Whole-cell segmentation of tissue images with human-level performance using large-scale data annotation and deep learning

A principal challenge in the analysis of tissue imaging data is cell segmentation—the task of identifying the precise boundary of every cell in an image. To address this problem we constructed TissueNet, a dataset for training segmentation models that contains more than 1 million manually labeled ce...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Nature biotechnology Ročník 40; číslo 4; s. 555 - 565
Hlavní autori: Greenwald, Noah F., Miller, Geneva, Moen, Erick, Kong, Alex, Kagel, Adam, Dougherty, Thomas, Fullaway, Christine Camacho, McIntosh, Brianna J., Leow, Ke Xuan, Schwartz, Morgan Sarah, Pavelchek, Cole, Cui, Sunny, Camplisson, Isabella, Bar-Tal, Omer, Singh, Jaiveer, Fong, Mara, Chaudhry, Gautam, Abraham, Zion, Moseley, Jackson, Warshawsky, Shiri, Soon, Erin, Greenbaum, Shirley, Risom, Tyler, Hollmann, Travis, Bendall, Sean C., Keren, Leeat, Graf, William, Angelo, Michael, Van Valen, David
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Nature Publishing Group US 01.04.2022
Nature Publishing Group
Predmet:
ISSN:1087-0156, 1546-1696, 1546-1696
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract A principal challenge in the analysis of tissue imaging data is cell segmentation—the task of identifying the precise boundary of every cell in an image. To address this problem we constructed TissueNet, a dataset for training segmentation models that contains more than 1 million manually labeled cells, an order of magnitude more than all previously published segmentation training datasets. We used TissueNet to train Mesmer, a deep-learning-enabled segmentation algorithm. We demonstrated that Mesmer is more accurate than previous methods, generalizes to the full diversity of tissue types and imaging platforms in TissueNet, and achieves human-level performance. Mesmer enabled the automated extraction of key cellular features, such as subcellular localization of protein signal, which was challenging with previous approaches. We then adapted Mesmer to harness cell lineage information in highly multiplexed datasets and used this enhanced version to quantify cell morphology changes during human gestation. All code, data and models are released as a community resource. Deep learning algorithms perform as well as humans in identifying cells in tissue images.
AbstractList A principal challenge in the analysis of tissue imaging data is cell segmentation—the task of identifying the precise boundary of every cell in an image. To address this problem we constructed TissueNet, a dataset for training segmentation models that contains more than 1 million manually labeled cells, an order of magnitude more than all previously published segmentation training datasets. We used TissueNet to train Mesmer, a deep-learning-enabled segmentation algorithm. We demonstrated that Mesmer is more accurate than previous methods, generalizes to the full diversity of tissue types and imaging platforms in TissueNet, and achieves human-level performance. Mesmer enabled the automated extraction of key cellular features, such as subcellular localization of protein signal, which was challenging with previous approaches. We then adapted Mesmer to harness cell lineage information in highly multiplexed datasets and used this enhanced version to quantify cell morphology changes during human gestation. All code, data and models are released as a community resource. Deep learning algorithms perform as well as humans in identifying cells in tissue images.
A principal challenge in the analysis of tissue imaging data is cell segmentation—the task of identifying the precise boundary of every cell in an image. To address this problem we constructed TissueNet, a dataset for training segmentation models that contains more than 1 million manually labeled cells, an order of magnitude more than all previously published segmentation training datasets. We used TissueNet to train Mesmer, a deep-learning-enabled segmentation algorithm. We demonstrated that Mesmer is more accurate than previous methods, generalizes to the full diversity of tissue types and imaging platforms in TissueNet, and achieves human-level performance. Mesmer enabled the automated extraction of key cellular features, such as subcellular localization of protein signal, which was challenging with previous approaches. We then adapted Mesmer to harness cell lineage information in highly multiplexed datasets and used this enhanced version to quantify cell morphology changes during human gestation. All code, data and models are released as a community resource.Deep learning algorithms perform as well as humans in identifying cells in tissue images.
A principal challenge in the analysis of tissue imaging data is cell segmentation-the task of identifying the precise boundary of every cell in an image. To address this problem we constructed TissueNet, a dataset for training segmentation models that contains more than 1 million manually labeled cells, an order of magnitude more than all previously published segmentation training datasets. We used TissueNet to train Mesmer, a deep-learning-enabled segmentation algorithm. We demonstrated that Mesmer is more accurate than previous methods, generalizes to the full diversity of tissue types and imaging platforms in TissueNet, and achieves human-level performance. Mesmer enabled the automated extraction of key cellular features, such as subcellular localization of protein signal, which was challenging with previous approaches. We then adapted Mesmer to harness cell lineage information in highly multiplexed datasets and used this enhanced version to quantify cell morphology changes during human gestation. All code, data and models are released as a community resource.
A major challenge in the analysis of tissue imaging data is cell segmentation, the task of identifying the precise boundary of every cell in an image. To address this problem we constructed TissueNet, a dataset for training segmentation models that contains more than 1 million manually labeled cells, an order of magnitude more than all previously published segmentation training datasets. We used TissueNet to train Mesmer, a deep learning-enabled segmentation algorithm. We demonstrated that Mesmer is more accurate than previous methods, generalizes to the full diversity of tissue types and imaging platforms in TissueNet, and achieves human-level performance. Mesmer enabled the automated extraction of key cellular features, such as subcellular localization of protein signal, which was challenging with previous approaches. We then adapted Mesmer to harness cell lineage information in highly multiplexed datasets and used this enhanced version to quantify cell morphology changes during human gestation. All code, data, and models are released as a community resource.
A principal challenge in the analysis of tissue imaging data is cell segmentation-the task of identifying the precise boundary of every cell in an image. To address this problem we constructed TissueNet, a dataset for training segmentation models that contains more than 1 million manually labeled cells, an order of magnitude more than all previously published segmentation training datasets. We used TissueNet to train Mesmer, a deep-learning-enabled segmentation algorithm. We demonstrated that Mesmer is more accurate than previous methods, generalizes to the full diversity of tissue types and imaging platforms in TissueNet, and achieves human-level performance. Mesmer enabled the automated extraction of key cellular features, such as subcellular localization of protein signal, which was challenging with previous approaches. We then adapted Mesmer to harness cell lineage information in highly multiplexed datasets and used this enhanced version to quantify cell morphology changes during human gestation. All code, data and models are released as a community resource.A principal challenge in the analysis of tissue imaging data is cell segmentation-the task of identifying the precise boundary of every cell in an image. To address this problem we constructed TissueNet, a dataset for training segmentation models that contains more than 1 million manually labeled cells, an order of magnitude more than all previously published segmentation training datasets. We used TissueNet to train Mesmer, a deep-learning-enabled segmentation algorithm. We demonstrated that Mesmer is more accurate than previous methods, generalizes to the full diversity of tissue types and imaging platforms in TissueNet, and achieves human-level performance. Mesmer enabled the automated extraction of key cellular features, such as subcellular localization of protein signal, which was challenging with previous approaches. We then adapted Mesmer to harness cell lineage information in highly multiplexed datasets and used this enhanced version to quantify cell morphology changes during human gestation. All code, data and models are released as a community resource.
Author Fullaway, Christine Camacho
Miller, Geneva
McIntosh, Brianna J.
Soon, Erin
Risom, Tyler
Camplisson, Isabella
Warshawsky, Shiri
Bendall, Sean C.
Van Valen, David
Fong, Mara
Cui, Sunny
Abraham, Zion
Greenbaum, Shirley
Greenwald, Noah F.
Schwartz, Morgan Sarah
Kong, Alex
Hollmann, Travis
Moseley, Jackson
Graf, William
Keren, Leeat
Singh, Jaiveer
Kagel, Adam
Leow, Ke Xuan
Moen, Erick
Bar-Tal, Omer
Angelo, Michael
Chaudhry, Gautam
Dougherty, Thomas
Pavelchek, Cole
AuthorAffiliation 4. Present address: Washington University School of Medicine in St. Louis
2. Department of Pathology, Stanford University
3. Division of Biology and Bioengineering, California Institute of Technology
7. Department of Molecular Cell Biology, Weizmann Institute of Science
9. Immunology Program, Stanford University
8. Department of Cognitive, Linguistic, and Psychological Sciences, Brown University
5. Department of Electrical Engineering, California Institute of Technology
6. Present address: Department of Computer Science, Princeton University
1. Cancer Biology Program, Stanford University
10. Department of Pathology, Memorial Sloan Kettering Cancer Center
AuthorAffiliation_xml – name: 8. Department of Cognitive, Linguistic, and Psychological Sciences, Brown University
– name: 6. Present address: Department of Computer Science, Princeton University
– name: 9. Immunology Program, Stanford University
– name: 5. Department of Electrical Engineering, California Institute of Technology
– name: 10. Department of Pathology, Memorial Sloan Kettering Cancer Center
– name: 1. Cancer Biology Program, Stanford University
– name: 3. Division of Biology and Bioengineering, California Institute of Technology
– name: 4. Present address: Washington University School of Medicine in St. Louis
– name: 2. Department of Pathology, Stanford University
– name: 7. Department of Molecular Cell Biology, Weizmann Institute of Science
Author_xml – sequence: 1
  givenname: Noah F.
  orcidid: 0000-0002-7836-4379
  surname: Greenwald
  fullname: Greenwald, Noah F.
  organization: Cancer Biology Program, Stanford University, Department of Pathology, Stanford University
– sequence: 2
  givenname: Geneva
  surname: Miller
  fullname: Miller, Geneva
  organization: Division of Biology and Bioengineering, California Institute of Technology
– sequence: 3
  givenname: Erick
  surname: Moen
  fullname: Moen, Erick
  organization: Division of Biology and Bioengineering, California Institute of Technology
– sequence: 4
  givenname: Alex
  surname: Kong
  fullname: Kong, Alex
  organization: Department of Pathology, Stanford University
– sequence: 5
  givenname: Adam
  surname: Kagel
  fullname: Kagel, Adam
  organization: Department of Pathology, Stanford University
– sequence: 6
  givenname: Thomas
  surname: Dougherty
  fullname: Dougherty, Thomas
  organization: Division of Biology and Bioengineering, California Institute of Technology
– sequence: 7
  givenname: Christine Camacho
  surname: Fullaway
  fullname: Fullaway, Christine Camacho
  organization: Department of Pathology, Stanford University
– sequence: 8
  givenname: Brianna J.
  orcidid: 0000-0003-3626-625X
  surname: McIntosh
  fullname: McIntosh, Brianna J.
