Rice Blast Disease Recognition Using a Deep Convolutional Neural Network
Rice disease recognition is crucial in automated rice disease diagnosis systems. At present, deep convolutional neural network (CNN) is generally considered the state-of-the-art solution in image recognition. In this paper, we propose a novel rice blast recognition method based on CNN. A dataset of...
Saved in:
| Published in: | Scientific reports Vol. 9; no. 1; p. 2869 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Nature Publishing Group UK
27.02.2019
Nature Publishing Group |
| Subjects: | |
| ISSN: | 2045-2322, 2045-2322 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Rice disease recognition is crucial in automated rice disease diagnosis systems. At present, deep convolutional neural network (CNN) is generally considered the state-of-the-art solution in image recognition. In this paper, we propose a novel rice blast recognition method based on CNN. A dataset of 2906 positive samples and 2902 negative samples is established for training and testing the CNN model. In addition, we conduct comparative experiments for qualitative and quantitatively analysis in our evaluation of the effectiveness of the proposed method. The evaluation results show that the high-level features extracted by CNN are more discriminative and effective than traditional hand-crafted features including local binary patterns histograms (LBPH) and Haar-WT (Wavelet Transform). Moreover, quantitative evaluation results indicate that CNN with Softmax and CNN with support vector machine (SVM) have similar performances, with higher accuracy, larger area under curve (AUC), and better receiver operating characteristic (ROC) curves than both LBPH plus an SVM as the classifier and Haar-WT plus an SVM as the classifier. Therefore, our CNN model is a top performing method for rice blast disease recognition and can be potentially employed in practical applications. |
|---|---|
| AbstractList | Rice disease recognition is crucial in automated rice disease diagnosis systems. At present, deep convolutional neural network (CNN) is generally considered the state-of-the-art solution in image recognition. In this paper, we propose a novel rice blast recognition method based on CNN. A dataset of 2906 positive samples and 2902 negative samples is established for training and testing the CNN model. In addition, we conduct comparative experiments for qualitative and quantitatively analysis in our evaluation of the effectiveness of the proposed method. The evaluation results show that the high-level features extracted by CNN are more discriminative and effective than traditional hand-crafted features including local binary patterns histograms (LBPH) and Haar-WT (Wavelet Transform). Moreover, quantitative evaluation results indicate that CNN with Softmax and CNN with support vector machine (SVM) have similar performances, with higher accuracy, larger area under curve (AUC), and better receiver operating characteristic (ROC) curves than both LBPH plus an SVM as the classifier and Haar-WT plus an SVM as the classifier. Therefore, our CNN model is a top performing method for rice blast disease recognition and can be potentially employed in practical applications. Rice disease recognition is crucial in automated rice disease diagnosis systems. At present, deep convolutional neural network (CNN) is generally considered the state-of-the-art solution in image recognition. In this paper, we propose a novel rice blast recognition method based on CNN. A dataset of 2906 positive samples and 2902 negative samples is established for training and testing the CNN model. In addition, we conduct comparative experiments for qualitative and quantitatively analysis in our evaluation of the effectiveness of the proposed method. The evaluation results show that the high-level features extracted by CNN are more discriminative and effective than traditional hand-crafted features including local binary patterns histograms (LBPH) and Haar-WT (Wavelet Transform). Moreover, quantitative evaluation results indicate that CNN with Softmax and CNN with support vector machine (SVM) have similar performances, with higher accuracy, larger area under curve (AUC), and better receiver operating characteristic (ROC) curves than both LBPH plus an SVM as the classifier and Haar-WT plus an SVM as the classifier. Therefore, our CNN model is a top performing method for rice blast disease recognition and can be potentially employed in practical applications.Rice disease recognition is crucial in automated rice disease diagnosis systems. At present, deep convolutional neural network (CNN) is generally considered the state-of-the-art solution in image recognition. In this paper, we propose a novel rice blast recognition method based on CNN. A dataset of 2906 positive samples and 2902 negative samples is established for training and testing the CNN model. In addition, we conduct comparative experiments for qualitative and quantitatively analysis in our evaluation of the effectiveness of the proposed method. The evaluation results show that the high-level features extracted by CNN are more discriminative and effective than traditional hand-crafted features including local binary patterns histograms (LBPH) and Haar-WT (Wavelet Transform). Moreover, quantitative evaluation results indicate that CNN with Softmax and CNN with support vector machine (SVM) have similar performances, with higher accuracy, larger area under curve (AUC), and better receiver operating characteristic (ROC) curves than both LBPH plus an SVM as the classifier and Haar-WT plus an SVM as the classifier. Therefore, our CNN model is a top performing method for rice blast disease recognition and can be potentially employed in practical applications. |
| ArticleNumber | 2869 |
| Author | Zhang, Hong Liang, Wan-jie Cao, Hong-xin Zhang, Gu-feng |
| Author_xml | – sequence: 1 givenname: Wan-jie surname: Liang fullname: Liang, Wan-jie email: wanjie.liang@163.com organization: Institute of Agricultural Information, Jiangsu Academy of Agricultural Sciences, Department of Computing Science, University of Alberta – sequence: 2 givenname: Hong surname: Zhang fullname: Zhang, Hong organization: Department of Computing Science, University of Alberta – sequence: 3 givenname: Gu-feng surname: Zhang fullname: Zhang, Gu-feng organization: Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences – sequence: 4 givenname: Hong-xin surname: Cao fullname: Cao, Hong-xin organization: Institute of Agricultural Information, Jiangsu Academy of Agricultural Sciences |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30814523$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUtPGzEUha0KVB7NH2CBRmLTzYDf49lUouFVKWolRNaW47kTDBM7tWeo-u9xEkIpC7y5lu53jo59DtCODx4QOiL4lGCmzhInolYlJnXJVC1liT-hfYq5KCmjdOfNfQ-NUnrA-Qhac1J_RnsMK8IFZfvo5tZZKL53JvXFhUtgEhS3YMPcu94FX0yT8_PCFBcAy2Ic_FPohtXCdMVPGOJ69H9CfPyCdlvTJRi9zEM0vbq8G9-Uk1_XP8bnk9Lyivdl0wpaGdNUQgFwACmkEkwo2cCs4hJqJVvcSMuBqobDbEZaqYyhglsDuOXsEH3b-C6H2QIaC77PKfQyuoWJf3UwTv-_8e5ez8OTlqxmgsts8PXFIIbfA6ReL1yy0HXGQxiSpkRVmDGFcUZP3qEPYYj57WtKVjWRgmTq-G2i1yjbT86A2gA2hpQitNq63qx-MQd0nSZYryrVm0p1rlSvK9WrBPSddOv-oYhtRCnDfg7xX-wPVM9GrbNj |
| CitedBy_id | crossref_primary_10_1007_s00521_022_07521_w crossref_primary_10_34133_2020_2393062 crossref_primary_10_1007_s11042_021_10889_x crossref_primary_10_1088_1755_1315_1032_1_012017 crossref_primary_10_3103_S1060992X2301006X crossref_primary_10_1002_int_23081 crossref_primary_10_1007_s12652_025_05000_3 crossref_primary_10_1016_j_tifs_2024_104855 crossref_primary_10_1038_s41598_024_82857_y crossref_primary_10_1155_2022_1757888 crossref_primary_10_4018_IJSESD_313973 crossref_primary_10_3390_s21144749 crossref_primary_10_1007_s43069_024_00400_1 crossref_primary_10_3390_agriculture12081192 crossref_primary_10_1111_jph_13411 crossref_primary_10_3389_fpls_2023_1067189 crossref_primary_10_1049_ipr2_12206 crossref_primary_10_3389_fpls_2023_1269371 crossref_primary_10_1109_ACCESS_2020_2998839 crossref_primary_10_1007_s12652_020_02671_y crossref_primary_10_1016_j_cropro_2023_106488 crossref_primary_10_1007_s00521_022_07743_y crossref_primary_10_1088_1742_6596_1964_4_042028 crossref_primary_10_1007_s41348_025_01115_z crossref_primary_10_1038_s41598_025_13079_z crossref_primary_10_1080_07060661_2022_2053588 crossref_primary_10_1186_s42483_020_00049_8 crossref_primary_10_3390_app11135911 crossref_primary_10_3389_fpls_2020_01082 crossref_primary_10_3390_agriculture13081505 crossref_primary_10_1016_j_compag_2024_109089 crossref_primary_10_1186_s40537_024_00972_z crossref_primary_10_1007_s11042_024_19860_y crossref_primary_10_1109_ACCESS_2024_3376441 crossref_primary_10_7717_peerj_cs_1384 crossref_primary_10_1080_01140671_2024_2385813 crossref_primary_10_1080_19479832_2023_2277935 crossref_primary_10_1007_s00425_025_04797_9 crossref_primary_10_12688_f1000research_125425_1 crossref_primary_10_1016_j_compag_2023_107614 crossref_primary_10_1007_s41870_021_00817_5 crossref_primary_10_1002_cpe_7523 crossref_primary_10_32604_cmc_2022_026542 crossref_primary_10_3389_fpls_2023_1249989 crossref_primary_10_1038_s41598_020_59108_x crossref_primary_10_3390_life13061277 crossref_primary_10_3390_su15021502 crossref_primary_10_1007_s11042_023_17884_4 crossref_primary_10_3389_fcomp_2025_1551326 crossref_primary_10_3389_frai_2024_1328530 crossref_primary_10_1038_s41598_024_63930_y crossref_primary_10_3390_agronomy14091879 crossref_primary_10_1515_biol_2022_0764 crossref_primary_10_1109_ACCESS_2019_2943454 crossref_primary_10_1007_s11277_023_10545_7 crossref_primary_10_3390_agriculture13050936 crossref_primary_10_1007_s11760_023_02735_4 crossref_primary_10_3390_rs17040698 crossref_primary_10_1007_s11042_023_14994_x crossref_primary_10_1007_s40858_021_00487_5 crossref_primary_10_1109_ACCESS_2022_3142817 crossref_primary_10_3389_fpls_2022_910878 crossref_primary_10_1186_s13007_025_01325_4 crossref_primary_10_1109_ACCESS_2021_3069646 crossref_primary_10_3390_sym13030511 crossref_primary_10_1007_s10462_020_09849_y crossref_primary_10_1080_03235408_2021_2015866 crossref_primary_10_1007_s42979_024_02783_8 crossref_primary_10_1016_j_procs_2025_03_208 crossref_primary_10_1007_s11042_023_14980_3 crossref_primary_10_1088_1742_6596_1911_1_012004 crossref_primary_10_1007_s11042_023_18094_8 crossref_primary_10_3389_fmats_2024_1431179 crossref_primary_10_1371_journal_pone_0307461 crossref_primary_10_3390_agriculture14081341 crossref_primary_10_1007_s10661_024_12790_0 crossref_primary_10_1016_j_eswa_2021_114770 crossref_primary_10_1016_j_ecoinf_2020_101197 crossref_primary_10_3390_plants11172230 crossref_primary_10_1016_j_compag_2024_109210 crossref_primary_10_1007_s10489_021_02945_8 crossref_primary_10_1515_ijfe_2023_0055 crossref_primary_10_3390_su142013610 crossref_primary_10_3390_a15030075 crossref_primary_10_3389_fcomp_2024_1452961 crossref_primary_10_1007_s42979_024_02816_2 crossref_primary_10_1109_ACCESS_2024_3371511 crossref_primary_10_1007_s42044_025_00264_6 crossref_primary_10_1155_2022_9153699 crossref_primary_10_1016_j_heliyon_2024_e33328 crossref_primary_10_1016_j_inpa_2024_04_006 crossref_primary_10_1016_j_sasc_2024_200133 crossref_primary_10_1007_s11042_024_18730_x crossref_primary_10_1016_j_compag_2020_105802 crossref_primary_10_1016_j_heliyon_2024_e33447 crossref_primary_10_3390_agronomy13061633 crossref_primary_10_1002_jsfa_13636 crossref_primary_10_3390_rs15071789 crossref_primary_10_1016_j_engappai_2022_105458 crossref_primary_10_1016_j_compag_2021_106125 crossref_primary_10_1016_j_eswa_2024_124645 crossref_primary_10_1007_s00521_025_11493_y crossref_primary_10_1007_s12229_024_09299_z crossref_primary_10_1016_j_bspc_2024_106875 crossref_primary_10_1109_ACCESS_2020_2982443 crossref_primary_10_1016_j_atech_2025_100954 crossref_primary_10_34133_plantphenomics_0073 crossref_primary_10_1094_PHYTO_09_23_0326_R crossref_primary_10_3390_agriculture12121997 crossref_primary_10_1007_s40031_021_00704_4 crossref_primary_10_1155_2022_9502475 crossref_primary_10_1016_j_cropro_2020_105473 crossref_primary_10_3389_fpls_2022_1043712 crossref_primary_10_32628_IJSRST523103150 crossref_primary_10_1016_j_compeleceng_2023_108659 crossref_primary_10_1007_s00521_022_07722_3 crossref_primary_10_34288_jri_v7i3_370 crossref_primary_10_3389_fpls_2023_1234067 crossref_primary_10_1007_s00521_023_09058_y crossref_primary_10_1109_ACCESS_2023_3322587 crossref_primary_10_3389_fpls_2022_1008079 crossref_primary_10_3390_agriengineering2030029 |
| Cites_doi | 10.1145/3065386 10.1016/j.neucom.2016.02.060 10.1016/j.neunet.2014.09.003 10.1371/journal.pone.0168606 10.1016/j.compag.2012.11.001 10.1016/j.neucom.2017.08.062 10.1126/science.1127647 10.1016/j.compag.2016.02.003 10.1016/j.patcog.2011.09.021 10.1109/5.726791 10.1016/j.cj.2017.05.004 10.1109/TPAMI.2002.1017623 10.1038/nrmicro1422 10.1016/j.neucom.2017.06.023 10.1007/s11103-005-2159-5 10.5423/PPJ.2012.28.2.164 10.1016/0031-3203(95)00067-4 10.1016/j.compag.2017.06.024 10.1016/j.indcrop.2017.11.013 10.1038/nature14539 10.1113/jphysiol.1962.sp006837 10.1007/978-3-540-74549-5_87 10.1109/IAC.2016.7905683 10.1145/1961189.1961199 10.1371/journal.pone.0137036 10.1007/978-3-319-10590-1_53 10.1109/IVS.2005.1505106 10.1186/2193-1801-2-308 10.6029/smartcr.2013.03.002 10.1371/journal.pone.0155781 10.1109/ELEKTRO.2016.7512036 10.1109/RIOS.2017.7956436 10.1109/CVPR.2016.494 10.1038/srep20410 10.1007/978-3-540-24670-1_36 10.1117/12.2268672 10.1109/ARCSE.2015.7338146 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2019 This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2019 – notice: This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM |
| DOI | 10.1038/s41598-019-38966-0 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Collection (ProQuest) ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Science Database (ProQuest) Biological Science Database (ProQuest) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| ExternalDocumentID | PMC6393546 30814523 10_1038_s41598_019_38966_0 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: This research was supported and funded by the Fund of Jiangsu Academy of Agricultural Sciences (No. 6111646) – fundername: the Program of Foshan Innovation Team (Grant No. 2015IT100072), NSFC (Grant No. 61673125), and the Natural Science and Engineering Research Council of Canada. – fundername: ; |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS EJD ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFFHD AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB NPM 7XB 8FK K9. PKEHL PQEST PQUKI Q9U 7X8 5PM |
| ID | FETCH-LOGICAL-c474t-df527aad758ee4ee656853586deb746e986f0d6c4e28d4ebb1f68aa254cae0f43 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 146 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000459799800018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Tue Nov 04 01:38:40 EST 2025 Sun Nov 09 12:06:02 EST 2025 Tue Oct 07 07:43:23 EDT 2025 Thu Apr 03 07:02:00 EDT 2025 Sat Nov 29 04:37:17 EST 2025 Tue Nov 18 20:02:33 EST 2025 Fri Feb 21 02:38:40 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c474t-df527aad758ee4ee656853586deb746e986f0d6c4e28d4ebb1f68aa254cae0f43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/2186791651?pq-origsite=%requestingapplication% |
| PMID | 30814523 |
| PQID | 2186791651 |
| PQPubID | 2041939 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6393546 proquest_miscellaneous_2187033800 proquest_journals_2186791651 pubmed_primary_30814523 crossref_citationtrail_10_1038_s41598_019_38966_0 crossref_primary_10_1038_s41598_019_38966_0 springer_journals_10_1038_s41598_019_38966_0 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-02-27 |
| PublicationDateYYYYMMDD | 2019-02-27 |
| PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-27 day: 27 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2019 |
| Publisher | Nature Publishing Group UK Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
| References | Khush (CR1) 2005; 59 Abed-Ashtiani (CR7) 2018; 112 Niu, Suen (CR25) 2012; 45 CR39 Duan, Li, Yang, Li (CR17) 2018; 275 CR38 CR15 CR14 Phadikar, Sil, Das (CR10) 2013; 90 CR13 CR35 CR12 CR33 Zeiler, Fergus (CR22) 2014; 8689 CR31 CR30 Fan, Chen, Lin (CR37) 2005; 6 Ding, Taylor (CR27) 2016; 123 Schmidhuber (CR23) 2015; 61 Ojala, Pietikäinen, Harwood (CR32) 1996; 29 Lu, Yi, Zeng, Liu, Zhang (CR8) 2017; 267 CR4 Wu (CR6) 2017; 5 Sengupta, Das (CR9) 2017; 140 van der Maaten, Hinton (CR41) 2008; 9 Jiao, Gao, Wang, Li (CR11) 2016; 197 Liu (CR26) 2017; 12 CR29 CR28 Liao, Zhu, Lei, Zhang, Li (CR36) 2007; 4642 Roy-Barman, Chattoo (CR2) 2005; 89 Hinton, Salakhutdinov (CR18) 2006; 313 CR21 Abed-Ashtiani, Kadir, Selamat, Hanif, Nasehi (CR3) 2012; 28 CR40 LeCun, Bengio, Hinton (CR16) 2015; 521 Hubel, Wiesel (CR19) 1962; 160 Krizhevsky, Sutskever, Hinton (CR20) 2017; 60 Lecun, Bottou, Bengio, Haffner (CR24) 1998; 86 Dadley-Moore (CR5) 2006; 4 Ojala, Pietikainen, Maenpaa (CR34) 2002; 24 S Phadikar (38966_CR10) 2013; 90 T Ojala (38966_CR34) 2002; 24 GS Khush (38966_CR1) 2005; 59 SC Liao (38966_CR36) 2007; 4642 T Ojala (38966_CR32) 1996; 29 F Abed-Ashtiani (38966_CR3) 2012; 28 X Liu (38966_CR26) 2017; 12 38966_CR39 38966_CR21 Y Lecun (38966_CR24) 1998; 86 DH Hubel (38966_CR19) 1962; 160 38966_CR40 M Duan (38966_CR17) 2018; 275 Y Wu (38966_CR6) 2017; 5 RE Fan (38966_CR37) 2005; 6 S Roy-Barman (38966_CR2) 2005; 89 S Sengupta (38966_CR9) 2017; 140 L van der Maaten (38966_CR41) 2008; 9 MD Zeiler (38966_CR22) 2014; 8689 J Schmidhuber (38966_CR23) 2015; 61 38966_CR4 38966_CR29 38966_CR28 ZC Jiao (38966_CR11) 2016; 197 38966_CR14 38966_CR13 XX Niu (38966_CR25) 2012; 45 38966_CR35 38966_CR38 38966_CR15 38966_CR31 38966_CR12 Y Lu (38966_CR8) 2017; 267 38966_CR33 F Abed-Ashtiani (38966_CR7) 2018; 112 Y LeCun (38966_CR16) 2015; 521 G Hinton (38966_CR18) 2006; 313 W Ding (38966_CR27) 2016; 123 38966_CR30 A Krizhevsky (38966_CR20) 2017; 60 D Dadley-Moore (38966_CR5) 2006; 4 |
| References_xml | – volume: 60 start-page: 84 year: 2017 end-page: 90 ident: CR20 article-title: ImageNet Classification with Deep Convolutional Neural Networks publication-title: Communications of the Acm. doi: 10.1145/3065386 – volume: 89 start-page: 930 year: 2005 end-page: 931 ident: CR2 article-title: Rice blast fungus sequenced publication-title: Current Science – volume: 8689 start-page: 818 year: 2014 end-page: 833 ident: CR22 article-title: Visualizing and Understanding Convolutional Networks publication-title: Computer Vision - Eccv 2014, Pt I. – ident: CR4 – ident: CR14 – ident: CR39 – volume: 197 start-page: 221 year: 2016 end-page: 231 ident: CR11 article-title: A deep feature based framework for breast masses classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.02.060 – ident: CR12 – volume: 61 start-page: 85 year: 2015 end-page: 117 ident: CR23 article-title: Deep learning in neural networks: An overview publication-title: Neural Networks. doi: 10.1016/j.neunet.2014.09.003 – ident: CR30 – volume: 12 start-page: e0168606 year: 2017 ident: CR26 article-title: Localization and diagnosis framework for pediatric cataracts based on slit-lamp images using deep features of a convolutional neural network publication-title: PLOS ONE. doi: 10.1371/journal.pone.0168606 – volume: 90 start-page: 76 year: 2013 end-page: 85 ident: CR10 article-title: Rice diseases classification using feature selection and rule generation techniques publication-title: Computers and Electronics in Agriculture. doi: 10.1016/j.compag.2012.11.001 – ident: CR33 – volume: 275 start-page: 448 year: 2018 end-page: 461 ident: CR17 article-title: A hybrid deep learning CNN–ELM for age and gender classification publication-title: Neurocomputing. doi: 10.1016/j.neucom.2017.08.062 – volume: 313 start-page: 504 year: 2006 end-page: 507 ident: CR18 article-title: Reducing the dimensionality of data with neural networks publication-title: Science. doi: 10.1126/science.1127647 – volume: 123 start-page: 17 year: 2016 end-page: 28 ident: CR27 article-title: Automatic moth detection from trap images for pest management publication-title: Computers and Electronics in Agriculture. doi: 10.1016/j.compag.2016.02.003 – ident: CR35 – volume: 9 start-page: 2579 year: 2008 end-page: 2605 ident: CR41 article-title: Visualizing Data using t-SNE publication-title: Journal Of Machine Learning Research. – volume: 45 start-page: 1318 year: 2012 end-page: 1325 ident: CR25 article-title: A novel hybrid CNN–SVM classifier for recognizing handwritten digits publication-title: Pattern Recognition. doi: 10.1016/j.patcog.2011.09.021 – ident: CR29 – volume: 86 start-page: 2278 year: 1998 end-page: 2324 ident: CR24 article-title: Gradient-based learning applied to document recognition publication-title: Proceedings of the IEEE. doi: 10.1109/5.726791 – volume: 5 start-page: 509 year: 2017 end-page: 517 ident: CR6 article-title: Characterization and evaluation of rice blast resistance of Chinese indica hybrid rice parental lines publication-title: The Crop Journal. doi: 10.1016/j.cj.2017.05.004 – ident: CR40 – volume: 24 start-page: 971 year: 2002 end-page: 987 ident: CR34 article-title: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns publication-title: Ieee Transactions on Pattern Analysis And Machine Intelligence doi: 10.1109/TPAMI.2002.1017623 – volume: 6 start-page: 1889 year: 2005 end-page: 1918 ident: CR37 article-title: Working set selection using second order information for training support vector machines publication-title: Journal Of Machine Learning Research. – volume: 4 start-page: 323 year: 2006 end-page: 323 ident: CR5 article-title: Fungal pathogenesis - Understanding rice blast disease publication-title: Nature Reviews Microbiology. doi: 10.1038/nrmicro1422 – ident: CR21 – volume: 267 start-page: 378 year: 2017 end-page: 384 ident: CR8 article-title: Identification of rice diseases using deep convolutional neural networks publication-title: Neurocomputing. doi: 10.1016/j.neucom.2017.06.023 – volume: 59 start-page: 1 year: 2005 end-page: 6 ident: CR1 article-title: What it will take to Feed 5.0 Billion Rice consumers in 2030 publication-title: Plant Molecular Biology. doi: 10.1007/s11103-005-2159-5 – volume: 28 start-page: 164 year: 2012 end-page: 171 ident: CR3 article-title: Effect of Foliar and Root Application of Silicon Against Rice Blast Fungus in MR219 Rice Variety publication-title: Plant Pathology Journal. doi: 10.5423/PPJ.2012.28.2.164 – ident: CR15 – ident: CR38 – ident: CR31 – ident: CR13 – volume: 29 start-page: 51 issue: 1 year: 1996 end-page: 59 ident: CR32 article-title: A comparative study of texture measures with classification based on feature distributions publication-title: Pattern Recognition. doi: 10.1016/0031-3203(95)00067-4 – volume: 140 start-page: 443 year: 2017 end-page: 451 ident: CR9 article-title: Particle Swarm Optimization based incremental classifier design for rice disease prediction publication-title: Computers and Electronics in Agriculture. doi: 10.1016/j.compag.2017.06.024 – volume: 112 start-page: 105 year: 2018 end-page: 112 ident: CR7 article-title: Plant tonic, a plant-derived bioactive natural product, exhibits antifungal activity against rice blast disease publication-title: Industrial Crops & Products. doi: 10.1016/j.indcrop.2017.11.013 – ident: CR28 – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: CR16 article-title: Deep learning publication-title: Nature. doi: 10.1038/nature14539 – volume: 160 start-page: 106 year: 1962 end-page: 154 ident: CR19 article-title: Receptive fields,binocular interaction and functional architecture in the cat’s visual cortex publication-title: J.Physiol. doi: 10.1113/jphysiol.1962.sp006837 – volume: 4642 start-page: 828 year: 2007 end-page: 837 ident: CR36 article-title: Learning multi-scale block local binary patterns for face recognition publication-title: Advances In Biometrics, Proceedings. doi: 10.1007/978-3-540-74549-5_87 – ident: 38966_CR29 doi: 10.1109/IAC.2016.7905683 – volume: 89 start-page: 930 year: 2005 ident: 38966_CR2 publication-title: Current Science – volume: 123 start-page: 17 year: 2016 ident: 38966_CR27 publication-title: Computers and Electronics in Agriculture. doi: 10.1016/j.compag.2016.02.003 – ident: 38966_CR40 – volume: 197 start-page: 221 year: 2016 ident: 38966_CR11 publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.02.060 – volume: 313 start-page: 504 year: 2006 ident: 38966_CR18 publication-title: Science. doi: 10.1126/science.1127647 – ident: 38966_CR38 doi: 10.1145/1961189.1961199 – ident: 38966_CR12 doi: 10.1371/journal.pone.0137036 – volume: 90 start-page: 76 year: 2013 ident: 38966_CR10 publication-title: Computers and Electronics in Agriculture. doi: 10.1016/j.compag.2012.11.001 – volume: 8689 start-page: 818 year: 2014 ident: 38966_CR22 publication-title: Computer Vision - Eccv 2014, Pt I. doi: 10.1007/978-3-319-10590-1_53 – volume: 12 start-page: e0168606 year: 2017 ident: 38966_CR26 publication-title: PLOS ONE. doi: 10.1371/journal.pone.0168606 – volume: 275 start-page: 448 year: 2018 ident: 38966_CR17 publication-title: Neurocomputing. doi: 10.1016/j.neucom.2017.08.062 – volume: 521 start-page: 436 year: 2015 ident: 38966_CR16 publication-title: Nature. doi: 10.1038/nature14539 – ident: 38966_CR39 doi: 10.1109/IVS.2005.1505106 – ident: 38966_CR4 doi: 10.1186/2193-1801-2-308 – volume: 267 start-page: 378 year: 2017 ident: 38966_CR8 publication-title: Neurocomputing. doi: 10.1016/j.neucom.2017.06.023 – volume: 140 start-page: 443 year: 2017 ident: 38966_CR9 publication-title: Computers and Electronics in Agriculture. doi: 10.1016/j.compag.2017.06.024 – volume: 29 start-page: 51 issue: 1 year: 1996 ident: 38966_CR32 publication-title: Pattern Recognition. doi: 10.1016/0031-3203(95)00067-4 – volume: 61 start-page: 85 year: 2015 ident: 38966_CR23 publication-title: Neural Networks. doi: 10.1016/j.neunet.2014.09.003 – volume: 45 start-page: 1318 year: 2012 ident: 38966_CR25 publication-title: Pattern Recognition. doi: 10.1016/j.patcog.2011.09.021 – ident: 38966_CR30 doi: 10.6029/smartcr.2013.03.002 – volume: 86 start-page: 2278 year: 1998 ident: 38966_CR24 publication-title: Proceedings of the IEEE. doi: 10.1109/5.726791 – ident: 38966_CR15 doi: 10.1371/journal.pone.0155781 – volume: 59 start-page: 1 year: 2005 ident: 38966_CR1 publication-title: Plant Molecular Biology. doi: 10.1007/s11103-005-2159-5 – volume: 112 start-page: 105 year: 2018 ident: 38966_CR7 publication-title: Industrial Crops & Products. doi: 10.1016/j.indcrop.2017.11.013 – ident: 38966_CR31 doi: 10.1109/ELEKTRO.2016.7512036 – volume: 28 start-page: 164 year: 2012 ident: 38966_CR3 publication-title: Plant Pathology Journal. doi: 10.5423/PPJ.2012.28.2.164 – ident: 38966_CR28 doi: 10.1109/RIOS.2017.7956436 – volume: 6 start-page: 1889 year: 2005 ident: 38966_CR37 publication-title: Journal Of Machine Learning Research. – volume: 60 start-page: 84 year: 2017 ident: 38966_CR20 publication-title: Communications of the Acm. doi: 10.1145/3065386 – volume: 160 start-page: 106 year: 1962 ident: 38966_CR19 publication-title: J.Physiol. doi: 10.1113/jphysiol.1962.sp006837 – volume: 24 start-page: 971 year: 2002 ident: 38966_CR34 publication-title: Ieee Transactions on Pattern Analysis And Machine Intelligence doi: 10.1109/TPAMI.2002.1017623 – volume: 4 start-page: 323 year: 2006 ident: 38966_CR5 publication-title: Nature Reviews Microbiology. doi: 10.1038/nrmicro1422 – volume: 4642 start-page: 828 year: 2007 ident: 38966_CR36 publication-title: Advances In Biometrics, Proceedings. doi: 10.1007/978-3-540-74549-5_87 – ident: 38966_CR14 doi: 10.1109/CVPR.2016.494 – ident: 38966_CR13 doi: 10.1038/srep20410 – ident: 38966_CR35 doi: 10.1007/978-3-540-24670-1_36 – volume: 9 start-page: 2579 year: 2008 ident: 38966_CR41 publication-title: Journal Of Machine Learning Research. – volume: 5 start-page: 509 year: 2017 ident: 38966_CR6 publication-title: The Crop Journal. doi: 10.1016/j.cj.2017.05.004 – ident: 38966_CR21 doi: 10.1117/12.2268672 – ident: 38966_CR33 doi: 10.1109/ARCSE.2015.7338146 |
| SSID | ssj0000529419 |
| Score | 2.6326551 |
| Snippet | Rice disease recognition is crucial in automated rice disease diagnosis systems. At present, deep convolutional neural network (CNN) is generally considered... |
| SourceID | pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2869 |
| SubjectTerms | 639/705/117 639/705/258 Humanities and Social Sciences multidisciplinary Neural networks Oryza Rice Rice blast Science Science (multidisciplinary) Wavelet transforms |
| Title | Rice Blast Disease Recognition Using a Deep Convolutional Neural Network |
| URI | https://link.springer.com/article/10.1038/s41598-019-38966-0 https://www.ncbi.nlm.nih.gov/pubmed/30814523 https://www.proquest.com/docview/2186791651 https://www.proquest.com/docview/2187033800 https://pubmed.ncbi.nlm.nih.gov/PMC6393546 |
| Volume | 9 |
| WOSCitedRecordID | wos000459799800018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3JbtQw9Il2QOJC2UpD25GRuIHVLB4vJ0Q3FYmOohGg4RQ5tiMqoWTamVbi73l2lmqo6KUX52Bncd7z2xeA9xVjzCpd0lTpirJEG1oiG6ZCZkgLK-NsyOL_8VVMp3I-V3lncFt2YZU9TQyE2jbG28gPfO8kgbLMJPm0uKS-a5T3rnYtNDZghJJN4kO6ztN8sLF4LxZLVJcrE2fyYIn8yueUJYoip-aoTK_zoztC5t1YyX8cpoEPnW49dAfP4VkngZLPLcq8gEeufglP2p6Uf17B2QxJBzlEoXpFjlvvDZn1UUZNTUKMAdHk2LkFOWrqmw538ZG-0Ee4hMjy1_D99OTb0Rnt2i1QwwRbUVtNUqG1RQ3COeYcSnrIyyeSW1cKxp2SvIotN8yl0jJXlknFpdaoYRrt4opl27BZN7XbASKSUpVWZyKdVMyyWFfCMGuU0klmDVcRJP1PL0xXi9y3xPhdBJ94JosWUAUCqgiAKuIIPgz3LNpKHPeu3uuBUHSnclncQiCCd8M0nifvJNG1a67DGiSCGcrREbxpQT-8LkP5iaHmHoFYQ4phga_VvT5TX_wKNbu5T4FmPIKPPfrcftb_d_H2_l3swtPUo7LPsBd7sLm6unb78NjcrC6WV2PYEHMRRjmG0eHJNJ-Ng8lhHE6JHwWOo_zLef7zL1lOGIo |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qBQQX9iW0gJHgBFazOHZ8qBB0qKbqMKqqgnozju2ISigZOtOi_il-I8_OUg0VvfXAKQc7i_M-v8VvA3hdMcas1CVNpa4oS7ShJYphKooMeWFlnA1Z_F8nYjotDg_l3gr87nNhfFhlzxMDo7aN8WfkG753kkBdJk_ez35S3zXKe1f7FhotLHbd2S802eabOyOk75s03f50sDWmXVcBaphgC2qrPBVaW1SUnWPOoUKDIisvuHWlYNzJglex5Ya5tLDMlWVS8UJrNKSMdnHFMnzuNbjOfGUxHyqY7g1nOt5rxhLZ5ebEWbExR_noc9gSSVEz4Gi8L8u_C0rtxdjMvxy0Qe5t3_3f_tg9uNNp2ORDuyXuw4qrH8DNtufm2UMY7yNrJB_RaFiQUeudIvt9FFVTkxBDQTQZOTcjW0192u1NfKQvZBIuIXL-EXy5kmU8htW6qd1TICIpZWl1JtK8YpbFuhKGWSOlTjJruIwg6YmsTFdr3bf8-KGCzz8rVAsMhcBQARgqjuDtcM-srTRy6ez1nuiq4zpzdU7xCF4Nw8gvvBNI1645CXOQyWdoJ0TwpIXa8LoM9UOWp1kEYgmEwwRfi3x5pD76HmqSc5_izXgE73q4nn_Wv1fx7PJVvIRb44PPEzXZme6uwe3UbyNfTUCsw-ri-MQ9hxvmdHE0P34R9iGBb1cN4z_ioXC_ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qU6i4sC-BAkaCE0STOE4cHxCCDqOOWkajClB7Co4XtRJKhs60qH-NX8ezs1RDRW89cMrBzuL4e5vfBvDKMsa0kGVIhbQhi6UKSxTDIc8T5IVWGe2z-L_t8uk0398XszX43eXCuLDKjid6Rq1r5c7Ih653EkddJo2Htg2LmI3G7-c_Q9dBynlau3YaDUR2zNkvNN8W7yYj3OvXlI4_fdnaDtsOA6FinC1DbVPKpdSoNBvDjEHlBsVXmmfalJxlRuSZjXSmmKG5ZqYsY5vlUqJRpaSJLEvwuddgHVVyRgewPpt8nh30JzzOh8Zi0WbqREk-XKC0dBltsQhRT8jQlF-VhhdU3IuRmn-5a70UHN_-n__fHbjV6t7kQ0Msd2HNVPfgRtON8-w-bO8h0yQf0ZxYklHjtyJ7XXxVXREfXUEkGRkzJ1t1ddpSLT7SlTjxFx9T_wC-XskyHsKgqivzGAiPS1FqmXCaWqZZJC1XTCshZJxolYkA4m7DC9VWYXfNQH4UPhogyYsGJAWCpPAgKaIA3vT3zJsaJJfO3uwAULT8aFGc734AL_th5CTOPSQrU5_4Ocj-E7QgAnjUwK5_XYKaI0tpEgBfAWQ_wVUpXx2pjg59tfLMJX-zLIC3HXTPP-vfq3hy-SpewAait9idTHeewk3qKMqVGeCbMFgen5hncF2dLo8Wx89boiTw_apx_AeZWHsI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rice+Blast+Disease+Recognition+Using+a+Deep+Convolutional+Neural+Network&rft.jtitle=Scientific+reports&rft.au=Liang%2C+Wan-Jie&rft.au=Zhang%2C+Hong&rft.au=Zhang%2C+Gu-Feng&rft.au=Cao%2C+Hong-Xin&rft.date=2019-02-27&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=9&rft.issue=1&rft.spage=2869&rft_id=info:doi/10.1038%2Fs41598-019-38966-0&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |