Inf. Manag.201709023967 – reference: Knshnan, S.; Chen, M.: Identifying tweets with fake news. In: Proceedings—2018 IEEE 19th International Conference on Information Reuse and Integration for Data Science. IRI 2018, vol. 67, pp. 460–464, 2018 – reference: ElarnaotyMAbdelrahmanSFahmyAA machine learning approach for opinion holder extraction in Arabic languageInt. J. Artif. Intell. Appl.2012324563 – reference: ʻAbd al-Ghanī Abū al-ʻAzm, Muʿjam al-Ghanī al-zāhir. al-Rabāṭ: Muʼassasat al-Ghanī lil-Nashr, 2013 – reference: Mubarak, H.: Build fast and accurate lemmatization for arabic, pp. 1128–1132, 2017 – reference: NewmanMLPennebakerJWBerryDSRichardsJMLying words: predicting deception from linguistic stylesPersonal. Soc. Psychol. Bull.200329566567510.1177/0146167203029005010 – reference: ElhadadMKLiKFGebaliFDetecting misleading information on COVID-19IEEE Access2020816520116521510.1109/ACCESS.2020.3022867 – reference: Ibrahim, M.: Al-Mu’jam al-Waseet. Instanbul: al Maktaba al Islamiyah, 1976 – reference: Volkova, S.; Shaffer, K.; Jang, J.Y.; Hodas, N.: Separating facts from fiction: linguistic models to classify suspicious and trusted news posts on twitter. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 647–653, 2017 – reference: RaysonPWilsonALeechGPetersPCollinsPSmithAGrammatical word class variation within the British national corpus samplerNew Frontiers of Corpus Research2002AmsterdamRodopi295306 – reference: HancockJTCurryLEGoorhaSWoodworthMOn lying and being lied to: a linguistic analysis of deception in computer-mediated communicationDiscourse Process.200845112310.1080/01638530701739181 – reference: SabbehSFBaatwahSYArabic news credibility on Twitter: an enhanced model using hybrid featuresJ. Theor. Appl. Inf. Technol.201896823272338 – reference: Vinit Bhoir, S.: An efficient fake news detector. In: 2020 International Conference on Computer Communication and Informatics, ICCCI 2020, 2020. – reference: ZhouLBurgoonJKTwitchellDPQinTNunamakerJFA comparison of classification methods for predicting deception in computer-mediated communicationJ. Manag. Inf. Syst.200420413916610.1080/07421222.2004.11045779 – reference: Nagoudi, E.M.B.; Elmadany, A.R.; Abdul-Mageed, M.; Alhindi, T.; Cavusoglu, H.: Machine generation and detection of Arabic manipulated and fake news. arXiv, pp. 69–84, 2020 – reference: Lahlou, Y.; El Fkihi, S.; Faizi, R.: Automatic detection of fake news on online platforms: a survey. In: ICSSD 2019—International Conference on Smart Systems and Data science, pp. 0–3, 2019 – reference: ZhouLBurgoonJKNunamakerJFTwitchellDAutomating linguistics-based cues for detecting deception in text-based asynchronous computer-mediated communicationGroup Decis. Negot.20041318110610.1023/B:GRUP.0000011944.62889.6f – reference: Strapparava, C.; Mihalcea, R.: Learning to identify emotions in text. In: Proceedings of the ACM Symposium on Applied computing, pp. 1556–1560, 2008 – reference: Radcliffe, D.; Abuhmaid, H.: Social media in the Middle East: 2019 in review. SSRN Electron. J. 2020 – reference: Mourad, A.; Darwish, K.: Subjectivity and sentiment