  organization: Cancer Biology Program, Stanford University
– sequence: 9
  givenname: Ke Xuan
  surname: Leow
  fullname: Leow, Ke Xuan
  organization: Cancer Biology Program, Stanford University, Department of Pathology, Stanford University
– sequence: 10
  givenname: Morgan Sarah
  surname: Schwartz
  fullname: Schwartz, Morgan Sarah
  organization: Division of Biology and Bioengineering, California Institute of Technology
– sequence: 11
  givenname: Cole
  orcidid: 0000-0001-9249-6637
  surname: Pavelchek
  fullname: Pavelchek, Cole
  organization: Division of Biology and Bioengineering, California Institute of Technology, Washington University School of Medicine in St. Louis
– sequence: 12
  givenname: Sunny
  surname: Cui
  fullname: Cui, Sunny
  organization: Department of Electrical Engineering, California Institute of Technology, Department of Computer Science, Princeton University
– sequence: 13
  givenname: Isabella
  surname: Camplisson
  fullname: Camplisson, Isabella
  organization: Division of Biology and Bioengineering, California Institute of Technology
– sequence: 14
  givenname: Omer
  orcidid: 0000-0003-1622-3674
  surname: Bar-Tal
  fullname: Bar-Tal, Omer
  organization: Department of Molecular Cell Biology, Weizmann Institute of Science
– sequence: 15
  givenname: Jaiveer
  surname: Singh
  fullname: Singh, Jaiveer
  organization: Department of Pathology, Stanford University
– sequence: 16
  givenname: Mara
  surname: Fong
  fullname: Fong, Mara
  organization: Department of Pathology, Stanford University, Department of Cognitive, Linguistic and Psychological Sciences, Brown University
– sequence: 17
  givenname: Gautam
  orcidid: 0000-0003-2240-9846
  surname: Chaudhry
  fullname: Chaudhry, Gautam
  organization: Department of Pathology, Stanford University
– sequence: 18
  givenname: Zion
  surname: Abraham
  fullname: Abraham, Zion
  organization: Department of Pathology, Stanford University
– sequence: 19
  givenname: Jackson
  surname: Moseley
  fullname: Moseley, Jackson
  organization: Department of Pathology, Stanford University
– sequence: 20
  givenname: Shiri
  surname: Warshawsky
  fullname: Warshawsky, Shiri
  organization: Department of Pathology, Stanford University
– sequence: 21
  givenname: Erin
  surname: Soon
  fullname: Soon, Erin
  organization: Department of Pathology, Stanford University, Immunology Program, Stanford University
– sequence: 22
  givenname: Shirley
  orcidid: 0000-0002-0680-7652
  surname: Greenbaum
  fullname: Greenbaum, Shirley
  organization: Department of Pathology, Stanford University
– sequence: 23
  givenname: Tyler
  surname: Risom
  fullname: Risom, Tyler
  organization: Department of Pathology, Stanford University
– sequence: 24
  givenname: Travis
  orcidid: 0000-0003-1599-0433
  surname: Hollmann
  fullname: Hollmann, Travis
  organization: Department of Pathology, Memorial Sloan Kettering Cancer Center
– sequence: 25
  givenname: Sean C.
  orcidid: 0000-0003-1341-2453
  surname: Bendall
  fullname: Bendall, Sean C.
  organization: Department of Pathology, Stanford University
– sequence: 26
  givenname: Leeat
  orcidid: 0000-0002-6799-6303
  surname: Keren
  fullname: Keren, Leeat
  organization: Department of Molecular Cell Biology, Weizmann Institute of Science
– sequence: 27
  givenname: William
  orcidid: 0000-0002-4264-9479
  surname: Graf
  fullname: Graf, William
  organization: Division of Biology and Bioengineering, California Institute of Technology
– sequence: 28
  givenname: Michael
  orcidid: 0000-0003-1531-5067
  surname: Angelo
  fullname: Angelo, Michael
  email: mangelo0@stanford.edu
  organization: Department of Pathology, Stanford University
– sequence: 29
  givenname: David
  orcidid: 0000-0001-7534-7621
  surname: Van Valen
  fullname: Van Valen, David
  email: vanvalen@caltech.edu
  organization: Division of Biology and Bioengineering, California Institute of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34795433$$D View this record in MEDLINE/PubMed
BookMark eNp9UsuOFCEUJWaM89AfcGFI3LhBoXgVGxMz8ZVM4kbjktDUrWomNLRQNWb-Xtrq8TGLWQE5j5x7OefoJOUECD1n9DWjvH9TBZO9JrRjhDJqBKGP0BmTQhGmjDppd3qAmVSn6LzWa0qpEko9QadcaCMF52fo9vs2RyAeYsQVph2k2c0hJ5xHPIdaF8Bh5yao-GeYt3i77FwiEW4g4j2UMZf29oCXGtKEoysTkOpdBDy42WGXUj76uTTgAWCPI7iSGvspejy6WOHZ8bxA3z68_3r5iVx9-fj58t0V8UKLmQwefN875uUGnByV5MJvhKfaja4zXkOvNVPUd9ALQSXTvht5r6VswMYMA79Ab1ff_bLZQbNLc3HR7kubq9za7IL9H0lha6d8Y01bKheqGbw6GpT8Y4E6212oh4W5BHmptpPGMG0MNY368h71Oi8ltfFsp4QRvOt431gv_k30J8rdrzRCvxJ8ybUWGK0P6xpbwBAto_ZQALsWwLYC2N8FsLRJu3vSO_cHRXwV1UZOE5S_sR9Q_QJtxcVt
CitedBy_id crossref_primary_10_1038_s42003_024_06714_4
crossref_primary_10_1038_s41587_024_02316_x
crossref_primary_10_1126_sciadv_ads4227
crossref_primary_10_1038_s41467_025_57193_y
crossref_primary_10_1038_s41596_023_00881_0
crossref_primary_10_1038_s41590_023_01678_9
crossref_primary_10_1038_s41590_025_02163_1
crossref_primary_10_1016_j_ceb_2024_102378
crossref_primary_10_1038_s41467_022_33619_9
crossref_primary_10_1016_j_cels_2024_04_006
crossref_primary_10_1186_s12911_024_02502_6
crossref_primary_10_1117_1_JMI_12_6_061403
crossref_primary_10_1038_d41586_022_02964_6
crossref_primary_10_1038_d41586_023_03722_y
crossref_primary_10_1038_s41392_024_01862_9
crossref_primary_10_1016_j_ccell_2025_06_019
crossref_primary_10_1186_s12931_025_03315_5
crossref_primary_10_1016_j_jneumeth_2024_110273
crossref_primary_10_1049_ipr2_12967
crossref_primary_10_1038_s41598_023_36243_9
crossref_primary_10_1038_s41592_022_01663_4
crossref_primary_10_1002_jum_16489
crossref_primary_10_1002_lpor_202402307
crossref_primary_10_1038_s42003_025_07796_4
crossref_primary_10_1038_s41598_024_69426_z
crossref_primary_10_1038_s41467_023_41811_8
crossref_primary_10_1038_s41467_023_43458_x
crossref_primary_10_1038_s42003_024_06281_8
crossref_primary_10_1038_s41416_024_02882_6
crossref_primary_10_1002_cyto_a_24541
crossref_primary_10_1007_s11334_023_00537_y
crossref_primary_10_1016_j_csbj_2023_07_031
crossref_primary_10_1038_s44276_025_00152_3
crossref_primary_10_1186_s12859_022_04570_9
crossref_primary_10_1016_j_clim_2023_109713
crossref_primary_10_1038_s42003_022_03218_x
crossref_primary_10_1038_s41419_025_07717_7
crossref_primary_10_1371_journal_pcbi_1013115
crossref_primary_10_1002_cyto_a_24789
crossref_primary_10_1038_s41467_024_51590_5
crossref_primary_10_1002_art_43254
crossref_primary_10_1186_s13058_025_01961_7
crossref_primary_10_1038_s41416_024_02904_3
crossref_primary_10_1038_s41592_023_01885_0
crossref_primary_10_3389_fimmu_2025_1568456
crossref_primary_10_1038_s42003_023_05098_1
crossref_primary_10_1126_sciimmunol_adr0782
crossref_primary_10_3390_molecules28062712
crossref_primary_10_1016_j_cels_2025_101296
crossref_primary_10_1038_s41587_023_01935_0
crossref_primary_10_1093_bib_bbae421
crossref_primary_10_1038_s41598_024_51995_8
crossref_primary_10_1038_s42003_022_04076_3
crossref_primary_10_26508_lsa_202403067
crossref_primary_10_1007_s10489_025_06737_2
crossref_primary_10_1002_adhm_202400957
crossref_primary_10_1038_s41565_023_01323_4
crossref_primary_10_1136_jitc_2023_006923
crossref_primary_10_1016_j_csbj_2025_07_026
crossref_primary_10_1093_mictod_qaae088
crossref_primary_10_1016_j_softx_2024_101638
crossref_primary_10_1093_gigascience_giaf069
crossref_primary_10_1038_s41592_022_01664_3
crossref_primary_10_1109_TMI_2023_3312988
crossref_primary_10_1158_2159_8290_CD_21_0865
crossref_primary_10_1146_annurev_biodatasci_020422_050255
crossref_primary_10_12688_f1000research_139210_1
crossref_primary_10_3390_cancers14194617
crossref_primary_10_1038_s41586_025_09297_0
crossref_primary_10_1117_1_BIOS_2_2_020901
crossref_primary_10_1016_j_ccell_2024_05_025
crossref_primary_10_1016_j_commatsci_2024_112826
crossref_primary_10_1038_s41598_024_57381_8
crossref_primary_10_1038_s42003_025_08190_w
crossref_primary_10_1177_11779322241272387
crossref_primary_10_1007_s00428_023_03509_6
crossref_primary_10_1016_j_crmeth_2023_100557
crossref_primary_10_1002_path_6168
crossref_primary_10_1016_j_jid_2023_06_192
crossref_primary_10_1016_j_sigpro_2024_109448
crossref_primary_10_1093_gigascience_giaf052
crossref_primary_10_1016_j_cell_2024_04_013
crossref_primary_10_1016_j_labinv_2023_100175
crossref_primary_10_1017_qpb_2024_11
crossref_primary_10_7717_peerj_cs_1364
crossref_primary_10_1007_s12204_024_2743_y
crossref_primary_10_1146_annurev_biodatasci_102523_103640
crossref_primary_10_1038_s41587_022_01450_8
crossref_primary_10_3390_app132413248
crossref_primary_10_1093_bib_bbae407
crossref_primary_10_1038_s41467_023_43917_5
crossref_primary_10_1117_1_JMI_10_6_065503
crossref_primary_10_3389_frai_2024_1424012
crossref_primary_10_1016_j_inffus_2025_103641
crossref_primary_10_1021_jasms_4c00328
crossref_primary_10_1038_s41592_024_02580_4
crossref_primary_10_1016_j_labinv_2025_104220
crossref_primary_10_1016_j_lfs_2025_123931
crossref_primary_10_1016_j_molcel_2022_05_022
crossref_primary_10_1016_j_jconrel_2023_11_023
crossref_primary_10_1371_journal_pcbi_1012361
crossref_primary_10_3389_fonc_2022_918900
crossref_primary_10_1038_s41592_023_01912_0
crossref_primary_10_1016_j_cmpb_2025_108964
crossref_primary_10_3390_math11092039
crossref_primary_10_1038_s41592_024_02539_5
crossref_primary_10_1038_s42003_024_06110_y
crossref_primary_10_1016_j_ultramic_2025_114116
crossref_primary_10_1371_journal_pcbi_1013325
crossref_primary_10_1038_s41586_023_06498_3
crossref_primary_10_1038_s41598_025_90592_1
crossref_primary_10_1038_s41593_022_01104_7
crossref_primary_10_1007_s00761_023_01425_7
crossref_primary_10_1093_pnasnexus_pgad171
crossref_primary_10_1007_s00281_022_00979_9
crossref_primary_10_1016_j_bspc_2024_106143
crossref_primary_10_1016_j_ebiom_2023_104769
crossref_primary_10_1016_j_fmre_2025_01_020
crossref_primary_10_1016_j_ccell_2023_01_010
crossref_primary_10_1089_ten_tea_2024_0049
crossref_primary_10_1038_s41467_025_61299_8
crossref_primary_10_1002_jmv_29882
crossref_primary_10_1007_s00281_022_00982_0
crossref_primary_10_1038_s41467_023_42421_0
crossref_primary_10_1021_acs_analchem_5c01810
crossref_primary_10_1158_2326_6066_CIR_22_0306
crossref_primary_10_1038_s41592_022_01657_2
crossref_primary_10_1007_s11042_024_19579_w
crossref_primary_10_1016_j_isci_2025_112804
crossref_primary_10_1017_S2633903X24000011
crossref_primary_10_1038_s41419_024_06535_7
crossref_primary_10_1093_bioadv_vbaf032
crossref_primary_10_1016_j_ins_2022_12_014
crossref_primary_10_1007_s10489_024_06004_w
crossref_primary_10_1016_j_tust_2023_105310
crossref_primary_10_1038_s42003_025_08397_x
crossref_primary_10_1016_j_mam_2024_101276
crossref_primary_10_1371_journal_pcbi_1013350
crossref_primary_10_1063_5_0189222
crossref_primary_10_3390_ijms25179198
crossref_primary_10_1007_s10585_023_10252_4
crossref_primary_10_1016_j_ccell_2022_09_014
crossref_primary_10_3390_app15115981
crossref_primary_10_1089_ten_tea_2024_0014
crossref_primary_10_1364_AO_546044
crossref_primary_10_1016_j_isci_2024_109928
crossref_primary_10_1038_s41467_023_40674_3
crossref_primary_10_1172_JCI166357
crossref_primary_10_1126_scisignal_ads7002
crossref_primary_10_1038_s41467_024_48870_5
crossref_primary_10_1158_2159_8290_CD_23_1300
crossref_primary_10_1038_s41467_023_39616_w
crossref_primary_10_1038_s41590_024_01943_5
crossref_primary_10_1038_s41592_025_02697_0
crossref_primary_10_1126_sciimmunol_adp6667
crossref_primary_10_1109_TCYB_2024_3403927
crossref_primary_10_1146_annurev_pathmechdis_030321_091459
crossref_primary_10_1093_nsr_nwae109
crossref_primary_10_1007_s00281_022_00978_w
crossref_primary_10_1016_j_crmeth_2023_100595
crossref_primary_10_1038_s41551_024_01271_x
crossref_primary_10_1109_JTEHM_2023_3262841
crossref_primary_10_1016_j_jid_2025_05_024
crossref_primary_10_1038_s41523_024_00620_y
crossref_primary_10_1117_1_JMI_12_2_024001
crossref_primary_10_1126_science_add5327
crossref_primary_10_1038_s41598_024_65567_3
crossref_primary_10_1002_wrna_1839
crossref_primary_10_1038_s41467_025_56237_7
crossref_primary_10_1016_j_ymeth_2025_07_007
crossref_primary_10_1038_s41587_025_02585_0
crossref_primary_10_1007_s00281_022_00981_1
crossref_primary_10_1038_s41467_024_52394_3
crossref_primary_10_1038_s41564_023_01434_7
crossref_primary_10_1016_j_cell_2022_06_007
crossref_primary_10_1038_s43018_024_00773_6
crossref_primary_10_1007_s00432_023_04787_y
crossref_primary_10_1038_s42003_023_04848_5
crossref_primary_10_1093_biomethods_bpae084
crossref_primary_10_1038_s41598_025_08733_5
crossref_primary_10_1242_jcs_258986
crossref_primary_10_3389_fphys_2025_1651296
crossref_primary_10_1038_s41592_024_02563_5
crossref_primary_10_1038_s44222_023_00096_8
crossref_primary_10_1016_j_tox_2025_154242
crossref_primary_10_1038_s41467_023_37123_6
crossref_primary_10_1002_ctm2_70396
crossref_primary_10_1038_s41540_025_00542_w
crossref_primary_10_1016_j_tice_2023_102169
crossref_primary_10_1038_s41477_023_01527_5
crossref_primary_10_1093_bioadv_vbad046
crossref_primary_10_3390_electronics13132587
crossref_primary_10_3389_fimmu_2023_1167241
crossref_primary_10_1002_adbi_202200030
crossref_primary_10_1093_biomethods_bpae094
crossref_primary_10_1038_s41575_024_00915_2
crossref_primary_10_1038_s41592_023_01894_z
crossref_primary_10_1016_j_compbiomed_2025_110296
crossref_primary_10_1158_0008_5472_CAN_23_2352
crossref_primary_10_1016_j_ccell_2023_12_021
crossref_primary_10_1136_jitc_2024_008875
crossref_primary_10_1038_s42256_023_00618_4
crossref_primary_10_1038_s41598_022_22392_w
crossref_primary_10_1016_j_jag_2025_104564
crossref_primary_10_1002_cyto_a_24826
crossref_primary_10_1038_s41592_023_01977_x
crossref_primary_10_1111_imm_13646
crossref_primary_10_1038_s41592_023_01931_x
crossref_primary_10_1016_j_patcog_2024_110260
crossref_primary_10_1038_s41467_024_46764_0
crossref_primary_10_1158_1078_0432_CCR_19_3748
crossref_primary_10_1016_j_ccell_2024_06_004
crossref_primary_10_1038_s41467_023_44280_1
crossref_primary_10_1126_sciimmunol_adi2848
crossref_primary_10_1002_advs_202505445
crossref_primary_10_1038_s42003_023_04803_4
crossref_primary_10_1038_s41597_023_02108_z
crossref_primary_10_1109_TGRS_2024_3389089
crossref_primary_10_3389_fimmu_2023_1231329
crossref_primary_10_1016_j_media_2025_103607
crossref_primary_10_1126_science_adn2623
crossref_primary_10_1038_s41467_024_55098_w
crossref_primary_10_1038_s41586_024_08087_4
crossref_primary_10_1016_j_immuni_2024_11_004
crossref_primary_10_1038_s41598_024_66600_1
crossref_primary_10_1038_s42003_024_06480_3
crossref_primary_10_1016_j_copbio_2024_103111
crossref_primary_10_1007_s00521_025_11119_3
crossref_primary_10_1038_s41467_025_57586_z
crossref_primary_10_7554_eLife_96523
crossref_primary_10_7554_eLife_96523_3
crossref_primary_10_1038_s41586_024_08150_0
crossref_primary_10_1038_s44222_024_00163_8
crossref_primary_10_1117_1_JMI_11_6_067502
crossref_primary_10_1117_1_JMI_11_6_067501
crossref_primary_10_1161_CIRCRESAHA_123_323299
crossref_primary_10_1016_j_compbiomed_2025_111018
crossref_primary_10_1364_AO_544976
crossref_primary_10_1109_ACCESS_2024_3517641
crossref_primary_10_1016_j_ccell_2025_04_003
crossref_primary_10_1038_s41551_022_00951_w
crossref_primary_10_1186_s13059_022_02824_6
crossref_primary_10_1038_s41591_025_03530_z
crossref_primary_10_1126_scitranslmed_adk9149
crossref_primary_10_1261_rna_079801_123
crossref_primary_10_1038_s41598_022_16429_3
crossref_primary_10_3389_fcell_2022_752326
crossref_primary_10_1038_s41467_023_44560_w
crossref_primary_10_1016_j_displa_2025_102968
crossref_primary_10_1093_jmicro_dfad059
crossref_primary_10_1016_j_icte_2025_06_011
crossref_primary_10_1016_j_synbio_2024_05_005
crossref_primary_10_1117_1_JMI_9_6_067501
crossref_primary_10_1186_s13059_025_03624_4
crossref_primary_10_1016_j_compbiomed_2024_109151
crossref_primary_10_1038_s41591_023_02497_z
crossref_primary_10_1158_2326_6066_CIR_24_0151
crossref_primary_10_1109_MCI_2025_3564274
crossref_primary_10_1016_j_semcancer_2023_06_006
crossref_primary_10_1038_s42003_025_08184_8
crossref_primary_10_1017_qpb_2025_10018
crossref_primary_10_1038_s41592_024_02499_w
crossref_primary_10_1002_path_5921
crossref_primary_10_1093_pnasnexus_pgac235
crossref_primary_10_1084_jem_20211887
crossref_primary_10_1091_mbc_E22_08_0364
crossref_primary_10_1016_j_copbio_2023_103055
crossref_primary_10_3390_s25020531
crossref_primary_10_1007_s00281_022_00974_0
crossref_primary_10_1016_j_crmeth_2025_101170
crossref_primary_10_1038_s41592_024_02233_6
crossref_primary_10_1016_j_crmeth_2025_101172
crossref_primary_10_1002_eji_70022
