Arabic Fake News Detection Based on Textual Analysis

Over the years, social media has had a considerable impact on the way we share information and send messages. With this comes the problem of the rapid distribution of fake news which can have negative impacts on both individuals and society. Given the potential negative influence, detecting unmonito...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Arabian journal for science and engineering Ročník 47; číslo 8; s. 10453 - 10469
Hlavní autoři: Himdi, Hanen, Weir, George, Assiri, Fatmah, Al-Barhamtoshy, Hassanin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2022
Springer Nature B.V
Témata:
ISSN:2193-567X, 1319-8025, 2191-4281
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Over the years, social media has had a considerable impact on the way we share information and send messages. With this comes the problem of the rapid distribution of fake news which can have negative impacts on both individuals and society. Given the potential negative influence, detecting unmonitored ‘fake news’ has become a critical issue in mainstream media. While there are recent studies that built machine learning models that detect fake news in several languages, lack of studies in detecting fake news in the Arabic language is scare. Hence, in this paper, we study the issue of fake news detection in the Arabic language based on textual analysis. In an attempt to address the challenges of authenticating news, we introduce a supervised machine learning model that classifies Arabic news articles based on their context’s credibility. We also introduce the first dataset of Arabic fake news articles composed through crowdsourcing. Subsequently, to extract textual features from the articles, we create a unique approach of forming Arabic lexical wordlists and design an Arabic Natural Language Processing tool to perform textual features extraction. The findings of this study promises great results and outperformed human performance in the same task.
AbstractList Over the years, social media has had a considerable impact on the way we share information and send messages. With this comes the problem of the rapid distribution of fake news which can have negative impacts on both individuals and society. Given the potential negative influence, detecting unmonitored ‘fake news’ has become a critical issue in mainstream media. While there are recent studies that built machine learning models that detect fake news in several languages, lack of studies in detecting fake news in the Arabic language is scare. Hence, in this paper, we study the issue of fake news detection in the Arabic language based on textual analysis. In an attempt to address the challenges of authenticating news, we introduce a supervised machine learning model that classifies Arabic news articles based on their context’s credibility. We also introduce the first dataset of Arabic fake news articles composed through crowdsourcing. Subsequently, to extract textual features from the articles, we create a unique approach of forming Arabic lexical wordlists and design an Arabic Natural Language Processing tool to perform textual features extraction. The findings of this study promises great results and outperformed human performance in the same task.
Over the years, social media has had a considerable impact on the way we share information and send messages. With this comes the problem of the rapid distribution of fake news which can have negative impacts on both individuals and society. Given the potential negative influence, detecting unmonitored 'fake news' has become a critical issue in mainstream media. While there are recent studies that built machine learning models that detect fake news in several languages, lack of studies in detecting fake news in the Arabic language is scare. Hence, in this paper, we study the issue of fake news detection in the Arabic language based on textual analysis. In an attempt to address the challenges of authenticating news, we introduce a supervised machine learning model that classifies Arabic news articles based on their context's credibility. We also introduce the first dataset of Arabic fake news articles composed through crowdsourcing. Subsequently, to extract textual features from the articles, we create a unique approach of forming Arabic lexical wordlists and design an Arabic Natural Language Processing tool to perform textual features extraction. The findings of this study promises great results and outperformed human performance in the same task.Over the years, social media has had a considerable impact on the way we share information and send messages. With this comes the problem of the rapid distribution of fake news which can have negative impacts on both individuals and society. Given the potential negative influence, detecting unmonitored 'fake news' has become a critical issue in mainstream media. While there are recent studies that built machine learning models that detect fake news in several languages, lack of studies in detecting fake news in the Arabic language is scare. Hence, in this paper, we study the issue of fake news detection in the Arabic language based on textual analysis. In an attempt to address the challenges of authenticating news, we introduce a supervised machine learning model that classifies Arabic news articles based on their context's credibility. We also introduce the first dataset of Arabic fake news articles composed through crowdsourcing. Subsequently, to extract textual features from the articles, we create a unique approach of forming Arabic lexical wordlists and design an Arabic Natural Language Processing tool to perform textual features extraction. The findings of this study promises great results and outperformed human performance in the same task.
Author Al-Barhamtoshy, Hassanin
Himdi, Hanen
Weir, George
Assiri, Fatmah
Author_xml – sequence: 1
  givenname: Hanen
  orcidid: 0000-0002-0182-2511
  surname: Himdi
  fullname: Himdi, Hanen
  email: hanen.himdi@strath.ac.uk, hhimdi@uj.edu.sa
  organization: Department of Computer and Information Sciences, University of Strathclyde
– sequence: 2
  givenname: George
  surname: Weir
  fullname: Weir, George
  organization: Department of Computer and Information Sciences, University of Strathclyde
– sequence: 3
  givenname: Fatmah
  surname: Assiri
  fullname: Assiri, Fatmah
  organization: Department of Software Engineering, College of Computer Science and Engineering, University of Jeddah
– sequence: 4
  givenname: Hassanin
  surname: Al-Barhamtoshy
  fullname: Al-Barhamtoshy, Hassanin
  organization: IT Department, Faculty of Computing and Information Technology, King Abdulaziz University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35194540$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9PGzEQxa2KqtCUL9BDtRIXLtt6PPaufUEKodBKqL1QqTfLcWapy2YX7N2WfHscQvqHQ04eyb_39Gbea7bX9R0x9hb4e-C8_pAAsTIlF1DySkpTrl6wAwEGSik07D3OWKqq_r7PDlMKcy41GgWAr9g-KjBSSX7A5DS6efDFubuh4gv9TsUZDeSH0HfFqUu0KPJwRffD6Npi2rl2lUJ6w142rk10-PRO2Lfzj1ezT-Xl14vPs-ll6WUth5J0rRolvKwWkiogVxnuNVace-UUEqGWoE0NjVZAMJew4KZRyjjMqAScsJON7-04X9LCUzdE19rbGJYurmzvgv3_pws_7HX_y2qNoGuRDY6fDGJ_N1Ia7DIkT23rOurHZEWFAqSGzE_Y0TP0Zz_GvHCmas5RocA19e7fRH-ibA-aAb0BfOxTitRYHwa3PmcOGFoL3K7rs5v6bK7PPtZnV1kqnkm37jtFuBGlDHfXFP_G3qF6AGsIqw0
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3518204
crossref_primary_10_3390_app13148209
crossref_primary_10_1007_s42979_023_02382_z
crossref_primary_10_1109_ACCESS_2023_3340520
crossref_primary_10_1145_3747290
crossref_primary_10_1109_TCSS_2022_3223786
crossref_primary_10_2478_acss_2024_0017
crossref_primary_10_7717_peerj_cs_2345
crossref_primary_10_1038_s41598_024_82111_5
crossref_primary_10_1007_s10462_024_10778_3
crossref_primary_10_1109_ACCESS_2024_3451128
crossref_primary_10_1007_s40031_025_01254_9
crossref_primary_10_1016_j_osnem_2025_100322
crossref_primary_10_1109_ACCESS_2023_3240373
crossref_primary_10_3390_app132413276
crossref_primary_10_1093_llc_fqae016
crossref_primary_10_3390_electronics12173676
crossref_primary_10_1007_s42979_025_04240_6
crossref_primary_10_1109_ACCESS_2022_3217522
crossref_primary_10_1109_ACCESS_2025_3595750
crossref_primary_10_1109_ACCESS_2024_3424531
crossref_primary_10_3390_app13127074
crossref_primary_10_3390_app12115720
crossref_primary_10_7717_peerj_cs_2432
crossref_primary_10_7717_peerj_cs_2693
crossref_primary_10_1016_j_neucom_2024_128078
crossref_primary_10_1109_ACCESS_2024_3392297
crossref_primary_10_3390_info13110527
crossref_primary_10_1016_j_eswa_2024_125024
crossref_primary_10_1016_j_knosys_2023_111023
crossref_primary_10_3390_app131910616
crossref_primary_10_58496_MJCSC_2025_016
Cites_doi 10.1111/lnc3.12275
10.2139/ssrn.3517916
10.21786/bbrc/12.2/10
10.1109/ICCCI48352.2020.9104177
10.1109/HICSS.2003.1173793
10.1023/B:GRUP.0000011944.62889.6f
10.1016/B978-0-12-386491-8.00004-9
10.1016/j.procs.2017.10.105
10.1002/pra2.2015.145052010083
10.1145/1644879.1644881
10.3115/v1/P14-1147
10.1109/IRI.2018.00073
10.1109/ICSSD47982.2019.9002823
10.1177/0146167203029005010
10.1177/2053951719843310
10.1109/ICOEI.2019.8862770
10.1080/07421222.2004.11045779
10.1177/2053168018786848
10.1163/9789004334113_020
10.1371/journal.pone.0105937
10.3115/1220575.1220619
10.1109/MIS.2019.2899143
10.18653/v1/2020.fever-1.2
10.1109/ACCESS.2020.3022867
10.1109/ISI.2019.8823378
10.1609/icwsm.v11i1.14976
10.1037/0022-3514.77.6.1296
10.1016/j.ins.2019.05.035
10.1080/01638530701739181
10.1016/j.procs.2020.04.247
10.1007/3-540-44853-5_7
10.1146/annurev.psych.54.101601.145041
10.18653/v1/P17-2067
10.1145/1363686.1364052
10.1109/MITP.2020.2978043
10.1109/SP.2012.34
10.1016/j.knosys.2019.104945
10.3115/1667583.1667679
10.18653/v1/P17-2102
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022.
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022.
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1007/s13369-021-06449-y
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic

PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2191-4281
EndPage 10469
ExternalDocumentID PMC8831872
35194540
10_1007_s13369_021_06449_y
Genre News
GroupedDBID -EM
0R~
203
2KG
406
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AANZL
AARHV
AASML
AATNV
AATVU
AAUYE
AAYTO
AAYZH
ABAKF
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACBXY
ACDTI
ACHSB
ACMDZ
ACMLO
ACOKC
ACPIV
ACUHS
ACZOJ
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEJRE
AEMSY
AEOHA
AESKC
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AGAYW
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AHAVH
AHBYD
AHSBF
AIAKS
AIGIU
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
AOCGG
AXYYD
BGNMA
C6C
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESX
FERAY
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
GQ6
GQ7
H13
HG6
I-F
IKXTQ
IWAJR
J-C
JBSCW
JZLTJ
L8X
LLZTM
M4Y
MK~
NPVJJ
NQJWS
NU0
O9J
PT4
ROL
RSV
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
TUS
UOJIU
UTJUX
UZXMN
VFIZW
Z5O
Z7R
Z7V
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z88
ZMTXR
~8M
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
NPM
06D
0VY
23M
29~
2KM
30V
408
5GY
96X
AAJKR
AARTL
AAYIU
AAYQN
AAZMS
ABTHY
ACGFS
ACKNC
ADHHG
ADHIR
AEGNC
AEJHL
AENEX
AEPYU
AETCA
AFWTZ
AFZKB
AGDGC
AGWZB
AGYKE
AHYZX
AIIXL
AMKLP
AMYQR
ANMIH
AYJHY
ESBYG
FFXSO
FRRFC
FYJPI
GGRSB
GJIRD
GX1
HMJXF
HRMNR
HZ~
I0C
IXD
J9A
KOV
O93
OVT
P9P
R9I
RLLFE
S27
S3B
SEG
SHX
T13
U2A
UG4
VC2
W48
WK8
~A9
7X8
5PM
ID FETCH-LOGICAL-c474t-e875f52c46d4e61ea690c83600c5a53ee38418971f851e1b41d09f559a3a69413
IEDL.DBID RSV
ISICitedReferencesCount 39
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000754143100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2193-567X
1319-8025
IngestDate Tue Nov 04 01:41:13 EST 2025
Thu Jul 10 23:15:23 EDT 2025
Mon Jun 30 09:00:29 EDT 2025
Thu Jan 02 22:55:15 EST 2025
Sat Nov 29 02:51:44 EST 2025
Tue Nov 18 21:57:09 EST 2025
Fri Feb 21 02:46:07 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Natural language processing
Deceptive text
Fake news
Machine learning
Language English
License The Author(s) 2022.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-e875f52c46d4e61ea690c83600c5a53ee38418971f851e1b41d09f559a3a69413
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-News-1
ORCID 0000-0002-0182-2511
OpenAccessLink https://link.springer.com/10.1007/s13369-021-06449-y
PMID 35194540
PQID 2700353238
PQPubID 2044268
PageCount 17
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8831872
proquest_miscellaneous_2632148188
proquest_journals_2700353238
pubmed_primary_35194540
crossref_citationtrail_10_1007_s13369_021_06449_y
crossref_primary_10_1007_s13369_021_06449_y
springer_journals_10_1007_s13369_021_06449_y
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle Arabian journal for science and engineering
PublicationTitleAbbrev Arab J Sci Eng
PublicationTitleAlternate Arab J Sci Eng
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References ZhouLBurgoonJKNunamakerJFTwitchellDAutomating linguistics-based cues for detecting deception in text-based asynchronous computer-mediated communicationGroup Decis. Negot.20041318110610.1023/B:GRUP.0000011944.62889.6f
KapustaJHájekPMunkMBenkoĽComparison of fake and real news based on morphological analysisProcedia Comput. Sci.20201712285229310.1016/j.procs.2020.04.247
Ibrahim, M.: Al-Mu’jam al-Waseet. Instanbul: al Maktaba al Islamiyah, 1976
ZhouLBurgoonJKTwitchellDPQinTNunamakerJFA comparison of classification methods for predicting deception in computer-mediated communicationJ. Manag. Inf. Syst.200420413916610.1080/07421222.2004.11045779
ReisJCSCorreiaAMuraiFVelosoABenevenutoFCambriaESupervised learning for fake news detectionIEEE Intell. Syst.2019342768110.1109/MIS.2019.2899143
Weir, G.R.S.: The posit text profiling toolset. In: Proceedings of the 12th Conference on Association of Applied Linguistics, 2007
RaysonPWilsonALeechGPetersPCollinsPSmithAGrammatical word class variation within the British national corpus samplerNew Frontiers of Corpus Research2002AmsterdamRodopi295306
Manzoor, S.I.; Singla, J.; Nikita: Fake news detection using machine learning approaches: a systematic review. In: Proceedings of the International Conference on Trends Electron. Informatics, ICOEI 2019, ICOEI, pp. 230–234, 2019
Vinit Bhoir, S.: An efficient fake news detector. In: 2020 International Conference on Computer Communication and Informatics, ICCCI 2020, 2020.