annotation of modern standard Arabic newswire. In: Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pp. 55–64, 2013 – reference: Afroz, S.; Brennan, M.; Greenstadt, R.: Detecting hoaxes, frauds, and deception in writing style online. In: Proceedings of the IEEE Symposium on Security and Privacy, pp. 461–475, 2012 – reference: LevineTRTruth-detection theory (TDT): a theory of human deception and deception detectionJ. Lang. Soc. Psychol.201433115 – reference: Johansson, V.: Lexical diversity and lexical density in speech and writing: a developmental perspective. In: Lund University, Department of Linguistics and Phonetics Working Papers, vol. 53, pp. 61–79, 2008 – reference: Pérez-Rosas, V.; Kleinberg, B.; Lefevre, A.; Mihalcea, R.: Automatic detection of fake news, 2017 – reference: Zhou, L.; Twitchell, D.P.; Qin, T.; Burgoon, J.K.; Nunamaker, J.F.: An exploratory study into deception detection in text-based computer-mediated communication. In: Proceedings of the 36th Annual Hawaii International Conference on System Sciences, 2003 – reference: FarghalyAShaalanKArabic natural language processing: challenges and solutionsACM Trans. Asian Lang. Inf. Process.20098412210.1145/1644879.1644881 – reference: Torabi AsrFTaboadaMBig data and quality data for fake news and misinformation detectionBig Data Soc20196111410.1177/2053951719843310 – reference: MarkowitzDMHancockJTLinguistic traces of a scientific fraud: the case of diederik stapelPLoS ONE2014981510.1371/journal.pone.0105937 – reference: Wang, W.Y.: ‘Liar, liar pants on fire’: a new benchmark dataset for fake news detection. In: ACL 2017—55th Annual Meeting of the Association for Computational Linguistics Proceedings Conference (Long Papers), vol. 2, pp. 422–426, 2017 – reference: Sheikh Ali, Z.; Mansour, W.; Elsayed, T.; Al‐Ali, A.: AraFacts: the first large arabic dataset of naturally occurring claims. In: Proceedings of the Sixth Arabic Natural Language Processing Workshop, pp. 231–236, 2021. – reference: BerenzenkoVMVerbal and nonverbal cues to deception in modern English discourseNauk. visnyk Kafedr. UNESCO KNLU2018366471 – reference: AttiaMHandling Arabic Morphological and Syntactic Ambiguity Within the LFG Framework with a View to Machine Translation2008University of Manchester Manchester – reference: Alsudias, L.; Rayson, P.: Classifying information sources in Arabic Twitter to support online monitoring of infectious diseases. In: Proceedings of the 3rd Working in Arabic Corpus Linguistics, pp. 22–30, 2019 – reference: Horne, B.D.; Adali, S.: This just in: fake news packs a lot in title, uses simpler, repetitive content in text body, more similar to satire than real news, 2017 – reference: Manzoor, S.I.; Singla, J.; Nikita: Fake news detection using machine learning approaches: a systematic review. In: Proceedings of the International Conference on Trends Electron. Informatics, ICOEI 2019, ICOEI, pp. 230–234, 2019 – reference: Wilson, T.; Wiebe, J.; Hoffman, P.: Recognizing contextual polarity in phrase-level sentiment analysis. In: Proceedings of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing, pp. 347–354, 2005 – reference: Al-BarhamtoshyHMHemdiHTKhamisMMHimdiTFSemantic and sentiment analysis for Arabic texts using intelligent modelBiosci. Biotechnol. Res. Commun.201912226627410.21786/bbrc/12.2/10 – reference: FleissJLLevinBPaikMCStatistical Methods for Rates and Proportions2013HobokenWiley1034.62113 – reference: Strapparava, C.; Valitutti, A.: Wordnet affect: an effective extension of wordnet. In: Fourth International Conference on Language Resources and Evaluation, vol. 4, pp. 1083–1086, 2004 – reference: Burgoon, J.K.; Blair, J.P.; Qin, T.; Nunamaker, J.F.: Detecting deception through linguistic analysis. In Intelligence and Security Informatics: 1st NSF/NIJ Symposium, ISI 2003 Tucson, AZ, USA, June 2003, Proceedings, pp. 91–101. Springer, Berlin, 2003 – reference: Ireton, C.; Posetti, J.: Journalism. ‘FAKE NEWS’ & Handbook for Journalism Education and Training, 2018 – reference: NewmanMLPennebakerJWBerryDSRichardsJMPersonality and social psychology bulletin lying words: predicting deception from linguistic stylesPersonal. Soc. Psychol. Bull.200329566567510.1177/0146167203029005010 – reference: CollinsBHoangDTNguyenNTHwangDFake News Types and Detection Models on Social Media A State-of-the-Art Survey, CCIS2020SingaporeSpringer – reference: Khouja, J.: Stance prediction and claim verification: an Arabic perspective, pp. 8–17, 2020 – reference: AlzaninSMAzmiAMRumor detection in Arabic tweets using semi-supervised and unsupervised expectation–maximizationKnowl. Based Syst.201918510494510.1016/j.knosys.2019.104945 – reference: Rangel, F.; Rosso, P.; Charfi, A.; Zaghouani, W.: Detecting deceptive tweets in Arabic for cyber-security. In: 2019 IEEE International Conference on Intelligence and Security Informatics, ISI 2019, pp. 86–91, 2019 – reference: Zhou, X.; Zafarani, R.: Fake news: a survey of research, detection methods, and opportunities, 2018 – reference: PennebakerJWKingLALinguistic styles: language use as an individual differenceJ. Pers. Soc. Psychol.19997761296131210.1037/0022-3514.77.6.1296 – reference: TalwarVCrossmanAFrom little white lies to filthy liars: the evolution of honesty and deception in young childrenAdv. Child Dev. Behav.20114013917910.1016/B978-0-12-386491-8.00004-9 – reference: KapustaJHájekPMunkMBenkoĽComparison of fake and real news based on morphological analysisProcedia Comput. Sci.20201712285229310.1016/j.procs.2020.04.247 – reference: Li, J.; Ott, M.; Cardie, C.; Hovy, E.: Towards a general rule for identifying deceptive opinion spam. In: 52nd Annual Meeting of the Association for Computational Linguistics, ACL 2014—Proceedings of the Conference, vol. 1, pp. 1566–1576, 2014. – reference: BondielliAMarcelloniFA survey on fake news and rumour detection techniquesInf. Sci.2019497385510.1016/j.ins.2019.05.035 – reference: LimCChecking how fact-checkers checkRes. Polit.20185320531680187868410.1177/2053168018786848 – reference: Alqurashi, S.; Hamoui, B.; Alashaikh, A.; Alhindi, A.; Alanazi, E.: Eating garlic prevents COVID-19 infection: detecting misinformation on the Arabic content of Twitter, 2021 – volume: 12 start-page: 1 issue: 4 year: 2018 ident: 6449_CR9 publication-title: Lang. Linguist. Compass doi: 10.1111/lnc3.12275 – volume: 1108 start-page: 292 year: 2019 ident: 6449_CR25 publication-title: Commun. Comput. Inf. Sci. – volume: 36 start-page: 64 year: 2018 ident: 6449_CR20 publication-title: Nauk. visnyk Kafedr. UNESCO KNLU – ident: 6449_CR39 – ident: 6449_CR1 doi: 10.2139/ssrn.3517916 – volume: 12 start-page: 266 issue: 2 year: 2019 ident: 6449_CR46 publication-title: Biosci. Biotechnol. Res. Commun. doi: 10.21786/bbrc/12.2/10 – ident: 6449_CR64 doi: 10.1109/ICCCI48352.2020.9104177 – ident: 6449_CR51 – ident: 6449_CR60 doi: 10.1109/HICSS.2003.1173793 – volume: 13 start-page: 81 issue: 1 year: 2004 ident: 6449_CR68 publication-title: Group Decis. Negot. doi: 10.1023/B:GRUP.0000011944.62889.6f – volume-title: Fake News Types and Detection Models on Social Media A State-of-the-Art Survey, CCIS year: 2020 ident: 6449_CR5 – volume: 40 start-page: 139 year: 2011 ident: 6449_CR13 publication-title: Adv. Child Dev. Behav. doi: 10.1016/B978-0-12-386491-8.00004-9 – volume: 117 start-page: 161 year: 2017 ident: 6449_CR41 publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2017.10.105 – volume: 52 start-page: 1 issue: 1 year: 2015 ident: 6449_CR10 publication-title: Proc. Assoc. Inf. Sci. Technol. doi: 10.1002/pra2.2015.145052010083 – ident: 6449_CR59 – volume: 8 start-page: 1 issue: 4 year: 2009 ident: 6449_CR6 publication-title: ACM Trans. Asian Lang. Inf. Process. doi: 10.1145/1644879.1644881 – ident: 6449_CR62 doi: 10.3115/v1/P14-1147 – ident: 6449_CR27 doi: 10.1109/IRI.2018.00073 – ident: 6449_CR40 – ident: 6449_CR11 doi: 10.1109/ICSSD47982.2019.9002823 – volume: 29 start-page: 665 issue: 5 year: 2003 ident: 6449_CR18 publication-title: Personal. Soc. Psychol. Bull. doi: 10.1177/0146167203029005010 – volume: 6 start-page: 1 issue: 1 year: 2019 ident: 6449_CR19 publication-title: Big Data Soc doi: 10.1177/2053951719843310 – volume: 3 start-page: 45 issue: 2 year: 2012 ident: 6449_CR58 publication-title: Int. J. Artif. Intell. Appl. – ident: 6449_CR26 doi: 10.1109/ICOEI.2019.8862770 – volume: 20 start-page: 139 issue: 4 year: 2004 ident: 6449_CR61 publication-title: J. Manag. Inf. Syst. doi: 10.1080/07421222.2004.11045779 – ident: 6449_CR54 – volume: 5 start-page: 205316801878684 issue: 3 year: 2018 ident: 6449_CR32 publication-title: Res. Polit. doi: 10.1177/2053168018786848 – volume-title: Handling Arabic Morphological and Syntactic Ambiguity Within the LFG Framework with a View to Machine Translation year: 2008 ident: 6449_CR28 – ident: 6449_CR33 – start-page: 295 volume-title: New Frontiers of Corpus Research year: 2002 ident: 6449_CR21 doi: 10.1163/9789004334113_020 – volume: 9 start-page: 1 issue: 8 year: 2014 ident: 6449_CR22 publication-title: PLoS ONE doi: 10.1371/journal.pone.0105937 – ident: 6449_CR4 – ident: 6449_CR57 doi: 10.3115/1220575.1220619 – volume: 34 start-page: 76 issue: 2 year: 2019 ident: 6449_CR65 publication-title: IEEE Intell. Syst. doi: 10.1109/MIS.2019.2899143 – ident: 6449_CR8 – ident: 6449_CR38 doi: 10.18653/v1/2020.fever-1.2 – volume: 8 start-page: 165201 year: 2020 ident: 6449_CR43 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3022867 – ident: 6449_CR37 – ident: 6449_CR47 doi: 10.1109/ISI.2019.8823378 – ident: 6449_CR31 doi: 10.1609/icwsm.v11i1.14976 – volume-title: Statistical Methods for Rates and Proportions year: 2013 ident: 6449_CR49 – ident: 6449_CR34 – ident: 6449_CR53 – volume: 77 start-page: 1296 issue: 6 year: 1999 ident: 6449_CR23 publication-title: J. Pers. Soc. Psychol. doi: 10.1037/0022-3514.77.6.1296 – volume: 497 start-page: 38 year: 2019 ident: 6449_CR29 publication-title: Inf. Sci. doi: 10.1016/j.ins.2019.05.035 – volume: 45 start-page: 1 issue: 1 year: 2008 ident: 6449_CR17 publication-title: Discourse Process. doi: 10.1080/01638530701739181 – volume: 171 start-page: 2285 year: 2020 ident: 6449_CR30 publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2020.04.247 – ident: 6449_CR7 – ident: 6449_CR16 doi: 10.1007/3-540-44853-5_7 – ident: 6449_CR42 – volume: 33 start-page: 1 year: 2014 ident: 6449_CR12 publication-title: J. Lang. Soc. Psychol. – ident: 6449_CR67 – volume: 96 start-page: 2327 issue: 8 year: 2018 ident: 6449_CR48 publication-title: J. Theor. Appl. Inf. Technol. – volume: 54 start-page: 547 issue: 1 year: 2003 ident: 6449_CR24 publication-title: Annu. Rev. Psychol. doi: 10.1146/annurev.psych.54.101601.145041 – ident: 6449_CR36 – ident: 6449_CR45 doi: 10.18653/v1/P17-2067 – volume: 29 start-page: 665 issue: 5 year: 2003 ident: 6449_CR63 publication-title: Personal. Soc. Psychol. Bull. doi: 10.1177/0146167203029005010 – ident: 6449_CR55 doi: 10.1145/1363686.1364052 – volume: 22 start-page: 28 issue: 2 year: 2020 ident: 6449_CR14 publication-title: IT Prof. doi: 10.1109/MITP.2020.2978043 – ident: 6449_CR56 – ident: 6449_CR3 doi: 10.1109/SP.2012.34 – ident: 6449_CR35 – ident: 6449_CR52 – volume: 185 start-page: 104945 year: 2019 ident: 6449_CR44 publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2019.104945 – ident: 6449_CR2 – ident: 6449_CR15 doi: 10.3115/1667583.1667679 – ident: 6449_CR66 doi: 10.18653/v1/P17-2102 – volume: 09 start-page: 39 issue: 02 year: 2017 ident: 6449_CR50 publication-title: Intell. Inf. Manag. |
| SSID | ssib048395113 ssj0001916267 ssj0061873 |
| Score | 2.4882011 |
| Snippet | Over the years, social media has had a considerable impact on the way we share information and send messages. With this comes the problem of the rapid... |
| SourceID | pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 10453 |
| SubjectTerms | Arabic language Computer Engineering and Computer Science Engineering Feature extraction Human performance Humanities and Social Sciences Machine learning multidisciplinary Natural language processing News Research Article-Computer Engineering and Computer Science Science Text analysis |
| Title | Arabic Fake News Detection Based on Textual Analysis |
| URI | https://link.springer.com/article/10.1007/s13369-021-06449-y https://www.ncbi.nlm.nih.gov/pubmed/35194540 https://www.proquest.com/docview/2700353238 https://www.proquest.com/docview/2632148188 https://pubmed.ncbi.nlm.nih.gov/PMC8831872 |
| Volume | 47 |
| WOSCitedRecordID | wos000754143100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer Online Journals customDbUrl: eissn: 2191-4281 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001916267 issn: 2193-567X databaseCode: RSV dateStart: 20110101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4V2gMcoOUZoChI3Iol_EhsH3mteukKFYr2FjnORKxaBbQPJP4942yy2y0PqVyiSJ448djjGWdmvgE4dIbUdhlCpWyumSolZ0agY96KXDiFpS8mxSZ0t2t6PXvZJIUN22j31iVZ79SzZDcpU8tCSAGpUWXZ4wJ8JHVngjj-vLppV5EilU9WhJz9aSELSNSlZEk6JUtS3WuyZ17udl5DPTM7n0dP_uNCrTVTZ_V9Y_oMK40lGp9Mls4X-IDVGiz_hU-4Dupk4PK-jzvuN8ZhO4zPcVTHblXxKam_Iqaba9rex6GjBt5kA351Lq7PvrOmzALzSqsRQzqylInwKi0UphwdHZh9yO049olLJKI0ihureUnWGfJc8eLYlnQScdKFNFi5CYvVXYXbEAvLEy_JhOAaVS611agLFDbNlS2pjwh4y9rMNxjkoRTGn2yGnhw4khFHspoj2WME36bP3E8QON6k3mtnLGukcZgF57pMJFknERxMm0mOgnPEVXg3Jpo0lGwi84VotiYTPH1dKGIYkAoj0HNTPyUIGN3zLVX_tsbqNoY2TS0iOGoXwOyzXh_Fzv-R78KSCFkZdVziHiyOBmP8Cp_8w6g_HOzDgu4ZunYvf-zXkvIEMMwHmQ |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZT9wwEB5xVII-0JajTaEQJN7AEj4Sx48L7YqK7Qq1C9q3yHEm6qpVqPaoxL_vOJvsdktBgrdImTjx2DPzOXMBHNmEzHbhQ6VMppkqJGeJQMucEZmwCguXT5tN6G436ffNVZ0UNmqi3RuXZKWp58luUsaG-ZACMqPKsLtlWFVksXwg39dvN80uUmTyCUXI-Z8WQkCiaiVL0ilZFOt-nT3z_2EXLdQ92Hk_evIfF2plmdqvnjen17BRI9GwNd06b2AJy014-Vd9wi1QraHNBi5s2x8YenUYfsRxFbtVhmdk_vKQLnqk3id-oLq8yTZctz_1zi9Y3WaBOaXVmCEdWYpIOBXnCmOOlg7Mzud2nLrIRhJRJoonRvOC0BnyTPH81BR0ErHS-jRYuQMr5W2J7yAUhkdOEoTgGlUmtdGocxQmzpQpaIwAeMPa1NU1yH0rjJ_pvHqy50hKHEkrjqR3ARzPnvk1rcDxKPVes2JpLY2j1DvXZSQJnQRwOLtNcuSdI7bE2wnRxL5lE8EXonk7XeDZ63wTQ1-pMAC9sPQzAl-je_FOOfhe1epOElKaWgRw0myA-Wc9PIv3TyM_gLWL3pdO2vncvdyFdeEzNKoYxT1YGQ8n-AFeuN_jwWi4X0nKHy0dCIk |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9QwDLdgIMQe-NygMKBIvEG05aNN8zg2TiDQaRID3VuVpq522tRNtx7S_vvZ_bjbsYGEeKsUN21cJ7Zr-2eAdz4jtV1xqpQrrDCVliJT6EVwqlDeYBXKrtmEHY-zycQdXKnib7Pdh5BkV9PAKE11s31WVtvLwjetUyc4vYBUqnHi4jbcMdw0iP317z8HiTKk_smi0Mu_LmQNqbatLO1ULZLUTvpKmpunXdVW10zQ65mUv4VTWy01evj_63sED3oLNd7tROox3ML6CaxfwS18CmZ35otpiEf-GGM-JuN9bNqcrjr-SGqxjOnikI79OU_Uw55swI_Rp8O9z6JvvyCCsaYRSK5Mlahg0tJgKtGTIx245mMnJD7RiDozMnNWVmS1oSyMLHdcRR6K157LY_UmrNWnNT6HWDmZBE2mhbRoCm2dRVuicmlhXEVzRCAHNuehxybnFhkn-RJVmTmSE0fyliP5RQTvF_ecdcgcf6XeGr5e3u_S85yD7jrRZLVE8HYxTPuLgya-xtM50aTcyonMGqJ51n3sxeO4uSEjGEZgV8RgQcDY3asj9fSoxfDOMjpMrYrgwyAMy9f68ype_Bv5G7h3sD_Kv30Zf30J9xUXbrSpi1uw1szm-Aruhl_N9Hz2ut00l_-lEW0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Arabic+Fake+News+Detection+Based+on+Textual+Analysis&rft.jtitle=Arabian+journal+for+science+and+engineering+%282011%29&rft.au=Himdi%2C+Hanen&rft.au=Weir%2C+George&rft.au=Assiri%2C+Fatmah&rft.au=Al-Barhamtoshy%2C+Hassanin&rft.date=2022-08-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=2193-567X&rft.eissn=2191-4281&rft.volume=47&rft.issue=8&rft.spage=10453&rft.epage=10469&rft_id=info:doi/10.1007%2Fs13369-021-06449-y&rft.externalDocID=10_1007_s13369_021_06449_y |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2193-567X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2193-567X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2193-567X&client=summon |