Whole-cell segmentation of tissue images with human-level performance using large-scale data annotation and deep learning
A principal challenge in the analysis of tissue imaging data is cell segmentation—the task of identifying the precise boundary of every cell in an image. To address this problem we constructed TissueNet, a dataset for training segmentation models that contains more than 1 million manually labeled ce...
Uložené v:
| Vydané v: | Nature biotechnology Ročník 40; číslo 4; s. 555 - 565 |
|---|---|
| Hlavní autori: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Nature Publishing Group US
01.04.2022
Nature Publishing Group |
| Predmet: | |
| ISSN: | 1087-0156, 1546-1696, 1546-1696 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | A principal challenge in the analysis of tissue imaging data is cell segmentation—the task of identifying the precise boundary of every cell in an image. To address this problem we constructed TissueNet, a dataset for training segmentation models that contains more than 1 million manually labeled cells, an order of magnitude more than all previously published segmentation training datasets. We used TissueNet to train Mesmer, a deep-learning-enabled segmentation algorithm. We demonstrated that Mesmer is more accurate than previous methods, generalizes to the full diversity of tissue types and imaging platforms in TissueNet, and achieves human-level performance. Mesmer enabled the automated extraction of key cellular features, such as subcellular localization of protein signal, which was challenging with previous approaches. We then adapted Mesmer to harness cell lineage information in highly multiplexed datasets and used this enhanced version to quantify cell morphology changes during human gestation. All code, data and models are released as a community resource.
Deep learning algorithms perform as well as humans in identifying cells in tissue images. |
|---|---|
| AbstractList | A principal challenge in the analysis of tissue imaging data is cell segmentation—the task of identifying the precise boundary of every cell in an image. To address this problem we constructed TissueNet, a dataset for training segmentation models that contains more than 1 million manually labeled cells, an order of magnitude more than all previously published segmentation training datasets. We used TissueNet to train Mesmer, a deep-learning-enabled segmentation algorithm. We demonstrated that Mesmer is more accurate than previous methods, generalizes to the full diversity of tissue types and imaging platforms in TissueNet, and achieves human-level performance. Mesmer enabled the automated extraction of key cellular features, such as subcellular localization of protein signal, which was challenging with previous approaches. We then adapted Mesmer to harness cell lineage information in highly multiplexed datasets and used this enhanced version to quantify cell morphology changes during human gestation. All code, data and models are released as a community resource.
Deep learning algorithms perform as well as humans in identifying cells in tissue images. A principal challenge in the analysis of tissue imaging data is cell segmentation—the task of identifying the precise boundary of every cell in an image. To address this problem we constructed TissueNet, a dataset for training segmentation models that contains more than 1 million manually labeled cells, an order of magnitude more than all previously published segmentation training datasets. We used TissueNet to train Mesmer, a deep-learning-enabled segmentation algorithm. We demonstrated that Mesmer is more accurate than previous methods, generalizes to the full diversity of tissue types and imaging platforms in TissueNet, and achieves human-level performance. Mesmer enabled the automated extraction of key cellular features, such as subcellular localization of protein signal, which was challenging with previous approaches. We then adapted Mesmer to harness cell lineage information in highly multiplexed datasets and used this enhanced version to quantify cell morphology changes during human gestation. All code, data and models are released as a community resource.Deep learning algorithms perform as well as humans in identifying cells in tissue images. A principal challenge in the analysis of tissue imaging data is cell segmentation-the task of identifying the precise boundary of every cell in an image. To address this problem we constructed TissueNet, a dataset for training segmentation models that contains more than 1 million manually labeled cells, an order of magnitude more than all previously published segmentation training datasets. We used TissueNet to train Mesmer, a deep-learning-enabled segmentation algorithm. We demonstrated that Mesmer is more accurate than previous methods, generalizes to the full diversity of tissue types and imaging platforms in TissueNet, and achieves human-level performance. Mesmer enabled the automated extraction of key cellular features, such as subcellular localization of protein signal, which was challenging with previous approaches. We then adapted Mesmer to harness cell lineage information in highly multiplexed datasets and used this enhanced version to quantify cell morphology changes during human gestation. All code, data and models are released as a community resource. A major challenge in the analysis of tissue imaging data is cell segmentation, the task of identifying the precise boundary of every cell in an image. To address this problem we constructed TissueNet, a dataset for training segmentation models that contains more than 1 million manually labeled cells, an order of magnitude more than all previously published segmentation training datasets. We used TissueNet to train Mesmer, a deep learning-enabled segmentation algorithm. We demonstrated that Mesmer is more accurate than previous methods, generalizes to the full diversity of tissue types and imaging platforms in TissueNet, and achieves human-level performance. Mesmer enabled the automated extraction of key cellular features, such as subcellular localization of protein signal, which was challenging with previous approaches. We then adapted Mesmer to harness cell lineage information in highly multiplexed datasets and used this enhanced version to quantify cell morphology changes during human gestation. All code, data, and models are released as a community resource. A principal challenge in the analysis of tissue imaging data is cell segmentation-the task of identifying the precise boundary of every cell in an image. To address this problem we constructed TissueNet, a dataset for training segmentation models that contains more than 1 million manually labeled cells, an order of magnitude more than all previously published segmentation training datasets. We used TissueNet to train Mesmer, a deep-learning-enabled segmentation algorithm. We demonstrated that Mesmer is more accurate than previous methods, generalizes to the full diversity of tissue types and imaging platforms in TissueNet, and achieves human-level performance. Mesmer enabled the automated extraction of key cellular features, such as subcellular localization of protein signal, which was challenging with previous approaches. We then adapted Mesmer to harness cell lineage information in highly multiplexed datasets and used this enhanced version to quantify cell morphology changes during human gestation. All code, data and models are released as a community resource.A principal challenge in the analysis of tissue imaging data is cell segmentation-the task of identifying the precise boundary of every cell in an image. To address this problem we constructed TissueNet, a dataset for training segmentation models that contains more than 1 million manually labeled cells, an order of magnitude more than all previously published segmentation training datasets. We used TissueNet to train Mesmer, a deep-learning-enabled segmentation algorithm. We demonstrated that Mesmer is more accurate than previous methods, generalizes to the full diversity of tissue types and imaging platforms in TissueNet, and achieves human-level performance. Mesmer enabled the automated extraction of key cellular features, such as subcellular localization of protein signal, which was challenging with previous approaches. We then adapted Mesmer to harness cell lineage information in highly multiplexed datasets and used this enhanced version to quantify cell morphology changes during human gestation. All code, data and models are released as a community resource. |
| Author | Fullaway, Christine Camacho Miller, Geneva McIntosh, Brianna J. Soon, Erin Risom, Tyler Camplisson, Isabella Warshawsky, Shiri Bendall, Sean C. Van Valen, David Fong, Mara Cui, Sunny Abraham, Zion Greenbaum, Shirley Greenwald, Noah F. Schwartz, Morgan Sarah Kong, Alex Hollmann, Travis Moseley, Jackson Graf, William Keren, Leeat Singh, Jaiveer Kagel, Adam Leow, Ke Xuan Moen, Erick Bar-Tal, Omer Angelo, Michael Chaudhry, Gautam Dougherty, Thomas Pavelchek, Cole |
| AuthorAffiliation | 4. Present address: Washington University School of Medicine in St. Louis 2. Department of Pathology, Stanford University 3. Division of Biology and Bioengineering, California Institute of Technology 7. Department of Molecular Cell Biology, Weizmann Institute of Science 9. Immunology Program, Stanford University 8. Department of Cognitive, Linguistic, and Psychological Sciences, Brown University 5. Department of Electrical Engineering, California Institute of Technology 6. Present address: Department of Computer Science, Princeton University 1. Cancer Biology Program, Stanford University 10. Department of Pathology, Memorial Sloan Kettering Cancer Center |
| AuthorAffiliation_xml | – name: 8. Department of Cognitive, Linguistic, and Psychological Sciences, Brown University – name: 6. Present address: Department of Computer Science, Princeton University – name: 9. Immunology Program, Stanford University – name: 5. Department of Electrical Engineering, California Institute of Technology – name: 10. Department of Pathology, Memorial Sloan Kettering Cancer Center – name: 1. Cancer Biology Program, Stanford University – name: 3. Division of Biology and Bioengineering, California Institute of Technology – name: 4. Present address: Washington University School of Medicine in St. Louis – name: 2. Department of Pathology, Stanford University – name: 7. Department of Molecular Cell Biology, Weizmann Institute of Science |
| Author_xml | – sequence: 1 givenname: Noah F. orcidid: 0000-0002-7836-4379 surname: Greenwald fullname: Greenwald, Noah F. organization: Cancer Biology Program, Stanford University, Department of Pathology, Stanford University – sequence: 2 givenname: Geneva surname: Miller fullname: Miller, Geneva organization: Division of Biology and Bioengineering, California Institute of Technology – sequence: 3 givenname: Erick surname: Moen fullname: Moen, Erick organization: Division of Biology and Bioengineering, California Institute of Technology – sequence: 4 givenname: Alex surname: Kong fullname: Kong, Alex organization: Department of Pathology, Stanford University – sequence: 5 givenname: Adam surname: Kagel fullname: Kagel, Adam organization: Department of Pathology, Stanford University – sequence: 6 givenname: Thomas surname: Dougherty fullname: Dougherty, Thomas organization: Division of Biology and Bioengineering, California Institute of Technology – sequence: 7 givenname: Christine Camacho surname: Fullaway fullname: Fullaway, Christine Camacho organization: Department of Pathology, Stanford University – sequence: 8 givenname: Brianna J. orcidid: 0000-0003-3626-625X surname: McIntosh fullname: McIntosh, Brianna J. organization: Cancer Biology Program, Stanford University – sequence: 9 givenname: Ke Xuan surname: Leow fullname: Leow, Ke Xuan organization: Cancer Biology Program, Stanford University, Department of Pathology, Stanford University – sequence: 10 givenname: Morgan Sarah surname: Schwartz fullname: Schwartz, Morgan Sarah organization: Division of Biology and Bioengineering, California Institute of Technology – sequence: 11 givenname: Cole orcidid: 0000-0001-9249-6637 surname: Pavelchek fullname: Pavelchek, Cole organization: Division of Biology and Bioengineering, California Institute of Technology, Washington University School of Medicine in St. Louis – sequence: 12 givenname: Sunny surname: Cui fullname: Cui, Sunny organization: Department of Electrical Engineering, California Institute of Technology, Department of Computer Science, Princeton University – sequence: 13 givenname: Isabella surname: Camplisson fullname: Camplisson, Isabella organization: Division of Biology and Bioengineering, California Institute of Technology – sequence: 14 givenname: Omer orcidid: 0000-0003-1622-3674 surname: Bar-Tal fullname: Bar-Tal, Omer organization: Department of Molecular Cell Biology, Weizmann Institute of Science – sequence: 15 givenname: Jaiveer surname: Singh fullname: Singh, Jaiveer organization: Department of Pathology, Stanford University – sequence: 16 givenname: Mara surname: Fong fullname: Fong, Mara organization: Department of Pathology, Stanford University, Department of Cognitive, Linguistic and Psychological Sciences, Brown University – sequence: 17 givenname: Gautam orcidid: 0000-0003-2240-9846 surname: Chaudhry fullname: Chaudhry, Gautam organization: Department of Pathology, Stanford University – sequence: 18 givenname: Zion surname: Abraham fullname: Abraham, Zion organization: Department of Pathology, Stanford University – sequence: 19 givenname: Jackson surname: Moseley fullname: Moseley, Jackson organization: Department of Pathology, Stanford University – sequence: 20 givenname: Shiri surname: Warshawsky fullname: Warshawsky, Shiri organization: Department of Pathology, Stanford University – sequence: 21 givenname: Erin surname: Soon fullname: Soon, Erin organization: Department of Pathology, Stanford University, Immunology Program, Stanford University – sequence: 22 givenname: Shirley orcidid: 0000-0002-0680-7652 surname: Greenbaum fullname: Greenbaum, Shirley organization: Department of Pathology, Stanford University – sequence: 23 givenname: Tyler surname: Risom fullname: Risom, Tyler organization: Department of Pathology, Stanford University – sequence: 24 givenname: Travis orcidid: 0000-0003-1599-0433 surname: Hollmann fullname: Hollmann, Travis organization: Department of Pathology, Memorial Sloan Kettering Cancer Center – sequence: 25 givenname: Sean C. orcidid: 0000-0003-1341-2453 surname: Bendall fullname: Bendall, Sean C. organization: Department of Pathology, Stanford University – sequence: 26 givenname: Leeat orcidid: 0000-0002-6799-6303 surname: Keren fullname: Keren, Leeat organization: Department of Molecular Cell Biology, Weizmann Institute of Science – sequence: 27 givenname: William orcidid: 0000-0002-4264-9479 surname: Graf fullname: Graf, William organization: Division of Biology and Bioengineering, California Institute of Technology – sequence: 28 givenname: Michael orcidid: 0000-0003-1531-5067 surname: Angelo fullname: Angelo, Michael email: mangelo0@stanford.edu organization: Department of Pathology, Stanford University – sequence: 29 givenname: David orcidid: 0000-0001-7534-7621 surname: Van Valen fullname: Van Valen, David email: vanvalen@caltech.edu organization: Division of Biology and Bioengineering, California Institute of Technology |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34795433$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9UsuOFCEUJWaM89AfcGFI3LhBoXgVGxMz8ZVM4kbjktDUrWomNLRQNWb-Xtrq8TGLWQE5j5x7OefoJOUECD1n9DWjvH9TBZO9JrRjhDJqBKGP0BmTQhGmjDppd3qAmVSn6LzWa0qpEko9QadcaCMF52fo9vs2RyAeYsQVph2k2c0hJ5xHPIdaF8Bh5yao-GeYt3i77FwiEW4g4j2UMZf29oCXGtKEoysTkOpdBDy42WGXUj76uTTgAWCPI7iSGvspejy6WOHZ8bxA3z68_3r5iVx9-fj58t0V8UKLmQwefN875uUGnByV5MJvhKfaja4zXkOvNVPUd9ALQSXTvht5r6VswMYMA79Ab1ff_bLZQbNLc3HR7kubq9za7IL9H0lha6d8Y01bKheqGbw6GpT8Y4E6212oh4W5BHmptpPGMG0MNY368h71Oi8ltfFsp4QRvOt431gv_k30J8rdrzRCvxJ8ybUWGK0P6xpbwBAto_ZQALsWwLYC2N8FsLRJu3vSO_cHRXwV1UZOE5S_sR9Q_QJtxcVt |
| CitedBy_id | crossref_primary_10_1038_s42003_024_06714_4 crossref_primary_10_1038_s41587_024_02316_x crossref_primary_10_1126_sciadv_ads4227 crossref_primary_10_1038_s41467_025_57193_y crossref_primary_10_1038_s41596_023_00881_0 crossref_primary_10_1038_s41590_023_01678_9 crossref_primary_10_1038_s41590_025_02163_1 crossref_primary_10_1016_j_ceb_2024_102378 crossref_primary_10_1038_s41467_022_33619_9 crossref_primary_10_1016_j_cels_2024_04_006 crossref_primary_10_1186_s12911_024_02502_6 crossref_primary_10_1117_1_JMI_12_6_061403 crossref_primary_10_1038_d41586_022_02964_6 crossref_primary_10_1038_d41586_023_03722_y crossref_primary_10_1038_s41392_024_01862_9 crossref_primary_10_1016_j_ccell_2025_06_019 crossref_primary_10_1186_s12931_025_03315_5 crossref_primary_10_1016_j_jneumeth_2024_110273 crossref_primary_10_1049_ipr2_12967 crossref_primary_10_1038_s41598_023_36243_9 crossref_primary_10_1038_s41592_022_01663_4 crossref_primary_10_1002_jum_16489 crossref_primary_10_1002_lpor_202402307 crossref_primary_10_1038_s42003_025_07796_4 crossref_primary_10_1038_s41598_024_69426_z crossref_primary_10_1038_s41467_023_41811_8 crossref_primary_10_1038_s41467_023_43458_x crossref_primary_10_1038_s42003_024_06281_8 crossref_primary_10_1038_s41416_024_02882_6 crossref_primary_10_1002_cyto_a_24541 crossref_primary_10_1007_s11334_023_00537_y crossref_primary_10_1016_j_csbj_2023_07_031 crossref_primary_10_1038_s44276_025_00152_3 crossref_primary_10_1186_s12859_022_04570_9 crossref_primary_10_1016_j_clim_2023_109713 crossref_primary_10_1038_s42003_022_03218_x crossref_primary_10_1038_s41419_025_07717_7 crossref_primary_10_1371_journal_pcbi_1013115 crossref_primary_10_1002_cyto_a_24789 crossref_primary_10_1038_s41467_024_51590_5 crossref_primary_10_1002_art_43254 crossref_primary_10_1186_s13058_025_01961_7 crossref_primary_10_1038_s41416_024_02904_3 crossref_primary_10_1038_s41592_023_01885_0 crossref_primary_10_3389_fimmu_2025_1568456 crossref_primary_10_1038_s42003_023_05098_1 crossref_primary_10_1126_sciimmunol_adr0782 crossref_primary_10_3390_molecules28062712 crossref_primary_10_1016_j_cels_2025_101296 crossref_primary_10_1038_s41587_023_01935_0 crossref_primary_10_1093_bib_bbae421 crossref_primary_10_1038_s41598_024_51995_8 crossref_primary_10_1038_s42003_022_04076_3 crossref_primary_10_26508_lsa_202403067 crossref_primary_10_1007_s10489_025_06737_2 crossref_primary_10_1002_adhm_202400957 crossref_primary_10_1038_s41565_023_01323_4 crossref_primary_10_1136_jitc_2023_006923 crossref_primary_10_1016_j_csbj_2025_07_026 crossref_primary_10_1093_mictod_qaae088 crossref_primary_10_1016_j_softx_2024_101638 crossref_primary_10_1093_gigascience_giaf069 crossref_primary_10_1038_s41592_022_01664_3 crossref_primary_10_1109_TMI_2023_3312988 crossref_primary_10_1158_2159_8290_CD_21_0865 crossref_primary_10_1146_annurev_biodatasci_020422_050255 crossref_primary_10_12688_f1000research_139210_1 crossref_primary_10_3390_cancers14194617 crossref_primary_10_1038_s41586_025_09297_0 crossref_primary_10_1117_1_BIOS_2_2_020901 crossref_primary_10_1016_j_ccell_2024_05_025 crossref_primary_10_1016_j_commatsci_2024_112826 crossref_primary_10_1038_s41598_024_57381_8 crossref_primary_10_1038_s42003_025_08190_w crossref_primary_10_1177_11779322241272387 crossref_primary_10_1007_s00428_023_03509_6 crossref_primary_10_1016_j_crmeth_2023_100557 crossref_primary_10_1002_path_6168 crossref_primary_10_1016_j_jid_2023_06_192 crossref_primary_10_1016_j_sigpro_2024_109448 crossref_primary_10_1093_gigascience_giaf052 crossref_primary_10_1016_j_cell_2024_04_013 crossref_primary_10_1016_j_labinv_2023_100175 crossref_primary_10_1017_qpb_2024_11 crossref_primary_10_7717_peerj_cs_1364 crossref_primary_10_1007_s12204_024_2743_y crossref_primary_10_1146_annurev_biodatasci_102523_103640 crossref_primary_10_1038_s41587_022_01450_8 crossref_primary_10_3390_app132413248 crossref_primary_10_1093_bib_bbae407 crossref_primary_10_1038_s41467_023_43917_5 crossref_primary_10_1117_1_JMI_10_6_065503 crossref_primary_10_3389_frai_2024_1424012 crossref_primary_10_1016_j_inffus_2025_103641 crossref_primary_10_1021_jasms_4c00328 crossref_primary_10_1038_s41592_024_02580_4 crossref_primary_10_1016_j_labinv_2025_104220 crossref_primary_10_1016_j_lfs_2025_123931 crossref_primary_10_1016_j_molcel_2022_05_022 crossref_primary_10_1016_j_jconrel_2023_11_023 crossref_primary_10_1371_journal_pcbi_1012361 crossref_primary_10_3389_fonc_2022_918900 crossref_primary_10_1038_s41592_023_01912_0 crossref_primary_10_1016_j_cmpb_2025_108964 crossref_primary_10_3390_math11092039 crossref_primary_10_1038_s41592_024_02539_5 crossref_primary_10_1038_s42003_024_06110_y crossref_primary_10_1016_j_ultramic_2025_114116 crossref_primary_10_1371_journal_pcbi_1013325 crossref_primary_10_1038_s41586_023_06498_3 crossref_primary_10_1038_s41598_025_90592_1 crossref_primary_10_1038_s41593_022_01104_7 crossref_primary_10_1007_s00761_023_01425_7 crossref_primary_10_1093_pnasnexus_pgad171 crossref_primary_10_1007_s00281_022_00979_9 crossref_primary_10_1016_j_bspc_2024_106143 crossref_primary_10_1016_j_ebiom_2023_104769 crossref_primary_10_1016_j_fmre_2025_01_020 crossref_primary_10_1016_j_ccell_2023_01_010 crossref_primary_10_1089_ten_tea_2024_0049 crossref_primary_10_1038_s41467_025_61299_8 crossref_primary_10_1002_jmv_29882 crossref_primary_10_1007_s00281_022_00982_0 crossref_primary_10_1038_s41467_023_42421_0 crossref_primary_10_1021_acs_analchem_5c01810 crossref_primary_10_1158_2326_6066_CIR_22_0306 crossref_primary_10_1038_s41592_022_01657_2 crossref_primary_10_1007_s11042_024_19579_w crossref_primary_10_1016_j_isci_2025_112804 crossref_primary_10_1017_S2633903X24000011 crossref_primary_10_1038_s41419_024_06535_7 crossref_primary_10_1093_bioadv_vbaf032 crossref_primary_10_1016_j_ins_2022_12_014 crossref_primary_10_1007_s10489_024_06004_w crossref_primary_10_1016_j_tust_2023_105310 crossref_primary_10_1038_s42003_025_08397_x crossref_primary_10_1016_j_mam_2024_101276 crossref_primary_10_1371_journal_pcbi_1013350 crossref_primary_10_1063_5_0189222 crossref_primary_10_3390_ijms25179198 crossref_primary_10_1007_s10585_023_10252_4 crossref_primary_10_1016_j_ccell_2022_09_014 crossref_primary_10_3390_app15115981 crossref_primary_10_1089_ten_tea_2024_0014 crossref_primary_10_1364_AO_546044 crossref_primary_10_1016_j_isci_2024_109928 crossref_primary_10_1038_s41467_023_40674_3 crossref_primary_10_1172_JCI166357 crossref_primary_10_1126_scisignal_ads7002 crossref_primary_10_1038_s41467_024_48870_5 crossref_primary_10_1158_2159_8290_CD_23_1300 crossref_primary_10_1038_s41467_023_39616_w crossref_primary_10_1038_s41590_024_01943_5 crossref_primary_10_1038_s41592_025_02697_0 crossref_primary_10_1126_sciimmunol_adp6667 crossref_primary_10_1109_TCYB_2024_3403927 crossref_primary_10_1146_annurev_pathmechdis_030321_091459 crossref_primary_10_1093_nsr_nwae109 crossref_primary_10_1007_s00281_022_00978_w crossref_primary_10_1016_j_crmeth_2023_100595 crossref_primary_10_1038_s41551_024_01271_x crossref_primary_10_1109_JTEHM_2023_3262841 crossref_primary_10_1016_j_jid_2025_05_024 crossref_primary_10_1038_s41523_024_00620_y crossref_primary_10_1117_1_JMI_12_2_024001 crossref_primary_10_1126_science_add5327 crossref_primary_10_1038_s41598_024_65567_3 crossref_primary_10_1002_wrna_1839 crossref_primary_10_1038_s41467_025_56237_7 crossref_primary_10_1016_j_ymeth_2025_07_007 crossref_primary_10_1038_s41587_025_02585_0 crossref_primary_10_1007_s00281_022_00981_1 crossref_primary_10_1038_s41467_024_52394_3 crossref_primary_10_1038_s41564_023_01434_7 crossref_primary_10_1016_j_cell_2022_06_007 crossref_primary_10_1038_s43018_024_00773_6 crossref_primary_10_1007_s00432_023_04787_y crossref_primary_10_1038_s42003_023_04848_5 crossref_primary_10_1093_biomethods_bpae084 crossref_primary_10_1038_s41598_025_08733_5 crossref_primary_10_1242_jcs_258986 crossref_primary_10_3389_fphys_2025_1651296 crossref_primary_10_1038_s41592_024_02563_5 crossref_primary_10_1038_s44222_023_00096_8 crossref_primary_10_1016_j_tox_2025_154242 crossref_primary_10_1038_s41467_023_37123_6 crossref_primary_10_1002_ctm2_70396 crossref_primary_10_1038_s41540_025_00542_w crossref_primary_10_1016_j_tice_2023_102169 crossref_primary_10_1038_s41477_023_01527_5 crossref_primary_10_1093_bioadv_vbad046 crossref_primary_10_3390_electronics13132587 crossref_primary_10_3389_fimmu_2023_1167241 crossref_primary_10_1002_adbi_202200030 crossref_primary_10_1093_biomethods_bpae094 crossref_primary_10_1038_s41575_024_00915_2 crossref_primary_10_1038_s41592_023_01894_z crossref_primary_10_1016_j_compbiomed_2025_110296 crossref_primary_10_1158_0008_5472_CAN_23_2352 crossref_primary_10_1016_j_ccell_2023_12_021 crossref_primary_10_1136_jitc_2024_008875 crossref_primary_10_1038_s42256_023_00618_4 crossref_primary_10_1038_s41598_022_22392_w crossref_primary_10_1016_j_jag_2025_104564 crossref_primary_10_1002_cyto_a_24826 crossref_primary_10_1038_s41592_023_01977_x crossref_primary_10_1111_imm_13646 crossref_primary_10_1038_s41592_023_01931_x crossref_primary_10_1016_j_patcog_2024_110260 crossref_primary_10_1038_s41467_024_46764_0 crossref_primary_10_1158_1078_0432_CCR_19_3748 crossref_primary_10_1016_j_ccell_2024_06_004 crossref_primary_10_1038_s41467_023_44280_1 crossref_primary_10_1126_sciimmunol_adi2848 crossref_primary_10_1002_advs_202505445 crossref_primary_10_1038_s42003_023_04803_4 crossref_primary_10_1038_s41597_023_02108_z crossref_primary_10_1109_TGRS_2024_3389089 crossref_primary_10_3389_fimmu_2023_1231329 crossref_primary_10_1016_j_media_2025_103607 crossref_primary_10_1126_science_adn2623 crossref_primary_10_1038_s41467_024_55098_w crossref_primary_10_1038_s41586_024_08087_4 crossref_primary_10_1016_j_immuni_2024_11_004 crossref_primary_10_1038_s41598_024_66600_1 crossref_primary_10_1038_s42003_024_06480_3 crossref_primary_10_1016_j_copbio_2024_103111 crossref_primary_10_1007_s00521_025_11119_3 crossref_primary_10_1038_s41467_025_57586_z crossref_primary_10_7554_eLife_96523 crossref_primary_10_7554_eLife_96523_3 crossref_primary_10_1038_s41586_024_08150_0 crossref_primary_10_1038_s44222_024_00163_8 crossref_primary_10_1117_1_JMI_11_6_067502 crossref_primary_10_1117_1_JMI_11_6_067501 crossref_primary_10_1161_CIRCRESAHA_123_323299 crossref_primary_10_1016_j_compbiomed_2025_111018 crossref_primary_10_1364_AO_544976 crossref_primary_10_1109_ACCESS_2024_3517641 crossref_primary_10_1016_j_ccell_2025_04_003 crossref_primary_10_1038_s41551_022_00951_w crossref_primary_10_1186_s13059_022_02824_6 crossref_primary_10_1038_s41591_025_03530_z crossref_primary_10_1126_scitranslmed_adk9149 crossref_primary_10_1261_rna_079801_123 crossref_primary_10_1038_s41598_022_16429_3 crossref_primary_10_3389_fcell_2022_752326 crossref_primary_10_1038_s41467_023_44560_w crossref_primary_10_1016_j_displa_2025_102968 crossref_primary_10_1093_jmicro_dfad059 crossref_primary_10_1016_j_icte_2025_06_011 crossref_primary_10_1016_j_synbio_2024_05_005 crossref_primary_10_1117_1_JMI_9_6_067501 crossref_primary_10_1186_s13059_025_03624_4 crossref_primary_10_1016_j_compbiomed_2024_109151 crossref_primary_10_1038_s41591_023_02497_z crossref_primary_10_1158_2326_6066_CIR_24_0151 crossref_primary_10_1109_MCI_2025_3564274 crossref_primary_10_1016_j_semcancer_2023_06_006 crossref_primary_10_1038_s42003_025_08184_8 crossref_primary_10_1017_qpb_2025_10018 crossref_primary_10_1038_s41592_024_02499_w crossref_primary_10_1002_path_5921 crossref_primary_10_1093_pnasnexus_pgac235 crossref_primary_10_1084_jem_20211887 crossref_primary_10_1091_mbc_E22_08_0364 crossref_primary_10_1016_j_copbio_2023_103055 crossref_primary_10_3390_s25020531 crossref_primary_10_1007_s00281_022_00974_0 crossref_primary_10_1016_j_crmeth_2025_101170 crossref_primary_10_1038_s41592_024_02233_6 crossref_primary_10_1016_j_crmeth_2025_101172 crossref_primary_10_1002_eji_70022 crossref_primary_10_1016_j_sbi_2024_102842 crossref_primary_10_3389_fimmu_2024_1509782 crossref_primary_10_1136_gutjnl_2024_332837 crossref_primary_10_1016_j_medj_2022_05_002 crossref_primary_10_1038_s41586_022_04944_2 crossref_primary_10_1109_ACCESS_2024_3459868 crossref_primary_10_1158_2159_8290_CD_23_1165 crossref_primary_10_3389_fgene_2025_1547788 crossref_primary_10_1038_s41592_025_02595_5 crossref_primary_10_1097_TP_0000000000005107 crossref_primary_10_1016_j_cell_2023_02_021 crossref_primary_10_1038_s41597_025_05183_6 crossref_primary_10_1038_s41467_024_55214_w crossref_primary_10_1364_AO_553308 crossref_primary_10_1016_j_artmed_2024_102828 crossref_primary_10_1016_j_jaci_2024_11_001 crossref_primary_10_1186_s12859_023_05608_2 crossref_primary_10_1126_sciimmunol_ade8162 crossref_primary_10_1364_AO_557903 crossref_primary_10_3390_app12157742 crossref_primary_10_1016_j_media_2025_103675 crossref_primary_10_1038_s41586_023_06298_9 crossref_primary_10_1038_s43018_024_00881_3 crossref_primary_10_1038_s41467_025_62593_1 crossref_primary_10_3389_fonc_2023_1172314 crossref_primary_10_1038_s41592_022_01692_z crossref_primary_10_1093_bib_bbae307 crossref_primary_10_1093_nar_gkaf870 crossref_primary_10_1016_j_cels_2025_101374 crossref_primary_10_1038_s41467_023_38841_7 crossref_primary_10_1186_s13073_024_01282_y crossref_primary_10_1038_s41467_025_62528_w crossref_primary_10_1038_s43018_024_00838_6 crossref_primary_10_1093_micmic_ozad067_484 crossref_primary_10_1016_j_measurement_2024_115333 crossref_primary_10_1038_s41586_022_05060_x crossref_primary_10_3390_cells13040352 crossref_primary_10_1016_j_labinv_2024_102184 crossref_primary_10_1038_s41568_023_00657_4 crossref_primary_10_1021_acsaenm_4c00613 crossref_primary_10_1016_j_dsp_2025_105475 crossref_primary_10_1080_2162402X_2025_2457793 crossref_primary_10_1038_s41467_025_62193_z crossref_primary_10_1155_2024_6465280 crossref_primary_10_1097_CM9_0000000000003489 crossref_primary_10_1016_j_compbiomed_2025_110805 crossref_primary_10_1038_s41598_024_74597_w crossref_primary_10_1002_widm_1474 crossref_primary_10_3389_frsc_2023_1158464 crossref_primary_10_1080_08911762_2022_2156420 crossref_primary_10_1016_j_modpat_2024_100652 crossref_primary_10_1038_s41467_023_40068_5 crossref_primary_10_1007_s11427_022_2327_y crossref_primary_10_1021_jasms_4c00279 crossref_primary_10_1038_s41467_023_42878_z crossref_primary_10_1093_nar_gkae990 crossref_primary_10_1016_j_tcb_2023_10_010 crossref_primary_10_1038_s41592_025_02617_2 crossref_primary_10_1016_j_isci_2023_108486 crossref_primary_10_1097_HEP_0000000000000600 crossref_primary_10_1038_s41467_024_45599_z crossref_primary_10_3846_jcem_2024_20401 crossref_primary_10_1002_jim4_17 crossref_primary_10_1038_s41467_024_53550_5 crossref_primary_10_1128_spectrum_01472_22 crossref_primary_10_3390_jimaging10070172 crossref_primary_10_3390_pharmaceutics16050673 crossref_primary_10_1038_s41467_023_40291_0 crossref_primary_10_1111_tpj_16437 crossref_primary_10_1007_s10462_022_10372_5 crossref_primary_10_1038_s42003_023_04608_5 crossref_primary_10_1002_smtd_202401107 crossref_primary_10_1038_s41592_024_02513_1 crossref_primary_10_1007_s42979_025_04267_9 crossref_primary_10_3390_bioengineering12080843 crossref_primary_10_1002_cyto_a_24847 crossref_primary_10_1158_2326_6066_CIR_23_1109 crossref_primary_10_1038_s41588_025_02158_6 crossref_primary_10_1016_j_media_2025_103774 crossref_primary_10_1038_s41467_023_44188_w crossref_primary_10_1089_ten_tea_2022_0128 crossref_primary_10_15252_msb_202110571 crossref_primary_10_1038_s41467_025_62346_0 crossref_primary_10_1038_s41592_023_01939_3 crossref_primary_10_1371_journal_pcbi_1011432 crossref_primary_10_1016_j_bbadva_2025_100146 crossref_primary_10_1038_s42003_023_04991_z crossref_primary_10_1145_3641284 crossref_primary_10_1038_s42003_024_06902_2 crossref_primary_10_1371_journal_ppat_1012888 crossref_primary_10_1038_s44303_024_00046_y crossref_primary_10_1002_wsbm_1601 |
| Cites_doi | 10.1126/science.1099962 10.1038/nmeth.2892 10.1038/nmeth.2019 10.1371/journal.pcbi.1008193 10.1016/j.media.2020.101720 10.1016/j.softx.2019.02.007 10.1002/cyto.a.23594 10.1038/s41592-020-01023-0 10.1016/j.cell.2018.08.039 10.7717/peerj.453 10.1038/s41586-019-1876-x 10.1126/science.aaa6090 10.1038/s41586-019-1049-y 10.1038/nmeth.2089 10.1016/j.cels.2018.04.004 10.1146/annurev-immunol-032712-100003 10.7554/eLife.31657 10.1126/science.aat5691 10.1109/MCSE.2007.55 10.12688/f1000research.50798.1 10.1038/s41556-019-0458-3 10.1073/pnas.1300136110 10.1038/nmeth.2075 10.1109/TMI.2019.2947628 10.1172/jci.insight.93487 10.1126/science.aau5324 10.1038/s41592-019-0612-7 10.1016/j.cell.2020.07.005 10.1182/blood-2019-122535 10.1126/science.1250212 10.1016/1047-3203(90)90014-M 10.1200/JCO.2013.50.9984 10.1371/journal.pcbi.1005177 10.1038/s41592-019-0582-9 10.1371/journal.pbio.1002340 10.1038/nmeth.2083 10.1371/journal.pbio.2005970 10.1016/j.cell.2020.03.053 10.7554/eLife.57613 10.1038/s41467-020-19863-x 10.1016/j.humpath.2012.05.009 10.1038/s41592-018-0106-z 10.1038/s41586-020-2649-2 10.1038/s41597-019-0332-y 10.1038/s41586-019-1629-x 10.1016/j.cels.2020.04.003 10.1038/s41592-019-0627-0 10.1038/s41598-017-17204-5 10.1038/s41592-020-01018-x 10.1073/pnas.1706546114 10.1038/s43018-020-0026-6 10.1038/s41592-018-0069-0 10.1038/s41467-021-22518-0 10.5334/jors.148 10.1016/j.cell.2018.07.010 10.1128/MCB.20.11.4159-4168.2000 10.1038/nmeth.2869 10.1016/j.media.2019.101563 10.1126/sciadv.aax5851 10.1109/WACV45572.2020.9093435 10.1201/9780429258770 10.1101/2020.06.08.140426 10.1109/CVPR.2017.106 10.7295/W9CCDB6843 10.5281/zenodo.3509134 10.5281/zenodo.592845 10.1109/CVPR.2016.90 10.1007/978-3-319-24574-4_28 10.1109/CVPR42600.2020.01079 10.1101/803205 10.1109/TMI.2022.3157048 10.1101/2021.09.08.459490 10.1101/2021.01.05.425362 10.1101/2020.12.08.416909 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature America, Inc. 2021 2021. The Author(s), under exclusive licence to Springer Nature America, Inc. The Author(s), under exclusive licence to Springer Nature America, Inc. 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2021 – notice: 2021. The Author(s), under exclusive licence to Springer Nature America, Inc. – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2021. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7QP 7QR 7T7 7TK 7TM 7X7 7XB 88A 88E 88I 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ K9. L6V LK8 M0S M1P M2O M2P M7P M7S MBDVC P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PTHSS Q9U RC3 7X8 5PM |
| DOI | 10.1038/s41587-021-01094-0 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Nucleic Acids Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Health & Medical Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Engineering Collection Biological Sciences ProQuest Health & Medical Collection Medical Database Research Library Science Database Biological Science Database Engineering Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts Proquest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Engineering collection ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Research Library Prep MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering Agriculture Biology |
| EISSN | 1546-1696 |
| EndPage | 565 |
| ExternalDocumentID | PMC9010346 34795433 10_1038_s41587_021_01094_0 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: Rita Allen Foundation (RAF) funderid: https://doi.org/10.13039/100001447 – fundername: NCI NIH HHS grantid: UH3 CA246633 – fundername: NIA NIH HHS grantid: R01 AG056287 – fundername: NIH HHS grantid: DP5 OD019822 – fundername: NCI NIH HHS grantid: P30 CA008748 – fundername: NCI NIH HHS grantid: F31 CA246880 – fundername: NIA NIH HHS grantid: R01 AG057915 |
| GroupedDBID | --- -~X .55 .GJ 0R~ 123 29M 2FS 2XV 36B 39C 4.4 4R4 53G 5M7 5RE 5S5 70F 7X7 88E 88I 8AO 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 A8Z AAHBH AAIKC AAMNW AARCD ABDBF ABDPE ABEFU ABFSG ABJCF ABJNI ABLJU ABOCM ABUWG ACBTR ACBWK ACGFO ACGFS ACGOD ACIWK ACMJI ACPRK ACSTC ACUHS ADBBV ADFRT AENEX AEUYN AEZWR AFANA AFBBN AFFHD AFFNX AFHIU AFKRA AFRAH AFSHS AGAYW AGSTI AHBCP AHMBA AHOSX AHSBF AHWEU AIBTJ AIXLP ALFFA ALMA_UNASSIGNED_HOLDINGS ALPWD AMTXH ARMCB ASPBG ATHPR AVWKF AXYYD AZFZN AZQEC BAAKF BBNVY BENPR BGLVJ BHPHI BKKNO BKOMP BPHCQ BVXVI C0K CCPQU D1J DB5 DU5 DWQXO EAD EAP EAS EBC EBS EE. EJD EMB EMK EMOBN ESTFP ESX EXGXG F5P FA8 FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH GX1 HCIFZ HMCUK HVGLF HZ~ IAG IAO IEA IEP IH2 IHR INH INR IOV ISR ITC KOO L6V LGEZI LK8 LOTEE M1P M2O M2P M7P M7S ML0 MVM N95 NADUK NEJ NFIDA NNMJJ NXXTH O9- ODYON P2P PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS Q2X QF4 QM4 QN7 QO4 RNS RNT RNTTT RVV RXW SHXYY SIXXV SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TN5 TSG TUS U5U UKHRP X7M XOL Y6R YZZ ZGI ZXP ~KM AAYXX CITATION AAYZH ABAWZ ALIPV CGR CUY CVF ECM EIF NPM 3V. 7QO 7QP 7QR 7T7 7TK 7TM 7XB 88A 8FD 8FK C1K FR3 K9. MBDVC P64 PKEHL PQEST PQUKI Q9U RC3 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c474t-dcec88a1c5bea5f6534cb4c07afa29c7e877160c2e8440517c2f38755e87b9dd3 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 479 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000720223600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1087-0156 1546-1696 |
| IngestDate | Tue Nov 04 01:57:26 EST 2025 Thu Oct 02 17:43:30 EDT 2025 Tue Oct 28 03:39:47 EDT 2025 Mon Jul 21 06:03:09 EDT 2025 Sat Nov 29 06:22:27 EST 2025 Tue Nov 18 22:20:35 EST 2025 Mon Nov 10 01:23:35 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | 2021. The Author(s), under exclusive licence to Springer Nature America, Inc. Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c474t-dcec88a1c5bea5f6534cb4c07afa29c7e877160c2e8440517c2f38755e87b9dd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Authorship Contributions These authors contributed equally to this work N.F.G., L.K., M.A., and D.V.V. conceived the project. E.M. and D.V.V. conceived the human-in-the-loop approach. L.K. and M.A. conceived the whole-cell segmentation approach. G.M., T.D., E.M., W.G., and D.V.V. developed DeepCell Label. G.M., N.F.G., E.M., I.C., W.G., and D.V.V. developed the human-in-the-loop pipeline. M.S., C.P., W.G., and D.V.V. developed Mesmer’s deep learning architecture. W.G., N.F.G., and D.V.V. developed model training software. C.P. and W.G. developed cloud deployment. M.S., S.C., W.G., and D.V.V. developed metrics software. W.G. developed plug-ins. N.F.G., A.Kong, A.Kagel, J.S., and O.B-T. developed the multiplex image analysis pipeline. A.Kagel and G.M. developed the pathologist evaluation software. N.F.G., G.M., and T.H. supervised training data creation. N.F.G., C.C.F., B.M., K.L., M.F., G.C., Z.A., J.M., and S.W. performed quality control on the training data. E.S., S.G., and T.R. generated MIBI-TOF data for morphological analyses. S.B. helped with experimental design. N.F.G., W.G., and D.V.V. trained the models. N.F.G., W.G., G.M., and D.V.V. performed data analysis. N.F.G., G.M., M.A., and D.V.V. wrote the manuscript. M.A. and D.V.V. supervised the project. All authors provided feedback on the manuscript. |
| ORCID | 0000-0003-1341-2453 0000-0003-1599-0433 0000-0001-9249-6637 0000-0002-0680-7652 0000-0003-1622-3674 0000-0002-7836-4379 0000-0002-6799-6303 0000-0002-4264-9479 0000-0003-2240-9846 0000-0001-7534-7621 0000-0003-3626-625X 0000-0003-1531-5067 |
| OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC9010346 |
| PMID | 34795433 |
| PQID | 2649432238 |
| PQPubID | 47191 |
| PageCount | 11 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9010346 proquest_miscellaneous_2599179909 proquest_journals_2649432238 pubmed_primary_34795433 crossref_citationtrail_10_1038_s41587_021_01094_0 crossref_primary_10_1038_s41587_021_01094_0 springer_journals_10_1038_s41587_021_01094_0 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-04-01 |
| PublicationDateYYYYMMDD | 2022-04-01 |
| PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: United States |
| PublicationSubtitle | The Science and Business of Biotechnology |
| PublicationTitle | Nature biotechnology |
| PublicationTitleAbbrev | Nat Biotechnol |
| PublicationTitleAlternate | Nat Biotechnol |
| PublicationYear | 2022 |
| Publisher | Nature Publishing Group US Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group US – name: Nature Publishing Group |
| References | Hoyer, Hamman (CR89) 2017; 5 von Chamier (CR42) 2021; 12 Valen (CR26) 2016; 12 Wolff (CR60) 2013; 31 CR38 CR37 Snyder (CR14) 2019; 574 CR36 Keren (CR16) 2018; 174 CR78 Goltsev (CR6) 2018; 174 Chen, Boettiger, Moffitt, Wang, Zhuang (CR7) 2015; 348 CR32 Garrido-Gomez (CR66) 2017; 114 Gerdes (CR5) 2013; 110 Walt (CR79) 2014; 2 Meyer, Beucher (CR52) 1990; 1 CR71 Cao (CR72) 2020; 11 McKinley (CR74) 2017; 2 Wang (CR10) 2018; 361 Gaglia (CR57) 2020; 22 Ouyang, Le, Xu, Lundberg (CR44) 2021; 10 Schulz (CR73) 2018; 6 Schneider, Rasband, Eliceiri (CR21) 2012; 9 Ouyang, Mueller, Hjelmare, Lundberg, Zimmer (CR41) 2019; 16 Graham (CR69) 2019; 58 CR49 CR48 Harris (CR84) 2020; 585 CR47 Stringer, Wang, Michaelos, Pachitariu (CR28) 2021; 18 CR46 CR88 CR87 CR86 CR85 Koyuncu, Cetin‐Atalay, Gunduz‐Demir (CR33) 2018; 93 Kumar, McBride, Weaver, Dingwall, Reich (CR59) 2000; 20 CR82 CR81 CR80 Koyuncu, Gunesli, Cetin-Atalay, Gunduz-Demir (CR30) 2020; 63 Caicedo (CR27) 2019; 16 Jackson (CR76) 2020; 578 Bannon (CR39) 2021; 18 Hunter (CR83) 2007; 9 CR18 Ljosa, Sokolnicki, Carpenter (CR34) 2012; 9 CR17 Eng (CR12) 2019; 568 CR15 Haberl (CR40) 2018; 15 Erlebacher (CR64) 2013; 31 Lee (CR8) 2014; 343 Hollandi (CR29) 2020; 10 Berg (CR22) 2019; 16 CR54 CR53 CR51 CR50 Wolny (CR45) 2020; 9 Nelson (CR58) 2004; 306 Belevich, Joensuu, Kumar, Vihinen, Jokitalo (CR24) 2016; 14 de Chaumont (CR23) 2012; 9 Keren (CR2) 2019; 5 Moffitt (CR9) 2018; 362 Rozenblatt-Rosen (CR13) 2020; 181 Rashid (CR77) 2019; 6 Lin (CR4) 2018; 7 McQuin (CR19) 2018; 16 Yang (CR31) 2020; 16 Giesen (CR1) 2014; 11 Kumar (CR35) 2020; 39 Lubeck, Coskun, Zhiyentayev, Ahmad, Cai (CR11) 2014; 11 Tsai, Gajda, Sloan, Rares, Shen (CR70) 2019; 9 CR25 Schürch (CR55) 2020; 182 CR67 Bankhead (CR68) 2017; 7 CR65 CR63 CR62 CR61 Schindelin (CR20) 2012; 9 Ali (CR56) 2020; 1 Patel (CR75) 2019; 134 Huang, Hennrick, Drew (CR3) 2013; 44 Hughes (CR43) 2018; 15 C-HL Eng (1094_CR12) 2019; 568 S Hoyer (1094_CR89) 2017; 5 R Rashid (1094_CR77) 2019; 6 1094_CR71 CR Harris (1094_CR84) 2020; 585 J Cao (1094_CR72) 2020; 11 MJ Gerdes (1094_CR5) 2013; 110 1094_CR38 JD Hunter (1094_CR83) 2007; 9 1094_CR37 DE Nelson (1094_CR58) 2004; 306 S Berg (1094_CR22) 2019; 16 HW Jackson (1094_CR76) 2020; 578 KH Chen (1094_CR7) 2015; 348 1094_CR32 Svander Walt (1094_CR79) 2014; 2 W Ouyang (1094_CR41) 2019; 16 1094_CR36 ET McKinley (1094_CR74) 2017; 2 1094_CR78 1094_CR61 J-R Lin (1094_CR4) 2018; 7 C Stringer (1094_CR28) 2021; 18 MG Haberl (1094_CR40) 2018; 15 O Rozenblatt-Rosen (1094_CR13) 2020; 181 W Huang (1094_CR3) 2013; 44 AJ Hughes (1094_CR43) 2018; 15 N Kumar (1094_CR35) 2020; 39 L von Chamier (1094_CR42) 2021; 12 D Schulz (1094_CR73) 2018; 6 X Wang (1094_CR10) 2018; 361 H-F Tsai (1094_CR70) 2019; 9 A Wolny (1094_CR45) 2020; 9 1094_CR65 S Graham (1094_CR69) 2019; 58 1094_CR63 1094_CR62 1094_CR25 R Hollandi (1094_CR29) 2020; 10 KP Kumar (1094_CR59) 2000; 20 1094_CR67 L Keren (1094_CR2) 2019; 5 CF Koyuncu (1094_CR30) 2020; 63 1094_CR50 J Schindelin (1094_CR20) 2012; 9 C McQuin (1094_CR19) 2018; 16 E Lubeck (1094_CR11) 2014; 11 1094_CR18 1094_CR17 CA Schneider (1094_CR21) 2012; 9 1094_CR15 F Meyer (1094_CR52) 1990; 1 C Giesen (1094_CR1) 2014; 11 A Erlebacher (1094_CR64) 2013; 31 I Belevich (1094_CR24) 2016; 14 DAV Valen (1094_CR26) 2016; 12 AC Wolff (1094_CR60) 2013; 31 W Ouyang (1094_CR44) 2021; 10 1094_CR54 JR Moffitt (1094_CR9) 2018; 362 1094_CR53 1094_CR51 T Garrido-Gomez (1094_CR66) 2017; 114 JH Lee (1094_CR8) 2014; 343 L Yang (1094_CR31) 2020; 16 SS Patel (1094_CR75) 2019; 134 1094_CR82 CF Koyuncu (1094_CR33) 2018; 93 1094_CR81 1094_CR80 HR Ali (1094_CR56) 2020; 1 L Keren (1094_CR16) 2018; 174 V Ljosa (1094_CR34) 2012; 9 1094_CR49 1094_CR48 CM Schürch (1094_CR55) 2020; 182 P Bankhead (1094_CR68) 2017; 7 Y Goltsev (1094_CR6) 2018; 174 1094_CR87 1094_CR86 F de Chaumont (1094_CR23) 2012; 9 1094_CR85 G Gaglia (1094_CR57) 2020; 22 MP Snyder (1094_CR14) 2019; 574 1094_CR47 1094_CR46 D Bannon (1094_CR39) 2021; 18 JC Caicedo (1094_CR27) 2019; 16 1094_CR88 |
| References_xml | – ident: CR49 – volume: 306 start-page: 704 year: 2004 end-page: 708 ident: CR58 article-title: Oscillations in NF-κB signaling control the dynamics of gene expression publication-title: Science doi: 10.1126/science.1099962 – ident: CR87 – volume: 11 start-page: 360 year: 2014 end-page: 361 ident: CR11 article-title: Single-cell in situ RNA profiling by sequential hybridization publication-title: Nat Methods doi: 10.1038/nmeth.2892 – volume: 9 start-page: 676 year: 2012 end-page: 682 ident: CR20 article-title: Fiji: an open-source platform for biological-image analysis publication-title: Nat. Methods doi: 10.1038/nmeth.2019 – volume: 16 start-page: e1008193 year: 2020 ident: CR31 article-title: NuSeT: A deep learning tool for reliably separating and analyzing crowded cells publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1008193 – ident: CR51 – volume: 63 start-page: 101720 year: 2020 ident: CR30 article-title: DeepDistance: a multi-task deep regression model for cell detection in inverted microscopy images publication-title: Med. Image Anal. doi: 10.1016/j.media.2020.101720 – ident: CR54 – ident: CR61 – volume: 9 start-page: 230 year: 2019 end-page: 237 ident: CR70 article-title: Usiigaci: instance-aware cell tracking in stain-free phase contrast microscopy enabled by machine learning publication-title: SoftwareX doi: 10.1016/j.softx.2019.02.007 – ident: CR80 – volume: 93 start-page: 1019 year: 2018 end-page: 1028 ident: CR33 article-title: Object‐oriented segmentation of cell nuclei in fluorescence microscopy images publication-title: Cytometry A doi: 10.1002/cyto.a.23594 – volume: 18 start-page: 43 year: 2021 end-page: 45 ident: CR39 article-title: DeepCell Kiosk: scaling deep learning–enabled cellular image analysis with Kubernetes publication-title: Nat. Methods doi: 10.1038/s41592-020-01023-0 – ident: CR25 – volume: 174 start-page: 1373 year: 2018 end-page: 1387.e19 ident: CR16 article-title: A structured tumor-immune microenvironment in triple negative breast cancer revealed by multiplexed ion beam imaging publication-title: Cell doi: 10.1016/j.cell.2018.08.039 – volume: 2 start-page: e453 year: 2014 ident: CR79 article-title: scikit-image: image processing in Python publication-title: PeerJ doi: 10.7717/peerj.453 – ident: CR46 – ident: CR71 – volume: 578 start-page: 615 year: 2020 end-page: 620 ident: CR76 article-title: The single-cell pathology landscape of breast cancer publication-title: Nature doi: 10.1038/s41586-019-1876-x – volume: 348 start-page: aaa6090 year: 2015 ident: CR7 article-title: Spatially resolved, highly multiplexed RNA profiling in single cells publication-title: Science doi: 10.1126/science.aaa6090 – volume: 568 start-page: 235 year: 2019 end-page: 239 ident: CR12 article-title: Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH+ publication-title: Nature doi: 10.1038/s41586-019-1049-y – volume: 9 start-page: 671 year: 2012 end-page: 675 ident: CR21 article-title: NIH Image to ImageJ: 25 years of image analysis publication-title: Nat. Methods doi: 10.1038/nmeth.2089 – ident: CR67 – volume: 6 start-page: 531 year: 2018 ident: CR73 article-title: Simultaneous multiplexed imaging of mRNA and proteins with subcellular resolution in breast cancer tissue samples by mass cytometry publication-title: Cell Syst. doi: 10.1016/j.cels.2018.04.004 – ident: CR15 – ident: CR88 – ident: CR50 – volume: 31 start-page: 387 year: 2013 end-page: 411 ident: CR64 article-title: Immunology of the maternal-fetal interface publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev-immunol-032712-100003 – volume: 7 start-page: e31657 year: 2018 ident: CR4 article-title: Highly multiplexed immunofluorescence imaging of human tissues and tumors using t-CyCIF and conventional optical microscopes publication-title: eLife doi: 10.7554/eLife.31657 – ident: CR32 – ident: CR36 – ident: CR78 – ident: CR85 – volume: 361 start-page: eaat5691 year: 2018 ident: CR10 article-title: Three-dimensional intact-tissue sequencing of single-cell transcriptional states publication-title: Science doi: 10.1126/science.aat5691 – volume: 9 start-page: 90 year: 2007 end-page: 95 ident: CR83 article-title: Matplotlib: a 2D graphics environment publication-title: Comput. Sci. Eng. doi: 10.1109/MCSE.2007.55 – ident: CR81 – volume: 10 start-page: 142 year: 2021 ident: CR44 article-title: Interactive biomedical segmentation tool powered by deep learning and ImJoy publication-title: F1000Research doi: 10.12688/f1000research.50798.1 – volume: 22 start-page: 151 year: 2020 end-page: 158 ident: CR57 article-title: HSF1 phase transition mediates stress adaptation and cell fate decisions publication-title: Nat. Cell Biol. doi: 10.1038/s41556-019-0458-3 – volume: 110 start-page: 11982 year: 2013 end-page: 11987 ident: CR5 article-title: Highly multiplexed single-cell analysis of formalin-fixed, paraffin-embedded cancer tissue publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.1300136110 – volume: 9 start-page: 690 year: 2012 end-page: 696 ident: CR23 article-title: Icy: an open bioimage informatics platform for extended reproducible research publication-title: Nat. Methods doi: 10.1038/nmeth.2075 – volume: 39 start-page: 1380 year: 2020 end-page: 1391 ident: CR35 article-title: A multi-organ nucleus segmentation challenge publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2019.2947628 – volume: 2 start-page: e93487 year: 2017 ident: CR74 article-title: Optimized multiplex immunofluorescence single-cell analysis reveals tuft cell heterogeneity publication-title: JCI Insight doi: 10.1172/jci.insight.93487 – volume: 362 start-page: eaau5324 year: 2018 ident: CR9 article-title: Molecular, spatial and functional single-cell profiling of the hypothalamic preoptic region publication-title: Science doi: 10.1126/science.aau5324 – ident: CR18 – ident: CR47 – volume: 16 start-page: 1247 year: 2019 end-page: 1253 ident: CR27 article-title: Nucleus segmentation across imaging experiments: the 2018 Data Science Bowl publication-title: Nat. Methods doi: 10.1038/s41592-019-0612-7 – ident: CR37 – ident: CR53 – volume: 182 start-page: 1341 year: 2020 end-page: 1359.e19 ident: CR55 article-title: Coordinated cellular neighborhoods orchestrate antitumoral immunity at the colorectal cancer invasive front publication-title: Cell doi: 10.1016/j.cell.2020.07.005 – volume: 134 start-page: 2059 year: 2019 end-page: 2069 ident: CR75 article-title: The microenvironmental niche in classic Hodgkin lymphoma is enriched for CTLA-4- positive T-cells that are PD-1-negative publication-title: Blood doi: 10.1182/blood-2019-122535 – volume: 343 start-page: 1360 year: 2014 end-page: 1363 ident: CR8 article-title: Highly multiplexed subcellular RNA sequencing in situ publication-title: Science doi: 10.1126/science.1250212 – volume: 1 start-page: 21 year: 1990 end-page: 46 ident: CR52 article-title: Morphological segmentation publication-title: J. Vis. Commun. Image R doi: 10.1016/1047-3203(90)90014-M – volume: 31 start-page: 3997 year: 2013 end-page: 4013 ident: CR60 article-title: Recommendations for human epidermal growth factor receptor 2 testing in Breast Cancer: American Society of Clinical Oncology/College of American pathologists clinical practice guideline update publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2013.50.9984 – volume: 12 start-page: e1005177 year: 2016 ident: CR26 article-title: Deep learning automates the quantitative analysis of individual cells in live-cell imaging experiments publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1005177 – volume: 16 start-page: 1226 year: 2019 end-page: 1232 ident: CR22 article-title: ilastik: interactive machine learning for (bio)image analysis publication-title: Nat. Methods doi: 10.1038/s41592-019-0582-9 – ident: CR82 – volume: 14 start-page: e1002340 year: 2016 ident: CR24 article-title: Microscopy image browser: a platform for segmentation and analysis of multidimensional datasets publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1002340 – volume: 9 start-page: 637 year: 2012 end-page: 637 ident: CR34 article-title: Annotated high-throughput microscopy image sets for validation publication-title: Nat. Methods doi: 10.1038/nmeth.2083 – volume: 16 start-page: e2005970 year: 2018 ident: CR19 article-title: CellProfiler 3.0: next-generation image processing for biology publication-title: PLoS Biol. doi: 10.1371/journal.pbio.2005970 – ident: CR86 – volume: 181 start-page: 236 year: 2020 end-page: 249 ident: CR13 article-title: The human tumor atlas network: charting tumor transitions across space and time at single-cell resolution publication-title: Cell doi: 10.1016/j.cell.2020.03.053 – volume: 9 start-page: e57613 year: 2020 ident: CR45 article-title: Accurate and versatile 3D segmentation of plant tissues at cellular resolution publication-title: eLife doi: 10.7554/eLife.57613 – volume: 11 year: 2020 ident: CR72 article-title: Establishment of a morphological atlas of the embryo using deep-learning-based 4D segmentation publication-title: Nat. Commun. doi: 10.1038/s41467-020-19863-x – ident: CR63 – volume: 44 start-page: 29 year: 2013 end-page: 38 ident: CR3 article-title: A colorful future of quantitative pathology: validation of Vectra technology using chromogenic multiplexed immunohistochemistry and prostate tissue microarrays publication-title: Hum. Pathol. doi: 10.1016/j.humpath.2012.05.009 – volume: 15 start-page: 677 year: 2018 end-page: 680 ident: CR40 article-title: CDeep3M—plug-and-play cloud-based deep learning for image segmentation publication-title: Nat. Methods doi: 10.1038/s41592-018-0106-z – volume: 585 start-page: 357 year: 2020 end-page: 362 ident: CR84 article-title: Array programming with NumPy publication-title: Nature doi: 10.1038/s41586-020-2649-2 – volume: 6 year: 2019 ident: CR77 article-title: Highly multiplexed immunofluorescence images and single-cell data of immune markers in tonsil and lung cancer publication-title: Sci. Data doi: 10.1038/s41597-019-0332-y – volume: 574 start-page: 187 year: 2019 end-page: 192 ident: CR14 article-title: The human body at cellular resolution: the NIH Human Biomolecular Atlas Program publication-title: Nature doi: 10.1038/s41586-019-1629-x – ident: CR48 – volume: 10 start-page: 453 year: 2020 end-page: 458.e6 ident: CR29 article-title: nucleAIzer: a parameter-free deep learning framework for nucleus segmentation using image style transfer publication-title: Cell Syst. doi: 10.1016/j.cels.2020.04.003 – volume: 16 start-page: 1199 year: 2019 end-page: 1200 ident: CR41 article-title: ImJoy: an open-source computational platform for the deep learning era publication-title: Nat. Methods doi: 10.1038/s41592-019-0627-0 – ident: CR65 – volume: 7 start-page: 16878 year: 2017 ident: CR68 article-title: QuPath: open source software for digital pathology image analysis publication-title: Sci. Rep. doi: 10.1038/s41598-017-17204-5 – volume: 18 start-page: 100 year: 2021 end-page: 106 ident: CR28 article-title: Cellpose: a generalist algorithm for cellular segmentation publication-title: Nat. Methods doi: 10.1038/s41592-020-01018-x – ident: CR38 – volume: 114 start-page: E8468 year: 2017 end-page: E8477 ident: CR66 article-title: Defective decidualization during and after severe preeclampsia reveals a possible maternal contribution to the etiology publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1706546114 – ident: CR17 – volume: 1 start-page: 163 year: 2020 end-page: 175 ident: CR56 article-title: Imaging mass cytometry and multiplatform genomics define the phenogenomic landscape of breast cancer publication-title: Nat. Cancer doi: 10.1038/s43018-020-0026-6 – volume: 15 start-page: 587 year: 2018 end-page: 590 ident: CR43 article-title: Quanti.us: a tool for rapid, flexible, crowd-based annotation of images publication-title: Nat. Methods doi: 10.1038/s41592-018-0069-0 – volume: 12 start-page: 2276 year: 2021 ident: CR42 article-title: Democratising deep learning for microscopy with ZeroCostDL4Mic publication-title: Nat. Commun. doi: 10.1038/s41467-021-22518-0 – volume: 5 start-page: 10 year: 2017 ident: CR89 article-title: xarray: N-D labeled arrays and datasets in Python publication-title: J. Open Res. Softw. doi: 10.5334/jors.148 – volume: 174 start-page: 968 year: 2018 end-page: 981.e15 ident: CR6 article-title: Deep profiling of mouse splenic architecture with CODEX multiplexed imaging publication-title: Cell doi: 10.1016/j.cell.2018.07.010 – volume: 20 start-page: 4159 year: 2000 end-page: 4168 ident: CR59 article-title: Regulated nuclear-cytoplasmic localization of interferon regulatory factor 3, a subunit of double-stranded RNA-activated factor 1 publication-title: Mol. Cell Biol. doi: 10.1128/MCB.20.11.4159-4168.2000 – ident: CR62 – volume: 11 start-page: 417 year: 2014 end-page: 422 ident: CR1 article-title: Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry publication-title: Nat. Methods doi: 10.1038/nmeth.2869 – volume: 58 start-page: 101563 year: 2019 ident: CR69 article-title: Hover-Net: simultaneous segmentation and classification of nuclei in multi-tissue histology images publication-title: Med. Image Anal. doi: 10.1016/j.media.2019.101563 – volume: 5 start-page: eaax5851 year: 2019 ident: CR2 article-title: MIBI-TOF: a multiplexed imaging platform relates cellular phenotypes and tissue structure publication-title: Sci. Adv. doi: 10.1126/sciadv.aax5851 – volume: 63 start-page: 101720 year: 2020 ident: 1094_CR30 publication-title: Med. Image Anal. doi: 10.1016/j.media.2020.101720 – volume: 6 year: 2019 ident: 1094_CR77 publication-title: Sci. Data doi: 10.1038/s41597-019-0332-y – volume: 20 start-page: 4159 year: 2000 ident: 1094_CR59 publication-title: Mol. Cell Biol. doi: 10.1128/MCB.20.11.4159-4168.2000 – ident: 1094_CR46 – volume: 11 start-page: 360 year: 2014 ident: 1094_CR11 publication-title: Nat Methods doi: 10.1038/nmeth.2892 – volume: 10 start-page: 142 year: 2021 ident: 1094_CR44 publication-title: F1000Research doi: 10.12688/f1000research.50798.1 – ident: 1094_CR53 doi: 10.1109/WACV45572.2020.9093435 – volume: 7 start-page: e31657 year: 2018 ident: 1094_CR4 publication-title: eLife doi: 10.7554/eLife.31657 – volume: 114 start-page: E8468 year: 2017 ident: 1094_CR66 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1706546114 – volume: 11 year: 2020 ident: 1094_CR72 publication-title: Nat. Commun. doi: 10.1038/s41467-020-19863-x – ident: 1094_CR17 doi: 10.1201/9780429258770 – volume: 18 start-page: 100 year: 2021 ident: 1094_CR28 publication-title: Nat. Methods doi: 10.1038/s41592-020-01018-x – volume: 31 start-page: 387 year: 2013 ident: 1094_CR64 publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev-immunol-032712-100003 – volume: 182 start-page: 1341 year: 2020 ident: 1094_CR55 publication-title: Cell doi: 10.1016/j.cell.2020.07.005 – ident: 1094_CR78 doi: 10.1101/2020.06.08.140426 – ident: 1094_CR47 doi: 10.1109/CVPR.2017.106 – volume: 362 start-page: eaau5324 year: 2018 ident: 1094_CR9 publication-title: Science doi: 10.1126/science.aau5324 – ident: 1094_CR62 – volume: 58 start-page: 101563 year: 2019 ident: 1094_CR69 publication-title: Med. Image Anal. doi: 10.1016/j.media.2019.101563 – volume: 2 start-page: e453 year: 2014 ident: 1094_CR79 publication-title: PeerJ doi: 10.7717/peerj.453 – volume: 306 start-page: 704 year: 2004 ident: 1094_CR58 publication-title: Science doi: 10.1126/science.1099962 – ident: 1094_CR81 – ident: 1094_CR32 doi: 10.7295/W9CCDB6843 – ident: 1094_CR85 doi: 10.5281/zenodo.3509134 – ident: 1094_CR87 doi: 10.5281/zenodo.592845 – ident: 1094_CR49 doi: 10.1109/CVPR.2016.90 – volume: 9 start-page: 690 year: 2012 ident: 1094_CR23 publication-title: Nat. Methods doi: 10.1038/nmeth.2075 – volume: 181 start-page: 236 year: 2020 ident: 1094_CR13 publication-title: Cell doi: 10.1016/j.cell.2020.03.053 – ident: 1094_CR25 doi: 10.1007/978-3-319-24574-4_28 – ident: 1094_CR18 – ident: 1094_CR48 doi: 10.1109/CVPR42600.2020.01079 – ident: 1094_CR37 doi: 10.1101/803205 – volume: 174 start-page: 968 year: 2018 ident: 1094_CR6 publication-title: Cell doi: 10.1016/j.cell.2018.07.010 – volume: 2 start-page: e93487 year: 2017 ident: 1094_CR74 publication-title: JCI Insight doi: 10.1172/jci.insight.93487 – volume: 39 start-page: 1380 year: 2020 ident: 1094_CR35 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2019.2947628 – volume: 585 start-page: 357 year: 2020 ident: 1094_CR84 publication-title: Nature doi: 10.1038/s41586-020-2649-2 – ident: 1094_CR63 – ident: 1094_CR88 – ident: 1094_CR67 – volume: 14 start-page: e1002340 year: 2016 ident: 1094_CR24 publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1002340 – ident: 1094_CR80 – volume: 44 start-page: 29 year: 2013 ident: 1094_CR3 publication-title: Hum. Pathol. doi: 10.1016/j.humpath.2012.05.009 – ident: 1094_CR36 doi: 10.1109/TMI.2022.3157048 – ident: 1094_CR50 – volume: 9 start-page: 671 year: 2012 ident: 1094_CR21 publication-title: Nat. Methods doi: 10.1038/nmeth.2089 – volume: 134 start-page: 2059 year: 2019 ident: 1094_CR75 publication-title: Blood doi: 10.1182/blood-2019-122535 – volume: 5 start-page: 10 year: 2017 ident: 1094_CR89 publication-title: J. Open Res. Softw. doi: 10.5334/jors.148 – volume: 174 start-page: 1373 year: 2018 ident: 1094_CR16 publication-title: Cell doi: 10.1016/j.cell.2018.08.039 – volume: 16 start-page: e1008193 year: 2020 ident: 1094_CR31 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1008193 – ident: 1094_CR54 – ident: 1094_CR65 doi: 10.1101/2021.09.08.459490 – ident: 1094_CR15 – volume: 15 start-page: 677 year: 2018 ident: 1094_CR40 publication-title: Nat. Methods doi: 10.1038/s41592-018-0106-z – volume: 1 start-page: 21 year: 1990 ident: 1094_CR52 publication-title: J. Vis. Commun. Image R doi: 10.1016/1047-3203(90)90014-M – volume: 348 start-page: aaa6090 year: 2015 ident: 1094_CR7 publication-title: Science doi: 10.1126/science.aaa6090 – volume: 568 start-page: 235 year: 2019 ident: 1094_CR12 publication-title: Nature doi: 10.1038/s41586-019-1049-y – ident: 1094_CR38 – ident: 1094_CR61 doi: 10.1101/2021.01.05.425362 – volume: 12 start-page: e1005177 year: 2016 ident: 1094_CR26 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1005177 – volume: 9 start-page: 637 year: 2012 ident: 1094_CR34 publication-title: Nat. Methods doi: 10.1038/nmeth.2083 – volume: 578 start-page: 615 year: 2020 ident: 1094_CR76 publication-title: Nature doi: 10.1038/s41586-019-1876-x – volume: 343 start-page: 1360 year: 2014 ident: 1094_CR8 publication-title: Science doi: 10.1126/science.1250212 – volume: 574 start-page: 187 year: 2019 ident: 1094_CR14 publication-title: Nature doi: 10.1038/s41586-019-1629-x – volume: 16 start-page: e2005970 year: 2018 ident: 1094_CR19 publication-title: PLoS Biol. doi: 10.1371/journal.pbio.2005970 – volume: 12 start-page: 2276 year: 2021 ident: 1094_CR42 publication-title: Nat. Commun. doi: 10.1038/s41467-021-22518-0 – volume: 22 start-page: 151 year: 2020 ident: 1094_CR57 publication-title: Nat. Cell Biol. doi: 10.1038/s41556-019-0458-3 – volume: 31 start-page: 3997 year: 2013 ident: 1094_CR60 publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2013.50.9984 – volume: 5 start-page: eaax5851 year: 2019 ident: 1094_CR2 publication-title: Sci. Adv. doi: 10.1126/sciadv.aax5851 – volume: 1 start-page: 163 year: 2020 ident: 1094_CR56 publication-title: Nat. Cancer doi: 10.1038/s43018-020-0026-6 – volume: 11 start-page: 417 year: 2014 ident: 1094_CR1 publication-title: Nat. Methods doi: 10.1038/nmeth.2869 – volume: 361 start-page: eaat5691 year: 2018 ident: 1094_CR10 publication-title: Science doi: 10.1126/science.aat5691 – volume: 9 start-page: e57613 year: 2020 ident: 1094_CR45 publication-title: eLife doi: 10.7554/eLife.57613 – volume: 10 start-page: 453 year: 2020 ident: 1094_CR29 publication-title: Cell Syst. doi: 10.1016/j.cels.2020.04.003 – volume: 18 start-page: 43 year: 2021 ident: 1094_CR39 publication-title: Nat. Methods doi: 10.1038/s41592-020-01023-0 – ident: 1094_CR51 – volume: 9 start-page: 230 year: 2019 ident: 1094_CR70 publication-title: SoftwareX doi: 10.1016/j.softx.2019.02.007 – volume: 15 start-page: 587 year: 2018 ident: 1094_CR43 publication-title: Nat. Methods doi: 10.1038/s41592-018-0069-0 – volume: 9 start-page: 676 year: 2012 ident: 1094_CR20 publication-title: Nat. Methods doi: 10.1038/nmeth.2019 – volume: 7 start-page: 16878 year: 2017 ident: 1094_CR68 publication-title: Sci. Rep. doi: 10.1038/s41598-017-17204-5 – volume: 9 start-page: 90 year: 2007 ident: 1094_CR83 publication-title: Comput. Sci. Eng. doi: 10.1109/MCSE.2007.55 – ident: 1094_CR82 – ident: 1094_CR86 – volume: 110 start-page: 11982 year: 2013 ident: 1094_CR5 publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.1300136110 – volume: 16 start-page: 1199 year: 2019 ident: 1094_CR41 publication-title: Nat. Methods doi: 10.1038/s41592-019-0627-0 – volume: 6 start-page: 531 year: 2018 ident: 1094_CR73 publication-title: Cell Syst. doi: 10.1016/j.cels.2018.04.004 – volume: 16 start-page: 1247 year: 2019 ident: 1094_CR27 publication-title: Nat. Methods doi: 10.1038/s41592-019-0612-7 – volume: 16 start-page: 1226 year: 2019 ident: 1094_CR22 publication-title: Nat. Methods doi: 10.1038/s41592-019-0582-9 – ident: 1094_CR71 doi: 10.1101/2020.12.08.416909 – volume: 93 start-page: 1019 year: 2018 ident: 1094_CR33 publication-title: Cytometry A doi: 10.1002/cyto.a.23594 |
| SSID | ssj0006466 |
| Score | 2.7422328 |
| Snippet | A principal challenge in the analysis of tissue imaging data is cell segmentation—the task of identifying the precise boundary of every cell in an image. To... A principal challenge in the analysis of tissue imaging data is cell segmentation-the task of identifying the precise boundary of every cell in an image. To... A major challenge in the analysis of tissue imaging data is cell segmentation, the task of identifying the precise boundary of every cell in an image. To... |
| SourceID | pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 555 |
| SubjectTerms | 631/114/1564 631/114/794 631/1647/245 Agriculture Algorithms Annotations Bioinformatics Biomedical and Life Sciences Biomedical Engineering/Biotechnology Biomedicine Biotechnology Cell lineage Cell morphology Cytology Data Curation Datasets Deep Learning Feature extraction Human performance Humans Image processing Image Processing, Computer-Assisted - methods Image segmentation Life Sciences Localization Machine learning Tissue analysis Training |
| Title | Whole-cell segmentation of tissue images with human-level performance using large-scale data annotation and deep learning |
| URI | https://link.springer.com/article/10.1038/s41587-021-01094-0 https://www.ncbi.nlm.nih.gov/pubmed/34795433 https://www.proquest.com/docview/2649432238 https://www.proquest.com/docview/2599179909 https://pubmed.ncbi.nlm.nih.gov/PMC9010346 |
| Volume | 40 |
| WOSCitedRecordID | wos000720223600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1546-1696 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0006466 issn: 1087-0156 databaseCode: M7P dateStart: 20210101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1546-1696 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0006466 issn: 1087-0156 databaseCode: M7S dateStart: 20210101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1546-1696 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0006466 issn: 1087-0156 databaseCode: 7X7 dateStart: 20210101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1546-1696 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0006466 issn: 1087-0156 databaseCode: BENPR dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1546-1696 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0006466 issn: 1087-0156 databaseCode: M2O dateStart: 20210101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1546-1696 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0006466 issn: 1087-0156 databaseCode: M2P dateStart: 20210101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6xDRA88KMwCIzJSLxBtDR2YvsJAdrEy0rFQPQtsh27TOrSbumQ9t_jc9yUMrEXXiyldpq6d_H5fN_dB_BGamVKWQ7T2lruHRSlUpm7LJXab_a9fZMs04Fsgo9GYjKR43jg1kZY5WpNDAt1PTd4Rn7gDbdkXvuoeL84T5E1CqOrkUJjC3awSkIeoHsn_UpcdrHKYSYQXlmUMWkmo-Kg9YYLP83Rmc6wPO6mYbq227wOmvwrchoM0tHD_53KI3gQt6LkQ6c7j-GWbQZwpyOnvBrA_T9KFQ7g7nEMwj-Bqx_IqZvikT9p7fQsZi81ZO7IMsiRnJ75ZaoleMhLAgtgOkNwElms0xQIIu6nZIZI9LT1mmIJolWJapp5_D7V1MQLd0EitcX0KXw_Ovz26XMaGRxSwzhbpv7PMkKooSm0VYUrC8qMZibjyqlcGm4F9_5aZnIrGMNqYSZ31HtQhe_Qsq7pLmw388Y-B1KbWmhqla5L531Crp2mzkhXasukcS6B4Up8lYnlzZFlY1aFMDsVVSfyyou8CiKvsgTe9vcsuuIeN47eW4mzii96W61lmcDrvtu_oigE1dj5pR9T-E0492ZfJvCsU6L-cZjIWzBKE-Ab6tUPwPLfmz3N6c9QBhyBNZSVCbxbKeL6Z_17Fi9unsVLuJdjgkfAJu3B9vLi0r6C2-aX15-LfdjiEx5asQ87Hw9H46_-6jj_EtoxtrxrT34Dbjkz8g |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6V8j7wCC9DgUWiJ7DqeNde7wEhBFSt2kYcisjNeNe7oVLqhDoF5U_xG5lZ2wmhorceuGbXdmx_Ow_vN_MBvFS6MKlK-2FprcQEpShCFbsoVBqDffRvSkTai03IwSAbDtWnNfjV1cIQrbKzid5QlxND38i30HErgejj2dvp95BUo2h3tZPQaGCxZ-c_MWWr3-x-wPe7GcfbHw_f74StqkBohBSzsDTWZFnRN4m2ReLShAujhYlk4YpYGWkziTlEZGKbCUEdrEzsOEb1CQ5oVZYcz3sJLqMdl0Qhk8NFgofe3e-N9qOM6JxJ2hbpRDzbqtFR0q8xJe8RteNddYRnotuzJM2_dmq9A9y-_b89ujtwqw212btmbdyFNVv14Gojvjnvwc0_WjH24NpBSzK4B_MvpBkc0pYGq-3ouK3OqtjEsZnHKTs6RjNcM_qIzbzKYTgm8hWbLsswGFUUjNiYmPZhjSvBMmLjsqKqJu35iqpkCN4pa6U7Rvfh84U8kAewXk0q-whYacpMc1voMnWY80rtNHdGuVRboYxzAfQ7uOSmbd9OKiLj3NMIeJY3EMsRYrmHWB4F8GpxzLRpXnLu7I0OPnlryOp8iZ0AXiyG0QTRSygqOznFOQkmGRLDGhXAwwa0i8tRoXIiOA9ArsB5MYHam6-OVEfffJtzIg5xkQbwugP-8m_9-y4en38Xz-H6zuHBfr6_O9h7AjdiKmbxPKwNWJ-dnNqncMX8QCydPPNLm8HXi14QvwFww4uY |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAhUceCyvQAEjwQmiZmPn4QNCiLKiKl3tAURvwXbspdI2WZotaP8av46ZvJalorceuMbO-5uX_c0MwHOplYllPPRzaxMMUJTyZegCX2p09tG-SRHoutlEMh6nh4dysgG_ulwYolV2OrFW1HlpaI18Bw23FIg-nu64lhYx2R29mX_3qYMU7bR27TQaiOzb5U8M36rXe7v4r1-E4ej9p3cf_LbDgG9EIhZ-bqxJUzU0kbYqcnHEhdHCBIlyKpQmsWmC8URgQpsKQdWsTOg4evgRDmiZ5xyvewkuJyKKSLoOwklvBeJmn3QYpETtjOI2YSfA56_QaNLRkAL5gErzrhvFM57uWcLmX7u2tTEc3fyfP-MtuNG64OxtIzO3YcMWA7jaNOVcDuD6HyUaB7B10JIP7sDyC_US9mmrg1V2etxmbRWsdGxR45cdHaN6rhgtbrO6-6E_I1IWm6_SMxhlGkzZjBj4foUSYhmxdJkqirK9nipyhqCes7alx_QufL6QD3IPNouysA-A5SZPNbdK57HDWDjRTnNnpIu1FdI458Gwg05m2rLu1F1kltX0Ap5mDdwyhFtWwy0LPHjZnzNvipqcO3u7g1LWKrgqW-HIg2f9MKom-gmqsOUpzokw-EjQ3ZEe3G8A3N-OEpgjwbkHyRq0-wlU9nx9pDj6Vpc_J0IRF7EHrzohWD3Wv9_i4flv8RS2UA6yj3vj_UdwLaQcl5qetQ2bi5NT-xiumB8IpZMntZQz-HrR8vAbM8CUZQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Whole-cell+segmentation+of+tissue+images+with+human-level+performance+using+large-scale+data+annotation+and+deep+learning&rft.jtitle=Nature+biotechnology&rft.au=Greenwald%2C+Noah+F.&rft.au=Miller%2C+Geneva&rft.au=Moen%2C+Erick&rft.au=Kong%2C+Alex&rft.date=2022-04-01&rft.issn=1087-0156&rft.eissn=1546-1696&rft.volume=40&rft.issue=4&rft.spage=555&rft.epage=565&rft_id=info:doi/10.1038%2Fs41587-021-01094-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41587_021_01094_0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1087-0156&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1087-0156&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1087-0156&client=summon |