Rice Blast Disease Recognition Using a Deep Convolutional Neural Network

Rice disease recognition is crucial in automated rice disease diagnosis systems. At present, deep convolutional neural network (CNN) is generally considered the state-of-the-art solution in image recognition. In this paper, we propose a novel rice blast recognition method based on CNN. A dataset of...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports Vol. 9; no. 1; p. 2869
Main Authors: Liang, Wan-jie, Zhang, Hong, Zhang, Gu-feng, Cao, Hong-xin
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 27.02.2019
Nature Publishing Group
Subjects:
ISSN:2045-2322, 2045-2322
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Rice disease recognition is crucial in automated rice disease diagnosis systems. At present, deep convolutional neural network (CNN) is generally considered the state-of-the-art solution in image recognition. In this paper, we propose a novel rice blast recognition method based on CNN. A dataset of 2906 positive samples and 2902 negative samples is established for training and testing the CNN model. In addition, we conduct comparative experiments for qualitative and quantitatively analysis in our evaluation of the effectiveness of the proposed method. The evaluation results show that the high-level features extracted by CNN are more discriminative and effective than traditional hand-crafted features including local binary patterns histograms (LBPH) and Haar-WT (Wavelet Transform). Moreover, quantitative evaluation results indicate that CNN with Softmax and CNN with support vector machine (SVM) have similar performances, with higher accuracy, larger area under curve (AUC), and better receiver operating characteristic (ROC) curves than both LBPH plus an SVM as the classifier and Haar-WT plus an SVM as the classifier. Therefore, our CNN model is a top performing method for rice blast disease recognition and can be potentially employed in practical applications.
AbstractList Rice disease recognition is crucial in automated rice disease diagnosis systems. At present, deep convolutional neural network (CNN) is generally considered the state-of-the-art solution in image recognition. In this paper, we propose a novel rice blast recognition method based on CNN. A dataset of 2906 positive samples and 2902 negative samples is established for training and testing the CNN model. In addition, we conduct comparative experiments for qualitative and quantitatively analysis in our evaluation of the effectiveness of the proposed method. The evaluation results show that the high-level features extracted by CNN are more discriminative and effective than traditional hand-crafted features including local binary patterns histograms (LBPH) and Haar-WT (Wavelet Transform). Moreover, quantitative evaluation results indicate that CNN with Softmax and CNN with support vector machine (SVM) have similar performances, with higher accuracy, larger area under curve (AUC), and better receiver operating characteristic (ROC) curves than both LBPH plus an SVM as the classifier and Haar-WT plus an SVM as the classifier. Therefore, our CNN model is a top performing method for rice blast disease recognition and can be potentially employed in practical applications.
Rice disease recognition is crucial in automated rice disease diagnosis systems. At present, deep convolutional neural network (CNN) is generally considered the state-of-the-art solution in image recognition. In this paper, we propose a novel rice blast recognition method based on CNN. A dataset of 2906 positive samples and 2902 negative samples is established for training and testing the CNN model. In addition, we conduct comparative experiments for qualitative and quantitatively analysis in our evaluation of the effectiveness of the proposed method. The evaluation results show that the high-level features extracted by CNN are more discriminative and effective than traditional hand-crafted features including local binary patterns histograms (LBPH) and Haar-WT (Wavelet Transform). Moreover, quantitative evaluation results indicate that CNN with Softmax and CNN with support vector machine (SVM) have similar performances, with higher accuracy, larger area under curve (AUC), and better receiver operating characteristic (ROC) curves than both LBPH plus an SVM as the classifier and Haar-WT plus an SVM as the classifier. Therefore, our CNN model is a top performing method for rice blast disease recognition and can be potentially employed in practical applications.Rice disease recognition is crucial in automated rice disease diagnosis systems. At present, deep convolutional neural network (CNN) is generally considered the state-of-the-art solution in image recognition. In this paper, we propose a novel rice blast recognition method based on CNN. A dataset of 2906 positive samples and 2902 negative samples is established for training and testing the CNN model. In addition, we conduct comparative experiments for qualitative and quantitatively analysis in our evaluation of the effectiveness of the proposed method. The evaluation results show that the high-level features extracted by CNN are more discriminative and effective than traditional hand-crafted features including local binary patterns histograms (LBPH) and Haar-WT (Wavelet Transform). Moreover, quantitative evaluation results indicate that CNN with Softmax and CNN with support vector machine (SVM) have similar performances, with higher accuracy, larger area under curve (AUC), and better receiver operating characteristic (ROC) curves than both LBPH plus an SVM as the classifier and Haar-WT plus an SVM as the classifier. Therefore, our CNN model is a top performing method for rice blast disease recognition and can be potentially employed in practical applications.