Zhou, X.; Zafarani, R.: Fake news: a survey of research, detection methods, and opportunities, 2018
Ireton, C.; Posetti, J.: Journalism. ‘FAKE NEWS’ & Handbook for Journalism Education and Training, 2018
Alsudias, L.; Rayson, P.: Classifying information sources in Arabic Twitter to support online monitoring of infectious diseases. In: Proceedings of the 3rd Working in Arabic Corpus Linguistics, pp. 22–30, 2019
Haouari, F.; Hasanain, M.; Suwaileh, R.; Elsayed, T.: ArCOV19-rumors: Arabic COVID-19 Twitter dataset for misinformation detection, 2020
Strapparava, C.; Mihalcea, R.: Learning to identify emotions in text. In: Proceedings of the ACM Symposium on Applied computing, pp. 1556–1560, 2008
Li, J.; Ott, M.; Cardie, C.; Hovy, E.: Towards a general rule for identifying deceptive opinion spam. In: 52nd Annual Meeting of the Association for Computational Linguistics, ACL 2014—Proceedings of the Conference, vol. 1, pp. 1566–1576, 2014.
ElhadadMKLiKFGebaliFDetecting misleading information on COVID-19IEEE Access2020816520116521510.1109/ACCESS.2020.3022867
ElarnaotyMAbdelrahmanSFahmyAA machine learning approach for opinion holder extraction in Arabic languageInt. J. Artif. Intell. Appl.2012324563
Volkova, S.; Shaffer, K.; Jang, J.Y.; Hodas, N.: Separating facts from fiction: linguistic models to classify suspicious and trusted news posts on twitter. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 647–653, 2017
Torabi AsrFTaboadaMBig data and quality data for fake news and misinformation detectionBig Data Soc20196111410.1177/2053951719843310
LevineTRTruth-detection theory (TDT): a theory of human deception and deception detectionJ. Lang. Soc. Psychol.201433115
Mihalcea, R.; Strapparava, C.: The lie detector: explorations in the automatic recognition of deceptive language. In: ACL-IJCNLP 2009—Joint Conference of the 47th Annual Meeting of the Association for Computational Linguistics, 4th International Joint Conference on Natural Language Processing. AFNLP, Proceedings Conference, pp. 309–312, 2009
BondielliAMarcelloniFA survey on fake news and rumour detection techniquesInf. Sci.2019497385510.1016/j.ins.2019.05.035
FarghalyAShaalanKArabic natural language processing: challenges and solutionsACM Trans. Asian Lang. Inf. Process.20098412210.1145/1644879.1644881
Horne, B.D.; Adali, S.: This just in: fake news packs a lot in title, uses simpler, repetitive content in text body, more similar to satire than real news, 2017
Johansson, V.: Lexical diversity and lexical density in speech and writing: a developmental perspective. In: Lund University, Department of Linguistics and Phonetics Working Papers, vol. 53, pp. 61–79, 2008
ʻAbd al-Ghanī Abū al-ʻAzm, Muʿjam al-Ghanī al-zāhir. al-Rabāṭ: Muʼassasat al-Ghanī lil-Nashr, 2013
LimCChecking how fact-checkers checkRes. Polit.20185320531680187868410.1177/2053168018786848
Pérez-Rosas, V.; Kleinberg, B.; Lefevre, A.; Mihalcea, R.: Automatic detection of fake news, 2017
RubinVLChenYConroyNKDeception detection for news: three types of fakesProc. Assoc. Inf. Sci. Technol.20155211410.1002/pra2.2015.145052010083
DemestichasKRemoundouKAdamopoulouEFood for thought: fighting fake news and online disinformationIT Prof.2020222283410.1109/MITP.2020.2978043
Zhou, L.; Twitchell, D.P.; Qin, T.; Burgoon, J.K.; Nunamaker, J.F.: An exploratory study into deception detection in text-based computer-mediated communication. In: Proceedings of the 36th Annual Hawaii International Conference on System Sciences, 2003
NewmanMLPennebakerJWBerryDSRichardsJMLying words: predicting deception from linguistic stylesPersonal. Soc. Psychol. Bull.200329566567510.1177/0146167203029005010
MarkowitzDMHancockJTLinguistic traces of a scientific fraud: the case of diederik stapelPLoS ONE2014981510.1371/journal.pone.0105937
Afroz, S.; Brennan, M.; Greenstadt, R.: Detecting hoaxes, frauds, and deception in writing style online. In: Proceedings of the IEEE Symposium on Security and Privacy, pp. 461–475, 2012
BerenzenkoVMVerbal and nonverbal cues to deception in modern English discourseNauk. visnyk Kafedr. UNESCO KNLU2018366471
Nagoudi, E.M.B.; Elmadany, A.R.; Abdul-Mageed, M.; Alhindi, T.; Cavusoglu, H.: Machine generation and detection of Arabic manipulated and fake news. arXiv, pp. 69–84, 2020
Mohammad, S.M.; Salameh, M.; Kiritchenko, S.: Sentiment lexicons for Arabic social media. In: Proceedings of the 10th International Conference on Language Resources and Evaluation, LR 2016, pp. 33–37, 2016
TalwarVCrossmanAFrom little white lies to filthy liars: the evolution of honesty and deception in young childrenAdv. Child Dev. Behav.20114013917910.1016/B978-0-12-386491-8.00004-9
MustafaMEldeenASBani-AhmadSElfakiAOA comparative survey on Arabic stemming: approaches and challengesIntell. Inf. Manag.201709023967
Mubarak, H.: Build fast and accurate lemmatization for arabic, pp. 1128–1132, 2017
FleissJLLevinBPaikMCStatistical Methods for Rates and Proportions2013HobokenWiley1034.62113
Alqurashi, S.; Hamoui, B.; Alashaikh, A.; Alhindi, A.; Alanazi, E.: Eating garlic prevents COVID-19 infection: detecting misinformation on the Arabic content of Twitter, 2021
Mubarak, H.; Hassan, S.: ArCorona: analyzing Arabic tweets in the early days of coronavirus (COVID-19) pandemic, vol. 19, 2020
Wang, W.Y.: ‘Liar, liar pants on fire’: a new benchmark dataset for fake news detection. In: ACL 2017—55th Annual Meeting of the Association for Computational Linguistics Proceedings Conference (Long Papers), vol. 2, pp. 422–426, 2017
Lahlou, Y.; El Fkihi, S.; Faizi, R.: Automatic detection of fake news on online platforms: a survey. In: ICSSD 2019—International Conference on Smart Systems and Data science, pp. 0–3, 2019
Al-BarhamtoshyHMHemdiHTKhamisMMHimdiTFSemantic and sentiment analysis for Arabic texts using intelligent modelBiosci. Biotechnol. Res. Commun.201912226627410.21786/bbrc/12.2/10
Wilson, T.; Wiebe, J.; Hoffman, P.: Recognizing contextual polarity in phrase-level sentiment analysis. In: Proceedings of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing, pp. 347–354, 2005
CollinsBHoangDTNguyenNTHwangDFake News Types and Detection Models on Social Media A State-of-the-Art Survey, CCIS2020SingaporeSpringer
Sheikh Ali, Z.; Mansour, W.; Elsayed, T.; Al‐Ali, A.: AraFacts: the first large arabic dataset of naturally occurring claims. In: Proceedings of the Sixth Arabic Natural Language Processing Workshop, pp. 231–236, 2021.
M. ibn M. Ibn Manzur, Lisan al-’Arab. Bayrut: Dar sadir, 2007
HancockJTCurryLEGoorhaSWoodworthMOn lying and being lied to: a linguistic analysis of deception in computer-mediated communicationDiscourse Process.200845112310.1080/01638530701739181
Rangel, F.; Rosso, P.; Charfi, A.; Zaghouani, W.: Detecting deceptive tweets in Arabic for cyber-security. In: 2019 IEEE International Conference on Intelligence and Security Informatics, ISI 2019, pp. 86–91, 2019
Strapparava, C.; Valitutti, A.: Wordnet affect: an effective extension of wordnet. In: Fourth International Conference on Language Resources and Evaluation, vol. 4, pp. 1083–1086, 2004
RossoPRangelFFaríasIHCagninaLZaghouaniWCharfiAA survey on author profiling, deception, and irony detection for the Arabic languageLang. Linguist. Compass201812412110.1111/lnc3.12275
PennebakerJWMehlMRNiederhofferKGPsychological aspects of natural language use: our words, our selvesAnnu. Rev. Psychol.200354154757710.1146/annurev.psych.54.101601.145041
AlkhairMMeftouhKSmaïliKOthmanNAn Arabic corpus of fake news: collection, analysis and classificationCommun. Comput. Inf. Sci.20191108292302
SabbehSFBaatwahSYArabic news credibility on Twitter: an enhanced model using hybrid featuresJ. Theor. Appl. Inf. Technol.201896823272338
Mourad, A.; Darwish, K.: Subjectivity and sentiment annotation of modern standard Arabic newswire. In: Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pp. 55–64, 2013
KarouiJZitouneFBMoriceauVSOUKHRIA: towards an irony detection system for Arabic in social mediaProcedia Comput. Sci.201711716116810.1016/j.procs.2017.10.105
PennebakerJWKingLALinguistic styles: language use as an individual differenceJ. Pers. Soc. Psychol.19997761296131210.1037/0022-3514.77.6.1296
Burgoon, J.K.; Blair, J.P.; Qin, T.; Nunamaker, J.F.: Detecting deception through linguistic analysis. In Intelligence and Security Informatics: 1st NSF/NIJ Symposium, ISI 2003 Tucson, AZ, USA, June 2003, Proceedings, pp. 91–101. Springer, Berlin, 2003
Khouja, J.: Stance prediction and claim ve
JT Hancock (6449_CR17) 2008; 45
6449_CR37
6449_CR36
6449_CR35
6449_CR34
JW Pennebaker (6449_CR24) 2003; 54
6449_CR33
P Rosso (6449_CR9) 2018; 12
6449_CR31
L Zhou (6449_CR61) 2004; 20
JW Pennebaker (6449_CR23) 1999; 77
JCS Reis (6449_CR65) 2019; 34
M Alkhair (6449_CR25) 2019; 1108
ML Newman (6449_CR18) 2003; 29
J Karoui (6449_CR41) 2017; 117
M Attia (6449_CR28) 2008
6449_CR39
6449_CR38
M Mustafa (6449_CR50) 2017; 09
6449_CR47
6449_CR45
6449_CR42
6449_CR40
L Zhou (6449_CR68) 2004; 13
C Lim (6449_CR32) 2018; 5
B Collins (6449_CR5) 2020
ML Newman (6449_CR63) 2003; 29
J Kapusta (6449_CR30) 2020; 171
6449_CR15
6449_CR59
6449_CR57
VL Rubin (6449_CR10) 2015; 52
6449_CR56
6449_CR11
MK Elhadad (6449_CR43) 2020; 8
6449_CR55
6449_CR54
6449_CR53
DM Markowitz (6449_CR22) 2014; 9
6449_CR52
6449_CR51
SM Alzanin (6449_CR44) 2019; 185
F Torabi Asr (6449_CR19) 2019; 6
VM Berenzenko (6449_CR20) 2018; 36
HM Al-Barhamtoshy (6449_CR46) 2019; 12
TR Levine (6449_CR12) 2014; 33
SF Sabbeh (6449_CR48) 2018; 96
6449_CR16
6449_CR26
6449_CR7
K Demestichas (6449_CR14) 2020; 22
6449_CR8
6449_CR67
6449_CR66
6449_CR3
6449_CR64
6449_CR4
6449_CR1
6449_CR62
6449_CR2
6449_CR60
JL Fleiss (6449_CR49) 2013
A Farghaly (6449_CR6) 2009; 8
P Rayson (6449_CR21) 2002
M Elarnaoty (6449_CR58) 2012; 3
A Bondielli (6449_CR29) 2019; 497
V Talwar (6449_CR13) 2011; 40
6449_CR27
References_xml – reference: DemestichasKRemoundouKAdamopoulouEFood for thought: fighting fake news and online disinformationIT Prof.2020222283410.1109/MITP.2020.2978043
– reference: PennebakerJWMehlMRNiederhofferKGPsychological aspects of natural language use: our words, our selvesAnnu. Rev. Psychol.200354154757710.1146/annurev.psych.54.101601.145041
– reference: Lagutina, K., et al.: A survey on stylometric text features, pp. 184–195, 2020
– reference: ReisJCSCorreiaAMuraiFVelosoABenevenutoFCambriaESupervised learning for fake news detectionIEEE Intell. Syst.2019342768110.1109/MIS.2019.2899143
– reference: Mohammad, S.M.; Salameh, M.; Kiritchenko, S.: Sentiment lexicons for Arabic social media. In: Proceedings of the 10th International Conference on Language Resources and Evaluation, LR 2016, pp. 33–37, 2016
– reference: Haouari, F.; Hasanain, M.; Suwaileh, R.; Elsayed, T.: ArCOV19-rumors: Arabic COVID-19 Twitter dataset for misinformation detection, 2020
– reference: Weir, G.R.S.: The posit text profiling toolset. In: Proceedings of the 12th Conference on Association of Applied Linguistics, 2007
– reference: Mubarak, H.; Hassan, S.: ArCorona: analyzing Arabic tweets in the early days of coronavirus (COVID-19) pandemic, vol. 19, 2020
– reference: RossoPRangelFFaríasIHCagninaLZaghouaniWCharfiAA survey on author profiling, deception, and irony detection for the Arabic languageLang. Linguist. Compass201812412110.1111/lnc3.12275
– reference: RubinVLChenYConroyNKDeception detection for news: three types of fakesProc. Assoc. Inf. Sci. Technol.20155211410.1002/pra2.2015.145052010083
– reference: Mihalcea, R.; Strapparava, C.: The lie detector: explorations in the automatic recognition of deceptive language. In: ACL-IJCNLP 2009—Joint Conference of the 47th Annual Meeting of the Association for Computational Linguistics, 4th International Joint Conference on Natural Language Processing. AFNLP, Proceedings Conference, pp. 309–312, 2009
– reference: AlkhairMMeftouhKSmaïliKOthmanNAn Arabic corpus of fake news: collection, analysis and classificationCommun. Comput. Inf. Sci.20191108292302
– reference: KarouiJZitouneFBMoriceauVSOUKHRIA: towards an irony detection system for Arabic in social mediaProcedia Comput. Sci.201711716116810.1016/j.procs.2017.10.105
– reference: M. ibn M. Ibn Manzur, Lisan al-’Arab. Bayrut: Dar sadir, 2007
– reference: MustafaMEldeenASBani-AhmadSElfakiAOA comparative survey on Arabic stemming: approaches and challengesIntell. Inf. Manag.201709023967
– reference: Knshnan, S.; Chen, M.: Identifying tweets with fake news. In: Proceedings—2018 IEEE 19th International Conference on Information Reuse and Integration for Data Science. IRI 2018, vol. 67, pp. 460–464, 2018
– reference: ElarnaotyMAbdelrahmanSFahmyAA machine learning approach for opinion holder extraction in Arabic languageInt. J. Artif. Intell. Appl.2012324563
– reference: ʻAbd al-Ghanī Abū al-ʻAzm, Muʿjam al-Ghanī al-zāhir. al-Rabāṭ: Muʼassasat al-Ghanī lil-Nashr, 2013
– reference: Mubarak, H.: Build fast and accurate lemmatization for arabic, pp. 1128–1132, 2017
– reference: NewmanMLPennebakerJWBerryDSRichardsJMLying words: predicting deception from linguistic stylesPersonal. Soc. Psychol. Bull.200329566567510.1177/0146167203029005010
– reference: ElhadadMKLiKFGebaliFDetecting misleading information on COVID-19IEEE Access2020816520116521510.1109/ACCESS.2020.3022867
– reference: Ibrahim, M.: Al-Mu’jam al-Waseet. Instanbul: al Maktaba al Islamiyah, 1976
– reference: Volkova, S.; Shaffer, K.; Jang, J.Y.; Hodas, N.: Separating facts from fiction: linguistic models to classify suspicious and trusted news posts on twitter. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 647–653, 2017
– reference: RaysonPWilsonALeechGPetersPCollinsPSmithAGrammatical word class variation within the British national corpus samplerNew Frontiers of Corpus Research2002AmsterdamRodopi295306
– reference: HancockJTCurryLEGoorhaSWoodworthMOn lying and being lied to: a linguistic analysis of deception in computer-mediated communicationDiscourse Process.200845112310.1080/01638530701739181
– reference: SabbehSFBaatwahSYArabic news credibility on Twitter: an enhanced model using hybrid featuresJ. Theor. Appl. Inf. Technol.201896823272338
– reference: Vinit Bhoir, S.: An efficient fake news detector. In: 2020 International Conference on Computer Communication and Informatics, ICCCI 2020, 2020.
– reference: ZhouLBurgoonJKTwitchellDPQinTNunamakerJFA comparison of classification methods for predicting deception in computer-mediated communicationJ. Manag. Inf. Syst.200420413916610.1080/07421222.2004.11045779
– reference: Nagoudi, E.M.B.; Elmadany, A.R.; Abdul-Mageed, M.; Alhindi, T.; Cavusoglu, H.: Machine generation and detection of Arabic manipulated and fake news. arXiv, pp. 69–84, 2020
– reference: Lahlou, Y.; El Fkihi, S.; Faizi, R.: Automatic detection of fake news on online platforms: a survey. In: ICSSD 2019—International Conference on Smart Systems and Data science, pp. 0–3, 2019
– reference: ZhouLBurgoonJKNunamakerJFTwitchellDAutomating linguistics-based cues for detecting deception in text-based asynchronous computer-mediated communicationGroup Decis. Negot.20041318110610.1023/B:GRUP.0000011944.62889.6f
– reference: Strapparava, C.; Mihalcea, R.: Learning to identify emotions in text. In: Proceedings of the ACM Symposium on Applied computing, pp. 1556–1560, 2008
– reference: Radcliffe, D.; Abuhmaid, H.: Social media in the Middle East: 2019 in review. SSRN Electron. J. 2020
– reference: Mourad, A.; Darwish, K.: Subjectivity and sentiment annotation of modern standard Arabic newswire. In: Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pp. 55–64, 2013
– reference: Afroz, S.; Brennan, M.; Greenstadt, R.: Detecting hoaxes, frauds, and deception in writing style online. In: Proceedings of the IEEE Symposium on Security and Privacy, pp. 461–475, 2012
– reference: LevineTRTruth-detection theory (TDT): a theory of human deception and deception detectionJ. Lang. Soc. Psychol.201433115
– reference: Johansson, V.: Lexical diversity and lexical density in speech and writing: a developmental perspective. In: Lund University, Department of Linguistics and Phonetics Working Papers, vol. 53, pp. 61–79, 2008
– reference: Pérez-Rosas, V.; Kleinberg, B.; Lefevre, A.; Mihalcea, R.: Automatic detection of fake news, 2017
– reference: Zhou, L.; Twitchell, D.P.; Qin, T.; Burgoon, J.K.; Nunamaker, J.F.: An exploratory study into deception detection in text-based computer-mediated communication. In: Proceedings of the 36th Annual Hawaii International Conference on System Sciences, 2003
– reference: FarghalyAShaalanKArabic natural language processing: challenges and solutionsACM Trans. Asian Lang. Inf. Process.20098412210.1145/1644879.1644881
– reference: Torabi AsrFTaboadaMBig data and quality data for fake news and misinformation detectionBig Data Soc20196111410.1177/2053951719843310
– reference: MarkowitzDMHancockJTLinguistic traces of a scientific fraud: the case of diederik stapelPLoS ONE2014981510.1371/journal.pone.0105937
– reference: Wang, W.Y.: ‘Liar, liar pants on fire’: a new benchmark dataset for fake news detection. In: ACL 2017—55th Annual Meeting of the Association for Computational Linguistics Proceedings Conference (Long Papers), vol. 2, pp. 422–426, 2017
– reference: Sheikh Ali, Z.; Mansour, W.; Elsayed, T.; Al‐Ali, A.: AraFacts: the first large arabic dataset of naturally occurring claims. In: Proceedings of the Sixth Arabic Natural Language Processing Workshop, pp. 231–236, 2021.
– reference: BerenzenkoVMVerbal and nonverbal cues to deception in modern English discourseNauk. visnyk Kafedr. UNESCO KNLU2018366471
– reference: AttiaMHandling Arabic Morphological and Syntactic Ambiguity Within the LFG Framework with a View to Machine Translation2008University of Manchester Manchester
– reference: Alsudias, L.; Rayson, P.: Classifying information sources in Arabic Twitter to support online monitoring of infectious diseases. In: Proceedings of the 3rd Working in Arabic Corpus Linguistics, pp. 22–30, 2019
– reference: Horne, B.D.; Adali, S.: This just in: fake news packs a lot in title, uses simpler, repetitive content in text body, more similar to satire than real news, 2017
– reference: Manzoor, S.I.; Singla, J.; Nikita: Fake news detection using machine learning approaches: a systematic review. In: Proceedings of the International Conference on Trends Electron. Informatics, ICOEI 2019, ICOEI, pp. 230–234, 2019
– reference: Wilson, T.; Wiebe, J.; Hoffman, P.: Recognizing contextual polarity in phrase-level sentiment analysis. In: Proceedings of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing, pp. 347–354, 2005
– reference: Al-BarhamtoshyHMHemdiHTKhamisMMHimdiTFSemantic and sentiment analysis for Arabic texts using intelligent modelBiosci. Biotechnol. Res. Commun.201912226627410.21786/bbrc/12.2/10
– reference: FleissJLLevinBPaikMCStatistical Methods for Rates and Proportions2013HobokenWiley1034.62113
– reference: Strapparava, C.; Valitutti, A.: Wordnet affect: an effective extension of wordnet. In: Fourth International Conference on Language Resources and Evaluation, vol. 4, pp. 1083–1086, 2004
– reference: Burgoon, J.K.; Blair, J.P.; Qin, T.; Nunamaker, J.F.: Detecting deception through linguistic analysis. In Intelligence and Security Informatics: 1st NSF/NIJ Symposium, ISI 2003 Tucson, AZ, USA, June 2003, Proceedings, pp. 91–101. Springer, Berlin, 2003
– reference: Ireton, C.; Posetti, J.: Journalism. ‘FAKE NEWS’ & Handbook for Journalism Education and Training, 2018
– reference: NewmanMLPennebakerJWBerryDSRichardsJMPersonality and social psychology bulletin lying words: predicting deception from linguistic stylesPersonal. Soc. Psychol. Bull.200329566567510.1177/0146167203029005010
– reference: CollinsBHoangDTNguyenNTHwangDFake News Types and Detection Models on Social Media A State-of-the-Art Survey, CCIS2020SingaporeSpringer
– reference: Khouja, J.: Stance prediction and claim verification: an Arabic perspective, pp. 8–17, 2020
– reference: AlzaninSMAzmiAMRumor detection in Arabic tweets using semi-supervised and unsupervised expectation–maximizationKnowl. Based Syst.201918510494510.1016/j.knosys.2019.104945
– reference: Rangel, F.; Rosso, P.; Charfi, A.; Zaghouani, W.: Detecting deceptive tweets in Arabic for cyber-security. In: 2019 IEEE International Conference on Intelligence and Security Informatics, ISI 2019, pp. 86–91, 2019
– reference: Zhou, X.; Zafarani, R.: Fake news: a survey of research, detection methods, and opportunities, 2018
– reference: PennebakerJWKingLALinguistic styles: language use as an individual differenceJ. Pers. Soc. Psychol.19997761296131210.1037/0022-3514.77.6.1296
– reference: TalwarVCrossmanAFrom little white lies to filthy liars: the evolution of honesty and deception in young childrenAdv. Child Dev. Behav.20114013917910.1016/B978-0-12-386491-8.00004-9
– reference: KapustaJHájekPMunkMBenkoĽComparison of fake and real news based on morphological analysisProcedia Comput. Sci.20201712285229310.1016/j.procs.2020.04.247
– reference: Li, J.; Ott, M.; Cardie, C.; Hovy, E.: Towards a general rule for identifying deceptive opinion spam. In: 52nd Annual Meeting of the Association for Computational Linguistics, ACL 2014—Proceedings of the Conference, vol. 1, pp. 1566–1576, 2014.
– reference: BondielliAMarcelloniFA survey on fake news and rumour detection techniquesInf. Sci.2019497385510.1016/j.ins.2019.05.035
– reference: LimCChecking how fact-checkers checkRes. Polit.20185320531680187868410.1177/2053168018786848
– reference: Alqurashi, S.; Hamoui, B.; Alashaikh, A.; Alhindi, A.; Alanazi, E.: Eating garlic prevents COVID-19 infection: detecting misinformation on the Arabic content of Twitter, 2021
– volume: 12
  start-page: 1
  issue: 4
  year: 2018
  ident: 6449_CR9
  publication-title: Lang. Linguist. Compass
  doi: 10.1111/lnc3.12275
– volume: 1108
  start-page: 292
  year: 2019
  ident: 6449_CR25
  publication-title: Commun. Comput. Inf. Sci.
– volume: 36
  start-page: 64
  year: 2018
  ident: 6449_CR20
  publication-title: Nauk. visnyk Kafedr. UNESCO KNLU
– ident: 6449_CR39
– ident: 6449_CR1
  doi: 10.2139/ssrn.3517916
– volume: 12
  start-page: 266
  issue: 2
  year: 2019
  ident: 6449_CR46
  publication-title: Biosci. Biotechnol. Res. Commun.
  doi: 10.21786/bbrc/12.2/10
– ident: 6449_CR64
  doi: 10.1109/ICCCI48352.2020.9104177
– ident: 6449_CR51
– ident: 6449_CR60
  doi: 10.1109/HICSS.2003.1173793
– volume: 13
  start-page: 81
  issue: 1
  year: 2004
  ident: 6449_CR68
  publication-title: Group Decis. Negot.
  doi: 10.1023/B:GRUP.0000011944.62889.6f
– volume-title: Fake News Types and Detection Models on Social Media A State-of-the-Art Survey, CCIS
  year: 2020
  ident: 6449_CR5
– volume: 40
  start-page: 139
  year: 2011
  ident: 6449_CR13
  publication-title: Adv. Child Dev. Behav.
  doi: 10.1016/B978-0-12-386491-8.00004-9
– volume: 117
  start-page: 161
  year: 2017
  ident: 6449_CR41
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2017.10.105
– volume: 52
  start-page: 1
  issue: 1
  year: 2015
  ident: 6449_CR10
  publication-title: Proc. Assoc. Inf. Sci. Technol.
  doi: 10.1002/pra2.2015.145052010083
– ident: 6449_CR59
– volume: 8
  start-page: 1
  issue: 4
  year: 2009
  ident: 6449_CR6
  publication-title: ACM Trans. Asian Lang. Inf. Process.
  doi: 10.1145/1644879.1644881
– ident: 6449_CR62
  doi: 10.3115/v1/P14-1147
– ident: 6449_CR27
  doi: 10.1109/IRI.2018.00073
– ident: 6449_CR40
– ident: 6449_CR11
  doi: 10.1109/ICSSD47982.2019.9002823
– volume: 29
  start-page: 665
  issue: 5
  year: 2003
  ident: 6449_CR18
  publication-title: Personal. Soc. Psychol. Bull.
  doi: 10.1177/0146167203029005010
– volume: 6
  start-page: 1
  issue: 1
  year: 2019
  ident: 6449_CR19
  publication-title: Big Data Soc
  doi: 10.1177/2053951719843310
– volume: 3
  start-page: 45
  issue: 2
  year: 2012
  ident: 6449_CR58
  publication-title: Int. J. Artif. Intell. Appl.
– ident: 6449_CR26
  doi: 10.1109/ICOEI.2019.8862770
– volume: 20
  start-page: 139
  issue: 4
  year: 2004
  ident: 6449_CR61
  publication-title: J. Manag. Inf. Syst.
  doi: 10.1080/07421222.2004.11045779
– ident: 6449_CR54
– volume: 5
  start-page: 205316801878684
  issue: 3
  year: 2018
  ident: 6449_CR32
  publication-title: Res. Polit.
  doi: 10.1177/2053168018786848
– volume-title: Handling Arabic Morphological and Syntactic Ambiguity Within the LFG Framework with a View to Machine Translation
  year: 2008
  ident: 6449_CR28
– ident: 6449_CR33
– start-page: 295
  volume-title: New Frontiers of Corpus Research
  year: 2002
  ident: 6449_CR21
  doi: 10.1163/9789004334113_020
– volume: 9
  start-page: 1
  issue: 8
  year: 2014
  ident: 6449_CR22
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0105937
– ident: 6449_CR4
– ident: 6449_CR57
  doi: 10.3115/1220575.1220619
– volume: 34
  start-page: 76
  issue: 2
  year: 2019
  ident: 6449_CR65
  publication-title: IEEE Intell. Syst.
  doi: 10.1109/MIS.2019.2899143
– ident: 6449_CR8
– ident: 6449_CR38
  doi: 10.18653/v1/2020.fever-1.2
– volume: 8
  start-page: 165201
  year: 2020
  ident: 6449_CR43
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3022867
– ident: 6449_CR37
– ident: 6449_CR47
  doi: 10.1109/ISI.2019.8823378
– ident: 6449_CR31
  doi: 10.1609/icwsm.v11i1.14976
– volume-title: Statistical Methods for Rates and Proportions
  year: 2013
  ident: 6449_CR49
– ident: 6449_CR34
– ident: 6449_CR53
– volume: 77
  start-page: 1296
  issue: 6
  year: 1999
  ident: 6449_CR23
  publication-title: J. Pers. Soc. Psychol.
  doi: 10.1037/0022-3514.77.6.1296
– volume: 497
  start-page: 38
  year: 2019
  ident: 6449_CR29
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2019.05.035
– volume: 45
  start-page: 1
  issue: 1
  year: 2008
  ident: 6449_CR17
  publication-title: Discourse Process.
  doi: 10.1080/01638530701739181
– volume: 171
  start-page: 2285
  year: 2020
  ident: 6449_CR30
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2020.04.247
– ident: 6449_CR7
– ident: 6449_CR16
  doi: 10.1007/3-540-44853-5_7
– ident: 6449_CR42
– volume: 33
  start-page: 1
  year: 2014
  ident: 6449_CR12
  publication-title: J. Lang. Soc. Psychol.
– ident: 6449_CR67
– volume: 96
  start-page: 2327
  issue: 8
  year: 2018
  ident: 6449_CR48
  publication-title: J. Theor. Appl. Inf. Technol.
– volume: 54
  start-page: 547
  issue: 1
  year: 2003
  ident: 6449_CR24
  publication-title: Annu. Rev. Psychol.
  doi: 10.1146/annurev.psych.54.101601.145041
– ident: 6449_CR36
– ident: 6449_CR45
  doi: 10.18653/v1/P17-2067
– volume: 29
  start-page: 665
  issue: 5
  year: 2003
  ident: 6449_CR63
  publication-title: Personal. Soc. Psychol. Bull.
  doi: 10.1177/0146167203029005010
– ident: 6449_CR55
  doi: 10.1145/1363686.1364052
– volume: 22
  start-page: 28
  issue: 2
  year: 2020
  ident: 6449_CR14
  publication-title: IT Prof.
  doi: 10.1109/MITP.2020.2978043
– ident: 6449_CR56
– ident: 6449_CR3
  doi: 10.1109/SP.2012.34
– ident: 6449_CR35
– ident: 6449_CR52
– volume: 185
  start-page: 104945
  year: 2019
  ident: 6449_CR44
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2019.104945
– ident: 6449_CR2
– ident: 6449_CR15
  doi: 10.3115/1667583.1667679
– ident: 6449_CR66
  doi: 10.18653/v1/P17-2102
– volume: 09
  start-page: 39
  issue: 02
  year: 2017
  ident: 6449_CR50
  publication-title: Intell. Inf. Manag.
SSID ssib048395113
ssj0001916267
ssj0061873
Score 2.4882011
Snippet Over the years, social media has had a considerable impact on the way we share information and send messages. With this comes the problem of the rapid...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 10453
SubjectTerms Arabic language
Computer Engineering and Computer Science
Engineering
Feature extraction
Human performance
Humanities and Social Sciences
Machine learning
multidisciplinary
Natural language processing
News
Research Article-Computer Engineering and Computer Science
Science
Text analysis
Title Arabic Fake News Detection Based on Textual Analysis
URI https://link.springer.com/article/10.1007/s13369-021-06449-y
https://www.ncbi.nlm.nih.gov/pubmed/35194540
https://www.proquest.com/docview/2700353238
https://www.proquest.com/docview/2632148188
https://pubmed.ncbi.nlm.nih.gov/PMC8831872
Volume 47
WOSCitedRecordID wos000754143100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Online Journals
  customDbUrl:
  eissn: 2191-4281
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001916267
  issn: 2193-567X
  databaseCode: RSV
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4V2gMcoOUZoChI3Iol_EhsH3mteukKFYr2FjnORKxaBbQPJP4942yy2y0PqVyiSJ448djjGWdmvgE4dIbUdhlCpWyumSolZ0agY96KXDiFpS8mxSZ0t2t6PXvZJIUN22j31iVZ79SzZDcpU8tCSAGpUWXZ4wJ8JHVngjj-vLppV5EilU9WhJz9aSELSNSlZEk6JUtS3WuyZ17udl5DPTM7n0dP_uNCrTVTZ_V9Y_oMK40lGp9Mls4X-IDVGiz_hU-4Dupk4PK-jzvuN8ZhO4zPcVTHblXxKam_Iqaba9rex6GjBt5kA351Lq7PvrOmzALzSqsRQzqylInwKi0UphwdHZh9yO049olLJKI0ihureUnWGfJc8eLYlnQScdKFNFi5CYvVXYXbEAvLEy_JhOAaVS611agLFDbNlS2pjwh4y9rMNxjkoRTGn2yGnhw4khFHspoj2WME36bP3E8QON6k3mtnLGukcZgF57pMJFknERxMm0mOgnPEVXg3Jpo0lGwi84VotiYTPH1dKGIYkAoj0HNTPyUIGN3zLVX_tsbqNoY2TS0iOGoXwOyzXh_Fzv-R78KSCFkZdVziHiyOBmP8Cp_8w6g_HOzDgu4ZunYvf-zXkvIEMMwHmQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZT9wwEB5xVII-0JajTaEQJN7AEj4Sx48L7YqK7Qq1C9q3yHEm6qpVqPaoxL_vOJvsdktBgrdImTjx2DPzOXMBHNmEzHbhQ6VMppkqJGeJQMucEZmwCguXT5tN6G436ffNVZ0UNmqi3RuXZKWp58luUsaG-ZACMqPKsLtlWFVksXwg39dvN80uUmTyCUXI-Z8WQkCiaiVL0ilZFOt-nT3z_2EXLdQ92Hk_evIfF2plmdqvnjen17BRI9GwNd06b2AJy014-Vd9wi1QraHNBi5s2x8YenUYfsRxFbtVhmdk_vKQLnqk3id-oLq8yTZctz_1zi9Y3WaBOaXVmCEdWYpIOBXnCmOOlg7Mzud2nLrIRhJRJoonRvOC0BnyTPH81BR0ErHS-jRYuQMr5W2J7yAUhkdOEoTgGlUmtdGocxQmzpQpaIwAeMPa1NU1yH0rjJ_pvHqy50hKHEkrjqR3ARzPnvk1rcDxKPVes2JpLY2j1DvXZSQJnQRwOLtNcuSdI7bE2wnRxL5lE8EXonk7XeDZ63wTQ1-pMAC9sPQzAl-je_FOOfhe1epOElKaWgRw0myA-Wc9PIv3TyM_gLWL3pdO2vncvdyFdeEzNKoYxT1YGQ8n-AFeuN_jwWi4X0nKHy0dCIk
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9QwDLdgIMQe-NygMKBIvEG05aNN8zg2TiDQaRID3VuVpq522tRNtx7S_vvZ_bjbsYGEeKsUN21cJ7Zr-2eAdz4jtV1xqpQrrDCVliJT6EVwqlDeYBXKrtmEHY-zycQdXKnib7Pdh5BkV9PAKE11s31WVtvLwjetUyc4vYBUqnHi4jbcMdw0iP317z8HiTKk_smi0Mu_LmQNqbatLO1ULZLUTvpKmpunXdVW10zQ65mUv4VTWy01evj_63sED3oLNd7tROox3ML6CaxfwS18CmZ35otpiEf-GGM-JuN9bNqcrjr-SGqxjOnikI79OU_Uw55swI_Rp8O9z6JvvyCCsaYRSK5Mlahg0tJgKtGTIx245mMnJD7RiDozMnNWVmS1oSyMLHdcRR6K157LY_UmrNWnNT6HWDmZBE2mhbRoCm2dRVuicmlhXEVzRCAHNuehxybnFhkn-RJVmTmSE0fyliP5RQTvF_ecdcgcf6XeGr5e3u_S85yD7jrRZLVE8HYxTPuLgya-xtM50aTcyonMGqJ51n3sxeO4uSEjGEZgV8RgQcDY3asj9fSoxfDOMjpMrYrgwyAMy9f68ype_Bv5G7h3sD_Kv30Zf30J9xUXbrSpi1uw1szm-Aruhl_N9Hz2ut00l_-lEW0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Arabic+Fake+News+Detection+Based+on+Textual+Analysis&rft.jtitle=Arabian+journal+for+science+and+engineering+%282011%29&rft.au=Himdi%2C+Hanen&rft.au=Weir%2C+George&rft.au=Assiri%2C+Fatmah&rft.au=Al-Barhamtoshy%2C+Hassanin&rft.date=2022-08-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=2193-567X&rft.eissn=2191-4281&rft.volume=47&rft.issue=8&rft.spage=10453&rft.epage=10469&rft_id=info:doi/10.1007%2Fs13369-021-06449-y&rft.externalDocID=10_1007_s13369_021_06449_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2193-567X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2193-567X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2193-567X&client=summon