crossref_primary_10_1016_j_sbi_2024_102842
crossref_primary_10_3389_fimmu_2024_1509782
crossref_primary_10_1136_gutjnl_2024_332837
crossref_primary_10_1016_j_medj_2022_05_002
crossref_primary_10_1038_s41586_022_04944_2
crossref_primary_10_1109_ACCESS_2024_3459868
crossref_primary_10_1158_2159_8290_CD_23_1165
crossref_primary_10_3389_fgene_2025_1547788
crossref_primary_10_1038_s41592_025_02595_5
crossref_primary_10_1097_TP_0000000000005107
crossref_primary_10_1016_j_cell_2023_02_021
crossref_primary_10_1038_s41597_025_05183_6
crossref_primary_10_1038_s41467_024_55214_w
crossref_primary_10_1364_AO_553308
crossref_primary_10_1016_j_artmed_2024_102828
crossref_primary_10_1016_j_jaci_2024_11_001
crossref_primary_10_1186_s12859_023_05608_2
crossref_primary_10_1126_sciimmunol_ade8162
crossref_primary_10_1364_AO_557903
crossref_primary_10_3390_app12157742
crossref_primary_10_1016_j_media_2025_103675
crossref_primary_10_1038_s41586_023_06298_9
crossref_primary_10_1038_s43018_024_00881_3
crossref_primary_10_1038_s41467_025_62593_1
crossref_primary_10_3389_fonc_2023_1172314
crossref_primary_10_1038_s41592_022_01692_z
crossref_primary_10_1093_bib_bbae307
crossref_primary_10_1093_nar_gkaf870
crossref_primary_10_1016_j_cels_2025_101374
crossref_primary_10_1038_s41467_023_38841_7
crossref_primary_10_1186_s13073_024_01282_y
crossref_primary_10_1038_s41467_025_62528_w
crossref_primary_10_1038_s43018_024_00838_6
crossref_primary_10_1093_micmic_ozad067_484
crossref_primary_10_1016_j_measurement_2024_115333
crossref_primary_10_1038_s41586_022_05060_x
crossref_primary_10_3390_cells13040352
crossref_primary_10_1016_j_labinv_2024_102184
crossref_primary_10_1038_s41568_023_00657_4
crossref_primary_10_1021_acsaenm_4c00613
crossref_primary_10_1016_j_dsp_2025_105475
crossref_primary_10_1080_2162402X_2025_2457793
crossref_primary_10_1038_s41467_025_62193_z
crossref_primary_10_1155_2024_6465280
crossref_primary_10_1097_CM9_0000000000003489
crossref_primary_10_1016_j_compbiomed_2025_110805
crossref_primary_10_1038_s41598_024_74597_w
crossref_primary_10_1002_widm_1474
crossref_primary_10_3389_frsc_2023_1158464
crossref_primary_10_1080_08911762_2022_2156420
crossref_primary_10_1016_j_modpat_2024_100652
crossref_primary_10_1038_s41467_023_40068_5
crossref_primary_10_1007_s11427_022_2327_y
crossref_primary_10_1021_jasms_4c00279
crossref_primary_10_1038_s41467_023_42878_z
crossref_primary_10_1093_nar_gkae990
crossref_primary_10_1016_j_tcb_2023_10_010
crossref_primary_10_1038_s41592_025_02617_2
crossref_primary_10_1016_j_isci_2023_108486
crossref_primary_10_1097_HEP_0000000000000600
crossref_primary_10_1038_s41467_024_45599_z
crossref_primary_10_3846_jcem_2024_20401
crossref_primary_10_1002_jim4_17
crossref_primary_10_1038_s41467_024_53550_5
crossref_primary_10_1128_spectrum_01472_22
crossref_primary_10_3390_jimaging10070172
crossref_primary_10_3390_pharmaceutics16050673
crossref_primary_10_1038_s41467_023_40291_0
crossref_primary_10_1111_tpj_16437
crossref_primary_10_1007_s10462_022_10372_5
crossref_primary_10_1038_s42003_023_04608_5
crossref_primary_10_1002_smtd_202401107
crossref_primary_10_1038_s41592_024_02513_1
crossref_primary_10_1007_s42979_025_04267_9
crossref_primary_10_3390_bioengineering12080843
crossref_primary_10_1002_cyto_a_24847
crossref_primary_10_1158_2326_6066_CIR_23_1109
crossref_primary_10_1038_s41588_025_02158_6
crossref_primary_10_1016_j_media_2025_103774
crossref_primary_10_1038_s41467_023_44188_w
crossref_primary_10_1089_ten_tea_2022_0128
crossref_primary_10_15252_msb_202110571
crossref_primary_10_1038_s41467_025_62346_0
crossref_primary_10_1038_s41592_023_01939_3
crossref_primary_10_1371_journal_pcbi_1011432
crossref_primary_10_1016_j_bbadva_2025_100146
crossref_primary_10_1038_s42003_023_04991_z
crossref_primary_10_1145_3641284
crossref_primary_10_1038_s42003_024_06902_2
crossref_primary_10_1371_journal_ppat_1012888
crossref_primary_10_1038_s44303_024_00046_y
crossref_primary_10_1002_wsbm_1601
Cites_doi 10.1126/science.1099962
10.1038/nmeth.2892
10.1038/nmeth.2019
10.1371/journal.pcbi.1008193
10.1016/j.media.2020.101720
10.1016/j.softx.2019.02.007
10.1002/cyto.a.23594
10.1038/s41592-020-01023-0
10.1016/j.cell.2018.08.039
10.7717/peerj.453
10.1038/s41586-019-1876-x
10.1126/science.aaa6090
10.1038/s41586-019-1049-y
10.1038/nmeth.2089
10.1016/j.cels.2018.04.004
10.1146/annurev-immunol-032712-100003
10.7554/eLife.31657
10.1126/science.aat5691
10.1109/MCSE.2007.55
10.12688/f1000research.50798.1
10.1038/s41556-019-0458-3
10.1073/pnas.1300136110
10.1038/nmeth.2075
10.1109/TMI.2019.2947628
10.1172/jci.insight.93487
10.1126/science.aau5324
10.1038/s41592-019-0612-7
10.1016/j.cell.2020.07.005
10.1182/blood-2019-122535
10.1126/science.1250212
10.1016/1047-3203(90)90014-M
10.1200/JCO.2013.50.9984
10.1371/journal.pcbi.1005177
10.1038/s41592-019-0582-9
10.1371/journal.pbio.1002340
10.1038/nmeth.2083
10.1371/journal.pbio.2005970
10.1016/j.cell.2020.03.053
10.7554/eLife.57613
10.1038/s41467-020-19863-x
10.1016/j.humpath.2012.05.009
10.1038/s41592-018-0106-z
10.1038/s41586-020-2649-2
10.1038/s41597-019-0332-y
10.1038/s41586-019-1629-x
10.1016/j.cels.2020.04.003
10.1038/s41592-019-0627-0
10.1038/s41598-017-17204-5
10.1038/s41592-020-01018-x
10.1073/pnas.1706546114
10.1038/s43018-020-0026-6
10.1038/s41592-018-0069-0
10.1038/s41467-021-22518-0
10.5334/jors.148
10.1016/j.cell.2018.07.010
10.1128/MCB.20.11.4159-4168.2000
10.1038/nmeth.2869
10.1016/j.media.2019.101563
10.1126/sciadv.aax5851
10.1109/WACV45572.2020.9093435
10.1201/9780429258770
10.1101/2020.06.08.140426
10.1109/CVPR.2017.106
10.7295/W9CCDB6843
10.5281/zenodo.3509134
10.5281/zenodo.592845
10.1109/CVPR.2016.90
10.1007/978-3-319-24574-4_28
10.1109/CVPR42600.2020.01079
10.1101/803205
10.1109/TMI.2022.3157048
10.1101/2021.09.08.459490
10.1101/2021.01.05.425362
10.1101/2020.12.08.416909
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature America, Inc. 2021
2021. The Author(s), under exclusive licence to Springer Nature America, Inc.
The Author(s), under exclusive licence to Springer Nature America, Inc. 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2021
– notice: 2021. The Author(s), under exclusive licence to Springer Nature America, Inc.
– notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2021.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7QP
7QR
7T7
7TK
7TM
7X7
7XB
88A
88E
88I
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
L6V
LK8
M0S
M1P
M2O
M2P
M7P
M7S
MBDVC
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
RC3
7X8
5PM
DOI 10.1038/s41587-021-01094-0
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Nucleic Acids Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Health & Medical Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Research Library
Science Database
Biological Science Database
Engineering Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering collection
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Research Library Prep
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Agriculture
Biology
EISSN 1546-1696
EndPage 565
ExternalDocumentID PMC9010346
34795433
10_1038_s41587_021_01094_0
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Rita Allen Foundation (RAF)
  funderid: https://doi.org/10.13039/100001447
– fundername: NCI NIH HHS
  grantid: UH3 CA246633
– fundername: NIA NIH HHS
  grantid: R01 AG056287
– fundername: NIH HHS
  grantid: DP5 OD019822
– fundername: NCI NIH HHS
  grantid: P30 CA008748
– fundername: NCI NIH HHS
  grantid: F31 CA246880
– fundername: NIA NIH HHS
  grantid: R01 AG057915
GroupedDBID ---
-~X
.55
.GJ
0R~
123
29M
2FS
2XV
36B
39C
4.4
4R4
53G
5M7
5RE
5S5
70F
7X7
88E
88I
8AO
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
A8Z
AAHBH
AAIKC
AAMNW
AARCD
ABDBF
ABDPE
ABEFU
ABFSG
ABJCF
ABJNI
ABLJU
ABOCM
ABUWG
ACBTR
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACPRK
ACSTC
ACUHS
ADBBV
ADFRT
AENEX
AEUYN
AEZWR
AFANA
AFBBN
AFFHD
AFFNX
AFHIU
AFKRA
AFRAH
AFSHS
AGAYW
AGSTI
AHBCP
AHMBA
AHOSX
AHSBF
AHWEU
AIBTJ
AIXLP
ALFFA
ALMA_UNASSIGNED_HOLDINGS
ALPWD
AMTXH
ARMCB
ASPBG
ATHPR
AVWKF
AXYYD
AZFZN
AZQEC
BAAKF
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
BKOMP
BPHCQ
BVXVI
C0K
CCPQU
D1J
DB5
DU5
DWQXO
EAD
EAP
EAS
EBC
EBS
EE.
EJD
EMB
EMK
EMOBN
ESTFP
ESX
EXGXG
F5P
FA8
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
GX1
HCIFZ
HMCUK
HVGLF
HZ~
IAG
IAO
IEA
IEP
IH2
IHR
INH
INR
IOV
ISR
ITC
KOO
L6V
LGEZI
LK8
LOTEE
M1P
M2O
M2P
M7P
M7S
ML0
MVM
N95
NADUK
NEJ
NFIDA
NNMJJ
NXXTH
O9-
ODYON
P2P
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
Q2X
QF4
QM4
QN7
QO4
RNS
RNT
RNTTT
RVV
RXW
SHXYY
SIXXV
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TN5
TSG
TUS
U5U
UKHRP
X7M
XOL
Y6R
YZZ
ZGI
ZXP
~KM
AAYXX
CITATION
AAYZH
ABAWZ
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7QP
7QR
7T7
7TK
7TM
7XB
88A
8FD
8FK
C1K
FR3
K9.
MBDVC
P64
PKEHL
PQEST
PQUKI
Q9U
RC3
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c474t-dcec88a1c5bea5f6534cb4c07afa29c7e877160c2e8440517c2f38755e87b9dd3
IEDL.DBID M7S
ISICitedReferencesCount 479
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000720223600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1087-0156
1546-1696
IngestDate Tue Nov 04 01:57:26 EST 2025
Thu Oct 02 17:43:30 EDT 2025
Tue Oct 28 03:39:47 EDT 2025
Mon Jul 21 06:03:09 EDT 2025
Sat Nov 29 06:22:27 EST 2025
Tue Nov 18 22:20:35 EST 2025
Mon Nov 10 01:23:35 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License 2021. The Author(s), under exclusive licence to Springer Nature America, Inc.
Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-dcec88a1c5bea5f6534cb4c07afa29c7e877160c2e8440517c2f38755e87b9dd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Authorship Contributions
These authors contributed equally to this work
N.F.G., L.K., M.A., and D.V.V. conceived the project. E.M. and D.V.V. conceived the human-in-the-loop approach. L.K. and M.A. conceived the whole-cell segmentation approach. G.M., T.D., E.M., W.G., and D.V.V. developed DeepCell Label. G.M., N.F.G., E.M., I.C., W.G., and D.V.V. developed the human-in-the-loop pipeline. M.S., C.P., W.G., and D.V.V. developed Mesmer’s deep learning architecture. W.G., N.F.G., and D.V.V. developed model training software. C.P. and W.G. developed cloud deployment. M.S., S.C., W.G., and D.V.V. developed metrics software. W.G. developed plug-ins. N.F.G., A.Kong, A.Kagel, J.S., and O.B-T. developed the multiplex image analysis pipeline. A.Kagel and G.M. developed the pathologist evaluation software. N.F.G., G.M., and T.H. supervised training data creation. N.F.G., C.C.F., B.M., K.L., M.F., G.C., Z.A., J.M., and S.W. performed quality control on the training data. E.S., S.G., and T.R. generated MIBI-TOF data for morphological analyses. S.B. helped with experimental design. N.F.G., W.G., and D.V.V. trained the models. N.F.G., W.G., G.M., and D.V.V. performed data analysis. N.F.G., G.M., M.A., and D.V.V. wrote the manuscript. M.A. and D.V.V. supervised the project. All authors provided feedback on the manuscript.
ORCID 0000-0003-1341-2453
0000-0003-1599-0433
0000-0001-9249-6637
0000-0002-0680-7652
0000-0003-1622-3674
0000-0002-7836-4379
0000-0002-6799-6303
0000-0002-4264-9479
0000-0003-2240-9846
0000-0001-7534-7621
0000-0003-3626-625X
0000-0003-1531-5067
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC9010346
PMID 34795433
PQID 2649432238
PQPubID 47191
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9010346
proquest_miscellaneous_2599179909
proquest_journals_2649432238
pubmed_primary_34795433
crossref_citationtrail_10_1038_s41587_021_01094_0
crossref_primary_10_1038_s41587_021_01094_0
springer_journals_10_1038_s41587_021_01094_0
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationSubtitle The Science and Business of Biotechnology
PublicationTitle Nature biotechnology
PublicationTitleAbbrev Nat Biotechnol
PublicationTitleAlternate Nat Biotechnol
PublicationYear 2022
Publisher Nature Publishing Group US
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group US
– name: Nature Publishing Group
References Hoyer, Hamman (CR89) 2017; 5
von Chamier (CR42) 2021; 12
Valen (CR26) 2016; 12
Wolff (CR60) 2013; 31
CR38
CR37
Snyder (CR14) 2019; 574
CR36
Keren (CR16) 2018; 174
CR78
Goltsev (CR6) 2018; 174
Chen, Boettiger, Moffitt, Wang, Zhuang (CR7) 2015; 348
CR32
Garrido-Gomez (CR66) 2017; 114
Gerdes (CR5) 2013; 110
Walt (CR79) 2014; 2
Meyer, Beucher (CR52) 1990; 1
CR71
Cao (CR72) 2020; 11
McKinley (CR74) 2017; 2
Wang (CR10) 2018; 361
Gaglia (CR57) 2020; 22
Ouyang, Le, Xu, Lundberg (CR44) 2021; 10
Schulz (CR73) 2018; 6
Schneider, Rasband, Eliceiri (CR21) 2012; 9
Ouyang, Mueller, Hjelmare, Lundberg, Zimmer (CR41) 2019; 16
Graham (CR69) 2019; 58
CR49
CR48
Harris (CR84) 2020; 585
CR47
Stringer, Wang, Michaelos, Pachitariu (CR28) 2021; 18
CR46
CR88
CR87
CR86
CR85
Koyuncu, Cetin‐Atalay, Gunduz‐Demir (CR33) 2018; 93
Kumar, McBride, Weaver, Dingwall, Reich (CR59) 2000; 20
CR82
CR81
CR80
Koyuncu, Gunesli, Cetin-Atalay, Gunduz-Demir (CR30) 2020; 63
Caicedo (CR27) 2019; 16
Jackson (CR76) 2020; 578
Bannon (CR39) 2021; 18
Hunter (CR83) 2007; 9
CR18
Ljosa, Sokolnicki, Carpenter (CR34) 2012; 9
CR17
Eng (CR12) 2019; 568
CR15
Haberl (CR40) 2018; 15
Erlebacher (CR64) 2013; 31
Lee (CR8) 2014; 343
Hollandi (CR29) 2020; 10
Berg (CR22) 2019; 16
CR54
CR53
CR51
CR50
Wolny (CR45) 2020; 9
Nelson (CR58) 2004; 306
Belevich, Joensuu, Kumar, Vihinen, Jokitalo (CR24) 2016; 14
de Chaumont (CR23) 2012; 9
Keren (CR2) 2019; 5
Moffitt (CR9) 2018; 362
Rozenblatt-Rosen (CR13) 2020; 181
Rashid (CR77) 2019; 6
Lin (CR4) 2018; 7
McQuin (CR19) 2018; 16
Yang (CR31) 2020; 16
Giesen (CR1) 2014; 11
Kumar (CR35) 2020; 39
Lubeck, Coskun, Zhiyentayev, Ahmad, Cai (CR11) 2014; 11
Tsai, Gajda, Sloan, Rares, Shen (CR70) 2019; 9
CR25
Schürch (CR55) 2020; 182
CR67
Bankhead (CR68) 2017; 7
CR65
CR63
CR62
CR61
Schindelin (CR20) 2012; 9
Ali (CR56) 2020; 1
Patel (CR75) 2019; 134
Huang, Hennrick, Drew (CR3) 2013; 44
Hughes (CR43) 2018; 15
C-HL Eng (1094_CR12) 2019; 568
S Hoyer (1094_CR89) 2017; 5
R Rashid (1094_CR77) 2019; 6
1094_CR71
CR Harris (1094_CR84) 2020; 585
J Cao (1094_CR72) 2020; 11
MJ Gerdes (1094_CR5) 2013; 110
1094_CR38
JD Hunter (1094_CR83) 2007; 9
1094_CR37
DE Nelson (1094_CR58) 2004; 306
S Berg (1094_CR22) 2019; 16
HW Jackson (1094_CR76) 2020; 578
KH Chen (1094_CR7) 2015; 348
1094_CR32
Svander Walt (1094_CR79) 2014; 2
W Ouyang (1094_CR41) 2019; 16
1094_CR36
ET McKinley (1094_CR74) 2017; 2
1094_CR78
1094_CR61
J-R Lin (1094_CR4) 2018; 7
C Stringer (1094_CR28) 2021; 18
MG Haberl (1094_CR40) 2018; 15
O Rozenblatt-Rosen (1094_CR13) 2020; 181
W Huang (1094_CR3) 2013; 44
AJ Hughes (1094_CR43) 2018; 15
N Kumar (1094_CR35) 2020; 39
L von Chamier (1094_CR42) 2021; 12
D Schulz (1094_CR73) 2018; 6
X Wang (1094_CR10) 2018; 361
H-F Tsai (1094_CR70) 2019; 9
A Wolny (1094_CR45) 2020; 9
1094_CR65
S Graham (1094_CR69) 2019; 58
1094_CR63
1094_CR62
1094_CR25
R Hollandi (1094_CR29) 2020; 10
KP Kumar (1094_CR59) 2000; 20
1094_CR67
L Keren (1094_CR2) 2019; 5
CF Koyuncu (1094_CR30) 2020; 63
1094_CR50
J Schindelin (1094_CR20) 2012; 9
C McQuin (1094_CR19) 2018; 16
E Lubeck (1094_CR11) 2014; 11
1094_CR18
1094_CR17
CA Schneider (1094_CR21) 2012; 9
1094_CR15
F Meyer (1094_CR52) 1990; 1
C Giesen (1094_CR1) 2014; 11
A Erlebacher (1094_CR64) 2013; 31
I Belevich (1094_CR24) 2016; 14
DAV Valen (1094_CR26) 2016; 12
AC Wolff (1094_CR60) 2013; 31
W Ouyang (1094_CR44) 2021; 10
1094_CR54
JR Moffitt (1094_CR9) 2018; 362
1094_CR53
1094_CR51
T Garrido-Gomez (1094_CR66) 2017; 114
JH Lee (1094_CR8) 2014; 343
L Yang (1094_CR31) 2020; 16
SS Patel (1094_CR75) 2019; 134
1094_CR82
CF Koyuncu (1094_CR33) 2018; 93
1094_CR81
1094_CR80
HR Ali (1094_CR56) 2020; 1
L Keren (1094_CR16) 2018; 174
V Ljosa (1094_CR34) 2012; 9
1094_CR49
1094_CR48
CM Schürch (1094_CR55) 2020; 182
P Bankhead (1094_CR68) 2017; 7
Y Goltsev (1094_CR6) 2018; 174
1094_CR87
1094_CR86
F de Chaumont (1094_CR23) 2012; 9
1094_CR85
G Gaglia (1094_CR57) 2020; 22
MP Snyder (1094_CR14) 2019; 574
1094_CR47
1094_CR46
D Bannon (1094_CR39) 2021; 18
JC Caicedo (1094_CR27) 2019; 16
1094_CR88
References_xml – ident: CR49
– volume: 306
  start-page: 704
  year: 2004
  end-page: 708
  ident: CR58
  article-title: Oscillations in NF-κB signaling control the dynamics of gene expression
  publication-title: Science
  doi: 10.1126/science.1099962
– ident: CR87
– volume: 11
  start-page: 360
  year: 2014
  end-page: 361
  ident: CR11
  article-title: Single-cell in situ RNA profiling by sequential hybridization
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2892
– volume: 9
  start-page: 676
  year: 2012
  end-page: 682
  ident: CR20
  article-title: Fiji: an open-source platform for biological-image analysis
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2019
– volume: 16
  start-page: e1008193
  year: 2020
  ident: CR31
  article-title: NuSeT: A deep learning tool for reliably separating and analyzing crowded cells
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1008193
– ident: CR51
– volume: 63
  start-page: 101720
  year: 2020
  ident: CR30
  article-title: DeepDistance: a multi-task deep regression model for cell detection in inverted microscopy images
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2020.101720
– ident: CR54
– ident: CR61
– volume: 9
  start-page: 230
  year: 2019
  end-page: 237
  ident: CR70
  article-title: Usiigaci: instance-aware cell tracking in stain-free phase contrast microscopy enabled by machine learning
  publication-title: SoftwareX
  doi: 10.1016/j.softx.2019.02.007
– ident: CR80
– volume: 93
  start-page: 1019
  year: 2018
  end-page: 1028
  ident: CR33
  article-title: Object‐oriented segmentation of cell nuclei in fluorescence microscopy images
  publication-title: Cytometry A
  doi: 10.1002/cyto.a.23594
– volume: 18
  start-page: 43
  year: 2021
  end-page: 45
  ident: CR39
  article-title: DeepCell Kiosk: scaling deep learning–enabled cellular image analysis with Kubernetes
  publication-title: Nat. Methods
  doi: 10.1038/s41592-020-01023-0
– ident: CR25
– volume: 174
  start-page: 1373
  year: 2018
  end-page: 1387.e19
  ident: CR16
  article-title: A structured tumor-immune microenvironment in triple negative breast cancer revealed by multiplexed ion beam imaging
  publication-title: Cell
  doi: 10.1016/j.cell.2018.08.039
– volume: 2
  start-page: e453
  year: 2014
  ident: CR79
  article-title: scikit-image: image processing in Python
  publication-title: PeerJ
  doi: 10.7717/peerj.453
– ident: CR46
– ident: CR71
– volume: 578
  start-page: 615
  year: 2020
  end-page: 620
  ident: CR76
  article-title: The single-cell pathology landscape of breast cancer
  publication-title: Nature
  doi: 10.1038/s41586-019-1876-x
– volume: 348
  start-page: aaa6090
  year: 2015
  ident: CR7
  article-title: Spatially resolved, highly multiplexed RNA profiling in single cells
  publication-title: Science
  doi: 10.1126/science.aaa6090
– volume: 568
  start-page: 235
  year: 2019
  end-page: 239
  ident: CR12
  article-title: Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH+
  publication-title: Nature
  doi: 10.1038/s41586-019-1049-y
– volume: 9
  start-page: 671
  year: 2012
  end-page: 675
  ident: CR21
  article-title: NIH Image to ImageJ: 25 years of image analysis
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2089
– ident: CR67
– volume: 6
  start-page: 531
  year: 2018
  ident: CR73
  article-title: Simultaneous multiplexed imaging of mRNA and proteins with subcellular resolution in breast cancer tissue samples by mass cytometry
  publication-title: Cell Syst.
  doi: 10.1016/j.cels.2018.04.004
– ident: CR15
– ident: CR88
– ident: CR50
– volume: 31
  start-page: 387
  year: 2013
  end-page: 411
  ident: CR64
  article-title: Immunology of the maternal-fetal interface
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev-immunol-032712-100003
– volume: 7
  start-page: e31657
  year: 2018
  ident: CR4
  article-title: Highly multiplexed immunofluorescence imaging of human tissues and tumors using t-CyCIF and conventional optical microscopes
  publication-title: eLife
  doi: 10.7554/eLife.31657
– ident: CR32
– ident: CR36
– ident: CR78
– ident: CR85
– volume: 361
  start-page: eaat5691
  year: 2018
  ident: CR10
  article-title: Three-dimensional intact-tissue sequencing of single-cell transcriptional states
  publication-title: Science
  doi: 10.1126/science.aat5691
– volume: 9
  start-page: 90
  year: 2007
  end-page: 95
  ident: CR83
  article-title: Matplotlib: a 2D graphics environment
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/MCSE.2007.55
– ident: CR81
– volume: 10
  start-page: 142
  year: 2021
  ident: CR44
  article-title: Interactive biomedical segmentation tool powered by deep learning and ImJoy
  publication-title: F1000Research
  doi: 10.12688/f1000research.50798.1
– volume: 22
  start-page: 151
  year: 2020
  end-page: 158
  ident: CR57
  article-title: HSF1 phase transition mediates stress adaptation and cell fate decisions
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-019-0458-3
– volume: 110
  start-page: 11982
  year: 2013
  end-page: 11987
  ident: CR5
  article-title: Highly multiplexed single-cell analysis of formalin-fixed, paraffin-embedded cancer tissue
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.1300136110
– volume: 9
  start-page: 690
  year: 2012
  end-page: 696
  ident: CR23
  article-title: Icy: an open bioimage informatics platform for extended reproducible research
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2075
– volume: 39
  start-page: 1380
  year: 2020
  end-page: 1391
  ident: CR35
  article-title: A multi-organ nucleus segmentation challenge
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2019.2947628
– volume: 2
  start-page: e93487
  year: 2017
  ident: CR74
  article-title: Optimized multiplex immunofluorescence single-cell analysis reveals tuft cell heterogeneity
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.93487
– volume: 362
  start-page: eaau5324
  year: 2018
  ident: CR9
  article-title: Molecular, spatial and functional single-cell profiling of the hypothalamic preoptic region
  publication-title: Science
  doi: 10.1126/science.aau5324
– ident: CR18
– ident: CR47
– volume: 16
  start-page: 1247
  year: 2019
  end-page: 1253
  ident: CR27
  article-title: Nucleus segmentation across imaging experiments: the 2018 Data Science Bowl
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0612-7
– ident: CR37
– ident: CR53
– volume: 182
  start-page: 1341
  year: 2020
  end-page: 1359.e19
  ident: CR55
  article-title: Coordinated cellular neighborhoods orchestrate antitumoral immunity at the colorectal cancer invasive front
  publication-title: Cell
  doi: 10.1016/j.cell.2020.07.005
– volume: 134
  start-page: 2059
  year: 2019
  end-page: 2069
  ident: CR75
  article-title: The microenvironmental niche in classic Hodgkin lymphoma is enriched for CTLA-4- positive T-cells that are PD-1-negative
  publication-title: Blood
  doi: 10.1182/blood-2019-122535
– volume: 343
  start-page: 1360
  year: 2014
  end-page: 1363
  ident: CR8
  article-title: Highly multiplexed subcellular RNA sequencing in situ
  publication-title: Science
  doi: 10.1126/science.1250212
– volume: 1
  start-page: 21
  year: 1990
  end-page: 46
  ident: CR52
  article-title: Morphological segmentation
  publication-title: J. Vis. Commun. Image R
  doi: 10.1016/1047-3203(90)90014-M
– volume: 31
  start-page: 3997
  year: 2013
  end-page: 4013
  ident: CR60
  article-title: Recommendations for human epidermal growth factor receptor 2 testing in Breast Cancer: American Society of Clinical Oncology/College of American pathologists clinical practice guideline update
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2013.50.9984
– volume: 12
  start-page: e1005177
  year: 2016
  ident: CR26
  article-title: Deep learning automates the quantitative analysis of individual cells in live-cell imaging experiments
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1005177
– volume: 16
  start-page: 1226
  year: 2019
  end-page: 1232
  ident: CR22
  article-title: ilastik: interactive machine learning for (bio)image analysis
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0582-9
– ident: CR82
– volume: 14
  start-page: e1002340
  year: 2016
  ident: CR24
  article-title: Microscopy image browser: a platform for segmentation and analysis of multidimensional datasets
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1002340
– volume: 9
  start-page: 637
  year: 2012
  end-page: 637
  ident: CR34
  article-title: Annotated high-throughput microscopy image sets for validation
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2083
– volume: 16
  start-page: e2005970
  year: 2018
  ident: CR19
  article-title: CellProfiler 3.0: next-generation image processing for biology
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.2005970
– ident: CR86
– volume: 181
  start-page: 236
  year: 2020
  end-page: 249
  ident: CR13
  article-title: The human tumor atlas network: charting tumor transitions across space and time at single-cell resolution
  publication-title: Cell
  doi: 10.1016/j.cell.2020.03.053
– volume: 9
  start-page: e57613
  year: 2020
  ident: CR45
  article-title: Accurate and versatile 3D segmentation of plant tissues at cellular resolution
  publication-title: eLife
  doi: 10.7554/eLife.57613
– volume: 11
  year: 2020
  ident: CR72
  article-title: Establishment of a morphological atlas of the embryo using deep-learning-based 4D segmentation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19863-x
– ident: CR63
– volume: 44
  start-page: 29
  year: 2013
  end-page: 38
  ident: CR3
  article-title: A colorful future of quantitative pathology: validation of Vectra technology using chromogenic multiplexed immunohistochemistry and prostate tissue microarrays
  publication-title: Hum. Pathol.
  doi: 10.1016/j.humpath.2012.05.009
– volume: 15
  start-page: 677
  year: 2018
  end-page: 680
  ident: CR40
  article-title: CDeep3M—plug-and-play cloud-based deep learning for image segmentation
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0106-z
– volume: 585
  start-page: 357
  year: 2020
  end-page: 362
  ident: CR84
  article-title: Array programming with NumPy
  publication-title: Nature
  doi: 10.1038/s41586-020-2649-2
– volume: 6
  year: 2019
  ident: CR77
  article-title: Highly multiplexed immunofluorescence images and single-cell data of immune markers in tonsil and lung cancer
  publication-title: Sci. Data
  doi: 10.1038/s41597-019-0332-y
– volume: 574
  start-page: 187
  year: 2019
  end-page: 192
  ident: CR14
  article-title: The human body at cellular resolution: the NIH Human Biomolecular Atlas Program
  publication-title: Nature
  doi: 10.1038/s41586-019-1629-x
– ident: CR48
– volume: 10
  start-page: 453
  year: 2020
  end-page: 458.e6
  ident: CR29
  article-title: nucleAIzer: a parameter-free deep learning framework for nucleus segmentation using image style transfer
  publication-title: Cell Syst.
  doi: 10.1016/j.cels.2020.04.003
– volume: 16
  start-page: 1199
  year: 2019
  end-page: 1200
  ident: CR41
  article-title: ImJoy: an open-source computational platform for the deep learning era
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0627-0
– ident: CR65
– volume: 7
  start-page: 16878
  year: 2017
  ident: CR68
  article-title: QuPath: open source software for digital pathology image analysis
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-17204-5
– volume: 18
  start-page: 100
  year: 2021
  end-page: 106
  ident: CR28
  article-title: Cellpose: a generalist algorithm for cellular segmentation
  publication-title: Nat. Methods
  doi: 10.1038/s41592-020-01018-x
– ident: CR38
– volume: 114
  start-page: E8468
  year: 2017
  end-page: E8477
  ident: CR66
  article-title: Defective decidualization during and after severe preeclampsia reveals a possible maternal contribution to the etiology
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1706546114
– ident: CR17
– volume: 1
  start-page: 163
  year: 2020
  end-page: 175
  ident: CR56
  article-title: Imaging mass cytometry and multiplatform genomics define the phenogenomic landscape of breast cancer
  publication-title: Nat. Cancer
  doi: 10.1038/s43018-020-0026-6
– volume: 15
  start-page: 587
  year: 2018
  end-page: 590
  ident: CR43
  article-title: Quanti.us: a tool for rapid, flexible, crowd-based annotation of images
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0069-0
– volume: 12
  start-page: 2276
  year: 2021
  ident: CR42
  article-title: Democratising deep learning for microscopy with ZeroCostDL4Mic
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-22518-0
– volume: 5
  start-page: 10
  year: 2017
  ident: CR89
  article-title: xarray: N-D labeled arrays and datasets in Python
  publication-title: J. Open Res. Softw.
  doi: 10.5334/jors.148
– volume: 174
  start-page: 968
  year: 2018
  end-page: 981.e15
  ident: CR6
  article-title: Deep profiling of mouse splenic architecture with CODEX multiplexed imaging
  publication-title: Cell
  doi: 10.1016/j.cell.2018.07.010
– volume: 20
  start-page: 4159
  year: 2000
  end-page: 4168
  ident: CR59
  article-title: Regulated nuclear-cytoplasmic localization of interferon regulatory factor 3, a subunit of double-stranded RNA-activated factor 1
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.20.11.4159-4168.2000
– ident: CR62
– volume: 11
  start-page: 417
  year: 2014
  end-page: 422
  ident: CR1
  article-title: Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2869
– volume: 58
  start-page: 101563
  year: 2019
  ident: CR69
  article-title: Hover-Net: simultaneous segmentation and classification of nuclei in multi-tissue histology images
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2019.101563
– volume: 5
  start-page: eaax5851
  year: 2019
  ident: CR2
  article-title: MIBI-TOF: a multiplexed imaging platform relates cellular phenotypes and tissue structure
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aax5851
– volume: 63
  start-page: 101720
  year: 2020
  ident: 1094_CR30
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2020.101720
– volume: 6
  year: 2019
  ident: 1094_CR77
  publication-title: Sci. Data
  doi: 10.1038/s41597-019-0332-y
– volume: 20
  start-page: 4159
  year: 2000
  ident: 1094_CR59
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.20.11.4159-4168.2000
– ident: 1094_CR46
– volume: 11
  start-page: 360
  year: 2014
  ident: 1094_CR11
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2892
– volume: 10
  start-page: 142
  year: 2021
  ident: 1094_CR44
  publication-title: F1000Research
  doi: 10.12688/f1000research.50798.1
– ident: 1094_CR53
  doi: 10.1109/WACV45572.2020.9093435
– volume: 7
  start-page: e31657
  year: 2018
  ident: 1094_CR4
  publication-title: eLife
  doi: 10.7554/eLife.31657
– volume: 114
  start-page: E8468
  year: 2017
  ident: 1094_CR66
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1706546114
– volume: 11
  year: 2020
  ident: 1094_CR72
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19863-x
– ident: 1094_CR17
  doi: 10.1201/9780429258770
– volume: 18
  start-page: 100
  year: 2021
  ident: 1094_CR28
  publication-title: Nat. Methods
  doi: 10.1038/s41592-020-01018-x
– volume: 31
  start-page: 387
  year: 2013
  ident: 1094_CR64
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev-immunol-032712-100003
– volume: 182
  start-page: 1341
  year: 2020
  ident: 1094_CR55
  publication-title: Cell
  doi: 10.1016/j.cell.2020.07.005
– ident: 1094_CR78
  doi: 10.1101/2020.06.08.140426
– ident: 1094_CR47
  doi: 10.1109/CVPR.2017.106
– volume: 362
  start-page: eaau5324
  year: 2018
  ident: 1094_CR9
  publication-title: Science
  doi: 10.1126/science.aau5324
– ident: 1094_CR62
– volume: 58
  start-page: 101563
  year: 2019
  ident: 1094_CR69
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2019.101563
– volume: 2
  start-page: e453
  year: 2014
  ident: 1094_CR79
  publication-title: PeerJ
  doi: 10.7717/peerj.453
– volume: 306
  start-page: 704
  year: 2004
  ident: 1094_CR58
  publication-title: Science
  doi: 10.1126/science.1099962
– ident: 1094_CR81
– ident: 1094_CR32
  doi: 10.7295/W9CCDB6843
– ident: 1094_CR85
  doi: 10.5281/zenodo.3509134
– ident: 1094_CR87
  doi: 10.5281/zenodo.592845
– ident: 1094_CR49
  doi: 10.1109/CVPR.2016.90
– volume: 9
  start-page: 690
  year: 2012
  ident: 1094_CR23
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2075
– volume: 181
  start-page: 236
  year: 2020
  ident: 1094_CR13
  publication-title: Cell
  doi: 10.1016/j.cell.2020.03.053
– ident: 1094_CR25
  doi: 10.1007/978-3-319-24574-4_28
– ident: 1094_CR18
– ident: 1094_CR48
  doi: 10.1109/CVPR42600.2020.01079
– ident: 1094_CR37
  doi: 10.1101/803205
– volume: 174
  start-page: 968
  year: 2018
  ident: 1094_CR6
  publication-title: Cell
  doi: 10.1016/j.cell.2018.07.010
– volume: 2
  start-page: e93487
  year: 2017
  ident: 1094_CR74
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.93487
– volume: 39
  start-page: 1380
  year: 2020
  ident: 1094_CR35
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2019.2947628
– volume: 585
  start-page: 357
  year: 2020
  ident: 1094_CR84
  publication-title: Nature
  doi: 10.1038/s41586-020-2649-2
– ident: 1094_CR63
– ident: 1094_CR88
– ident: 1094_CR67
– volume: 14
  start-page: e1002340
  year: 2016
  ident: 1094_CR24
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1002340
– ident: 1094_CR80
– volume: 44
  start-page: 29
  year: 2013
  ident: 1094_CR3
  publication-title: Hum. Pathol.
  doi: 10.1016/j.humpath.2012.05.009
– ident: 1094_CR36
  doi: 10.1109/TMI.2022.3157048
– ident: 1094_CR50
– volume: 9
  start-page: 671
  year: 2012
  ident: 1094_CR21
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2089
– volume: 134
  start-page: 2059
  year: 2019
  ident: 1094_CR75
  publication-title: Blood
  doi: 10.1182/blood-2019-122535
– volume: 5
  start-page: 10
  year: 2017
  ident: 1094_CR89
  publication-title: J. Open Res. Softw.
  doi: 10.5334/jors.148
– volume: 174
  start-page: 1373
  year: 2018
  ident: 1094_CR16
  publication-title: Cell
  doi: 10.1016/j.cell.2018.08.039
– volume: 16
  start-page: e1008193
  year: 2020
  ident: 1094_CR31
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1008193
– ident: 1094_CR54
– ident: 1094_CR65
  doi: 10.1101/2021.09.08.459490
– ident: 1094_CR15
– volume: 15
  start-page: 677
  year: 2018
  ident: 1094_CR40
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0106-z
– volume: 1
  start-page: 21
  year: 1990
  ident: 1094_CR52
  publication-title: J. Vis. Commun. Image R
  doi: 10.1016/1047-3203(90)90014-M
– volume: 348
  start-page: aaa6090
  year: 2015
  ident: 1094_CR7
  publication-title: Science
  doi: 10.1126/science.aaa6090
– volume: 568
  start-page: 235
  year: 2019
  ident: 1094_CR12
  publication-title: Nature
  doi: 10.1038/s41586-019-1049-y
– ident: 1094_CR38
– ident: 1094_CR61
  doi: 10.1101/2021.01.05.425362
– volume: 12
  start-page: e1005177
  year: 2016
  ident: 1094_CR26
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1005177
– volume: 9
  start-page: 637
  year: 2012
  ident: 1094_CR34
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2083
– volume: 578
  start-page: 615
  year: 2020
  ident: 1094_CR76
  publication-title: Nature
  doi: 10.1038/s41586-019-1876-x
– volume: 343
  start-page: 1360
  year: 2014
  ident: 1094_CR8
  publication-title: Science
  doi: 10.1126/science.1250212
– volume: 574
  start-page: 187
  year: 2019
  ident: 1094_CR14
  publication-title: Nature
  doi: 10.1038/s41586-019-1629-x
– volume: 16
  start-page: e2005970
  year: 2018
  ident: 1094_CR19
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.2005970
– volume: 12
  start-page: 2276
  year: 2021
  ident: 1094_CR42
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-22518-0
– volume: 22
  start-page: 151
  year: 2020
  ident: 1094_CR57
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-019-0458-3
– volume: 31
  start-page: 3997
  year: 2013
  ident: 1094_CR60
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2013.50.9984
– volume: 5
  start-page: eaax5851
  year: 2019
  ident: 1094_CR2
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aax5851
– volume: 1
  start-page: 163
  year: 2020
  ident: 1094_CR56
  publication-title: Nat. Cancer
  doi: 10.1038/s43018-020-0026-6
– volume: 11
  start-page: 417
  year: 2014
  ident: 1094_CR1
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2869
– volume: 361
  start-page: eaat5691
  year: 2018
  ident: 1094_CR10
  publication-title: Science
  doi: 10.1126/science.aat5691
– volume: 9
  start-page: e57613
  year: 2020
  ident: 1094_CR45
  publication-title: eLife
  doi: 10.7554/eLife.57613
– volume: 10
  start-page: 453
  year: 2020
  ident: 1094_CR29
  publication-title: Cell Syst.
  doi: 10.1016/j.cels.2020.04.003
– volume: 18
  start-page: 43
  year: 2021
  ident: 1094_CR39
  publication-title: Nat. Methods
  doi: 10.1038/s41592-020-01023-0
– ident: 1094_CR51
– volume: 9
  start-page: 230
  year: 2019
  ident: 1094_CR70
  publication-title: SoftwareX
  doi: 10.1016/j.softx.2019.02.007
– volume: 15
  start-page: 587
  year: 2018
  ident: 1094_CR43
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0069-0
– volume: 9
  start-page: 676
  year: 2012
  ident: 1094_CR20
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2019
– volume: 7
  start-page: 16878
  year: 2017
  ident: 1094_CR68
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-17204-5
– volume: 9
  start-page: 90
  year: 2007
  ident: 1094_CR83
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/MCSE.2007.55
– ident: 1094_CR82
– ident: 1094_CR86
– volume: 110
  start-page: 11982
  year: 2013
  ident: 1094_CR5
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.1300136110
– volume: 16
  start-page: 1199
  year: 2019
  ident: 1094_CR41
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0627-0
– volume: 6
  start-page: 531
  year: 2018
  ident: 1094_CR73
  publication-title: Cell Syst.
  doi: 10.1016/j.cels.2018.04.004
– volume: 16
  start-page: 1247
  year: 2019
  ident: 1094_CR27
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0612-7
– volume: 16
  start-page: 1226
  year: 2019
  ident: 1094_CR22
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0582-9
– ident: 1094_CR71
  doi: 10.1101/2020.12.08.416909
– volume: 93
  start-page: 1019
  year: 2018
  ident: 1094_CR33
  publication-title: Cytometry A
  doi: 10.1002/cyto.a.23594
SSID ssj0006466
Score 2.7422328
Snippet A principal challenge in the analysis of tissue imaging data is cell segmentation—the task of identifying the precise boundary of every cell in an image. To...
A principal challenge in the analysis of tissue imaging data is cell segmentation-the task of identifying the precise boundary of every cell in an image. To...
A major challenge in the analysis of tissue imaging data is cell segmentation, the task of identifying the precise boundary of every cell in an image. To...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 555
SubjectTerms 631/114/1564
631/114/794
631/1647/245
Agriculture
Algorithms
Annotations
Bioinformatics
Biomedical and Life Sciences
Biomedical Engineering/Biotechnology
Biomedicine
Biotechnology
Cell lineage
Cell morphology
Cytology
Data Curation
Datasets
Deep Learning
Feature extraction
Human performance
Humans
Image processing
Image Processing, Computer-Assisted - methods
Image segmentation
Life Sciences
Localization
Machine learning
Tissue analysis
Training
Title Whole-cell segmentation of tissue images with human-level performance using large-scale data annotation and deep learning
URI https://link.springer.com/article/10.1038/s41587-021-01094-0
https://www.ncbi.nlm.nih.gov/pubmed/34795433
https://www.proquest.com/docview/2649432238
https://www.proquest.com/docview/2599179909
https://pubmed.ncbi.nlm.nih.gov/PMC9010346
Volume 40
WOSCitedRecordID wos000720223600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1546-1696
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0006466
  issn: 1087-0156
  databaseCode: M7P
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1546-1696
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0006466
  issn: 1087-0156
  databaseCode: M7S
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1546-1696
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0006466
  issn: 1087-0156
  databaseCode: 7X7
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1546-1696
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0006466
  issn: 1087-0156
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1546-1696
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0006466
  issn: 1087-0156
  databaseCode: M2O
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1546-1696
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0006466
  issn: 1087-0156
  databaseCode: M2P
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6xDRA88KMwCIzJSLxBtDR2YvsJAdrEy0rFQPQtsh27TOrSbumQ9t_jc9yUMrEXXiyldpq6d_H5fN_dB_BGamVKWQ7T2lruHRSlUpm7LJXab_a9fZMs04Fsgo9GYjKR43jg1kZY5WpNDAt1PTd4Rn7gDbdkXvuoeL84T5E1CqOrkUJjC3awSkIeoHsn_UpcdrHKYSYQXlmUMWkmo-Kg9YYLP83Rmc6wPO6mYbq227wOmvwrchoM0tHD_53KI3gQt6LkQ6c7j-GWbQZwpyOnvBrA_T9KFQ7g7nEMwj-Bqx_IqZvikT9p7fQsZi81ZO7IMsiRnJ75ZaoleMhLAgtgOkNwElms0xQIIu6nZIZI9LT1mmIJolWJapp5_D7V1MQLd0EitcX0KXw_Ovz26XMaGRxSwzhbpv7PMkKooSm0VYUrC8qMZibjyqlcGm4F9_5aZnIrGMNqYSZ31HtQhe_Qsq7pLmw388Y-B1KbWmhqla5L531Crp2mzkhXasukcS6B4Up8lYnlzZFlY1aFMDsVVSfyyou8CiKvsgTe9vcsuuIeN47eW4mzii96W61lmcDrvtu_oigE1dj5pR9T-E0492ZfJvCsU6L-cZjIWzBKE-Ab6tUPwPLfmz3N6c9QBhyBNZSVCbxbKeL6Z_17Fi9unsVLuJdjgkfAJu3B9vLi0r6C2-aX15-LfdjiEx5asQ87Hw9H46_-6jj_EtoxtrxrT34Dbjkz8g
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6V8j7wCC9DgUWiJ7DqeNde7wEhBFSt2kYcisjNeNe7oVLqhDoF5U_xG5lZ2wmhorceuGbXdmx_Ow_vN_MBvFS6MKlK-2FprcQEpShCFbsoVBqDffRvSkTai03IwSAbDtWnNfjV1cIQrbKzid5QlxND38i30HErgejj2dvp95BUo2h3tZPQaGCxZ-c_MWWr3-x-wPe7GcfbHw_f74StqkBohBSzsDTWZFnRN4m2ReLShAujhYlk4YpYGWkziTlEZGKbCUEdrEzsOEb1CQ5oVZYcz3sJLqMdl0Qhk8NFgofe3e-N9qOM6JxJ2hbpRDzbqtFR0q8xJe8RteNddYRnotuzJM2_dmq9A9y-_b89ujtwqw212btmbdyFNVv14Gojvjnvwc0_WjH24NpBSzK4B_MvpBkc0pYGq-3ouK3OqtjEsZnHKTs6RjNcM_qIzbzKYTgm8hWbLsswGFUUjNiYmPZhjSvBMmLjsqKqJu35iqpkCN4pa6U7Rvfh84U8kAewXk0q-whYacpMc1voMnWY80rtNHdGuVRboYxzAfQ7uOSmbd9OKiLj3NMIeJY3EMsRYrmHWB4F8GpxzLRpXnLu7I0OPnlryOp8iZ0AXiyG0QTRSygqOznFOQkmGRLDGhXAwwa0i8tRoXIiOA9ArsB5MYHam6-OVEfffJtzIg5xkQbwugP-8m_9-y4en38Xz-H6zuHBfr6_O9h7AjdiKmbxPKwNWJ-dnNqncMX8QCydPPNLm8HXi14QvwFww4uY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAhUceCyvQAEjwQmiZmPn4QNCiLKiKl3tAURvwXbspdI2WZotaP8av46ZvJalorceuMbO-5uX_c0MwHOplYllPPRzaxMMUJTyZegCX2p09tG-SRHoutlEMh6nh4dysgG_ulwYolV2OrFW1HlpaI18Bw23FIg-nu64lhYx2R29mX_3qYMU7bR27TQaiOzb5U8M36rXe7v4r1-E4ej9p3cf_LbDgG9EIhZ-bqxJUzU0kbYqcnHEhdHCBIlyKpQmsWmC8URgQpsKQdWsTOg4evgRDmiZ5xyvewkuJyKKSLoOwklvBeJmn3QYpETtjOI2YSfA56_QaNLRkAL5gErzrhvFM57uWcLmX7u2tTEc3fyfP-MtuNG64OxtIzO3YcMWA7jaNOVcDuD6HyUaB7B10JIP7sDyC_US9mmrg1V2etxmbRWsdGxR45cdHaN6rhgtbrO6-6E_I1IWm6_SMxhlGkzZjBj4foUSYhmxdJkqirK9nipyhqCes7alx_QufL6QD3IPNouysA-A5SZPNbdK57HDWDjRTnNnpIu1FdI458Gwg05m2rLu1F1kltX0Ap5mDdwyhFtWwy0LPHjZnzNvipqcO3u7g1LWKrgqW-HIg2f9MKom-gmqsOUpzokw-EjQ3ZEe3G8A3N-OEpgjwbkHyRq0-wlU9nx9pDj6Vpc_J0IRF7EHrzohWD3Wv9_i4flv8RS2UA6yj3vj_UdwLaQcl5qetQ2bi5NT-xiumB8IpZMntZQz-HrR8vAbM8CUZQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Whole-cell+segmentation+of+tissue+images+with+human-level+performance+using+large-scale+data+annotation+and+deep+learning&rft.jtitle=Nature+biotechnology&rft.au=Greenwald%2C+Noah+F.&rft.au=Miller%2C+Geneva&rft.au=Moen%2C+Erick&rft.au=Kong%2C+Alex&rft.date=2022-04-01&rft.issn=1087-0156&rft.eissn=1546-1696&rft.volume=40&rft.issue=4&rft.spage=555&rft.epage=565&rft_id=info:doi/10.1038%2Fs41587-021-01094-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41587_021_01094_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1087-0156&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1087-0156&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1087-0156&client=summon