ArticleNumber 2869
Author Zhang, Hong
Liang, Wan-jie
Cao, Hong-xin
Zhang, Gu-feng
Author_xml – sequence: 1
  givenname: Wan-jie
  surname: Liang
  fullname: Liang, Wan-jie
  email: wanjie.liang@163.com
  organization: Institute of Agricultural Information, Jiangsu Academy of Agricultural Sciences, Department of Computing Science, University of Alberta
– sequence: 2
  givenname: Hong
  surname: Zhang
  fullname: Zhang, Hong
  organization: Department of Computing Science, University of Alberta
– sequence: 3
  givenname: Gu-feng
  surname: Zhang
  fullname: Zhang, Gu-feng
  organization: Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences
– sequence: 4
  givenname: Hong-xin
  surname: Cao
  fullname: Cao, Hong-xin
  organization: Institute of Agricultural Information, Jiangsu Academy of Agricultural Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30814523$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtPGzEUha0KVB7NH2CBRmLTzYDf49lUouFVKWolRNaW47kTDBM7tWeo-u9xEkIpC7y5lu53jo59DtCODx4QOiL4lGCmzhInolYlJnXJVC1liT-hfYq5KCmjdOfNfQ-NUnrA-Qhac1J_RnsMK8IFZfvo5tZZKL53JvXFhUtgEhS3YMPcu94FX0yT8_PCFBcAy2Ic_FPohtXCdMVPGOJ69H9CfPyCdlvTJRi9zEM0vbq8G9-Uk1_XP8bnk9Lyivdl0wpaGdNUQgFwACmkEkwo2cCs4hJqJVvcSMuBqobDbEZaqYyhglsDuOXsEH3b-C6H2QIaC77PKfQyuoWJf3UwTv-_8e5ez8OTlqxmgsts8PXFIIbfA6ReL1yy0HXGQxiSpkRVmDGFcUZP3qEPYYj57WtKVjWRgmTq-G2i1yjbT86A2gA2hpQitNq63qx-MQd0nSZYryrVm0p1rlSvK9WrBPSddOv-oYhtRCnDfg7xX-wPVM9GrbNj
CitedBy_id crossref_primary_10_1007_s00521_022_07521_w
crossref_primary_10_34133_2020_2393062
crossref_primary_10_1007_s11042_021_10889_x
crossref_primary_10_1088_1755_1315_1032_1_012017
crossref_primary_10_3103_S1060992X2301006X
crossref_primary_10_1002_int_23081
crossref_primary_10_1007_s12652_025_05000_3
crossref_primary_10_1016_j_tifs_2024_104855
crossref_primary_10_1038_s41598_024_82857_y
crossref_primary_10_1155_2022_1757888
crossref_primary_10_4018_IJSESD_313973
crossref_primary_10_3390_s21144749
crossref_primary_10_1007_s43069_024_00400_1
crossref_primary_10_3390_agriculture12081192
crossref_primary_10_1111_jph_13411
crossref_primary_10_3389_fpls_2023_1067189
crossref_primary_10_1049_ipr2_12206
crossref_primary_10_3389_fpls_2023_1269371
crossref_primary_10_1109_ACCESS_2020_2998839
crossref_primary_10_1007_s12652_020_02671_y
crossref_primary_10_1016_j_cropro_2023_106488
crossref_primary_10_1007_s00521_022_07743_y
crossref_primary_10_1088_1742_6596_1964_4_042028
crossref_primary_10_1007_s41348_025_01115_z
crossref_primary_10_1038_s41598_025_13079_z
crossref_primary_10_1080_07060661_2022_2053588
crossref_primary_10_1186_s42483_020_00049_8
crossref_primary_10_3390_app11135911
crossref_primary_10_3389_fpls_2020_01082
crossref_primary_10_3390_agriculture13081505
crossref_primary_10_1016_j_compag_2024_109089
crossref_primary_10_1186_s40537_024_00972_z
crossref_primary_10_1007_s11042_024_19860_y
crossref_primary_10_1109_ACCESS_2024_3376441
crossref_primary_10_7717_peerj_cs_1384
crossref_primary_10_1080_01140671_2024_2385813
crossref_primary_10_1080_19479832_2023_2277935
crossref_primary_10_1007_s00425_025_04797_9
crossref_primary_10_12688_f1000research_125425_1
crossref_primary_10_1016_j_compag_2023_107614
crossref_primary_10_1007_s41870_021_00817_5
crossref_primary_10_1002_cpe_7523
crossref_primary_10_32604_cmc_2022_026542
crossref_primary_10_3389_fpls_2023_1249989
crossref_primary_10_1038_s41598_020_59108_x
crossref_primary_10_3390_life13061277
crossref_primary_10_3390_su15021502
crossref_primary_10_1007_s11042_023_17884_4
crossref_primary_10_3389_fcomp_2025_1551326
crossref_primary_10_3389_frai_2024_1328530
crossref_primary_10_1038_s41598_024_63930_y
crossref_primary_10_3390_agronomy14091879
crossref_primary_10_1515_biol_2022_0764
crossref_primary_10_1109_ACCESS_2019_2943454
crossref_primary_10_1007_s11277_023_10545_7
crossref_primary_10_3390_agriculture13050936
crossref_primary_10_1007_s11760_023_02735_4
crossref_primary_10_3390_rs17040698
crossref_primary_10_1007_s11042_023_14994_x
crossref_primary_10_1007_s40858_021_00487_5
crossref_primary_10_1109_ACCESS_2022_3142817
crossref_primary_10_3389_fpls_2022_910878
crossref_primary_10_1186_s13007_025_01325_4
crossref_primary_10_1109_ACCESS_2021_3069646
crossref_primary_10_3390_sym13030511
crossref_primary_10_1007_s10462_020_09849_y
crossref_primary_10_1080_03235408_2021_2015866
crossref_primary_10_1007_s42979_024_02783_8
crossref_primary_10_1016_j_procs_2025_03_208
crossref_primary_10_1007_s11042_023_14980_3
crossref_primary_10_1088_1742_6596_1911_1_012004
crossref_primary_10_1007_s11042_023_18094_8
crossref_primary_10_3389_fmats_2024_1431179
crossref_primary_10_1371_journal_pone_0307461
crossref_primary_10_3390_agriculture14081341
crossref_primary_10_1007_s10661_024_12790_0
crossref_primary_10_1016_j_eswa_2021_114770
crossref_primary_10_1016_j_ecoinf_2020_101197
crossref_primary_10_3390_plants11172230
crossref_primary_10_1016_j_compag_2024_109210
crossref_primary_10_1007_s10489_021_02945_8
crossref_primary_10_1515_ijfe_2023_0055
crossref_primary_10_3390_su142013610
crossref_primary_10_3390_a15030075
crossref_primary_10_3389_fcomp_2024_1452961
crossref_primary_10_1007_s42979_024_02816_2
crossref_primary_10_1109_ACCESS_2024_3371511
crossref_primary_10_1007_s42044_025_00264_6
crossref_primary_10_1155_2022_9153699
crossref_primary_10_1016_j_heliyon_2024_e33328
crossref_primary_10_1016_j_inpa_2024_04_006
crossref_primary_10_1016_j_sasc_2024_200133
crossref_primary_10_1007_s11042_024_18730_x
crossref_primary_10_1016_j_compag_2020_105802
crossref_primary_10_1016_j_heliyon_2024_e33447
crossref_primary_10_3390_agronomy13061633
crossref_primary_10_1002_jsfa_13636
crossref_primary_10_3390_rs15071789
crossref_primary_10_1016_j_engappai_2022_105458
crossref_primary_10_1016_j_compag_2021_106125
crossref_primary_10_1016_j_eswa_2024_124645
crossref_primary_10_1007_s00521_025_11493_y
crossref_primary_10_1007_s12229_024_09299_z
crossref_primary_10_1016_j_bspc_2024_106875
crossref_primary_10_1109_ACCESS_2020_2982443
crossref_primary_10_1016_j_atech_2025_100954
crossref_primary_10_34133_plantphenomics_0073
crossref_primary_10_1094_PHYTO_09_23_0326_R
crossref_primary_10_3390_agriculture12121997
crossref_primary_10_1007_s40031_021_00704_4
crossref_primary_10_1155_2022_9502475
crossref_primary_10_1016_j_cropro_2020_105473
crossref_primary_10_3389_fpls_2022_1043712
crossref_primary_10_32628_IJSRST523103150
crossref_primary_10_1016_j_compeleceng_2023_108659
crossref_primary_10_1007_s00521_022_07722_3
crossref_primary_10_34288_jri_v7i3_370
crossref_primary_10_3389_fpls_2023_1234067
crossref_primary_10_1007_s00521_023_09058_y
crossref_primary_10_1109_ACCESS_2023_3322587
crossref_primary_10_3389_fpls_2022_1008079
crossref_primary_10_3390_agriengineering2030029
Cites_doi 10.1145/3065386
10.1016/j.neucom.2016.02.060
10.1016/j.neunet.2014.09.003
10.1371/journal.pone.0168606
10.1016/j.compag.2012.11.001
10.1016/j.neucom.2017.08.062
10.1126/science.1127647
10.1016/j.compag.2016.02.003
10.1016/j.patcog.2011.09.021
10.1109/5.726791
10.1016/j.cj.2017.05.004
10.1109/TPAMI.2002.1017623
10.1038/nrmicro1422
10.1016/j.neucom.2017.06.023
10.1007/s11103-005-2159-5
10.5423/PPJ.2012.28.2.164
10.1016/0031-3203(95)00067-4
10.1016/j.compag.2017.06.024
10.1016/j.indcrop.2017.11.013
10.1038/nature14539
10.1113/jphysiol.1962.sp006837
10.1007/978-3-540-74549-5_87
10.1109/IAC.2016.7905683
10.1145/1961189.1961199
10.1371/journal.pone.0137036
10.1007/978-3-319-10590-1_53
10.1109/IVS.2005.1505106
10.1186/2193-1801-2-308
10.6029/smartcr.2013.03.002
10.1371/journal.pone.0155781
10.1109/ELEKTRO.2016.7512036
10.1109/RIOS.2017.7956436
10.1109/CVPR.2016.494
10.1038/srep20410
10.1007/978-3-540-24670-1_36
10.1117/12.2268672
10.1109/ARCSE.2015.7338146
ContentType Journal Article
Copyright The Author(s) 2019
This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2019
– notice: This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOI 10.1038/s41598-019-38966-0
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database (ProQuest)
Biological Science Database (ProQuest)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
ExternalDocumentID PMC6393546
30814523
10_1038_s41598_019_38966_0
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: This research was supported and funded by the Fund of Jiangsu Academy of Agricultural Sciences (No. 6111646)
– fundername: the Program of Foshan Innovation Team (Grant No. 2015IT100072), NSFC (Grant No. 61673125), and the Natural Science and Engineering Research Council of Canada.
– fundername: ;
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
EJD
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
Q9U
7X8
5PM
ID FETCH-LOGICAL-c474t-df527aad758ee4ee656853586deb746e986f0d6c4e28d4ebb1f68aa254cae0f43
IEDL.DBID M2P
ISICitedReferencesCount 146
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000459799800018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Tue Nov 04 01:38:40 EST 2025
Sun Nov 09 12:06:02 EST 2025
Tue Oct 07 07:43:23 EDT 2025
Thu Apr 03 07:02:00 EDT 2025
Sat Nov 29 04:37:17 EST 2025
Tue Nov 18 20:02:33 EST 2025
Fri Feb 21 02:38:40 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-df527aad758ee4ee656853586deb746e986f0d6c4e28d4ebb1f68aa254cae0f43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2186791651?pq-origsite=%requestingapplication%
PMID 30814523
PQID 2186791651
PQPubID 2041939
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6393546
proquest_miscellaneous_2187033800
proquest_journals_2186791651
pubmed_primary_30814523
crossref_citationtrail_10_1038_s41598_019_38966_0
crossref_primary_10_1038_s41598_019_38966_0
springer_journals_10_1038_s41598_019_38966_0
PublicationCentury 2000
PublicationDate 2019-02-27
PublicationDateYYYYMMDD 2019-02-27
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-27
  day: 27
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2019
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Khush (CR1) 2005; 59
Abed-Ashtiani (CR7) 2018; 112
Niu, Suen (CR25) 2012; 45
CR39
Duan, Li, Yang, Li (CR17) 2018; 275
CR38
CR15
CR14
Phadikar, Sil, Das (CR10) 2013; 90
CR13
CR35
CR12
CR33
Zeiler, Fergus (CR22) 2014; 8689
CR31
CR30
Fan, Chen, Lin (CR37) 2005; 6
Ding, Taylor (CR27) 2016; 123
Schmidhuber (CR23) 2015; 61
Ojala, Pietikäinen, Harwood (CR32) 1996; 29
Lu, Yi, Zeng, Liu, Zhang (CR8) 2017; 267
CR4
Wu (CR6) 2017; 5
Sengupta, Das (CR9) 2017; 140
van der Maaten, Hinton (CR41) 2008; 9
Jiao, Gao, Wang, Li (CR11) 2016; 197
Liu (CR26) 2017; 12
CR29
CR28
Liao, Zhu, Lei, Zhang, Li (CR36) 2007; 4642
Roy-Barman, Chattoo (CR2) 2005; 89
Hinton, Salakhutdinov (CR18) 2006; 313
CR21
Abed-Ashtiani, Kadir, Selamat, Hanif, Nasehi (CR3) 2012; 28
CR40
LeCun, Bengio, Hinton (CR16) 2015; 521
Hubel, Wiesel (CR19) 1962; 160
Krizhevsky, Sutskever, Hinton (CR20) 2017; 60
Lecun, Bottou, Bengio, Haffner (CR24) 1998; 86
Dadley-Moore (CR5) 2006; 4
Ojala, Pietikainen, Maenpaa (CR34) 2002; 24
S Phadikar (38966_CR10) 2013; 90
T Ojala (38966_CR34) 2002; 24
GS Khush (38966_CR1) 2005; 59
SC Liao (38966_CR36) 2007; 4642
T Ojala (38966_CR32) 1996; 29
F Abed-Ashtiani (38966_CR3) 2012; 28
X Liu (38966_CR26) 2017; 12
38966_CR39
38966_CR21
Y Lecun (38966_CR24) 1998; 86
DH Hubel (38966_CR19) 1962; 160
38966_CR40
M Duan (38966_CR17) 2018; 275
Y Wu (38966_CR6) 2017; 5
RE Fan (38966_CR37) 2005; 6
S Roy-Barman (38966_CR2) 2005; 89
S Sengupta (38966_CR9) 2017; 140
L van der Maaten (38966_CR41) 2008; 9
MD Zeiler (38966_CR22) 2014; 8689
J Schmidhuber (38966_CR23) 2015; 61
38966_CR4
38966_CR29
38966_CR28
ZC Jiao (38966_CR11) 2016; 197
38966_CR14
38966_CR13
XX Niu (38966_CR25) 2012; 45
38966_CR35
38966_CR38
38966_CR15
38966_CR31
38966_CR12
Y Lu (38966_CR8) 2017; 267
38966_CR33
F Abed-Ashtiani (38966_CR7) 2018; 112
Y LeCun (38966_CR16) 2015; 521
G Hinton (38966_CR18) 2006; 313
W Ding (38966_CR27) 2016; 123
38966_CR30
A Krizhevsky (38966_CR20) 2017; 60
D Dadley-Moore (38966_CR5) 2006; 4
References_xml – volume: 60
  start-page: 84
  year: 2017
  end-page: 90
  ident: CR20
  article-title: ImageNet Classification with Deep Convolutional Neural Networks
  publication-title: Communications of the Acm.
  doi: 10.1145/3065386
– volume: 89
  start-page: 930
  year: 2005
  end-page: 931
  ident: CR2
  article-title: Rice blast fungus sequenced
  publication-title: Current Science
– volume: 8689
  start-page: 818
  year: 2014
  end-page: 833
  ident: CR22
  article-title: Visualizing and Understanding Convolutional Networks
  publication-title: Computer Vision - Eccv 2014, Pt I.
– ident: CR4
– ident: CR14
– ident: CR39
– volume: 197
  start-page: 221
  year: 2016
  end-page: 231
  ident: CR11
  article-title: A deep feature based framework for breast masses classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.02.060
– ident: CR12
– volume: 61
  start-page: 85
  year: 2015
  end-page: 117
  ident: CR23
  article-title: Deep learning in neural networks: An overview
  publication-title: Neural Networks.
  doi: 10.1016/j.neunet.2014.09.003
– ident: CR30
– volume: 12
  start-page: e0168606
  year: 2017
  ident: CR26
  article-title: Localization and diagnosis framework for pediatric cataracts based on slit-lamp images using deep features of a convolutional neural network
  publication-title: PLOS ONE.
  doi: 10.1371/journal.pone.0168606
– volume: 90
  start-page: 76
  year: 2013
  end-page: 85
  ident: CR10
  article-title: Rice diseases classification using feature selection and rule generation techniques
  publication-title: Computers and Electronics in Agriculture.
  doi: 10.1016/j.compag.2012.11.001
– ident: CR33
– volume: 275
  start-page: 448
  year: 2018
  end-page: 461
  ident: CR17
  article-title: A hybrid deep learning CNN–ELM for age and gender classification
  publication-title: Neurocomputing.
  doi: 10.1016/j.neucom.2017.08.062
– volume: 313
  start-page: 504
  year: 2006
  end-page: 507
  ident: CR18
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science.
  doi: 10.1126/science.1127647
– volume: 123
  start-page: 17
  year: 2016
  end-page: 28
  ident: CR27
  article-title: Automatic moth detection from trap images for pest management
  publication-title: Computers and Electronics in Agriculture.
  doi: 10.1016/j.compag.2016.02.003
– ident: CR35
– volume: 9
  start-page: 2579
  year: 2008
  end-page: 2605
  ident: CR41
  article-title: Visualizing Data using t-SNE
  publication-title: Journal Of Machine Learning Research.
– volume: 45
  start-page: 1318
  year: 2012
  end-page: 1325
  ident: CR25
  article-title: A novel hybrid CNN–SVM classifier for recognizing handwritten digits
  publication-title: Pattern Recognition.
  doi: 10.1016/j.patcog.2011.09.021
– ident: CR29
– volume: 86
  start-page: 2278
  year: 1998
  end-page: 2324
  ident: CR24
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proceedings of the IEEE.
  doi: 10.1109/5.726791
– volume: 5
  start-page: 509
  year: 2017
  end-page: 517
  ident: CR6
  article-title: Characterization and evaluation of rice blast resistance of Chinese indica hybrid rice parental lines
  publication-title: The Crop Journal.
  doi: 10.1016/j.cj.2017.05.004
– ident: CR40
– volume: 24
  start-page: 971
  year: 2002
  end-page: 987
  ident: CR34
  article-title: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns
  publication-title: Ieee Transactions on Pattern Analysis And Machine Intelligence
  doi: 10.1109/TPAMI.2002.1017623
– volume: 6
  start-page: 1889
  year: 2005
  end-page: 1918
  ident: CR37
  article-title: Working set selection using second order information for training support vector machines
  publication-title: Journal Of Machine Learning Research.
– volume: 4
  start-page: 323
  year: 2006
  end-page: 323
  ident: CR5
  article-title: Fungal pathogenesis - Understanding rice blast disease
  publication-title: Nature Reviews Microbiology.
  doi: 10.1038/nrmicro1422
– ident: CR21
– volume: 267
  start-page: 378
  year: 2017
  end-page: 384
  ident: CR8
  article-title: Identification of rice diseases using deep convolutional neural networks
  publication-title: Neurocomputing.
  doi: 10.1016/j.neucom.2017.06.023
– volume: 59
  start-page: 1
  year: 2005
  end-page: 6
  ident: CR1
  article-title: What it will take to Feed 5.0 Billion Rice consumers in 2030
  publication-title: Plant Molecular Biology.
  doi: 10.1007/s11103-005-2159-5
– volume: 28
  start-page: 164
  year: 2012
  end-page: 171
  ident: CR3
  article-title: Effect of Foliar and Root Application of Silicon Against Rice Blast Fungus in MR219 Rice Variety
  publication-title: Plant Pathology Journal.
  doi: 10.5423/PPJ.2012.28.2.164
– ident: CR15
– ident: CR38
– ident: CR31
– ident: CR13
– volume: 29
  start-page: 51
  issue: 1
  year: 1996
  end-page: 59
  ident: CR32
  article-title: A comparative study of texture measures with classification based on feature distributions
  publication-title: Pattern Recognition.
  doi: 10.1016/0031-3203(95)00067-4
– volume: 140
  start-page: 443
  year: 2017
  end-page: 451
  ident: CR9
  article-title: Particle Swarm Optimization based incremental classifier design for rice disease prediction
  publication-title: Computers and Electronics in Agriculture.
  doi: 10.1016/j.compag.2017.06.024
– volume: 112
  start-page: 105
  year: 2018
  end-page: 112
  ident: CR7
  article-title: Plant tonic, a plant-derived bioactive natural product, exhibits antifungal activity against rice blast disease
  publication-title: Industrial Crops & Products.
  doi: 10.1016/j.indcrop.2017.11.013
– ident: CR28
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: CR16
  article-title: Deep learning
  publication-title: Nature.
  doi: 10.1038/nature14539
– volume: 160
  start-page: 106
  year: 1962
  end-page: 154
  ident: CR19
  article-title: Receptive fields,binocular interaction and functional architecture in the cat’s visual cortex
  publication-title: J.Physiol.
  doi: 10.1113/jphysiol.1962.sp006837
– volume: 4642
  start-page: 828
  year: 2007
  end-page: 837
  ident: CR36
  article-title: Learning multi-scale block local binary patterns for face recognition
  publication-title: Advances In Biometrics, Proceedings.
  doi: 10.1007/978-3-540-74549-5_87
– ident: 38966_CR29
  doi: 10.1109/IAC.2016.7905683
– volume: 89
  start-page: 930
  year: 2005
  ident: 38966_CR2
  publication-title: Current Science
– volume: 123
  start-page: 17
  year: 2016
  ident: 38966_CR27
  publication-title: Computers and Electronics in Agriculture.
  doi: 10.1016/j.compag.2016.02.003
– ident: 38966_CR40
– volume: 197
  start-page: 221
  year: 2016
  ident: 38966_CR11
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.02.060
– volume: 313
  start-page: 504
  year: 2006
  ident: 38966_CR18
  publication-title: Science.
  doi: 10.1126/science.1127647
– ident: 38966_CR38
  doi: 10.1145/1961189.1961199
– ident: 38966_CR12
  doi: 10.1371/journal.pone.0137036
– volume: 90
  start-page: 76
  year: 2013
  ident: 38966_CR10
  publication-title: Computers and Electronics in Agriculture.
  doi: 10.1016/j.compag.2012.11.001
– volume: 8689
  start-page: 818
  year: 2014
  ident: 38966_CR22
  publication-title: Computer Vision - Eccv 2014, Pt I.
  doi: 10.1007/978-3-319-10590-1_53
– volume: 12
  start-page: e0168606
  year: 2017
  ident: 38966_CR26
  publication-title: PLOS ONE.
  doi: 10.1371/journal.pone.0168606
– volume: 275
  start-page: 448
  year: 2018
  ident: 38966_CR17
  publication-title: Neurocomputing.
  doi: 10.1016/j.neucom.2017.08.062
– volume: 521
  start-page: 436
  year: 2015
  ident: 38966_CR16
  publication-title: Nature.
  doi: 10.1038/nature14539
– ident: 38966_CR39
  doi: 10.1109/IVS.2005.1505106
– ident: 38966_CR4
  doi: 10.1186/2193-1801-2-308
– volume: 267
  start-page: 378
  year: 2017
  ident: 38966_CR8
  publication-title: Neurocomputing.
  doi: 10.1016/j.neucom.2017.06.023
– volume: 140
  start-page: 443
  year: 2017
  ident: 38966_CR9
  publication-title: Computers and Electronics in Agriculture.
  doi: 10.1016/j.compag.2017.06.024
– volume: 29
  start-page: 51
  issue: 1
  year: 1996
  ident: 38966_CR32
  publication-title: Pattern Recognition.
  doi: 10.1016/0031-3203(95)00067-4
– volume: 61
  start-page: 85
  year: 2015
  ident: 38966_CR23
  publication-title: Neural Networks.
  doi: 10.1016/j.neunet.2014.09.003
– volume: 45
  start-page: 1318
  year: 2012
  ident: 38966_CR25
  publication-title: Pattern Recognition.
  doi: 10.1016/j.patcog.2011.09.021
– ident: 38966_CR30
  doi: 10.6029/smartcr.2013.03.002
– volume: 86
  start-page: 2278
  year: 1998
  ident: 38966_CR24
  publication-title: Proceedings of the IEEE.
  doi: 10.1109/5.726791
– ident: 38966_CR15
  doi: 10.1371/journal.pone.0155781
– volume: 59
  start-page: 1
  year: 2005
  ident: 38966_CR1
  publication-title: Plant Molecular Biology.
  doi: 10.1007/s11103-005-2159-5
– volume: 112
  start-page: 105
  year: 2018
  ident: 38966_CR7
  publication-title: Industrial Crops & Products.
  doi: 10.1016/j.indcrop.2017.11.013
– ident: 38966_CR31
  doi: 10.1109/ELEKTRO.2016.7512036
– volume: 28
  start-page: 164
  year: 2012
  ident: 38966_CR3
  publication-title: Plant Pathology Journal.
  doi: 10.5423/PPJ.2012.28.2.164
– ident: 38966_CR28
  doi: 10.1109/RIOS.2017.7956436
– volume: 6
  start-page: 1889
  year: 2005
  ident: 38966_CR37
  publication-title: Journal Of Machine Learning Research.
– volume: 60
  start-page: 84
  year: 2017
  ident: 38966_CR20
  publication-title: Communications of the Acm.
  doi: 10.1145/3065386
– volume: 160
  start-page: 106
  year: 1962
  ident: 38966_CR19
  publication-title: J.Physiol.
  doi: 10.1113/jphysiol.1962.sp006837
– volume: 24
  start-page: 971
  year: 2002
  ident: 38966_CR34
  publication-title: Ieee Transactions on Pattern Analysis And Machine Intelligence
  doi: 10.1109/TPAMI.2002.1017623
– volume: 4
  start-page: 323
  year: 2006
  ident: 38966_CR5
  publication-title: Nature Reviews Microbiology.
  doi: 10.1038/nrmicro1422
– volume: 4642
  start-page: 828
  year: 2007
  ident: 38966_CR36
  publication-title: Advances In Biometrics, Proceedings.
  doi: 10.1007/978-3-540-74549-5_87
– ident: 38966_CR14
  doi: 10.1109/CVPR.2016.494
– ident: 38966_CR13
  doi: 10.1038/srep20410
– ident: 38966_CR35
  doi: 10.1007/978-3-540-24670-1_36
– volume: 9
  start-page: 2579
  year: 2008
  ident: 38966_CR41
  publication-title: Journal Of Machine Learning Research.
– volume: 5
  start-page: 509
  year: 2017
  ident: 38966_CR6
  publication-title: The Crop Journal.
  doi: 10.1016/j.cj.2017.05.004
– ident: 38966_CR21
  doi: 10.1117/12.2268672
– ident: 38966_CR33
  doi: 10.1109/ARCSE.2015.7338146
SSID ssj0000529419
Score 2.6326551
Snippet Rice disease recognition is crucial in automated rice disease diagnosis systems. At present, deep convolutional neural network (CNN) is generally considered...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2869
SubjectTerms 639/705/117
639/705/258
Humanities and Social Sciences
multidisciplinary
Neural networks
Oryza
Rice
Rice blast
Science
Science (multidisciplinary)
Wavelet transforms
Title Rice Blast Disease Recognition Using a Deep Convolutional Neural Network
URI https://link.springer.com/article/10.1038/s41598-019-38966-0
https://www.ncbi.nlm.nih.gov/pubmed/30814523
https://www.proquest.com/docview/2186791651
https://www.proquest.com/docview/2187033800
https://pubmed.ncbi.nlm.nih.gov/PMC6393546
Volume 9
WOSCitedRecordID wos000459799800018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3JbtQw9Il2QOJC2UpD25GRuIHVLB4vJ0Q3FYmOohGg4RQ5tiMqoWTamVbi73l2lmqo6KUX52Bncd7z2xeA9xVjzCpd0lTpirJEG1oiG6ZCZkgLK-NsyOL_8VVMp3I-V3lncFt2YZU9TQyE2jbG28gPfO8kgbLMJPm0uKS-a5T3rnYtNDZghJJN4kO6ztN8sLF4LxZLVJcrE2fyYIn8yueUJYoip-aoTK_zoztC5t1YyX8cpoEPnW49dAfP4VkngZLPLcq8gEeufglP2p6Uf17B2QxJBzlEoXpFjlvvDZn1UUZNTUKMAdHk2LkFOWrqmw538ZG-0Ee4hMjy1_D99OTb0Rnt2i1QwwRbUVtNUqG1RQ3COeYcSnrIyyeSW1cKxp2SvIotN8yl0jJXlknFpdaoYRrt4opl27BZN7XbASKSUpVWZyKdVMyyWFfCMGuU0klmDVcRJP1PL0xXi9y3xPhdBJ94JosWUAUCqgiAKuIIPgz3LNpKHPeu3uuBUHSnclncQiCCd8M0nifvJNG1a67DGiSCGcrREbxpQT-8LkP5iaHmHoFYQ4phga_VvT5TX_wKNbu5T4FmPIKPPfrcftb_d_H2_l3swtPUo7LPsBd7sLm6unb78NjcrC6WV2PYEHMRRjmG0eHJNJ-Ng8lhHE6JHwWOo_zLef7zL1lOGIo
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qBQQX9iW0gJHgBFazOHZ8qBB0qKbqMKqqgnozju2ISigZOtOi_il-I8_OUg0VvfXAKQc7i_M-v8VvA3hdMcas1CVNpa4oS7ShJYphKooMeWFlnA1Z_F8nYjotDg_l3gr87nNhfFhlzxMDo7aN8WfkG753kkBdJk_ez35S3zXKe1f7FhotLHbd2S802eabOyOk75s03f50sDWmXVcBaphgC2qrPBVaW1SUnWPOoUKDIisvuHWlYNzJglex5Ya5tLDMlWVS8UJrNKSMdnHFMnzuNbjOfGUxHyqY7g1nOt5rxhLZ5ebEWbExR_noc9gSSVEz4Gi8L8u_C0rtxdjMvxy0Qe5t3_3f_tg9uNNp2ORDuyXuw4qrH8DNtufm2UMY7yNrJB_RaFiQUeudIvt9FFVTkxBDQTQZOTcjW0192u1NfKQvZBIuIXL-EXy5kmU8htW6qd1TICIpZWl1JtK8YpbFuhKGWSOlTjJruIwg6YmsTFdr3bf8-KGCzz8rVAsMhcBQARgqjuDtcM-srTRy6ez1nuiq4zpzdU7xCF4Nw8gvvBNI1645CXOQyWdoJ0TwpIXa8LoM9UOWp1kEYgmEwwRfi3x5pD76HmqSc5_izXgE73q4nn_Wv1fx7PJVvIRb44PPEzXZme6uwe3UbyNfTUCsw-ri-MQ9hxvmdHE0P34R9iGBb1cN4z_ioXC_
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qU6i4sC-BAkaCE0STOE4cHxCCDqOOWkajClB7Co4XtRJKhs60qH-NX8ezs1RDRW89cMrBzuL4e5vfBvDKMsa0kGVIhbQhi6UKSxTDIc8T5IVWGe2z-L_t8uk0398XszX43eXCuLDKjid6Rq1r5c7Ih653EkddJo2Htg2LmI3G7-c_Q9dBynlau3YaDUR2zNkvNN8W7yYj3OvXlI4_fdnaDtsOA6FinC1DbVPKpdSoNBvDjEHlBsVXmmfalJxlRuSZjXSmmKG5ZqYsY5vlUqJRpaSJLEvwuddgHVVyRgewPpt8nh30JzzOh8Zi0WbqREk-XKC0dBltsQhRT8jQlF-VhhdU3IuRmn-5a70UHN_-n__fHbjV6t7kQ0Msd2HNVPfgRtON8-w-bO8h0yQf0ZxYklHjtyJ7XXxVXREfXUEkGRkzJ1t1ddpSLT7SlTjxFx9T_wC-XskyHsKgqivzGAiPS1FqmXCaWqZZJC1XTCshZJxolYkA4m7DC9VWYXfNQH4UPhogyYsGJAWCpPAgKaIA3vT3zJsaJJfO3uwAULT8aFGc734AL_th5CTOPSQrU5_4Ocj-E7QgAnjUwK5_XYKaI0tpEgBfAWQ_wVUpXx2pjg59tfLMJX-zLIC3HXTPP-vfq3hy-SpewAait9idTHeewk3qKMqVGeCbMFgen5hncF2dLo8Wx89boiTw_apx_AeZWHsI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rice+Blast+Disease+Recognition+Using+a+Deep+Convolutional+Neural+Network&rft.jtitle=Scientific+reports&rft.au=Liang%2C+Wan-Jie&rft.au=Zhang%2C+Hong&rft.au=Zhang%2C+Gu-Feng&rft.au=Cao%2C+Hong-Xin&rft.date=2019-02-27&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=9&rft.issue=1&rft.spage=2869&rft_id=info:doi/10.1038%2Fs41598-019-38966-0&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon