Localization of sensor nodes in wireless sensor networks using bat optimization algorithm with enhanced exploration and exploitation characteristics

Wireless sensor networks (WSNs) contain sensor nodes in enormous amount to accumulate the information about the nearby surroundings, and this information is insignificant until the exact position from where data have been collected is revealed. Localization of sensor nodes in WSNs plays a significan...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The Journal of supercomputing Ročník 78; číslo 9; s. 11975 - 12023
Hlavní autoři: Mohar, Satinder Singh, Goyal, Sonia, Kaur, Ranjit
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.06.2022
Springer Nature B.V
Témata:
ISSN:0920-8542, 1573-0484
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Wireless sensor networks (WSNs) contain sensor nodes in enormous amount to accumulate the information about the nearby surroundings, and this information is insignificant until the exact position from where data have been collected is revealed. Localization of sensor nodes in WSNs plays a significant role in several applications such as detecting the enemy movement in military applications. The major aim of localization problem is to find the coordinates of all target nodes with the help of anchor nodes. In this paper, two variants of bat optimization algorithm (BOA) are proposed to localize the sensor nodes in a more efficient way and to overcome the drawbacks of original BOA, i.e. being trapped in local optimum solution. The exploration and exploitation features of original BOA are modified in the proposed BOA variants 1 and 2 using improved global and local search strategies. To validate the efficiency of the proposed BOA variants 1 and 2, several simulations have been performed for various numbers of target nodes and anchor nodes, and the results are compared with original BOA and other existing optimization algorithms applied to node localization problem. The proposed BOA variants 1 and 2 outperform the other algorithms in terms of mean localization error, number of localized nodes and computing time. Further, the proposed BOA variants 1 and 2 and original BOA are also compared in terms of various errors and localization efficiency for several values of target and anchor nodes. The simulations results signify that the proposed BOA variant 2 is superior to the proposed BOA variant 1 and existing BOA in terms of several errors. The node localization based on the proposed BOA variant 2 is more effective as it takes less time to perform computations and has less mean localization error than the proposed BOA variant 1, BOA and other existing optimization algorithms.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0920-8542
1573-0484
DOI:10.1007/s11227-022-04320-x