The biofilm life cycle: expanding the conceptual model of biofilm formation
Bacterial biofilms are often defined as communities of surface-attached bacteria and are typically depicted with a classic mushroom-shaped structure characteristic of Pseudomonas aeruginosa . However, it has become evident that this is not how all biofilms develop, especially in vivo, in clinical an...
Uloženo v:
| Vydáno v: | Nature reviews. Microbiology Ročník 20; číslo 10; s. 608 - 620 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Nature Publishing Group UK
01.10.2022
Nature Publishing Group |
| Témata: | |
| ISSN: | 1740-1526, 1740-1534, 1740-1534 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Bacterial biofilms are often defined as communities of surface-attached bacteria and are typically depicted with a classic mushroom-shaped structure characteristic of
Pseudomonas aeruginosa
. However, it has become evident that this is not how all biofilms develop, especially in vivo, in clinical and industrial settings, and in the environment, where biofilms often are observed as non-surface-attached aggregates. In this Review, we describe the origin of the current five-step biofilm development model and why it fails to capture many aspects of bacterial biofilm physiology. We aim to present a simplistic developmental model for biofilm formation that is flexible enough to include all the diverse scenarios and microenvironments where biofilms are formed. With this new expanded, inclusive model, we hereby introduce a common platform for developing an understanding of biofilms and anti-biofilm strategies that can be tailored to the microenvironment under investigation.
In this Review, Bjarnsholt and colleagues propose a revised conceptual model of the biofilm life cycle that encompasses the three major steps of biofilm formation — aggregation, growth and disaggregation — independently of surfaces, and initiation from single-cell planktonic bacteria, and thus represents a broader range of biofilm systems. |
|---|---|
| AbstractList | Bacterial biofilms are often defined as communities of surface-attached bacteria and are typically depicted with a classic mushroom-shaped structure characteristic of
Pseudomonas aeruginosa
. However, it has become evident that this is not how all biofilms develop, especially in vivo, in clinical and industrial settings, and in the environment, where biofilms often are observed as non-surface-attached aggregates. In this Review, we describe the origin of the current five-step biofilm development model and why it fails to capture many aspects of bacterial biofilm physiology. We aim to present a simplistic developmental model for biofilm formation that is flexible enough to include all the diverse scenarios and microenvironments where biofilms are formed. With this new expanded, inclusive model, we hereby introduce a common platform for developing an understanding of biofilms and anti-biofilm strategies that can be tailored to the microenvironment under investigation.
In this Review, Bjarnsholt and colleagues propose a revised conceptual model of the biofilm life cycle that encompasses the three major steps of biofilm formation — aggregation, growth and disaggregation — independently of surfaces, and initiation from single-cell planktonic bacteria, and thus represents a broader range of biofilm systems. Bacterial biofilms are often defined as communities of surface-attached bacteria and are typically depicted with a classic mushroom-shaped structure characteristic of Pseudomonas aeruginosa. However, it has become evident that this is not how all biofilms develop, especially in vivo, in clinical and industrial settings, and in the environment, where biofilms often are observed as non-surface-attached aggregates. In this Review, we describe the origin of the current five-step biofilm development model and why it fails to capture many aspects of bacterial biofilm physiology. We aim to present a simplistic developmental model for biofilm formation that is flexible enough to include all the diverse scenarios and microenvironments where biofilms are formed. With this new expanded, inclusive model, we hereby introduce a common platform for developing an understanding of biofilms and anti-biofilm strategies that can be tailored to the microenvironment under investigation. Bacterial biofilms are often defined as communities of surface attached bacteria. Biofilms are typically depicted with a classic mushroom-shaped structure that is a characteristic of Pseudomonas aeruginosa. However, it has become evident that this is not how all biofilms develop, especially in in vivo in clinical, industrial settings and in the environment where biofilms often are observed as non-surface attached aggregates. In this Review, we describe the rationale behind the 5-step model and why it fails to capture many aspects of bacterial biofilm physiology. We aim to present a simplistic developmental model for biofilm formation that is flexible enough to include all the diverse scenarios and microenvironments where biofilms are formed. With this new expanded, inclusive model, we hereby introduce a common platform for developing understanding of biofilms and antibiofilm strategies that can be tailored to the microenvironment under investigation. Bacterial biofilms are often defined as communities of surface-attached bacteria and are typically depicted with a classic mushroom-shaped structure characteristic of Pseudomonas aeruginosa. However, it has become evident that this is not how all biofilms develop, especially in vivo, in clinical and industrial settings, and in the environment, where biofilms often are observed as non-surface-attached aggregates. In this Review, we describe the origin of the current five-step biofilm development model and why it fails to capture many aspects of bacterial biofilm physiology. We aim to present a simplistic developmental model for biofilm formation that is flexible enough to include all the diverse scenarios and microenvironments where biofilms are formed. With this new expanded, inclusive model, we hereby introduce a common platform for developing an understanding of biofilms and anti-biofilm strategies that can be tailored to the microenvironment under investigation.In this Review, Bjarnsholt and colleagues propose a revised conceptual model of the biofilm life cycle that encompasses the three major steps of biofilm formation — aggregation, growth and disaggregation — independently of surfaces, and initiation from single-cell planktonic bacteria, and thus represents a broader range of biofilm systems. Bacterial biofilms are often defined as communities of surface-attached bacteria and are typically depicted with a classic mushroom-shaped structure characteristic of Pseudomonas aeruginosa. However, it has become evident that this is not how all biofilms develop, especially in vivo, in clinical and industrial settings, and in the environment, where biofilms often are observed as non-surface-attached aggregates. In this Review, we describe the origin of the current five-step biofilm development model and why it fails to capture many aspects of bacterial biofilm physiology. We aim to present a simplistic developmental model for biofilm formation that is flexible enough to include all the diverse scenarios and microenvironments where biofilms are formed. With this new expanded, inclusive model, we hereby introduce a common platform for developing an understanding of biofilms and anti-biofilm strategies that can be tailored to the microenvironment under investigation.Bacterial biofilms are often defined as communities of surface-attached bacteria and are typically depicted with a classic mushroom-shaped structure characteristic of Pseudomonas aeruginosa. However, it has become evident that this is not how all biofilms develop, especially in vivo, in clinical and industrial settings, and in the environment, where biofilms often are observed as non-surface-attached aggregates. In this Review, we describe the origin of the current five-step biofilm development model and why it fails to capture many aspects of bacterial biofilm physiology. We aim to present a simplistic developmental model for biofilm formation that is flexible enough to include all the diverse scenarios and microenvironments where biofilms are formed. With this new expanded, inclusive model, we hereby introduce a common platform for developing an understanding of biofilms and anti-biofilm strategies that can be tailored to the microenvironment under investigation. |
| Author | Bjarnsholt, Thomas Stoodley, Paul Goeres, Darla M. Stewart, Philip S. Sauer, Karin Burmølle, Mette Hall-Stoodley, Luanne |
| AuthorAffiliation | 1. Department of Biological Sciences, Binghamton University, Binghamton, New York, USA 6. National Biofilm Innovation Centre (NBIC) and National Centre for Advanced Tribology at Southampton (nCATS), Mechanical Engineering, University of Southampton, Southampton, UK 3. Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA 7. Department of Chemical and Biological Engineering and Center for Biofilm Engineering, Montana State University 5. Department of Microbiology, The Ohio State University, Columbus, OH, USA 4. Department of Orthopaedics, The Ohio State University, Columbus, OH, USA 2. Binghamton Biofilm Research Center, Binghamton University, Binghamton, New York, USA 8. Department of Microbiology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark 9. Department of Immunology and Microbiology, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark 10. Department of Clinical Microbiology, Rigshospitalet, Copenhag |
| AuthorAffiliation_xml | – name: 1. Department of Biological Sciences, Binghamton University, Binghamton, New York, USA – name: 2. Binghamton Biofilm Research Center, Binghamton University, Binghamton, New York, USA – name: 5. Department of Microbiology, The Ohio State University, Columbus, OH, USA – name: 7. Department of Chemical and Biological Engineering and Center for Biofilm Engineering, Montana State University – name: 3. Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA – name: 8. Department of Microbiology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark – name: 6. National Biofilm Innovation Centre (NBIC) and National Centre for Advanced Tribology at Southampton (nCATS), Mechanical Engineering, University of Southampton, Southampton, UK – name: 4. Department of Orthopaedics, The Ohio State University, Columbus, OH, USA – name: 10. Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark – name: 9. Department of Immunology and Microbiology, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark |
| Author_xml | – sequence: 1 givenname: Karin orcidid: 0000-0002-1177-6328 surname: Sauer fullname: Sauer, Karin organization: Department of Biological Sciences, Binghamton University, Binghamton Biofilm Research Center, Binghamton University – sequence: 2 givenname: Paul orcidid: 0000-0001-6069-273X surname: Stoodley fullname: Stoodley, Paul organization: Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Department of Orthopaedics, The Ohio State University, Department of Microbiology, The Ohio State University, National Biofilm Innovation Centre (NBIC) and National Centre for Advanced Tribology at Southampton (nCATS), Mechanical Engineering, University of Southampton – sequence: 3 givenname: Darla M. orcidid: 0000-0002-6320-9616 surname: Goeres fullname: Goeres, Darla M. organization: Department of Chemical and Biological Engineering and Center for Biofilm Engineering, Montana State University – sequence: 4 givenname: Luanne orcidid: 0000-0003-2531-4797 surname: Hall-Stoodley fullname: Hall-Stoodley, Luanne organization: Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University – sequence: 5 givenname: Mette orcidid: 0000-0003-1870-632X surname: Burmølle fullname: Burmølle, Mette organization: Department of Biology, Faculty of Science, University of Copenhagen – sequence: 6 givenname: Philip S. orcidid: 0000-0001-7773-8570 surname: Stewart fullname: Stewart, Philip S. organization: Department of Chemical and Biological Engineering and Center for Biofilm Engineering, Montana State University – sequence: 7 givenname: Thomas orcidid: 0000-0002-8003-7414 surname: Bjarnsholt fullname: Bjarnsholt, Thomas email: tbjarnsholt@sund.ku.dk organization: Department of Immunology and Microbiology, Faculty of Health and Medical Science, University of Copenhagen, Department of Clinical Microbiology, Rigshospitalet |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35922483$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kc1u1TAQhS1URH_gBVigSGzYBGZsJ45ZIKGKAqISm7K2HGdy68qxL3GC6Nvj9rYX6KLe2JK_c3RmzjE7iCkSYy8R3iKI7l2W2ChdA-c1gGpVDU_YESoJNTZCHuzfvD1kxzlfAfCmUfwZOxSN5lx24oh9u7ikqvdp9GGqgh-pctcu0PuKfm9tHHzcVEshXIqOtstqQzWlgUKVxr1qTPNkF5_ic_Z0tCHTi7v7hP04-3Rx-qU-__756-nH89pJJZd66LC1WE6vuQbsh95iZ6WUMFghgAYQg2r6BkYQtpMoOuwJkITgCG2jxQn7sPPdrv1Eg6O4zDaY7ewnO1-bZL35_yf6S7NJv4wubmUzxeDNncGcfq6UFzP57CgEGymt2fBWdy3XSmFBXz9Ar9I6xzKe4QolR41CFOrVv4n2Ue73XIBuB7g55TzTaJxfbpdWAvpgEMxNpWZXqSmVmttKDRQpfyC9d39UJHaiXOC4oflv7EdUfwAPEbIU |
| CitedBy_id | crossref_primary_10_1016_j_ijbiomac_2024_130747 crossref_primary_10_1016_j_watcyc_2025_06_003 crossref_primary_10_1016_j_micpath_2024_106856 crossref_primary_10_1093_lambio_ovae012 crossref_primary_10_1016_j_pmatsci_2024_101384 crossref_primary_10_3390_microorganisms11061568 crossref_primary_10_3390_futurepharmacol5030035 crossref_primary_10_3390_antibiotics14050432 crossref_primary_10_1016_j_bioelechem_2025_108980 crossref_primary_10_1016_j_micpath_2024_106738 crossref_primary_10_3390_v15010196 crossref_primary_10_1016_j_mex_2025_103630 crossref_primary_10_1016_j_cej_2025_161878 crossref_primary_10_1016_j_scitotenv_2023_167469 crossref_primary_10_1016_j_coelec_2024_101486 crossref_primary_10_1016_j_envres_2025_122610 crossref_primary_10_1016_j_mimet_2024_106927 crossref_primary_10_1021_acsestwater_5c00504 crossref_primary_10_1080_17460913_2025_2457286 crossref_primary_10_3390_microorganisms13071554 crossref_primary_10_1038_s41579_023_00905_2 crossref_primary_10_1073_pnas_2312276120 crossref_primary_10_1002_admi_202400660 crossref_primary_10_1016_j_foodres_2025_115762 crossref_primary_10_12677_acm_2025_1541289 crossref_primary_10_1038_s41467_024_51940_3 crossref_primary_10_1007_s11356_023_31752_6 crossref_primary_10_1016_j_envres_2023_115894 crossref_primary_10_1016_j_apsusc_2023_156681 crossref_primary_10_1016_j_aca_2024_343022 crossref_primary_10_3390_bios13070695 crossref_primary_10_1016_j_copbio_2023_102969 crossref_primary_10_1016_j_enceco_2025_03_006 crossref_primary_10_1128_jb_00006_24 crossref_primary_10_1016_j_cej_2025_161527 crossref_primary_10_1016_j_ijbiomac_2024_138579 crossref_primary_10_1016_j_watres_2025_124374 crossref_primary_10_1007_s10811_024_03339_2 crossref_primary_10_1134_S002626172460650X crossref_primary_10_3390_antibiotics13080688 crossref_primary_10_1038_s41396_023_01494_x crossref_primary_10_1016_j_apmt_2024_102138 crossref_primary_10_1016_j_softx_2024_102011 crossref_primary_10_1016_j_surfin_2025_106222 crossref_primary_10_1002_advs_202413197 crossref_primary_10_2174_0115734137301010240507101533 crossref_primary_10_1021_acsomega_5c01534 crossref_primary_10_3390_fermentation10120661 crossref_primary_10_1038_s41522_023_00428_x crossref_primary_10_3390_ijms252212116 crossref_primary_10_1002_adhm_202403300 crossref_primary_10_1007_s00430_024_00799_8 crossref_primary_10_3390_microorganisms10091788 crossref_primary_10_1016_j_mattod_2023_06_006 crossref_primary_10_1080_17435889_2025_2459049 crossref_primary_10_3390_pathogens13040320 crossref_primary_10_3390_genes16050485 crossref_primary_10_1016_j_jes_2025_03_052 crossref_primary_10_32350_bsr_72_04 crossref_primary_10_3390_molecules30092031 crossref_primary_10_3389_fvets_2024_1353551 crossref_primary_10_1103_PhysRevE_111_024410 crossref_primary_10_1039_D3BM01584J crossref_primary_10_3390_antibiotics12071164 crossref_primary_10_1016_j_chom_2025_07_009 crossref_primary_10_1016_j_micpath_2024_106989 crossref_primary_10_3390_diagnostics14192116 crossref_primary_10_1016_j_corsci_2025_113211 crossref_primary_10_1128_jb_00018_23 crossref_primary_10_1002_mlf2_70024 crossref_primary_10_1016_j_micpath_2024_106866 crossref_primary_10_3390_ijms252111684 crossref_primary_10_3389_fvets_2024_1514952 crossref_primary_10_3389_fmicb_2025_1612534 crossref_primary_10_1016_j_seppur_2025_132344 crossref_primary_10_1016_j_resmic_2025_104296 crossref_primary_10_3390_antibiotics13070621 crossref_primary_10_1016_j_micres_2025_128199 crossref_primary_10_1016_j_cej_2025_159782 crossref_primary_10_1016_j_ejbt_2023_12_001 crossref_primary_10_3168_jds_2023_23306 crossref_primary_10_1080_08927014_2025_2515922 crossref_primary_10_1002_cbdv_202400408 crossref_primary_10_1038_s41522_025_00782_y crossref_primary_10_3390_ijms26188929 crossref_primary_10_1007_s00044_025_03471_9 crossref_primary_10_1016_j_biortech_2024_131375 crossref_primary_10_1016_j_cell_2023_09_016 crossref_primary_10_3389_fimmu_2025_1491777 crossref_primary_10_1007_s11157_025_09742_6 crossref_primary_10_1016_j_lwt_2024_116163 crossref_primary_10_1080_08927014_2023_2265817 crossref_primary_10_1016_j_jece_2024_113862 crossref_primary_10_1038_s42003_024_06698_1 crossref_primary_10_4103_MJBL_MJBL_353_24 crossref_primary_10_1016_j_ecolind_2024_112452 crossref_primary_10_3390_microorganisms11122965 crossref_primary_10_1002_mlf2_70031 crossref_primary_10_1128_spectrum_00690_23 crossref_primary_10_1016_j_jece_2025_119203 crossref_primary_10_1007_s00203_023_03802_7 crossref_primary_10_1002_mabi_202300489 crossref_primary_10_1002_bit_28624 crossref_primary_10_1186_s12866_025_04210_1 crossref_primary_10_22207_JPAM_19_2_31 crossref_primary_10_3390_ijms241914500 crossref_primary_10_1038_s41467_025_60935_7 crossref_primary_10_1093_lambio_ovad119 crossref_primary_10_1021_acs_jpcb_4c08666 crossref_primary_10_3390_molecules30132710 crossref_primary_10_1007_s12088_025_01501_z crossref_primary_10_3748_wjg_v29_i10_1445 crossref_primary_10_1016_j_colsurfb_2023_113727 crossref_primary_10_3390_microorganisms12122650 crossref_primary_10_1016_j_foodcont_2024_110734 crossref_primary_10_1016_j_compgeo_2024_106700 crossref_primary_10_1186_s12903_024_04230_9 crossref_primary_10_3390_microorganisms12122404 crossref_primary_10_1016_j_fm_2024_104687 crossref_primary_10_1038_s41598_023_41323_x crossref_primary_10_1038_s41467_025_60567_x crossref_primary_10_3389_fcimb_2024_1507332 crossref_primary_10_1002_anie_202414259 crossref_primary_10_1016_j_fpsl_2025_101473 crossref_primary_10_3390_w17152277 crossref_primary_10_1016_j_eti_2023_103521 crossref_primary_10_1016_j_xcrp_2025_102500 crossref_primary_10_1016_j_jece_2025_119215 crossref_primary_10_1080_14787210_2025_2536837 crossref_primary_10_1016_j_semcdb_2022_12_002 crossref_primary_10_3390_microorganisms11061533 crossref_primary_10_1002_adfm_202400998 crossref_primary_10_31083_j_fbl2904133 crossref_primary_10_3390_microorganisms12101966 crossref_primary_10_3390_cancers16172997 crossref_primary_10_1116_6_0003996 crossref_primary_10_1016_j_foodres_2025_115831 crossref_primary_10_1038_s41529_023_00370_5 crossref_primary_10_3390_antibiotics12040754 crossref_primary_10_1016_j_seh_2023_100002 crossref_primary_10_1038_s41522_023_00385_5 crossref_primary_10_1016_j_crfs_2025_101164 crossref_primary_10_1080_08927014_2023_2284316 crossref_primary_10_1016_j_micpath_2024_106834 crossref_primary_10_1016_j_ymeth_2024_01_014 crossref_primary_10_1007_s43630_024_00586_7 crossref_primary_10_1021_acsami_4c21252 crossref_primary_10_1007_s11426_024_2411_7 crossref_primary_10_1016_j_microb_2025_100356 crossref_primary_10_1016_j_mtbio_2025_102191 crossref_primary_10_1007_s13369_024_08832_x crossref_primary_10_1007_s13205_025_04252_2 crossref_primary_10_1126_sciadv_adt8213 crossref_primary_10_1007_s42770_025_01640_x crossref_primary_10_1016_j_eurpolymj_2022_111638 crossref_primary_10_1016_j_foodchem_2024_138373 crossref_primary_10_1128_iai_00512_24 crossref_primary_10_1093_ismejo_wraf065 crossref_primary_10_1016_j_jconrel_2023_01_003 crossref_primary_10_3748_wjg_v29_i10_1589 crossref_primary_10_21597_jist_1295306 crossref_primary_10_3390_nano13050904 crossref_primary_10_1016_j_jenvman_2025_124192 crossref_primary_10_1016_j_micres_2024_127859 crossref_primary_10_1021_acsami_5c06672 crossref_primary_10_1093_jac_dkae382 crossref_primary_10_1002_ps_8453 crossref_primary_10_1002_cbic_202500425 crossref_primary_10_1128_mmbr_00097_23 crossref_primary_10_1016_j_it_2023_12_004 crossref_primary_10_1002_adhm_202501162 crossref_primary_10_1002_adhm_202403597 crossref_primary_10_3390_biom13091367 crossref_primary_10_1016_j_envpol_2023_121196 crossref_primary_10_1038_s41522_024_00492_x crossref_primary_10_3390_pharmaceutics16111350 crossref_primary_10_1016_j_ijbiomac_2024_137786 crossref_primary_10_3390_ijms24108709 crossref_primary_10_3892_br_2025_1973 crossref_primary_10_1002_ange_202414259 crossref_primary_10_1093_jambio_lxae231 crossref_primary_10_1016_j_jconrel_2025_113618 crossref_primary_10_1016_j_oneear_2024_11_004 crossref_primary_10_1016_j_biomaterials_2024_122690 crossref_primary_10_1016_j_envpol_2023_123285 crossref_primary_10_1016_j_tim_2023_06_005 crossref_primary_10_3390_antibiotics12050896 crossref_primary_10_1016_j_biortech_2024_130527 crossref_primary_10_1002_adfm_202425467 crossref_primary_10_3389_fmicb_2023_1331363 crossref_primary_10_1016_j_envsoft_2025_106396 crossref_primary_10_1084_jem_20221086 crossref_primary_10_1002_anie_202319966 crossref_primary_10_1002_adma_202506119 crossref_primary_10_1016_j_colcom_2023_100717 crossref_primary_10_1016_j_jwpe_2024_105642 crossref_primary_10_1016_j_microb_2024_100175 crossref_primary_10_1002_adfm_202414687 crossref_primary_10_1134_S0018143923080039 crossref_primary_10_1093_ismejo_wraf160 crossref_primary_10_1016_j_gca_2024_05_003 crossref_primary_10_1016_j_carbpol_2024_122726 crossref_primary_10_3389_fmicb_2025_1532151 crossref_primary_10_1016_j_ejmech_2024_116675 crossref_primary_10_1016_j_jcis_2025_138628 crossref_primary_10_3389_fmicb_2023_1287680 crossref_primary_10_3390_app142110008 crossref_primary_10_3390_microorganisms11030664 crossref_primary_10_3390_foods14071266 crossref_primary_10_1016_j_jece_2024_112284 crossref_primary_10_3390_microorganisms12061249 crossref_primary_10_1038_s44259_024_00046_3 crossref_primary_10_1111_apm_13356 crossref_primary_10_1007_s00784_023_05454_9 crossref_primary_10_5826_mrm_2025_1018 crossref_primary_10_1080_10408398_2024_2400593 crossref_primary_10_3390_polym16172409 crossref_primary_10_1016_j_meatsci_2025_109902 crossref_primary_10_1128_jb_00152_23 crossref_primary_10_3390_antibiotics12081264 crossref_primary_10_1038_s41522_022_00346_4 crossref_primary_10_1002_adma_202307680 crossref_primary_10_1016_j_micpath_2025_107277 crossref_primary_10_1371_journal_pgen_1011243 crossref_primary_10_1002_advs_202206153 crossref_primary_10_1016_j_microb_2025_100436 crossref_primary_10_3390_ijms24044030 crossref_primary_10_1128_mmbr_00138_24 crossref_primary_10_1016_j_actbio_2023_08_038 crossref_primary_10_1371_journal_pone_0304491 crossref_primary_10_1016_j_advwatres_2024_104877 crossref_primary_10_1016_j_lssr_2025_01_002 crossref_primary_10_1016_j_bioflm_2024_100249 crossref_primary_10_1016_j_heliyon_2024_e32766 crossref_primary_10_3390_antibiotics12081260 crossref_primary_10_3390_gels11080567 crossref_primary_10_1016_j_bioflm_2024_100245 crossref_primary_10_1016_j_micres_2024_127656 crossref_primary_10_1039_D5TB01036E crossref_primary_10_1186_s40168_024_01762_8 crossref_primary_10_1002_ps_8525 crossref_primary_10_2217_nnm_2023_0243 crossref_primary_10_3390_antibiotics12040747 crossref_primary_10_1016_j_hazadv_2025_100896 crossref_primary_10_3390_biomedicines12102291 crossref_primary_10_3390_pharmaceutics16081075 crossref_primary_10_1002_anie_202510900 crossref_primary_10_1186_s13068_025_02644_3 crossref_primary_10_1038_s41522_023_00397_1 crossref_primary_10_1093_burnst_tkae041 crossref_primary_10_1177_15347346231206449 crossref_primary_10_1111_apm_13455 crossref_primary_10_3390_antibiotics14050503 crossref_primary_10_3390_antibiotics13020184 crossref_primary_10_3390_foods12244495 crossref_primary_10_3390_nano14201644 crossref_primary_10_1080_10889868_2024_2420071 crossref_primary_10_1016_j_drudis_2023_103673 crossref_primary_10_3390_microorganisms12040783 crossref_primary_10_3390_microorganisms12040784 crossref_primary_10_1016_j_microb_2025_100321 crossref_primary_10_1016_j_isci_2025_112063 crossref_primary_10_1007_s10517_024_06174_0 crossref_primary_10_1016_j_bioflm_2025_100307 crossref_primary_10_1007_s00249_025_01784_6 crossref_primary_10_3390_foods12203863 crossref_primary_10_1016_j_cej_2025_166919 crossref_primary_10_1016_j_bioadv_2024_214126 crossref_primary_10_1093_femsmc_xtae030 crossref_primary_10_1186_s13020_025_01147_5 crossref_primary_10_3389_fmicb_2024_1450682 crossref_primary_10_3390_ijms26188767 crossref_primary_10_1016_j_ocl_2023_10_001 crossref_primary_10_1007_s00203_025_04394_0 crossref_primary_10_3390_ijms242417242 crossref_primary_10_1128_jb_00077_25 crossref_primary_10_1002_ardp_70049 crossref_primary_10_3390_pr12122856 crossref_primary_10_1016_j_bioflm_2025_100312 crossref_primary_10_3390_ijms24119475 crossref_primary_10_1016_j_matt_2025_101961 crossref_primary_10_1080_14656566_2025_2519692 crossref_primary_10_3168_jds_2024_25554 crossref_primary_10_1002_adma_202411092 crossref_primary_10_1007_s11426_024_2013_y crossref_primary_10_1016_j_cbpa_2023_102418 crossref_primary_10_1128_msphere_01092_24 crossref_primary_10_1002_advs_202307048 crossref_primary_10_3390_ijms231810778 crossref_primary_10_1002_adma_202404411 crossref_primary_10_1128_aac_01858_24 crossref_primary_10_1134_S0026261724606560 crossref_primary_10_1139_cjm_2025_0051 crossref_primary_10_1073_pnas_2319903121 crossref_primary_10_1177_03635465231181649 crossref_primary_10_1016_j_lwt_2024_115805 crossref_primary_10_1016_j_watres_2025_124209 crossref_primary_10_1016_j_aquaculture_2025_742878 crossref_primary_10_1021_acs_biomac_5c00407 crossref_primary_10_1038_s41579_024_01098_y crossref_primary_10_3390_app13179854 crossref_primary_10_1039_D3FO00152K crossref_primary_10_1016_j_tibtech_2024_08_005 crossref_primary_10_1016_j_actbio_2024_02_029 crossref_primary_10_1134_S0026261725601083 crossref_primary_10_1007_s00203_024_04157_3 crossref_primary_10_1016_j_anaerobe_2024_102873 crossref_primary_10_1002_advs_202301694 crossref_primary_10_1080_14787210_2025_2538614 crossref_primary_10_1016_j_aca_2023_341227 crossref_primary_10_3390_biom14081018 crossref_primary_10_1016_j_cell_2024_03_001 crossref_primary_10_1080_1040841X_2025_2510247 crossref_primary_10_1016_j_scitotenv_2023_169838 crossref_primary_10_1016_j_fbio_2025_107352 crossref_primary_10_1016_j_mimet_2024_106956 crossref_primary_10_3390_microorganisms11051331 crossref_primary_10_3390_microorganisms11030692 crossref_primary_10_1002_adma_202311855 crossref_primary_10_1016_j_mtbio_2025_101724 crossref_primary_10_1002_smll_202206220 crossref_primary_10_1016_j_cossms_2025_101222 crossref_primary_10_1002_adma_202411194 crossref_primary_10_1016_j_ijbiomac_2025_146973 crossref_primary_10_1007_s11259_023_10180_4 crossref_primary_10_1128_jb_00210_24 crossref_primary_10_1080_0972060X_2024_2318339 crossref_primary_10_1016_j_watres_2023_120985 crossref_primary_10_1089_mdr_2025_0006 crossref_primary_10_1038_s41579_024_01086_2 crossref_primary_10_1016_j_porgcoat_2024_108699 crossref_primary_10_1016_j_jfp_2025_100619 crossref_primary_10_1139_cjm_2023_0096 crossref_primary_10_3389_fcimb_2023_1335389 crossref_primary_10_1002_smll_202409824 crossref_primary_10_1093_ismejo_wrae135 crossref_primary_10_1002_adma_202309797 crossref_primary_10_1016_j_microb_2025_100508 crossref_primary_10_3390_jof9090900 crossref_primary_10_1002_anbr_202400013 crossref_primary_10_1093_ismeco_ycaf004 crossref_primary_10_1016_j_jare_2024_06_008 crossref_primary_10_1021_acsaenm_5c00179 crossref_primary_10_1016_j_fitote_2023_105508 crossref_primary_10_1134_S0026261723604281 crossref_primary_10_1016_j_fbio_2025_106040 crossref_primary_10_1016_j_biomaterials_2024_122739 crossref_primary_10_1146_annurev_genet_111523_102459 crossref_primary_10_1038_s44320_024_00056_3 crossref_primary_10_1016_j_injury_2024_111638 crossref_primary_10_1016_j_scitotenv_2023_165695 crossref_primary_10_3390_antibiotics13100919 crossref_primary_10_1007_s10068_023_01415_w crossref_primary_10_3390_pathogens13050393 crossref_primary_10_1016_j_watres_2025_123142 crossref_primary_10_1016_j_biotechadv_2023_108170 crossref_primary_10_1016_j_micpath_2025_107373 crossref_primary_10_1111_1462_2920_16698 crossref_primary_10_1099_jmm_0_002047 crossref_primary_10_1016_j_envpol_2025_126952 crossref_primary_10_1016_j_jvs_2024_04_015 crossref_primary_10_1073_pnas_2423574122 crossref_primary_10_1016_j_micpath_2025_107426 crossref_primary_10_1038_s41589_024_01708_z crossref_primary_10_52575_2687_0940_2023_46_3_274_285 crossref_primary_10_1080_21505594_2023_2289775 crossref_primary_10_3389_fcimb_2023_1195803 crossref_primary_10_3390_pharmaceutics15061633 crossref_primary_10_1080_13543776_2024_2338101 crossref_primary_10_1007_s00430_025_00854_y crossref_primary_10_1016_j_mib_2024_102537 crossref_primary_10_1093_femsec_fiae035 crossref_primary_10_1016_j_bioflm_2025_100264 crossref_primary_10_1016_j_jconrel_2024_01_061 crossref_primary_10_1002_bip_70029 crossref_primary_10_1038_s41579_023_00920_3 crossref_primary_10_1016_j_ijbiomac_2025_140022 crossref_primary_10_1007_s00248_023_02185_y crossref_primary_10_1016_j_coemr_2024_100537 crossref_primary_10_1002_adma_202301623 crossref_primary_10_1016_j_ijbiomac_2024_132115 crossref_primary_10_1016_j_jsbmb_2024_106654 crossref_primary_10_1111_1471_0307_13169 crossref_primary_10_3390_agronomy14092135 crossref_primary_10_1016_j_saa_2023_123391 crossref_primary_10_1080_10408398_2024_2354524 crossref_primary_10_7717_peerj_19149 crossref_primary_10_1039_D2BM01783K crossref_primary_10_1016_j_pt_2024_08_001 crossref_primary_10_1128_aem_00821_25 crossref_primary_10_1016_j_ijfoodmicro_2024_110587 crossref_primary_10_1038_s41598_022_24431_y crossref_primary_10_1007_s11051_024_05971_y crossref_primary_10_1007_s11814_024_00340_w crossref_primary_10_1111_mpp_70107 crossref_primary_10_1099_mic_0_001407 crossref_primary_10_1016_j_tibtech_2024_03_009 crossref_primary_10_1016_j_colsurfb_2023_113584 crossref_primary_10_1007_s10989_024_10606_w crossref_primary_10_1128_cmr_00024_23 crossref_primary_10_3390_v16121816 crossref_primary_10_3390_pathogens12111319 crossref_primary_10_1073_pnas_2403842121 crossref_primary_10_1016_j_vibspec_2025_103846 crossref_primary_10_1089_phage_2024_0029 crossref_primary_10_1371_journal_pgen_1011870 crossref_primary_10_1007_s40588_022_00187_x crossref_primary_10_1038_s42003_024_06978_w crossref_primary_10_1139_cjm_2024_0155 crossref_primary_10_1016_j_cofs_2024_101124 crossref_primary_10_1016_j_matchemphys_2024_129507 crossref_primary_10_1021_acs_jmedchem_5c01258 crossref_primary_10_2166_wst_2023_214 crossref_primary_10_1016_j_scitotenv_2024_178184 crossref_primary_10_1038_s41579_022_00785_y crossref_primary_10_1016_j_tim_2025_04_014 crossref_primary_10_1007_s11426_023_1825_7 crossref_primary_10_1016_j_micpath_2025_107577 crossref_primary_10_1016_j_bioflm_2025_100270 crossref_primary_10_1016_j_micpath_2025_107331 crossref_primary_10_1021_acselectrochem_5c00244 crossref_primary_10_1038_s41522_024_00573_x crossref_primary_10_3390_ijms24098138 crossref_primary_10_1007_s00253_023_12955_w crossref_primary_10_1021_acsnano_4c15743 crossref_primary_10_1002_adma_202411468 crossref_primary_10_5435_JAAOS_D_24_00471 crossref_primary_10_1038_s41467_024_48295_0 crossref_primary_10_3390_ijms241411680 crossref_primary_10_1016_j_jconrel_2024_10_064 crossref_primary_10_1128_aem_00651_23 crossref_primary_10_3390_antibiotics14020146 crossref_primary_10_1002_adfm_202413036 crossref_primary_10_1016_j_colsurfb_2025_114811 crossref_primary_10_1016_j_ejmech_2024_117163 crossref_primary_10_3390_microorganisms11081934 crossref_primary_10_1007_s11259_024_10308_0 crossref_primary_10_1016_j_surfcoat_2023_129497 crossref_primary_10_1128_spectrum_02303_23 crossref_primary_10_1016_j_foodres_2025_117348 crossref_primary_10_1038_s41467_025_60570_2 crossref_primary_10_1016_j_jece_2023_111718 crossref_primary_10_1016_j_scitotenv_2025_180124 crossref_primary_10_1038_s41598_025_08879_2 crossref_primary_10_1109_MIM_2024_10622088 crossref_primary_10_3390_jof9111078 crossref_primary_10_1016_j_micpath_2024_107103 crossref_primary_10_1016_j_ijbiomac_2025_141430 crossref_primary_10_1016_j_crmicr_2025_100434 crossref_primary_10_1007_s00284_025_04345_4 crossref_primary_10_1016_j_jwpe_2025_107614 crossref_primary_10_1002_jobm_70070 crossref_primary_10_3390_idr17030064 crossref_primary_10_1016_j_micpath_2025_107876 crossref_primary_10_1002_mba2_56 crossref_primary_10_1016_j_jddst_2025_107330 crossref_primary_10_1080_10408398_2023_2279687 crossref_primary_10_1128_jb_00503_24 crossref_primary_10_1111_apm_13310 crossref_primary_10_1038_s41567_024_02572_3 crossref_primary_10_1039_D3BM00730H crossref_primary_10_1128_aac_01641_22 crossref_primary_10_1128_mbio_01196_25 crossref_primary_10_1016_j_tifs_2025_105218 crossref_primary_10_5937_scriptamed56_57135 crossref_primary_10_1016_j_vetmic_2025_110724 crossref_primary_10_1016_j_cej_2025_162255 crossref_primary_10_1016_j_foodcont_2025_111319 crossref_primary_10_1080_00405000_2024_2332851 crossref_primary_10_1128_aem_00697_24 crossref_primary_10_1371_journal_pone_0310010 crossref_primary_10_1080_08927014_2025_2507893 crossref_primary_10_1186_s40643_024_00832_x crossref_primary_10_3390_molecules30061387 crossref_primary_10_7759_cureus_70629 crossref_primary_10_1038_s41579_025_01147_0 crossref_primary_10_1038_s41598_025_95822_0 crossref_primary_10_3390_biomedicines11020413 crossref_primary_10_1099_mic_0_001569 crossref_primary_10_1038_s41522_025_00655_4 crossref_primary_10_1016_j_bioactmat_2024_08_031 crossref_primary_10_1128_aem_00663_24 crossref_primary_10_1016_j_jwpe_2024_106350 crossref_primary_10_3389_fcimb_2025_1533658 crossref_primary_10_1099_mic_0_001449 crossref_primary_10_1038_s44341_025_00019_1 crossref_primary_10_1128_cmr_00104_23 crossref_primary_10_1016_j_biotechadv_2024_108505 crossref_primary_10_3389_fcimb_2025_1610625 crossref_primary_10_1016_j_bioactmat_2025_05_029 crossref_primary_10_1016_j_aquaculture_2025_742258 crossref_primary_10_1016_j_molstruc_2024_140941 crossref_primary_10_3390_antibiotics14020111 crossref_primary_10_1007_s10570_024_05801_3 crossref_primary_10_1002_ange_202319966 crossref_primary_10_25092_baunfbed_1527387 crossref_primary_10_3390_bios14060302 crossref_primary_10_1038_s41522_024_00601_w crossref_primary_10_1016_j_scitotenv_2025_180226 crossref_primary_10_1038_s41522_025_00666_1 crossref_primary_10_1016_j_bioactmat_2023_06_017 crossref_primary_10_1016_j_cub_2024_07_078 crossref_primary_10_1093_milmed_usaf340 crossref_primary_10_3390_foods12071503 crossref_primary_10_1128_msystems_01045_23 crossref_primary_10_1002_adtp_202300217 crossref_primary_10_1016_j_biomaterials_2024_122578 crossref_primary_10_3389_fmicb_2024_1386830 crossref_primary_10_1016_j_micpath_2025_107650 crossref_primary_10_1371_journal_pone_0297692 crossref_primary_10_3390_ijms25063402 crossref_primary_10_3390_microorganisms12050892 crossref_primary_10_1016_j_cels_2025_101352 crossref_primary_10_1016_j_ijfoodmicro_2024_110630 crossref_primary_10_1016_j_bioelechem_2023_108587 crossref_primary_10_1002_adfm_202422753 crossref_primary_10_1016_j_apsoil_2025_106213 crossref_primary_10_3390_ijms26189193 crossref_primary_10_3390_ph17030386 crossref_primary_10_3390_ijms26052181 crossref_primary_10_1016_j_mimet_2023_106808 crossref_primary_10_3390_bioengineering12020148 crossref_primary_10_1146_annurev_chembioeng_100522_110939 crossref_primary_10_1002_jor_25822 crossref_primary_10_1002_wnan_1944 crossref_primary_10_1128_iai_00072_23 crossref_primary_10_1126_science_adl1102 crossref_primary_10_1146_annurev_micro_041522_101729 crossref_primary_10_1016_j_colsurfb_2024_114330 crossref_primary_10_1186_s12951_024_02974_8 crossref_primary_10_1002_pro_70294 crossref_primary_10_1016_j_fsi_2025_110576 crossref_primary_10_1038_s41579_023_00985_0 crossref_primary_10_1140_epje_s10189_024_00450_7 crossref_primary_10_1016_j_ailsci_2025_100137 crossref_primary_10_1016_j_corsci_2024_112005 crossref_primary_10_1016_j_jconrel_2025_114204 crossref_primary_10_1038_s41467_024_50116_3 crossref_primary_10_1128_aem_01548_23 crossref_primary_10_33878_2073_7556_2025_24_3_95_105 crossref_primary_10_1016_j_fbio_2024_103580 crossref_primary_10_1016_j_micres_2024_128034 crossref_primary_10_1007_s11431_024_2721_5 crossref_primary_10_1016_j_jece_2023_111377 crossref_primary_10_1016_j_injury_2025_112165 crossref_primary_10_1360_TB_2024_1090 crossref_primary_10_1128_aem_01914_24 crossref_primary_10_3390_antibiotics12020328 crossref_primary_10_3390_microorganisms13020234 crossref_primary_10_3390_ijms24010597 crossref_primary_10_1016_j_nantod_2023_102123 crossref_primary_10_1186_s12934_024_02636_2 crossref_primary_10_1159_000540991 crossref_primary_10_1016_j_jmst_2023_07_001 crossref_primary_10_3390_microorganisms11071765 crossref_primary_10_1016_j_micpath_2023_106182 crossref_primary_10_3390_microorganisms11071768 crossref_primary_10_1016_j_jhazmat_2024_135902 crossref_primary_10_1002_bmm2_70014 crossref_primary_10_3390_microorganisms13081850 crossref_primary_10_1016_j_mam_2025_101351 crossref_primary_10_1093_femsre_fuad050 crossref_primary_10_1016_j_envpol_2023_122896 crossref_primary_10_1016_j_micres_2025_128102 crossref_primary_10_1002_wnan_1968 crossref_primary_10_1016_j_micres_2025_128341 crossref_primary_10_1093_pnasnexus_pgae238 crossref_primary_10_1116_6_0003883 crossref_primary_10_1007_s41779_025_01175_2 crossref_primary_10_1111_jocd_16524 crossref_primary_10_1016_j_compbiolchem_2025_108596 crossref_primary_10_3389_fvets_2023_1248584 crossref_primary_10_1128_mbio_00872_25 crossref_primary_10_3390_antibiotics12020334 crossref_primary_10_1371_journal_pcbi_1011807 crossref_primary_10_1007_s10853_025_10983_7 crossref_primary_10_1021_acsnano_4c16606 crossref_primary_10_1038_s41598_024_60093_8 crossref_primary_10_3389_fcimb_2024_1336773 crossref_primary_10_36953_ECJ_29562934 crossref_primary_10_1021_acs_langmuir_5c03289 crossref_primary_10_1186_s40580_025_00488_z crossref_primary_10_1016_j_ese_2025_100557 crossref_primary_10_1002_advs_202502063 crossref_primary_10_1080_10412905_2025_2550962 crossref_primary_10_31612_2616_4868_5_2025_05 crossref_primary_10_3389_fphy_2023_1239632 crossref_primary_10_3390_pathogens14060536 crossref_primary_10_1002_agt2_402 crossref_primary_10_1016_j_job_2025_100633 crossref_primary_10_1080_20002297_2023_2196897 crossref_primary_10_1016_j_bioelechem_2024_108731 crossref_primary_10_3389_fcimb_2023_1327069 crossref_primary_10_1007_s00253_024_13246_8 crossref_primary_10_3390_ijms24032733 crossref_primary_10_1093_femsre_fuad047 crossref_primary_10_1186_s43556_023_00164_w crossref_primary_10_3389_fcimb_2022_1093692 crossref_primary_10_3390_antibiotics12020349 crossref_primary_10_1098_rsta_2024_0251 crossref_primary_10_3390_ijms25158351 crossref_primary_10_1016_j_jinorgbio_2023_112190 crossref_primary_10_1002_adma_202304991 crossref_primary_10_1016_j_apsb_2023_12_016 crossref_primary_10_1002_ange_202510900 crossref_primary_10_1098_rsta_2024_0253 crossref_primary_10_1016_j_ese_2025_100561 crossref_primary_10_3389_fcimb_2023_1237164 crossref_primary_10_1007_s44194_024_00039_4 crossref_primary_10_1073_pnas_2204466120 crossref_primary_10_1039_D5FO02121A crossref_primary_10_1007_s11274_023_03584_6 crossref_primary_10_1038_s41522_023_00427_y crossref_primary_10_1002_sstr_202200329 crossref_primary_10_1016_j_nantod_2024_102449 crossref_primary_10_1007_s00259_024_06997_z crossref_primary_10_1016_j_biomaterials_2024_123060 crossref_primary_10_1038_s41522_025_00673_2 crossref_primary_10_3390_ijms232113494 crossref_primary_10_1002_adma_202505503 crossref_primary_10_1111_wrr_70005 crossref_primary_10_1016_j_rineng_2025_104331 crossref_primary_10_1016_j_seppur_2025_132979 crossref_primary_10_1080_1040841X_2025_2555937 crossref_primary_10_1080_13543776_2024_2367940 crossref_primary_10_2174_0115680266327984241018111547 crossref_primary_10_1016_j_actbio_2024_12_042 crossref_primary_10_1128_mmbr_00225_24 crossref_primary_10_1128_jb_00386_22 crossref_primary_10_1098_rsta_2024_0267 crossref_primary_10_1016_j_celrep_2024_115214 crossref_primary_10_1002_agt2_666 crossref_primary_10_1016_j_virusres_2023_199178 crossref_primary_10_1016_j_mtchem_2024_102377 crossref_primary_10_1093_femsre_fuad060 crossref_primary_10_1002_admi_202300324 crossref_primary_10_1016_j_mtchem_2024_102375 crossref_primary_10_1002_adfm_202405487 crossref_primary_10_1099_mic_0_001498 crossref_primary_10_1073_pnas_2315850121 crossref_primary_10_1016_j_scitotenv_2023_163968 crossref_primary_10_3390_ijms24087474 crossref_primary_10_3390_ijms25010421 crossref_primary_10_1007_s11756_024_01767_6 crossref_primary_10_1002_adhm_202400593 crossref_primary_10_1111_1758_2229_13182 crossref_primary_10_3390_antibiotics13040343 crossref_primary_10_3389_fcimb_2024_1426340 crossref_primary_10_1371_journal_ppat_1011453 crossref_primary_10_1128_jb_00365_23 crossref_primary_10_3390_microorganisms11092329 crossref_primary_10_3390_ijms252111773 crossref_primary_10_1016_j_theriogenology_2023_09_016 crossref_primary_10_1002_mabi_202500239 crossref_primary_10_1080_08927014_2023_2177538 crossref_primary_10_3389_fcimb_2022_1049347 crossref_primary_10_1016_j_jwpe_2024_106073 crossref_primary_10_1002_jobm_202400460 crossref_primary_10_1007_s12602_025_10542_1 crossref_primary_10_1007_s00203_024_04171_5 crossref_primary_10_1039_D3NR02010J crossref_primary_10_1016_j_lwt_2025_117642 crossref_primary_10_1128_aem_01071_24 crossref_primary_10_1016_j_actbio_2025_07_029 crossref_primary_10_1021_acsabm_5c01274 crossref_primary_10_1016_j_jhazmat_2025_138689 crossref_primary_10_1016_j_nanoen_2024_109946 crossref_primary_10_1038_s42005_024_01866_5 crossref_primary_10_1128_jb_00166_23 crossref_primary_10_1016_j_colsurfb_2025_114556 crossref_primary_10_3390_ijms26104733 crossref_primary_10_1080_14712598_2024_2430623 crossref_primary_10_1039_D5MH00966A crossref_primary_10_1038_s41579_025_01155_0 crossref_primary_10_1016_j_bioelechem_2024_108657 crossref_primary_10_1053_j_gastro_2024_04_032 crossref_primary_10_1007_s42773_024_00384_5 crossref_primary_10_1016_j_abs_2025_06_001 crossref_primary_10_1016_j_scitotenv_2025_178671 crossref_primary_10_3390_pharmaceutics16030396 crossref_primary_10_3389_fcimb_2023_1333773 crossref_primary_10_1016_j_drup_2023_101012 crossref_primary_10_1016_j_jmst_2023_09_016 crossref_primary_10_1080_10408398_2024_2312539 crossref_primary_10_1007_s11783_024_1896_0 crossref_primary_10_2217_nnm_2022_0239 crossref_primary_10_1007_s11356_024_35241_2 crossref_primary_10_1186_s12934_024_02637_1 crossref_primary_10_1016_j_desal_2025_118869 crossref_primary_10_1016_j_fbio_2025_106842 crossref_primary_10_1016_j_watres_2024_121462 crossref_primary_10_1016_j_bioactmat_2025_07_009 crossref_primary_10_1016_j_nantod_2023_102141 crossref_primary_10_1002_biot_202300074 crossref_primary_10_3390_microorganisms11071626 |
| Cites_doi | 10.1128/JCM.00688-18 10.1128/AEM.02264-17 10.1136/thoraxjnl-2021-217576 10.1007/s00374-015-0996-1 10.1111/apm.13163 10.3389/fmicb.2017.02649 10.1128/mBio.03579-20 10.3389/fmicb.2016.00796 10.1007/5584_2020_573 10.1126/science.abi4882 10.1128/mBio.02945-19 10.1183/13993003.00612-2017 10.1128/mBio.03042-19 10.1073/pnas.2003700117 10.1371/journal.ppat.1000052 10.1111/mmi.13634 10.1111/1462-2920.13883 10.1128/AEM.68.9.4457-4464.2002 10.1186/1471-2180-8-173 10.1111/j.1574-6941.2008.00465.x 10.1111/j.1745-4565.2005.00024.x 10.1111/wrr.12841 10.1038/s41522-020-00183-3 10.1007/s00430-020-00691-1 10.1128/AAC.48.4.1175-1187.2004 10.1038/nrmicro2960 10.1128/JB.00022-12 10.1038/nrmicro.2017.99 10.1111/j.1574-695X.2012.00968.x 10.1128/AAC.48.4.1168-1174.2004 10.1126/scisignal.aaw8905 10.1098/rstb.2019.0080 10.1016/j.mib.2016.01.004 10.1111/j.1365-2958.2011.07733.x 10.1038/nrmicro.2016.190 10.1073/pnas.1806005115 10.1128/JB.00305-11 10.1111/mec.14529 10.1046/j.1365-2958.1998.01062.x 10.1002/ppul.21011 10.1111/1462-2920.12483 10.7554/eLife.70794 10.1128/jb.184.4.1140-1154.2002 10.1128/JB.00585-07 10.1016/j.ejbt.2017.11.001 10.1146/annurev.mi.41.100187.002251 10.1128/JB.187.4.1441-1454.2005 10.3389/fmicb.2021.655873 10.1128/JB.00732-13 10.1098/rsob.180066 10.1002/jctb.6850 10.1002/jobm.201900569 10.1016/S1473-3099(21)00122-5 10.1007/978-1-4939-0467-9_1 10.1038/s41598-018-27504-z 10.1111/j.1524-475X.2007.00283.x 10.1111/bjd.15007 10.1371/journal.pone.0221012 10.1073/pnas.1217993109 10.1002/lno.11420 10.1073/pnas.1919099117 10.1016/j.watres.2017.09.054 10.1038/scientificamerican0178-86 10.1089/wound.2017.0770 10.1038/s41529-022-00234-4 10.1016/j.jmst.2018.02.023 10.1371/journal.ppat.1000668 10.1001/jama.296.2.202 10.1128/jb.46.1.39-56.1943 10.1016/j.tim.2012.10.008 10.1126/science.1181185 10.1046/j.1365-2958.2003.03877.x 10.1128/JB.185.3.699-700.2003 10.1111/j.1365-2958.2005.04941.x 10.1002/ppp3.10167 10.1111/mmi.13863 10.1001/jamadermatol.2017.0904 10.1128/JB.186.14.4486-4491.2004 10.1128/JCM.00501-08 10.1002/jor.23505 10.1128/AEM.00710-08 10.1016/j.tim.2008.11.001 10.1172/JCI0213870 10.1074/jbc.R115.711507 10.1038/35037627 10.1093/jac/dkp060 10.1046/j.1365-2958.2003.03432.x 10.1111/1462-2920.13719 10.1098/rsif.2012.0498 10.1016/j.devcel.2004.08.020 10.1128/mBio.00237-16 10.1016/j.sedgeo.2005.12.022 10.1016/0043-1354(73)90002-X 10.1007/BF01569978 10.1080/10643389.2020.1769433 10.1038/s41579-019-0158-9 10.1126/science.280.5361.295 10.1038/s41579-020-0385-0 10.5371/hp.2018.30.3.138 10.1038/s41598-021-84525-x 10.1046/j.1365-2958.2003.03525.x 10.1146/annurev.micro.56.012302.160705 10.1073/pnas.1717525115 10.1038/nrmicro1838 10.1074/jbc.M116.746743 10.1093/infdis/jiu514 10.1128/aem.59.4.1181-1186.1993 10.1128/MMBR.64.4.847-867.2000 10.1099/jmm.0.45969-0 10.1111/j.1462-2920.2008.01658.x 10.1016/j.fuel.2020.119731 10.1016/j.engfailanal.2021.105474 10.1128/JB.00239-13 10.1128/AAC.04579-14 10.1128/aem.61.3.860-867.1995 10.1016/j.tim.2004.11.004 10.1046/j.1462-2920.2003.00542.x 10.1371/journal.pone.0072968 10.1111/1462-2920.13816 10.1111/j.1365-2958.2006.05421.x 10.3390/pathogens2020288 10.1128/9781555818166 10.1038/ismej.2013.194 10.1016/j.scitotenv.2018.09.355 10.1111/mmi.12018 10.1099/mic.0.27536-0 10.3390/ijms19103157 10.1111/j.1462-2920.2011.02657.x 10.1016/j.tim.2013.06.002 10.1128/jb.179.24.7663-7670.1997 10.1016/j.prrv.2012.03.001 10.1186/1471-2180-10-294 10.1128/JB.00318-13 10.1177/00220345000790010201 10.1038/35101627 10.1007/s00253-018-8990-9 10.1183/13993003.01102-2015 10.1186/s12929-019-0554-5 10.1128/JB.185.7.2080-2095.2003 10.1016/j.cmi.2014.10.024 10.1002/cyto.a.20685 10.1016/j.tim.2017.09.008 10.1128/JB.00387-10 10.3389/fmicb.2020.01368 10.1371/journal.pone.0024235 10.1371/journal.pone.0005513 10.1128/MMBR.00043-12 10.1371/annotation/08d0f2a8-0c40-4a0c-b546-0025648e73f0 10.1089/wound.2020.1176 10.1046/j.1365-2958.1998.00797.x 10.1016/j.scitotenv.2020.137417 10.1038/nrmicro821 10.3390/ijms20143423 10.1093/femsre/fuy001 10.1016/j.biotechadv.2017.11.005 10.1016/j.scitotenv.2021.149708 10.1111/1462-2920.12186 10.1080/1040841X.2016.1208146 10.1016/j.watres.2021.117593 10.1111/j.1365-2958.2008.06152.x 10.1002/bit.260450607 10.1161/01.CIR.66.6.1339 10.1016/j.tig.2020.10.007 10.1128/JB.187.1.37-44.2005 10.1007/978-3-030-16775-2_4 10.1139/m81-143 10.1128/JB.188.7.2325-2335.2006 10.1111/j.1574-695X.2010.00714.x 10.1007/978-3-642-19940-0_1 10.1093/femsre/fuw013 10.1371/journal.pone.0027943 |
| ContentType | Journal Article |
| Copyright | Springer Nature Limited 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2022. Springer Nature Limited. |
| Copyright_xml | – notice: Springer Nature Limited 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2022. Springer Nature Limited. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7RV 7U9 7X7 7XB 88A 88E 88I 8AO 8C1 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI BKSAR C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB0 LK8 M0S M1P M2P M7N M7P NAPCQ P64 PCBAR PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 7X8 5PM |
| DOI | 10.1038/s41579-022-00767-0 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Nursing & Allied Health Database Virology and AIDS Abstracts Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Science Database (ProQuest) Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest SciTech Collection ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE ProQuest Central Student MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1740-1534 |
| EndPage | 620 |
| ExternalDocumentID | PMC9841534 35922483 10_1038_s41579_022_00767_0 |
| Genre | Journal Article Review |
| GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R01 AI150761 – fundername: NIGMS NIH HHS grantid: R01 GM124436 |
| GroupedDBID | --- .55 0R~ 123 29M 36B 39C 3V. 4.4 53G 70F 7RV 7X7 88A 88E 88I 8AO 8C1 8CJ 8FE 8FH 8FI 8FJ 8R4 8R5 AAEEF AARCD AAWYQ AAYZH AAZLF ABAWZ ABDBF ABJNI ABLJU ABUWG ACGFO ACGFS ACMJI ACPRK ACUHS ADBBV ADFRT AENEX AEUYN AFBBN AFKRA AFRAH AFSHS AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BBNVY BENPR BHPHI BKEYQ BKKNO BKSAR BPHCQ BVXVI CCPQU CS3 D1J DB5 DU5 DWQXO EAD EAP EAS EBS EE. EJD EMB EMK EMOBN ESX EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ HCIFZ HMCUK HVGLF HZ~ IAO IH2 IHR INH INR ITC LGEZI LK8 LOTEE M0L M1P M2P M7P MM. N9A NADUK NAPCQ NNMJJ NXXTH O9- ODYON P2P PCBAR PQQKQ PROAC PSQYO Q2X QF4 QM4 QN7 QO4 RNR RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP WOW X7M AAYXX ABFSG ACSTC AEZWR AFANA AFHIU AGSTI AHWEU AIXLP ALPWD ATHPR CITATION CGR CUY CVF ECM EIF NFIDA NPM PHGZM PHGZT PJZUB PPXIY PQGLB 7QL 7U9 7XB 8FD 8FK C1K FR3 H94 K9. M7N P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c474t-d816a1111b92901bdba18a4440da330ed03d75b50f03a841381be01e332106593 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 833 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000835583600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1740-1526 1740-1534 |
| IngestDate | Tue Nov 04 02:07:09 EST 2025 Wed Oct 01 14:40:10 EDT 2025 Sun Nov 30 04:55:28 EST 2025 Mon Jul 21 06:08:44 EDT 2025 Tue Nov 18 22:37:50 EST 2025 Sat Nov 29 03:06:06 EST 2025 Fri Feb 21 02:38:50 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| License | 2022. Springer Nature Limited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c474t-d816a1111b92901bdba18a4440da330ed03d75b50f03a841381be01e332106593 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-1177-6328 0000-0001-7773-8570 0000-0003-1870-632X 0000-0002-8003-7414 0000-0003-2531-4797 0000-0001-6069-273X 0000-0002-6320-9616 |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/9841534 |
| PMID | 35922483 |
| PQID | 2714219133 |
| PQPubID | 27584 |
| PageCount | 13 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9841534 proquest_miscellaneous_2698629771 proquest_journals_2714219133 pubmed_primary_35922483 crossref_citationtrail_10_1038_s41579_022_00767_0 crossref_primary_10_1038_s41579_022_00767_0 springer_journals_10_1038_s41579_022_00767_0 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-10-01 |
| PublicationDateYYYYMMDD | 2022-10-01 |
| PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Nature reviews. Microbiology |
| PublicationTitleAbbrev | Nat Rev Microbiol |
| PublicationTitleAlternate | Nat Rev Microbiol |
| PublicationYear | 2022 |
| Publisher | Nature Publishing Group UK Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
| References | Ring (CR149) 2017; 176 Bidossi, Bottagisio, Savadori, De Vecchi (CR124) 2020; 11 Potvin (CR179) 2003; 5 Davies, Charabarty, Geesey (CR42) 1993; 59 Krasteva (CR175) 2010; 327 Raghupathi (CR7) 2018 Thaarup, Bjarnsholt (CR22) 2021; 10 Gilbertie (CR159) 2019; 14 Ashrafi (CR116) 2018; 8 Schleheck (CR126) 2009; 4 Salta, Wharton, Blache, Stokes, Briand (CR117) 2013; 15 Costerton (CR13) 1987; 41 Pamp, Sternberg, Tolker-Nielsen (CR28) 2009; 75 Dudareva (CR110) 2018 Knott (CR133) 2021; 12 Williamson (CR58) 2012; 194 Petrova, Sauer (CR84) 2010; 192 Azeredo (CR24) 2017; 43 Koo, Allan, Howlin, Stoodley, Hall-Stoodley (CR139) 2017; 15 Zobell (CR21) 1943; 46 Annous, Solomon, Cooke, Burke (CR10) 2005; 25 Qvist (CR151) 2015; 46 Díaz-Pascual (CR155) 2021; 10 Vishwakarma (CR14) 2020; 60 Nair, Periasamy, Yang, Kjelleberg, Rice (CR171) 2017; 292 Flemming (CR3) 2021; 7 Colvin (CR44) 2012; 14 Petrova, Sauer (CR62) 2016; 30 Murga, Stewart, Daly (CR91) 1995; 45 Rumbaugh, Sauer (CR61) 2020; 18 Steinberg (CR64) 2020; 13 Franca, Pinheiro, van Loosdrecht, Lourenço (CR142) 2018; 36 Shrout (CR174) 2006; 62 Kowalski, Morelli, Schultz, Nadell, Cramer (CR136) 2020; 117 Pestrak (CR122) 2020; 15 Bagge (CR45) 2004; 48 Boles, Horswill (CR176) 2008; 4 Liao, Schurr, Sauer (CR169) 2013; 195 Klauck, Serra, Possling, Hengge (CR172) 2018; 8 Secor, Michaels, Ratjen, Jennings, Singh (CR130) 2018; 115 Cornforth (CR137) 2018; 115 Kirketerp-Moller, Stewart, Bjarnsholt (CR146) 2020; 28 Bjarnsholt (CR99) 2013; 21 Bowen, Burne, Wu, Koo (CR115) 2018; 26 Wagner, Bushnell, Passador, Brooks, Iglewski (CR164) 2003; 185 Davies (CR49) 1998; 280 Tuck, Watkin, Somers, Machuca (CR100) 2022; 6 Espinosa-Urgel (CR51) 2003; 185 Sauer, Steczko, Ash (CR93) 2009; 63 Kowalski, Morelli, Stajich, Nadell, Cramer (CR170) 2021 Wood (CR48) 2000; 79 Klausen (CR29) 2003; 48 Walker (CR98) 2017 CR141 Hall-Stoodley, Costerton, Stoodley (CR25) 2004; 2 Jurelevicius (CR15) 2021; 288 Petrova, Schurr, Schurr, Sauer (CR53) 2012; 86 Stewart, Franklin (CR56) 2008; 6 Trego, Mills, Collins (CR102) 2021; 51 Dal Co, van Vliet, Ackermann (CR135) 2019; 374 Lenz, Williamson, Pitts, Stewart, Franklin (CR173) 2008; 74 Dastgheyb, Parvizi, Shapiro, Hickok, Otto (CR132) 2015; 211 Petrova, Sauer (CR37) 2009; 5 Vitzilaiou, Kuria, Siegumfeldt, Rasmussen, Knøchel (CR17) 2021; 204 Hu, Xiao, Liao, Leng, Lu (CR33) 2021; 96 Pamp, Gjermansen, Johansen, Tolker-Nielsen (CR154) 2008; 68 Vasconcelos (CR158) 2006; 185 Schembri, Kjaergaard, Klemm (CR162) 2003; 48 Ring (CR150) 2017; 153 Cornforth, Diggle, Melvin, Bomberger, Whiteley (CR19) 2020 Hall-Stoodley (CR95) 2006; 296 Moormeier, Bayles (CR31) 2017; 104 McCoy, Bryers, Robbins, Costerton (CR2) 1981; 27 Wood, Gong, Daykin, Williams, Pierson (CR46) 1997; 179 Alhede (CR16) 2011; 6 Kragh (CR128) 2017 Fabbri (CR89) 2017; 19 Flemming, Wuertz (CR12) 2019; 17 CR63 Liu (CR92) 2017; 19 Fux, Wilson, Stoodley (CR111) 2004; 186 Ren (CR166) 2018; 42 Prieto-Barajas, Valencia-Cantero, Santoyo (CR72) 2018; 31 Purcell, Tamayo (CR69) 2016; 40 Zhao, Liu, Wang, Wu (CR36) 2020; 718 Zetsche, Larsson, Iversen, Ploug (CR103) 2020; 65 Landry, An, Hupp, Singh, Parsek (CR119) 2006; 59 Petrova, Sauer (CR85) 2011; 193 Alhede (CR153) 2020; 209 Risse-Buhl (CR145) 2017; 127 Hall-Stoodley, Stoodley (CR129) 2005; 13 Wu (CR35) 2021; 7 Chang, Kao (CR74) 2019; 26 Costerton, Geesey, Cheng (CR1) 1978; 238 Pii (CR75) 2015 Worlitzsch (CR121) 2002; 109 Mantzorou, Ververidis (CR71) 2019; 651 Chambers, Sauer (CR82) 2013; 21 CR79 CR78 Merritt, Brothers, Kuchma, O’Toole (CR81) 2007; 189 Hao (CR73) 2018; 19 Bjarnsholt (CR105) 2009; 44 Gloag, Wozniak, Stoodley, Hall-Stoodley (CR107) 2021; 11 Lequette, Greenberg (CR50) 2005; 187 Marrie, Nelligan, Costerton (CR20) 1982; 66 Davies, Geesey (CR43) 1995; 61 Bagge (CR165) 2004; 48 Jensen (CR108) 2017; 35 Li, Renz, Trampuz (CR109) 2018; 30 Roth-Schulze (CR76) 2018; 27 Bjarnsholt (CR18) 2022; 22 Wilén, Liébana, Persson, Modin, Hermansson (CR104) 2018; 102 Bjarnsholt (CR156) 2021 Bakaletz (CR97) 2012; 13 CR8 Haussler, Fuqua (CR60) 2013; 195 Hall-Stoodley (CR96) 2008; 8 Whiteley (CR163) 2001; 413 Petrova, Gupta, Liao, Goodwine, Sauer (CR38) 2017; 19 Serra, Hengge (CR167) 2014; 16 Hoiby (CR5) 2015; 21 Purevdorj-Gage, Costerton, Stoodley (CR65) 2005; 151 Kragh (CR140) 2016; 7 Monds, O’Toole (CR77) 2009; 17 Yin, Wang, Liu, He (CR70) 2019; 20 Jenal, Reinders, Lori (CR68) 2017; 15 Kim (CR114) 2020; 117 Bahrami, Khouzani, Harchegani (CR144) 2021; 127 Irie (CR26) 2012; 109 Kolpen (CR6) 2022 Valentini, Filloux (CR66) 2016; 291 Dastgheyb (CR118) 2015; 59 Davey, O’Toole (CR40) 2000; 64 Gupta, Marques, Petrova, Sauer (CR47) 2013; 195 Friedman, Kolter (CR88) 2004; 51 Allegrucci (CR94) 2006; 188 Bay (CR112) 2020 Kragh (CR125) 2018 Bielecki (CR178) 2011; 6 James, Beaudette, Costerton (CR90) 1995; 15 Liu, Lu, Wu, Kerr, Wu (CR34) 2021; 801 Heacock-Kang (CR59) 2017; 106 Stoodley, Sauer, Davies, Costerton (CR30) 2002; 56 Secor, Michaels, Ratjen, Jennings, Singh (CR131) 2018; 115 Vlamakis, Chai, Beauregard, Losick, Kolter (CR32) 2013; 11 Dar, Dar, Cai, Newman (CR134) 2021 Dorken, Ferguson, French, Poon (CR160) 2012; 9 Kuchma, Connolly, O’Toole (CR52) 2005; 187 Povolotsky, Keren-Paz, Kolodkin-Gal (CR168) 2021; 37 Petrova, Schurr, Schurr, Sauer (CR83) 2011; 81 Sauer, Camper, Ehrlich, Costerton, Davies (CR27) 2002; 184 Characklis (CR41) 1973; 7 Serra, Hengge (CR57) 2014; 16 Li (CR143) 2018; 34 Goodman (CR80) 2004; 7 Macias-Valcayo (CR123) 2020 Lebeaux, Chauhan, Rendueles, Beloin (CR4) 2013; 2013 Folsom (CR152) 2010; 10 Rudrappa, Biedrzycki, Bais (CR11) 2008; 64 Barken (CR87) 2008; 10 Römling, Galperin, Gomelsky (CR67) 2013; 77 Bjarnsholt (CR106) 2008; 16 Bay (CR148) 2018; 7 Lee (CR86) 2014; 8 Tkacz, Poole (CR9) 2021; 3 Kirketerp-Moller (CR157) 2008; 46 O’Toole, Kolter (CR161) 1998; 30 Chan (CR147) 2016 Sternberg, Bjarnsholt, Shirtliff (CR23) 2014; 1147 Haaber, Cohn, Frees, Andersen, Ingmer (CR127) 2012; 7 Sriramulu, Lünsdorf, Lam, Römling (CR54) 2005; 54 O’Toole, Kolter (CR39) 1998; 28 Hall-Stoodley (CR101) 2012; 65 Rumbo-Feal (CR177) 2013; 8 Purevdorj, Costerton, Stoodley (CR55) 2002; 68 Burmolle (CR113) 2010; 59 Singh (CR120) 2000; 407 Rossi, Falcone, Molin, Johansen (CR138) 2018; 9 RD Monds (767_CR77) 2009; 17 Y Irie (767_CR26) 2012; 109 KN Kragh (767_CR125) 2018 K Sauer (767_CR27) 2002; 184 GA James (767_CR90) 1995; 15 L Hall-Stoodley (767_CR129) 2005; 13 N Hoiby (767_CR5) 2015; 21 CE Zobell (767_CR21) 1943; 46 T Bjarnsholt (767_CR156) 2021 CA Fux (767_CR111) 2004; 186 J Liao (767_CR169) 2013; 195 L Hall-Stoodley (767_CR101) 2012; 65 JM Gilbertie (767_CR159) 2019; 14 M Ashrafi (767_CR116) 2018; 8 HA Nair (767_CR171) 2017; 292 767_CR78 DG Davies (767_CR42) 1993; 59 VE Wagner (767_CR164) 2003; 185 Y Heacock-Kang (767_CR59) 2017; 106 T Bjarnsholt (767_CR18) 2022; 22 J Azeredo (767_CR24) 2017; 43 PK Singh (767_CR120) 2000; 407 OE Petrova (767_CR53) 2012; 86 KN Kragh (767_CR128) 2017 OE Petrova (767_CR62) 2016; 30 J Liu (767_CR34) 2021; 801 767_CR79 M Alhede (767_CR16) 2011; 6 P Stoodley (767_CR30) 2002; 56 Y Pii (767_CR75) 2015 PK Raghupathi (767_CR7) 2018 M Alhede (767_CR153) 2020; 209 E Rossi (767_CR138) 2018; 9 RDG Franca (767_CR142) 2018; 36 PR Secor (767_CR131) 2018; 115 T Qvist (767_CR151) 2015; 46 AL Goodman (767_CR80) 2004; 7 GA O’Toole (767_CR161) 1998; 30 V Vishwakarma (767_CR14) 2020; 60 DO Serra (767_CR167) 2014; 16 M Klausen (767_CR29) 2003; 48 KM Colvin (767_CR44) 2012; 14 OE Petrova (767_CR37) 2009; 5 M Whiteley (767_CR163) 2001; 413 PS Stewart (767_CR56) 2008; 6 DE Moormeier (767_CR31) 2017; 104 KP Rumbaugh (767_CR61) 2020; 18 767_CR63 B-M Wilén (767_CR104) 2018; 102 B Purevdorj-Gage (767_CR65) 2005; 151 C Li (767_CR109) 2018; 30 K Kirketerp-Moller (767_CR157) 2008; 46 JR Chambers (767_CR82) 2013; 21 767_CR141 L Hall-Stoodley (767_CR96) 2008; 8 IC Thaarup (767_CR22) 2021; 10 JP Folsom (767_CR152) 2010; 10 U Risse-Buhl (767_CR145) 2017; 127 HC Ring (767_CR149) 2017; 176 CS Chan (767_CR147) 2016 K Gupta (767_CR47) 2013; 195 RM Landry (767_CR119) 2006; 59 DW Wood (767_CR46) 1997; 179 H Vlamakis (767_CR32) 2013; 11 KWK Lee (767_CR86) 2014; 8 E Potvin (767_CR179) 2003; 5 M Valentini (767_CR66) 2016; 291 S Dastgheyb (767_CR132) 2015; 211 WG Characklis (767_CR41) 1973; 7 N Bagge (767_CR45) 2004; 48 N Steinberg (767_CR64) 2020; 13 C Vasconcelos (767_CR158) 2006; 185 Y Zhao (767_CR36) 2020; 718 WH Bowen (767_CR115) 2018; 26 M Allegrucci (767_CR94) 2006; 188 DO Serra (767_CR57) 2014; 16 SJ Pamp (767_CR28) 2009; 75 A Mantzorou (767_CR71) 2019; 651 A Dal Co (767_CR135) 2019; 374 TJ Marrie (767_CR20) 1982; 66 TL Povolotsky (767_CR168) 2021; 37 HC Ring (767_CR150) 2017; 153 OE Petrova (767_CR84) 2010; 192 D Jurelevicius (767_CR15) 2021; 288 J Haaber (767_CR127) 2012; 7 S Rumbo-Feal (767_CR177) 2013; 8 Y Lequette (767_CR50) 2005; 187 KN Kragh (767_CR140) 2016; 7 H Koo (767_CR139) 2017; 15 DG Davies (767_CR43) 1995; 61 B Tuck (767_CR100) 2022; 6 JH Merritt (767_CR81) 2007; 189 T Bjarnsholt (767_CR106) 2008; 16 K Kirketerp-Moller (767_CR146) 2020; 28 U Römling (767_CR67) 2013; 77 DG Davies (767_CR49) 1998; 280 LK Jensen (767_CR108) 2017; 35 K Sauer (767_CR93) 2009; 63 T Rudrappa (767_CR11) 2008; 64 A Macias-Valcayo (767_CR123) 2020 P Bielecki (767_CR178) 2011; 6 KS Williamson (767_CR58) 2012; 194 LO Bakaletz (767_CR97) 2012; 13 KB Barken (767_CR87) 2008; 10 Y Ren (767_CR166) 2018; 42 T Bjarnsholt (767_CR105) 2009; 44 GA O’Toole (767_CR39) 1998; 28 A Bidossi (767_CR124) 2020; 11 D Worlitzsch (767_CR121) 2002; 109 N Bagge (767_CR165) 2004; 48 Y Li (767_CR143) 2018; 34 BA Annous (767_CR10) 2005; 25 L Bay (767_CR148) 2018; 7 G Klauck (767_CR172) 2018; 8 C Sternberg (767_CR23) 2014; 1147 OE Petrova (767_CR83) 2011; 81 Y Hao (767_CR73) 2018; 19 AP Lenz (767_CR173) 2008; 74 D Kim (767_CR114) 2020; 117 D Schleheck (767_CR126) 2009; 4 OE Petrova (767_CR38) 2017; 19 H-C Flemming (767_CR3) 2021; 7 SR Wood (767_CR48) 2000; 79 S Haussler (767_CR60) 2013; 195 M Dudareva (767_CR110) 2018 F Díaz-Pascual (767_CR155) 2021; 10 C-S Chang (767_CR74) 2019; 26 W Yin (767_CR70) 2019; 20 WT Walker (767_CR98) 2017 A Tkacz (767_CR9) 2021; 3 CH Kowalski (767_CR136) 2020; 117 U Jenal (767_CR68) 2017; 15 PV Krasteva (767_CR175) 2010; 327 JD Shrout (767_CR174) 2006; 62 CM Prieto-Barajas (767_CR72) 2018; 31 MJ Pestrak (767_CR122) 2020; 15 AC Trego (767_CR102) 2021; 51 AJ Roth-Schulze (767_CR76) 2018; 27 BC Wu (767_CR35) 2021; 7 L Hall-Stoodley (767_CR95) 2006; 296 M Espinosa-Urgel (767_CR51) 2003; 185 B Purevdorj (767_CR55) 2002; 68 DM Cornforth (767_CR19) 2020 M Burmolle (767_CR113) 2010; 59 PR Secor (767_CR130) 2018; 115 A Bahrami (767_CR144) 2021; 127 ME Davey (767_CR40) 2000; 64 S Fabbri (767_CR89) 2017; 19 ES Gloag (767_CR107) 2021; 11 E-M Zetsche (767_CR103) 2020; 65 M Kolpen (767_CR6) 2022 EB Purcell (767_CR69) 2016; 40 L Bay (767_CR112) 2020 HC Flemming (767_CR12) 2019; 17 Y Hu (767_CR33) 2021; 96 MA Schembri (767_CR162) 2003; 48 OE Petrova (767_CR85) 2011; 193 SS Dastgheyb (767_CR118) 2015; 59 D Dar (767_CR134) 2021 JW Costerton (767_CR13) 1987; 41 W Liu (767_CR92) 2017; 19 DM Cornforth (767_CR137) 2018; 115 WF McCoy (767_CR2) 1981; 27 R Murga (767_CR91) 1995; 45 S Knott (767_CR133) 2021; 12 M Salta (767_CR117) 2013; 15 DD Sriramulu (767_CR54) 2005; 54 BR Boles (767_CR176) 2008; 4 JW Costerton (767_CR1) 1978; 238 767_CR8 D Lebeaux (767_CR4) 2013; 2013 SL Kuchma (767_CR52) 2005; 187 CH Kowalski (767_CR170) 2021 L Friedman (767_CR88) 2004; 51 G Dorken (767_CR160) 2012; 9 SJ Pamp (767_CR154) 2008; 68 L Hall-Stoodley (767_CR25) 2004; 2 T Bjarnsholt (767_CR99) 2013; 21 E Vitzilaiou (767_CR17) 2021; 204 |
| References_xml | – volume: 115 start-page: E5125 year: 2018 end-page: E5134 ident: CR137 article-title: Pseudomonas aeruginosa transcriptome during human infection publication-title: Proc. Natl Acad. Sci. USA – volume: 11 start-page: 157 year: 2013 end-page: 168 ident: CR32 article-title: Sticking together: building a biofilm the Bacillus subtilis way publication-title: Nat. Rev. Microbiol. – volume: 19 start-page: 2893 year: 2017 end-page: 2905 ident: CR92 article-title: Low-abundant species facilitates specific spatial organization that promotes multispecies biofilm formation publication-title: Env. Microbiol. – volume: 26 start-page: 229 year: 2018 end-page: 242 ident: CR115 article-title: Oral biofilms: pathogens, matrix, and polymicrobial interactions in microenvironments publication-title: Trends Microbiol. – volume: 27 start-page: 1952 year: 2018 end-page: 1965 ident: CR76 article-title: Functional biogeography and host specificity of bacterial communities associated with the Marine Green Alga Ulva spp publication-title: Mol. Ecol. – volume: 61 start-page: 860 year: 1995 end-page: 867 ident: CR43 article-title: Regulation of the alginate biosynthesis gene in during biofilm development in continuous culture publication-title: Appl. Environ. Microbiol. – volume: 68 start-page: 4457 year: 2002 end-page: 4464 ident: CR55 article-title: Influence of hydrodynamics and cell signaling on the structure and behavior of Pseudomonas aeruginosa biofilms publication-title: Appl. Environ. Microbiol. – volume: 115 start-page: 10780 year: 2018 ident: CR130 article-title: Entropically driven aggregation of bacteria by host polymers promotes antibiotic tolerance in Pseudomonas aeruginosa publication-title: Proc. Natl Acad. Sci. USA – volume: 25 start-page: 276 year: 2005 end-page: 287 ident: CR10 article-title: Biofilm formation by spp. on Cantaloupe melons publication-title: J. Food Saf. – volume: 184 start-page: 1140 year: 2002 end-page: 1154 ident: CR27 article-title: Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm publication-title: J. Bacteriol. – volume: 204 start-page: 117593 year: 2021 ident: CR17 article-title: The impact of bacterial cell aggregation on UV inactivation kinetics publication-title: Water Res. – volume: 59 start-page: 2122 year: 2015 end-page: 2128 ident: CR118 article-title: Staphylococcal persistence due to biofilm formation in synovial fluid containing prophylactic cefazolin publication-title: Antimicrob. Agents Chemother. – volume: 13 start-page: eaaw8905 year: 2020 ident: CR64 article-title: The extracellular matrix protein TasA is a developmental cue that maintains a motile subpopulation within Bacillus subtilis biofilms publication-title: Sci. Signal. – volume: 40 start-page: 753 year: 2016 end-page: 773 ident: CR69 article-title: Cyclic diguanylate signaling in Gram-positive bacteria publication-title: FEMS Microbiol. Rev. – volume: 59 start-page: 324 year: 2010 end-page: 336 ident: CR113 article-title: Biofilms in chronic infections - a matter of opportunity - monospecies biofilms in multispecies infections publication-title: FEMS Immunol. Med. Microbiol. – volume: 15 year: 2020 ident: CR122 article-title: Investigation of synovial fluid induced Staphylococcus aureus aggregate development and its impact on surface attachment and biofilm formation publication-title: PLoS ONE – volume: 7 year: 2016 ident: CR140 article-title: Role of multicellular aggregates in biofilm formation publication-title: mBio – year: 2018 ident: CR110 article-title: Sonication versus tissue sampling for diagnosis of prosthetic joint and other orthopedic device-related infections publication-title: J. Clin. Microbiol. doi: 10.1128/JCM.00688-18 – ident: CR8 – volume: 6 year: 2011 ident: CR178 article-title: In-vivo expression profiling of Pseudomonas aeruginosa infections reveals niche-specific and strain-independent transcriptional programs publication-title: PLoS ONE – volume: 35 start-page: 2211 year: 2017 end-page: 2221 ident: CR108 article-title: Novel porcine model of implant-associated osteomyelitis: a comprehensive analysis of local, regional, and systemic response publication-title: J. Orthop. Res. – volume: 30 start-page: 138 year: 2018 end-page: 146 ident: CR109 article-title: Management of periprosthetic joint infection publication-title: Hip Pelvis – volume: 19 start-page: 2005 year: 2017 end-page: 2024 ident: CR38 article-title: Divide and conquer: the two-component hybrid SagS enables biofilm formation and recalcitrance of biofilm cells to antimicrobial agents via distinct regulatory circuits publication-title: Environ. Microbiol. – volume: 13 start-page: 7 year: 2005 end-page: 10 ident: CR129 article-title: Biofilm formation and dispersal and the transmission of human pathogens publication-title: Trends Microbiol. – year: 2018 ident: CR125 article-title: The inoculation method could impact the outcome of microbiological experiments publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02264-17 – volume: 195 start-page: 2947 year: 2013 end-page: 2958 ident: CR60 article-title: Biofilms 2012: new discoveries and significant wrinkles in a dynamic field publication-title: J. Bacteriol. – volume: 11 year: 2021 ident: CR107 article-title: Mycobacterium abscessus biofilms have viscoelastic properties which may contribute to their recalcitrance in chronic pulmonary infections publication-title: Sci. Rep. – year: 2017 ident: CR128 article-title: Inoculation method could impact the outcome of microbiological experiments publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02264-17 – volume: 195 start-page: 3352 year: 2013 end-page: 3363 ident: CR169 article-title: The MerR-like regulator BrlR confers biofilm tolerance by activating multidrug-efflux pumps in biofilms publication-title: J. Bacteriol. – volume: 10 start-page: 2331 year: 2008 end-page: 2343 ident: CR87 article-title: Roles of type IV pili, flagellum-mediated motility and extracellular DNA in the formation of mature multicellular structures in biofilms publication-title: Environ. Microbiol. – volume: 48 start-page: 1175 year: 2004 end-page: 1187 ident: CR165 article-title: Pseudomonas aeruginosa biofilms exposed to imipenem exhibit changes in global gene expression and beta-lactamase and alginate production publication-title: Antimicrob. Agents Chemother. – volume: 59 start-page: 142 year: 2006 end-page: 151 ident: CR119 article-title: Mucin-Pseudomonas aeruginosa interactions promote biofilm formation and antibiotic resistance publication-title: Mol. Microbiol. – volume: 187 start-page: 1441 year: 2005 end-page: 1454 ident: CR52 article-title: A three-component regulatory system regulates biofilm maturation and type III secretion in publication-title: J. Bacteriol. – volume: 127 start-page: 105474 year: 2021 ident: CR144 article-title: Establishing the root cause of a failure in a firewater pipeline publication-title: Eng. Fail. Anal. – volume: 10 start-page: 91 year: 2021 end-page: 102 ident: CR22 article-title: Current in vitro biofilm-infected chronic wound models for developing new treatment possibilities publication-title: Adv. Wound Care – volume: 48 start-page: 1511 year: 2003 end-page: 1524 ident: CR29 article-title: Biofilm formation by wild type, flagella and type IV pili mutants publication-title: Mol. Microbiol. – volume: 46 start-page: 2717 year: 2008 end-page: 2722 ident: CR157 article-title: Distribution, organization, and ecology of bacteria in chronic wounds publication-title: J. Clin. Microbiol. – volume: 5 start-page: 1294 year: 2003 end-page: 1308 ident: CR179 article-title: In vivo functional genomics of Pseudomonas aeruginosa for high-throughput screening of new virulence factors and antibacterial targets publication-title: Environ. Microbiol. – volume: 27 start-page: 910 year: 1981 end-page: 917 ident: CR2 article-title: Observations of fouling biofilm formation publication-title: Can. J. Microbiol. – volume: 117 start-page: 12375 year: 2020 end-page: 12386 ident: CR114 article-title: Spatial mapping of polymicrobial communities reveals a precise biogeography associated with human dental caries publication-title: Proc. Natl Acad. Sci. USA – volume: 7 start-page: 105 year: 2018 end-page: 113 ident: CR148 article-title: Bacterial aggregates establish at the edges of acute epidermal wounds publication-title: Adv. Wound Care – volume: 151 start-page: 1569 year: 2005 end-page: 1576 ident: CR65 article-title: Phenotypic differentiation and seeding dispersal in non-mucoid and mucoid Pseudomonas aeruginosa biofilms publication-title: Microbiology – volume: 17 start-page: 73 year: 2009 end-page: 87 ident: CR77 article-title: The developmental model of microbial biofilms: ten years of a paradigm up for review publication-title: Trends Microbiol. – volume: 64 start-page: 153 year: 2008 end-page: 166 ident: CR11 article-title: Causes and consequences of plant-associated biofilms publication-title: FEMS Microbiol. Ecol. – volume: 718 start-page: 137417 year: 2020 ident: CR36 article-title: Interactions between dicyandiamide and periphytic biofilms in paddy soils and subsequent effects on nitrogen cycling publication-title: Sci. Total Environ. – volume: 48 start-page: 1168 year: 2004 end-page: 1174 ident: CR45 article-title: Dynamics and spatial distribution of β-lactamase expression in biofilms publication-title: Antimicrob. Agents Chemother. – volume: 15 start-page: 271 year: 2017 end-page: 284 ident: CR68 article-title: Cyclic di-GMP: second messenger extraordinaire publication-title: Nat. Rev. Microbiol. – volume: 104 start-page: 365 year: 2017 end-page: 376 ident: CR31 article-title: Staphylococcus aureus biofilm: a complex developmental organism publication-title: Mol. Microbiol. – volume: 238 start-page: 86 year: 1978 end-page: 95 ident: CR1 article-title: How bacteria stick publication-title: Sci. Am. – volume: 51 start-page: 675 year: 2004 end-page: 690 ident: CR88 article-title: Genes involved in matrix formation in PA14 biofilms publication-title: Mol. Microbiol. – volume: 56 start-page: 187 year: 2002 end-page: 209 ident: CR30 article-title: Biofilms as complex differentiated communities publication-title: Annu. Rev. Microbiol. – volume: 209 start-page: 669 year: 2020 end-page: 680 ident: CR153 article-title: Bacterial aggregate size determines phagocytosis efficiency of polymorphonuclear leukocytes publication-title: Med. Microbiol. Immunol. – volume: 64 start-page: 847 year: 2000 end-page: 867 ident: CR40 article-title: Microbial biofilms: from ecology to molecular genetics publication-title: Microbiol. Mol. Biol. Rev. – volume: 19 start-page: 4417 year: 2017 end-page: 4431 ident: CR89 article-title: Fluid-driven interfacial instabilities and turbulence in bacterial biofilms publication-title: Env. Microbiol. – year: 2022 ident: CR6 article-title: Bacterial biofilms predominate in both acute and chronic human lung infections publication-title: Thorax doi: 10.1136/thoraxjnl-2021-217576 – volume: 37 start-page: 4 year: 2021 end-page: 8 ident: CR168 article-title: Metabolic microenvironments drive microbial differentiation and antibiotic resistance publication-title: Trends Genet. – volume: 4 year: 2009 ident: CR126 article-title: Pseudomonas aeruginosa PAO1 preferentially grows as aggregates in liquid batch cultures and disperses upon starvation. publication-title: PLoS ONE – volume: 15 start-page: 740 year: 2017 end-page: 755 ident: CR139 article-title: Targeting microbial biofilms: current and prospective therapeutic strategies publication-title: Nat. Rev. Microbiol. – volume: 66 start-page: 1339 year: 1982 end-page: 1341 ident: CR20 article-title: A scanning and transmission electron microscopic study of an infected endocardial pacemaker lead publication-title: Circulation – volume: 6 year: 2022 ident: CR100 article-title: A critical review of marine biofilms on metallic materials publication-title: NPJ Mater. Degrad. – volume: 176 start-page: 993 year: 2017 end-page: 1000 ident: CR149 article-title: Bacterial biofilm in chronic lesions of hidradenitis suppurativa publication-title: Br. J. Dermatol. – volume: 74 start-page: 4463 year: 2008 end-page: 4471 ident: CR173 article-title: Localized gene expression in Pseudomonas aeruginosa biofilms publication-title: Appl. Environ. Microbiol. – volume: 44 start-page: 547 year: 2009 end-page: 558 ident: CR105 article-title: Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients publication-title: Pediatr. Pulmonol. – volume: 115 start-page: 10780 year: 2018 end-page: 10785 ident: CR131 article-title: Entropically driven aggregation of bacteria by host polymers promotes antibiotic tolerance in Pseudomonas aeruginosa publication-title: Proc. Natl Acad. Sci. USA – ident: CR63 – volume: 2 start-page: 95 year: 2004 end-page: 108 ident: CR25 article-title: Bacterial biofilms: from the natural environment to infectious diseases publication-title: Nat. Rev. Microbiol. – volume: 20 start-page: 3423 year: 2019 ident: CR70 article-title: Biofilms: the microbial “protective clothing” in extreme environments publication-title: Int. J. Mol. Sci. – volume: 13 start-page: 154 year: 2012 end-page: 159 ident: CR97 article-title: Bacterial biofilms in the upper airway - evidence for role in pathology and implications for treatment of otitis media publication-title: Paediatr. Respir. Rev. – year: 2015 ident: CR75 article-title: Microbial interactions in the rhizosphere: beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A review publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-015-0996-1 – volume: 7 year: 2012 ident: CR127 article-title: Planktonic aggregates of Staphylococcus aureus protect against common antibiotics publication-title: PLoS ONE – volume: 117 start-page: 22473 year: 2020 end-page: 22483 ident: CR136 article-title: Fungal biofilm architecture produces hypoxic microenvironments that drive antifungal resistance publication-title: Proc. Natl Acad. Sci. USA – volume: 407 start-page: 762 year: 2000 end-page: 764 ident: CR120 article-title: Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms publication-title: Nature – volume: 28 start-page: 593 year: 2020 end-page: 599 ident: CR146 article-title: The zone model: a conceptual model for understanding the microenvironment of chronic wound infection publication-title: Wound Repair Regen. – volume: 651 start-page: 3187 year: 2019 end-page: 3201 ident: CR71 article-title: Microalgal biofilms: a further step over current microalgal cultivation techniques publication-title: Sci. Total Environ. – volume: 16 start-page: 1455 year: 2014 end-page: 1471 ident: CR167 article-title: Stress responses go three dimensional – the spatial order of physiological differentiation in bacterial macrocolony biofilms publication-title: Environ. Microbiol. – volume: 19 start-page: 3157 year: 2018 ident: CR73 article-title: Influence of dental prosthesis and restorative materials interface on oral biofilms publication-title: Int. J. Mol. Sci. – volume: 10 year: 2021 ident: CR155 article-title: Spatial alanine metabolism determines local growth dynamics of Escherichia coli colonies publication-title: eLife – volume: 186 start-page: 4486 year: 2004 end-page: 4491 ident: CR111 article-title: Detachment characteristics and oxacillin resistance of Staphyloccocus aureus biofilm emboli in an in vitro catheter infection model publication-title: J. Bacteriol. – volume: 6 year: 2011 ident: CR16 article-title: Phenotypes of non-attached Pseudomonas aeruginosa aggregates resemble surface attached biofilm publication-title: PLoS ONE – year: 2021 ident: CR156 article-title: The impact of mental models on the treatment and research of chronic infections due to biofilms publication-title: APMIS doi: 10.1111/apm.13163 – volume: 18 start-page: 571 year: 2020 end-page: 586 ident: CR61 article-title: Biofilm dispersion publication-title: Nat. Rev. Microbiol. – volume: 8 year: 2013 ident: CR177 article-title: Whole transcriptome analysis of Acinetobacter baumannii assessed by RNA-sequencing reveals different mRNA expression profiles in biofilm compared to planktonic cells. publication-title: PLoS ONE – volume: 31 start-page: 48 year: 2018 end-page: 56 ident: CR72 article-title: Microbial mat ecosystems: structure types, functional diversity, and biotechnological application publication-title: Electron. J. Biotechnol. – volume: 109 start-page: 317 year: 2002 end-page: 325 ident: CR121 article-title: Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients publication-title: J. Clin. Invest. – volume: 62 start-page: 1264 year: 2006 end-page: 1277 ident: CR174 article-title: The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional publication-title: Mol. Microbiol. – volume: 60 start-page: 198 year: 2020 end-page: 206 ident: CR14 article-title: Impact of environmental biofilms: industrial components and its remediation publication-title: J. Basic Microbiol. – volume: 45 start-page: 503 year: 1995 end-page: 510 ident: CR91 article-title: Quantitative analysis of biofilm thickness variability publication-title: Biotechnol. Bioeng. – volume: 75 start-page: 90 year: 2009 end-page: 103 ident: CR28 article-title: Insight into the microbial multicellular lifestyle via flow-cell technology and confocal microscopy publication-title: Cytom. A – volume: 7 start-page: 1249 year: 1973 end-page: 1258 ident: CR41 article-title: Attached microbial growths-II. Frictional resistance due to microbial slimes publication-title: Water Res. – volume: 65 start-page: 1818 year: 2020 end-page: 1833 ident: CR103 article-title: Flow and diffusion around and within diatom aggregates: effects of aggregate composition and shape. publication-title: Limnol. Oceanogr. – volume: 21 start-page: 39 year: 2013 end-page: 49 ident: CR82 article-title: Small RNAs and their role in biofilm formation publication-title: Trends Microbiol. – volume: 41 start-page: 435 year: 1987 end-page: 464 ident: CR13 article-title: Bacterial biofilms in nature and disease publication-title: Annu. Rev. Microbiol. – volume: 288 start-page: 119731 year: 2021 ident: CR15 article-title: Long-term souring treatment using nitrate and biocides in high-temperature oil reservoirs publication-title: Fuel – year: 2018 ident: CR7 article-title: Synergistic interactions within a multispecies biofilm enhance individual species protection against grazing by a pelagic protozoan publication-title: Front. Microbiol. doi: 10.3389/fmicb.2017.02649 – volume: 292 start-page: 477 year: 2017 end-page: 487 ident: CR171 article-title: Real time, spatial, and temporal mapping of the distribution of c-di-GMP during biofilm development publication-title: J. Biol. Chem. – volume: 192 start-page: 5275 year: 2010 end-page: 5288 ident: CR84 article-title: The novel two-component regulatory system BfiSR regulates biofilm development by controlling the small RNA through CafA publication-title: J. Bacteriol. – volume: 185 start-page: 699 year: 2003 end-page: 700 ident: CR51 article-title: Resident parking only: rhamnolipids maintain fluid channels in biofilms publication-title: J. Bacteriol. – volume: 65 start-page: 127 year: 2012 end-page: 145 ident: CR101 article-title: Towards diagnostic guidelines for biofilm-associated infections publication-title: FEMS Immunol. Med. Microbiol. – volume: 291 start-page: 12547 year: 2016 end-page: 12555 ident: CR66 article-title: Biofilms and cyclic di-GMP (c-di-GMP) signaling: lessons from Pseudomonas aeruginosa and other bacteria publication-title: J. Biol. Chem. – volume: 43 start-page: 313 year: 2017 end-page: 351 ident: CR24 article-title: Critical review on biofilm methods publication-title: Crit. Rev. Microbiol. – volume: 48 start-page: 253 year: 2003 end-page: 267 ident: CR162 article-title: Global gene expression in Escherichia coli biofilms publication-title: Mol. Microbiol. – volume: 185 start-page: 2080 year: 2003 end-page: 2095 ident: CR164 article-title: Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment publication-title: J. Bacteriol. – year: 2021 ident: CR170 article-title: A heterogeneously expressed gene family modulates the biofilm architecture and hypoxic growth of Aspergillus fumigatus publication-title: mBio doi: 10.1128/mBio.03579-20 – volume: 54 start-page: 667 year: 2005 end-page: 676 ident: CR54 article-title: Microcolony formation: a novel biofilm model of for the cystic fibrosis lung publication-title: J. Med. Microbiol. – volume: 801 start-page: 149708 year: 2021 ident: CR34 article-title: Interactions between periphytic biofilms and dissolved organic matter at soil-water interface and the consequent effects on soil phosphorus fraction changes publication-title: Sci. Total Environ. – volume: 179 start-page: 7663 year: 1997 end-page: 7670 ident: CR46 article-title: N-acyl-homoserine lactone-mediated regulation of phenazine gene expression by 30-84 in the wheat rhizosphere publication-title: J. Bacteriol. – volume: 28 start-page: 449 year: 1998 end-page: 461 ident: CR39 article-title: Initiation of biofilm formation in WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis publication-title: Mol. Microbiol. – volume: 46 start-page: 39 year: 1943 end-page: 56 ident: CR21 article-title: The effect of solid surfaces upon bacterial activity publication-title: J. Bacteriol. – year: 2016 ident: CR147 article-title: The architecture of iron microbial mats reflects the adaptation of chemolithotrophic iron oxidation in freshwater and marine environments publication-title: Front. Microbiol. doi: 10.3389/fmicb.2016.00796 – volume: 10 start-page: 294 year: 2010 ident: CR152 article-title: Physiology of Pseudomonas aeruginosa in biofilms as revealed by transcriptome analysis publication-title: BMC Microbiol. – volume: 30 start-page: 67 year: 2016 end-page: 78 ident: CR62 article-title: Escaping the biofilm in more than one way: desorption, detachment or dispersion publication-title: Curr. Opin. Microbiol. – volume: 102 start-page: 5005 year: 2018 end-page: 5020 ident: CR104 article-title: The mechanisms of granulation of activated sludge in wastewater treatment, its optimization, and impact on effluent quality publication-title: Appl. Microbiol. Biotechnol. – volume: 15 start-page: 2879 year: 2013 end-page: 2893 ident: CR117 article-title: Marine biofilms on artificial surfaces: structure and dynamics publication-title: Environ. Microbiol. – year: 2020 ident: CR123 article-title: Synovial fluid mediated aggregation of clinical strains of four enterobacterial species publication-title: Adv. Exp. Med. Biol. doi: 10.1007/5584_2020_573 – volume: 280 start-page: 295 year: 1998 end-page: 298 ident: CR49 article-title: The involvement of cell-to-cell signals in the development of a bacterial biofilm publication-title: Science – volume: 189 start-page: 8154 year: 2007 end-page: 8164 ident: CR81 article-title: SadC reciprocally influences biofilm formation and swarming motility via modulation of exopolysaccharide production and flagellar function publication-title: J. Bacteriol. – volume: 8 year: 2018 ident: CR116 article-title: Validation of biofilm formation on human skin wound models and demonstration of clinically translatable bacteria-specific volatile signatures publication-title: Sci. Rep. – volume: 185 start-page: 175 year: 2006 end-page: 183 ident: CR158 article-title: Lithifying microbial mats in Lagoa Vermelha, Brazil: modern Precambrian relics? publication-title: Sediment. Geol. – volume: 1147 start-page: 3 year: 2014 end-page: 22 ident: CR23 article-title: Methods for dynamic investigations of surface-attached in vitro bacterial and fungal biofilms publication-title: Methods Mol. Biol. – volume: 21 start-page: 466 year: 2013 end-page: 474 ident: CR99 article-title: The in vivo biofilm publication-title: Trends Microbiol. – volume: 36 start-page: 228 year: 2018 end-page: 246 ident: CR142 article-title: Stability of aerobic granules during long-term bioreactor operation publication-title: Biotechnol. Adv. – volume: 109 start-page: 20632 year: 2012 end-page: 20636 ident: CR26 article-title: Self-produced exopolysaccharide is a signal that stimulates biofilm formation in Pseudomonas aeruginosa publication-title: Proc. Natl Acad. Sci. USA – volume: 14 start-page: 1913 year: 2012 end-page: 1928 ident: CR44 article-title: The Pel and Psl polysaccharides provide structural redundancy within the biofilm matrix publication-title: Environ. Microbiol. – year: 2021 ident: CR134 article-title: Spatial transcriptomics of planktonic and sessile bacterial populations at single-cell resolution publication-title: Science doi: 10.1126/science.abi4882 – volume: 68 start-page: 223 year: 2008 end-page: 240 ident: CR154 article-title: Tolerance to the antimicrobial peptide colistin in Pseudomonas aeruginosa biofilms is linked to metabolically active cells, and depends on the pmr and mexAB-oprM genes publication-title: Mol. Microbiol. – volume: 26 start-page: 59 year: 2019 ident: CR74 article-title: Current understanding of the gut microbiota shaping mechanisms publication-title: J. Biomed. Sci. – volume: 7 year: 2021 ident: CR35 article-title: Human organoid biofilm model for assessing antibiofilm activity of novel agents publication-title: NPJ Biofilms Microbiomes – volume: 63 start-page: 937 year: 2009 end-page: 945 ident: CR93 article-title: Effect of a solution containing citrate/methylene blue/parabens on bacteria and biofilm, and comparison with various heparin solutions publication-title: J. Antimicrob. Chemother. – ident: CR78 – volume: 106 start-page: 976 year: 2017 end-page: 985 ident: CR59 article-title: Spatial transcriptomes within the biofilm architecture publication-title: Mol. Microbiol. – volume: 7 start-page: 745 year: 2004 end-page: 754 ident: CR80 article-title: A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa publication-title: Dev. Cell – volume: 16 start-page: 1455 year: 2014 end-page: 1471 ident: CR57 article-title: Stress responses go three dimensional–the spatial order of physiological differentiation in bacterial macrocolony biofilms publication-title: Environ. Microbiol. – volume: 22 start-page: e88 year: 2022 end-page: e92 ident: CR18 article-title: The importance of understanding the infectious microenvironment publication-title: Lancet Infect. Dis. – volume: 374 start-page: 20190080 year: 2019 ident: CR135 article-title: Emergent microscale gradients give rise to metabolic cross-feeding and antibiotic tolerance in clonal bacterial populations publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci. – volume: 127 start-page: 211 year: 2017 end-page: 222 ident: CR145 article-title: The role of hydrodynamics in shaping the composition and architecture of epilithic biofilms in fluvial ecosystems publication-title: Water Res. – volume: 413 start-page: 860 year: 2001 end-page: 864 ident: CR163 article-title: Gene expression in Pseudomonas aeruginosa biofilms publication-title: Nature – volume: 193 start-page: 6614 year: 2011 end-page: 6628 ident: CR85 article-title: SagS contributes to the motile-sessile switch and acts in concert with BfiSR to enable biofilm formation publication-title: J. Bacteriol. – volume: 153 start-page: 897 year: 2017 end-page: 905 ident: CR150 article-title: The follicular skin microbiome in patients with hidradenitis suppurativa and healthy controls publication-title: JAMA Dermatol. – volume: 2013 start-page: 288 year: 2013 end-page: 356 ident: CR4 article-title: From in vitro to in vivo models of bacterial biofilm-related infections publication-title: Pathogens – volume: 12 start-page: 655873 year: 2021 ident: CR133 article-title: Staphylococcus aureus floating biofilm formation and phenotype in synovial fluid depends on albumin, fibrinogen, and hyaluronic acid publication-title: Front. Microbiol. – volume: 7 start-page: 10 year: 2021 ident: CR3 article-title: Who put the film in biofilm? The migration of a term from wastewater engineering to medicine and beyond publication-title: NPJ Biofilms Microbiomes – volume: 5 year: 2009 ident: CR37 article-title: A novel signaling network essential for regulating biofilm development publication-title: PLoS Pathog. – volume: 16 start-page: 2 year: 2008 end-page: 10 ident: CR106 article-title: Why chronic wounds will not heal: a novel hypothesis publication-title: Wound Repair Regen. – volume: 59 start-page: 1181 year: 1993 end-page: 1186 ident: CR42 article-title: Exopolysaccharide production in biofilms: substratum activation of alginate gene expression by Pseudomonas aeruginosa publication-title: Appl. Environ. Microbiol. – volume: 46 start-page: 1823 year: 2015 end-page: 1826 ident: CR151 article-title: Chronic pulmonary disease with Mycobacterium abscessus complex is a biofilm infection publication-title: Eur. Respir. J. – volume: 188 start-page: 2325 year: 2006 end-page: 2335 ident: CR94 article-title: Phenotypic characterization of biofilm development publication-title: J. Bacteriol. – ident: CR79 – volume: 195 start-page: 4975 year: 2013 end-page: 4987 ident: CR47 article-title: Antimicrobial tolerance of biofilms is activated during an early developmental stage and requires the two-component hybrid SagS publication-title: J. Bacteriol. – volume: 194 start-page: 2062 year: 2012 end-page: 2073 ident: CR58 article-title: Heterogeneity in biofilms includes expression of ribosome hibernation factors in the antibiotic-tolerant subpopulation and hypoxia-induced stress response in the metabolically active population publication-title: J. Bacteriol. – volume: 42 start-page: 259 year: 2018 end-page: 272 ident: CR166 article-title: Emergent heterogeneous microenvironments in biofilms: substratum surface heterogeneity and bacterial adhesion force-sensing publication-title: FEMS Microbiol. Rev. – year: 2020 ident: CR112 article-title: Universal dermal microbiome in human skin publication-title: mBio doi: 10.1128/mBio.02945-19 – volume: 8 start-page: 894 year: 2014 end-page: 907 ident: CR86 article-title: Biofilm development and enhanced stress resistance of a model, mixed-species community biofilm publication-title: ISME J. – volume: 21 start-page: S1 issue: Suppl. 1 year: 2015 end-page: S25 ident: CR5 article-title: ESCMID guideline for the diagnosis and treatment of biofilm infections 2014 publication-title: Clin. Microbiol. Infect. – volume: 9 year: 2018 ident: CR138 article-title: High-resolution in situ transcriptomics of Pseudomonas aeruginosa unveils genotype independent patho-phenotypes in cystic fibrosis lungs publication-title: Nat. Commun. – volume: 34 start-page: 1713 year: 2018 end-page: 1718 ident: CR143 article-title: Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry: a review publication-title: J. Mater. Sci. Technol. – volume: 14 year: 2019 ident: CR159 article-title: Equine or porcine synovial fluid as a novel ex vivo model for the study of bacterial free-floating biofilms that form in human joint infections publication-title: PLoS ONE – volume: 15 start-page: 257 year: 1995 end-page: 262 ident: CR90 article-title: Interspecies bacterial interactions in biofilms publication-title: J. Ind. Microbiol. – volume: 77 start-page: 1 year: 2013 end-page: 52 ident: CR67 article-title: Cyclic di-GMP: the first 25 years of a universal bacterial second messenger publication-title: Microbiol. Mol. Biol. Rev. – volume: 8 start-page: 173 year: 2008 ident: CR96 article-title: Characterization of biofilm matrix, degradation by DNase treatment and evidence of capsule downregulation in Streptococcus pneumoniae clinical isolates publication-title: BMC Microbiol. – volume: 17 start-page: 247 year: 2019 end-page: 260 ident: CR12 article-title: Bacteria and archaea on earth and their abundance in biofilms publication-title: Nat. Rev. Microbiol. – volume: 79 start-page: 21 year: 2000 end-page: 27 ident: CR48 article-title: Architecture of intact natural human plaque biofilms studied by confocal laser scanning microscopy publication-title: J. Dent. Res. – volume: 81 start-page: 767 year: 2011 end-page: 783 ident: CR83 article-title: The novel two-component regulator BfmR controls bacteriophage-mediated lysis and DNA release during biofilm development through PhdA publication-title: Mol. Microbiol – volume: 296 start-page: 202 year: 2006 end-page: 211 ident: CR95 article-title: Direct detection of bacterial biofilms on the middle-ear mucosa of children with chronic otitis media publication-title: JAMA – volume: 96 start-page: 2993 year: 2021 end-page: 3008 ident: CR33 article-title: Development of microalgal biofilm for wastewater remediation: from mechanism to practical application publication-title: J. Chem. Technol. Biotechnol. – volume: 211 start-page: 641 year: 2015 end-page: 650 ident: CR132 article-title: Effect of biofilms on recalcitrance of staphylococcal joint infection to antibiotic treatment publication-title: J. Infect. Dis. – volume: 187 start-page: 37 year: 2005 end-page: 44 ident: CR50 article-title: Timing and localization of rhamnolipid synthesis gene expression in Pseudomonas aeruginosa biofilms publication-title: J. Bacteriol. – volume: 6 start-page: 199 year: 2008 end-page: 210 ident: CR56 article-title: Physiological heterogeneity in biofilms publication-title: Nat. Rev. Microbiol. – year: 2017 ident: CR98 article-title: Primary ciliary dyskinesia ciliated airway cells show increased susceptibility to Haemophilus influenzae biofilm formation publication-title: Eur. Respir. J. doi: 10.1183/13993003.00612-2017 – volume: 9 start-page: 3490 year: 2012 end-page: 3502 ident: CR160 article-title: Aggregation by depletion attraction in cultures of bacteria producing exopolysaccharide publication-title: J. R. Soc. Interface – volume: 30 start-page: 295 year: 1998 end-page: 304 ident: CR161 article-title: Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development publication-title: Mol. Microbiol. – volume: 8 start-page: 180066 year: 2018 ident: CR172 article-title: Spatial organization of different sigma factor activities and c-di-GMP signalling within the three-dimensional landscape of a bacterial biofilm publication-title: Open Biol. – volume: 327 start-page: 866 year: 2010 end-page: 868 ident: CR175 article-title: Vibrio cholerae VpsT regulates matrix production and motility by directly sensing cyclic di-GMP publication-title: Science – ident: CR141 – volume: 4 year: 2008 ident: CR176 article-title: Agr-mediated dispersal of Staphylococcus aureus biofilms publication-title: PLoS Pathog. – year: 2020 ident: CR19 article-title: Quantitative framework for model evaluation in microbiology research using Pseudomonas aeruginosa and cystic fibrosis infection as a test case publication-title: mBio doi: 10.1128/mBio.03042-19 – volume: 86 start-page: 819 year: 2012 end-page: 835 ident: CR53 article-title: Microcolony formation by the opportunistic pathogen requires pyruvate and pyruvate fermentation publication-title: Mol. Microbiol. – volume: 51 start-page: 1702 year: 2021 end-page: 1725 ident: CR102 article-title: Granular biofilms: function, application, and new trends as model microbial communities publication-title: Crit. Rev. Environ. Sci. Technol. – volume: 11 start-page: 1368 year: 2020 ident: CR124 article-title: Identification and characterization of planktonic biofilm-like aggregates in infected synovial fluids from joint infections publication-title: Front. Microbiol. – volume: 3 start-page: 124 year: 2021 end-page: 129 ident: CR9 article-title: The plant microbiome: the dark and dirty secrets of plant growth publication-title: Plants People Planet – year: 2018 ident: 767_CR110 publication-title: J. Clin. Microbiol. doi: 10.1128/JCM.00688-18 – year: 2020 ident: 767_CR112 publication-title: mBio doi: 10.1128/mBio.02945-19 – volume: 117 start-page: 22473 year: 2020 ident: 767_CR136 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2003700117 – volume: 4 year: 2008 ident: 767_CR176 publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1000052 – volume: 104 start-page: 365 year: 2017 ident: 767_CR31 publication-title: Mol. Microbiol. doi: 10.1111/mmi.13634 – volume: 19 start-page: 4417 year: 2017 ident: 767_CR89 publication-title: Env. Microbiol. doi: 10.1111/1462-2920.13883 – volume: 68 start-page: 4457 year: 2002 ident: 767_CR55 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.68.9.4457-4464.2002 – volume: 8 start-page: 173 year: 2008 ident: 767_CR96 publication-title: BMC Microbiol. doi: 10.1186/1471-2180-8-173 – volume: 64 start-page: 153 year: 2008 ident: 767_CR11 publication-title: FEMS Microbiol. Ecol. doi: 10.1111/j.1574-6941.2008.00465.x – volume: 15 year: 2020 ident: 767_CR122 publication-title: PLoS ONE – volume: 25 start-page: 276 year: 2005 ident: 767_CR10 publication-title: J. Food Saf. doi: 10.1111/j.1745-4565.2005.00024.x – volume: 28 start-page: 593 year: 2020 ident: 767_CR146 publication-title: Wound Repair Regen. doi: 10.1111/wrr.12841 – volume: 7 start-page: 10 year: 2021 ident: 767_CR3 publication-title: NPJ Biofilms Microbiomes doi: 10.1038/s41522-020-00183-3 – volume: 209 start-page: 669 year: 2020 ident: 767_CR153 publication-title: Med. Microbiol. Immunol. doi: 10.1007/s00430-020-00691-1 – volume: 48 start-page: 1175 year: 2004 ident: 767_CR165 publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.48.4.1175-1187.2004 – volume: 11 start-page: 157 year: 2013 ident: 767_CR32 publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro2960 – volume: 194 start-page: 2062 year: 2012 ident: 767_CR58 publication-title: J. Bacteriol. doi: 10.1128/JB.00022-12 – volume: 15 start-page: 740 year: 2017 ident: 767_CR139 publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro.2017.99 – volume: 65 start-page: 127 year: 2012 ident: 767_CR101 publication-title: FEMS Immunol. Med. Microbiol. doi: 10.1111/j.1574-695X.2012.00968.x – volume: 48 start-page: 1168 year: 2004 ident: 767_CR45 publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.48.4.1168-1174.2004 – volume: 13 start-page: eaaw8905 year: 2020 ident: 767_CR64 publication-title: Sci. Signal. doi: 10.1126/scisignal.aaw8905 – volume: 374 start-page: 20190080 year: 2019 ident: 767_CR135 publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci. doi: 10.1098/rstb.2019.0080 – volume: 30 start-page: 67 year: 2016 ident: 767_CR62 publication-title: Curr. Opin. Microbiol. doi: 10.1016/j.mib.2016.01.004 – volume: 81 start-page: 767 year: 2011 ident: 767_CR83 publication-title: Mol. Microbiol doi: 10.1111/j.1365-2958.2011.07733.x – volume: 9 year: 2018 ident: 767_CR138 publication-title: Nat. Commun. – year: 2021 ident: 767_CR134 publication-title: Science doi: 10.1126/science.abi4882 – volume: 15 start-page: 271 year: 2017 ident: 767_CR68 publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro.2016.190 – volume: 115 start-page: 10780 year: 2018 ident: 767_CR131 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1806005115 – volume: 193 start-page: 6614 year: 2011 ident: 767_CR85 publication-title: J. Bacteriol. doi: 10.1128/JB.00305-11 – volume: 27 start-page: 1952 year: 2018 ident: 767_CR76 publication-title: Mol. Ecol. doi: 10.1111/mec.14529 – volume: 30 start-page: 295 year: 1998 ident: 767_CR161 publication-title: Mol. Microbiol. doi: 10.1046/j.1365-2958.1998.01062.x – volume: 44 start-page: 547 year: 2009 ident: 767_CR105 publication-title: Pediatr. Pulmonol. doi: 10.1002/ppul.21011 – volume: 16 start-page: 1455 year: 2014 ident: 767_CR167 publication-title: Environ. Microbiol. doi: 10.1111/1462-2920.12483 – volume: 10 year: 2021 ident: 767_CR155 publication-title: eLife doi: 10.7554/eLife.70794 – volume: 184 start-page: 1140 year: 2002 ident: 767_CR27 publication-title: J. Bacteriol. doi: 10.1128/jb.184.4.1140-1154.2002 – volume: 189 start-page: 8154 year: 2007 ident: 767_CR81 publication-title: J. Bacteriol. doi: 10.1128/JB.00585-07 – volume: 31 start-page: 48 year: 2018 ident: 767_CR72 publication-title: Electron. J. Biotechnol. doi: 10.1016/j.ejbt.2017.11.001 – year: 2017 ident: 767_CR98 publication-title: Eur. Respir. J. doi: 10.1183/13993003.00612-2017 – volume: 41 start-page: 435 year: 1987 ident: 767_CR13 publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev.mi.41.100187.002251 – volume: 187 start-page: 1441 year: 2005 ident: 767_CR52 publication-title: J. Bacteriol. doi: 10.1128/JB.187.4.1441-1454.2005 – volume: 12 start-page: 655873 year: 2021 ident: 767_CR133 publication-title: Front. Microbiol. doi: 10.3389/fmicb.2021.655873 – volume: 195 start-page: 4975 year: 2013 ident: 767_CR47 publication-title: J. Bacteriol. doi: 10.1128/JB.00732-13 – year: 2022 ident: 767_CR6 publication-title: Thorax doi: 10.1136/thoraxjnl-2021-217576 – volume: 7 year: 2021 ident: 767_CR35 publication-title: NPJ Biofilms Microbiomes – volume: 8 start-page: 180066 year: 2018 ident: 767_CR172 publication-title: Open Biol. doi: 10.1098/rsob.180066 – year: 2016 ident: 767_CR147 publication-title: Front. Microbiol. doi: 10.3389/fmicb.2016.00796 – volume: 96 start-page: 2993 year: 2021 ident: 767_CR33 publication-title: J. Chem. Technol. Biotechnol. doi: 10.1002/jctb.6850 – volume: 60 start-page: 198 year: 2020 ident: 767_CR14 publication-title: J. Basic Microbiol. doi: 10.1002/jobm.201900569 – volume: 22 start-page: e88 year: 2022 ident: 767_CR18 publication-title: Lancet Infect. Dis. doi: 10.1016/S1473-3099(21)00122-5 – volume: 1147 start-page: 3 year: 2014 ident: 767_CR23 publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-0467-9_1 – volume: 8 year: 2018 ident: 767_CR116 publication-title: Sci. Rep. doi: 10.1038/s41598-018-27504-z – volume: 16 start-page: 2 year: 2008 ident: 767_CR106 publication-title: Wound Repair Regen. doi: 10.1111/j.1524-475X.2007.00283.x – volume: 176 start-page: 993 year: 2017 ident: 767_CR149 publication-title: Br. J. Dermatol. doi: 10.1111/bjd.15007 – volume: 14 year: 2019 ident: 767_CR159 publication-title: PLoS ONE doi: 10.1371/journal.pone.0221012 – volume: 109 start-page: 20632 year: 2012 ident: 767_CR26 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1217993109 – volume: 65 start-page: 1818 year: 2020 ident: 767_CR103 publication-title: Limnol. Oceanogr. doi: 10.1002/lno.11420 – volume: 117 start-page: 12375 year: 2020 ident: 767_CR114 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1919099117 – volume: 127 start-page: 211 year: 2017 ident: 767_CR145 publication-title: Water Res. doi: 10.1016/j.watres.2017.09.054 – volume: 238 start-page: 86 year: 1978 ident: 767_CR1 publication-title: Sci. Am. doi: 10.1038/scientificamerican0178-86 – volume: 7 start-page: 105 year: 2018 ident: 767_CR148 publication-title: Adv. Wound Care doi: 10.1089/wound.2017.0770 – volume: 6 year: 2022 ident: 767_CR100 publication-title: NPJ Mater. Degrad. doi: 10.1038/s41529-022-00234-4 – volume: 34 start-page: 1713 year: 2018 ident: 767_CR143 publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2018.02.023 – volume: 5 year: 2009 ident: 767_CR37 publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1000668 – ident: 767_CR78 – volume: 296 start-page: 202 year: 2006 ident: 767_CR95 publication-title: JAMA doi: 10.1001/jama.296.2.202 – volume: 46 start-page: 39 year: 1943 ident: 767_CR21 publication-title: J. Bacteriol. doi: 10.1128/jb.46.1.39-56.1943 – volume: 21 start-page: 39 year: 2013 ident: 767_CR82 publication-title: Trends Microbiol. doi: 10.1016/j.tim.2012.10.008 – volume: 327 start-page: 866 year: 2010 ident: 767_CR175 publication-title: Science doi: 10.1126/science.1181185 – volume: 51 start-page: 675 year: 2004 ident: 767_CR88 publication-title: Mol. Microbiol. doi: 10.1046/j.1365-2958.2003.03877.x – year: 2021 ident: 767_CR156 publication-title: APMIS doi: 10.1111/apm.13163 – volume: 185 start-page: 699 year: 2003 ident: 767_CR51 publication-title: J. Bacteriol. doi: 10.1128/JB.185.3.699-700.2003 – volume: 59 start-page: 142 year: 2006 ident: 767_CR119 publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2005.04941.x – volume: 3 start-page: 124 year: 2021 ident: 767_CR9 publication-title: Plants People Planet doi: 10.1002/ppp3.10167 – volume: 106 start-page: 976 year: 2017 ident: 767_CR59 publication-title: Mol. Microbiol. doi: 10.1111/mmi.13863 – volume: 153 start-page: 897 year: 2017 ident: 767_CR150 publication-title: JAMA Dermatol. doi: 10.1001/jamadermatol.2017.0904 – volume: 186 start-page: 4486 year: 2004 ident: 767_CR111 publication-title: J. Bacteriol. doi: 10.1128/JB.186.14.4486-4491.2004 – volume: 46 start-page: 2717 year: 2008 ident: 767_CR157 publication-title: J. Clin. Microbiol. doi: 10.1128/JCM.00501-08 – volume: 35 start-page: 2211 year: 2017 ident: 767_CR108 publication-title: J. Orthop. Res. doi: 10.1002/jor.23505 – volume: 74 start-page: 4463 year: 2008 ident: 767_CR173 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00710-08 – volume: 17 start-page: 73 year: 2009 ident: 767_CR77 publication-title: Trends Microbiol. doi: 10.1016/j.tim.2008.11.001 – volume: 109 start-page: 317 year: 2002 ident: 767_CR121 publication-title: J. Clin. Invest. doi: 10.1172/JCI0213870 – volume: 291 start-page: 12547 year: 2016 ident: 767_CR66 publication-title: J. Biol. Chem. doi: 10.1074/jbc.R115.711507 – volume: 407 start-page: 762 year: 2000 ident: 767_CR120 publication-title: Nature doi: 10.1038/35037627 – volume: 63 start-page: 937 year: 2009 ident: 767_CR93 publication-title: J. Antimicrob. Chemother. doi: 10.1093/jac/dkp060 – volume: 48 start-page: 253 year: 2003 ident: 767_CR162 publication-title: Mol. Microbiol. doi: 10.1046/j.1365-2958.2003.03432.x – volume: 19 start-page: 2005 year: 2017 ident: 767_CR38 publication-title: Environ. Microbiol. doi: 10.1111/1462-2920.13719 – volume: 9 start-page: 3490 year: 2012 ident: 767_CR160 publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2012.0498 – year: 2015 ident: 767_CR75 publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-015-0996-1 – volume: 7 start-page: 745 year: 2004 ident: 767_CR80 publication-title: Dev. Cell doi: 10.1016/j.devcel.2004.08.020 – volume: 7 year: 2016 ident: 767_CR140 publication-title: mBio doi: 10.1128/mBio.00237-16 – volume: 185 start-page: 175 year: 2006 ident: 767_CR158 publication-title: Sediment. Geol. doi: 10.1016/j.sedgeo.2005.12.022 – volume: 7 start-page: 1249 year: 1973 ident: 767_CR41 publication-title: Water Res. doi: 10.1016/0043-1354(73)90002-X – volume: 15 start-page: 257 year: 1995 ident: 767_CR90 publication-title: J. Ind. Microbiol. doi: 10.1007/BF01569978 – volume: 51 start-page: 1702 year: 2021 ident: 767_CR102 publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643389.2020.1769433 – volume: 115 start-page: 10780 year: 2018 ident: 767_CR130 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1806005115 – volume: 17 start-page: 247 year: 2019 ident: 767_CR12 publication-title: Nat. Rev. Microbiol. doi: 10.1038/s41579-019-0158-9 – volume: 280 start-page: 295 year: 1998 ident: 767_CR49 publication-title: Science doi: 10.1126/science.280.5361.295 – volume: 18 start-page: 571 year: 2020 ident: 767_CR61 publication-title: Nat. Rev. Microbiol. doi: 10.1038/s41579-020-0385-0 – volume: 30 start-page: 138 year: 2018 ident: 767_CR109 publication-title: Hip Pelvis doi: 10.5371/hp.2018.30.3.138 – volume: 11 year: 2021 ident: 767_CR107 publication-title: Sci. Rep. doi: 10.1038/s41598-021-84525-x – volume: 48 start-page: 1511 year: 2003 ident: 767_CR29 publication-title: Mol. Microbiol. doi: 10.1046/j.1365-2958.2003.03525.x – volume: 56 start-page: 187 year: 2002 ident: 767_CR30 publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev.micro.56.012302.160705 – volume: 115 start-page: E5125 year: 2018 ident: 767_CR137 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1717525115 – volume: 6 start-page: 199 year: 2008 ident: 767_CR56 publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro1838 – volume: 292 start-page: 477 year: 2017 ident: 767_CR171 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M116.746743 – volume: 211 start-page: 641 year: 2015 ident: 767_CR132 publication-title: J. Infect. Dis. doi: 10.1093/infdis/jiu514 – volume: 59 start-page: 1181 year: 1993 ident: 767_CR42 publication-title: Appl. Environ. Microbiol. doi: 10.1128/aem.59.4.1181-1186.1993 – volume: 64 start-page: 847 year: 2000 ident: 767_CR40 publication-title: Microbiol. Mol. Biol. Rev. doi: 10.1128/MMBR.64.4.847-867.2000 – volume: 54 start-page: 667 year: 2005 ident: 767_CR54 publication-title: J. Med. Microbiol. doi: 10.1099/jmm.0.45969-0 – volume: 10 start-page: 2331 year: 2008 ident: 767_CR87 publication-title: Environ. Microbiol. doi: 10.1111/j.1462-2920.2008.01658.x – volume: 288 start-page: 119731 year: 2021 ident: 767_CR15 publication-title: Fuel doi: 10.1016/j.fuel.2020.119731 – year: 2020 ident: 767_CR19 publication-title: mBio doi: 10.1128/mBio.03042-19 – volume: 127 start-page: 105474 year: 2021 ident: 767_CR144 publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2021.105474 – volume: 195 start-page: 2947 year: 2013 ident: 767_CR60 publication-title: J. Bacteriol. doi: 10.1128/JB.00239-13 – volume: 59 start-page: 2122 year: 2015 ident: 767_CR118 publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.04579-14 – volume: 61 start-page: 860 year: 1995 ident: 767_CR43 publication-title: Appl. Environ. Microbiol. doi: 10.1128/aem.61.3.860-867.1995 – volume: 13 start-page: 7 year: 2005 ident: 767_CR129 publication-title: Trends Microbiol. doi: 10.1016/j.tim.2004.11.004 – volume: 5 start-page: 1294 year: 2003 ident: 767_CR179 publication-title: Environ. Microbiol. doi: 10.1046/j.1462-2920.2003.00542.x – volume: 8 year: 2013 ident: 767_CR177 publication-title: PLoS ONE doi: 10.1371/journal.pone.0072968 – volume: 19 start-page: 2893 year: 2017 ident: 767_CR92 publication-title: Env. Microbiol. doi: 10.1111/1462-2920.13816 – volume: 62 start-page: 1264 year: 2006 ident: 767_CR174 publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2006.05421.x – volume: 2013 start-page: 288 year: 2013 ident: 767_CR4 publication-title: Pathogens doi: 10.3390/pathogens2020288 – ident: 767_CR79 doi: 10.1128/9781555818166 – volume: 8 start-page: 894 year: 2014 ident: 767_CR86 publication-title: ISME J. doi: 10.1038/ismej.2013.194 – volume: 651 start-page: 3187 year: 2019 ident: 767_CR71 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.09.355 – volume: 86 start-page: 819 year: 2012 ident: 767_CR53 publication-title: Mol. Microbiol. doi: 10.1111/mmi.12018 – volume: 151 start-page: 1569 year: 2005 ident: 767_CR65 publication-title: Microbiology doi: 10.1099/mic.0.27536-0 – volume: 19 start-page: 3157 year: 2018 ident: 767_CR73 publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms19103157 – volume: 14 start-page: 1913 year: 2012 ident: 767_CR44 publication-title: Environ. Microbiol. doi: 10.1111/j.1462-2920.2011.02657.x – volume: 21 start-page: 466 year: 2013 ident: 767_CR99 publication-title: Trends Microbiol. doi: 10.1016/j.tim.2013.06.002 – volume: 16 start-page: 1455 year: 2014 ident: 767_CR57 publication-title: Environ. Microbiol. doi: 10.1111/1462-2920.12483 – volume: 179 start-page: 7663 year: 1997 ident: 767_CR46 publication-title: J. Bacteriol. doi: 10.1128/jb.179.24.7663-7670.1997 – volume: 13 start-page: 154 year: 2012 ident: 767_CR97 publication-title: Paediatr. Respir. Rev. doi: 10.1016/j.prrv.2012.03.001 – volume: 10 start-page: 294 year: 2010 ident: 767_CR152 publication-title: BMC Microbiol. doi: 10.1186/1471-2180-10-294 – year: 2020 ident: 767_CR123 publication-title: Adv. Exp. Med. Biol. doi: 10.1007/5584_2020_573 – volume: 195 start-page: 3352 year: 2013 ident: 767_CR169 publication-title: J. Bacteriol. doi: 10.1128/JB.00318-13 – volume: 79 start-page: 21 year: 2000 ident: 767_CR48 publication-title: J. Dent. Res. doi: 10.1177/00220345000790010201 – volume: 413 start-page: 860 year: 2001 ident: 767_CR163 publication-title: Nature doi: 10.1038/35101627 – volume: 102 start-page: 5005 year: 2018 ident: 767_CR104 publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-018-8990-9 – volume: 46 start-page: 1823 year: 2015 ident: 767_CR151 publication-title: Eur. Respir. J. doi: 10.1183/13993003.01102-2015 – volume: 26 start-page: 59 year: 2019 ident: 767_CR74 publication-title: J. Biomed. Sci. doi: 10.1186/s12929-019-0554-5 – volume: 185 start-page: 2080 year: 2003 ident: 767_CR164 publication-title: J. Bacteriol. doi: 10.1128/JB.185.7.2080-2095.2003 – ident: 767_CR8 – volume: 21 start-page: S1 issue: Suppl. 1 year: 2015 ident: 767_CR5 publication-title: Clin. Microbiol. Infect. doi: 10.1016/j.cmi.2014.10.024 – volume: 75 start-page: 90 year: 2009 ident: 767_CR28 publication-title: Cytom. A doi: 10.1002/cyto.a.20685 – volume: 26 start-page: 229 year: 2018 ident: 767_CR115 publication-title: Trends Microbiol. doi: 10.1016/j.tim.2017.09.008 – volume: 192 start-page: 5275 year: 2010 ident: 767_CR84 publication-title: J. Bacteriol. doi: 10.1128/JB.00387-10 – volume: 11 start-page: 1368 year: 2020 ident: 767_CR124 publication-title: Front. Microbiol. doi: 10.3389/fmicb.2020.01368 – volume: 6 year: 2011 ident: 767_CR178 publication-title: PLoS ONE doi: 10.1371/journal.pone.0024235 – volume: 4 year: 2009 ident: 767_CR126 publication-title: PLoS ONE doi: 10.1371/journal.pone.0005513 – volume: 77 start-page: 1 year: 2013 ident: 767_CR67 publication-title: Microbiol. Mol. Biol. Rev. doi: 10.1128/MMBR.00043-12 – volume: 7 year: 2012 ident: 767_CR127 publication-title: PLoS ONE doi: 10.1371/annotation/08d0f2a8-0c40-4a0c-b546-0025648e73f0 – volume: 10 start-page: 91 year: 2021 ident: 767_CR22 publication-title: Adv. Wound Care doi: 10.1089/wound.2020.1176 – year: 2018 ident: 767_CR125 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02264-17 – volume: 28 start-page: 449 year: 1998 ident: 767_CR39 publication-title: Mol. Microbiol. doi: 10.1046/j.1365-2958.1998.00797.x – volume: 718 start-page: 137417 year: 2020 ident: 767_CR36 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.137417 – year: 2018 ident: 767_CR7 publication-title: Front. Microbiol. doi: 10.3389/fmicb.2017.02649 – volume: 2 start-page: 95 year: 2004 ident: 767_CR25 publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro821 – volume: 20 start-page: 3423 year: 2019 ident: 767_CR70 publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms20143423 – volume: 42 start-page: 259 year: 2018 ident: 767_CR166 publication-title: FEMS Microbiol. Rev. doi: 10.1093/femsre/fuy001 – volume: 36 start-page: 228 year: 2018 ident: 767_CR142 publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2017.11.005 – volume: 801 start-page: 149708 year: 2021 ident: 767_CR34 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.149708 – volume: 15 start-page: 2879 year: 2013 ident: 767_CR117 publication-title: Environ. Microbiol. doi: 10.1111/1462-2920.12186 – volume: 43 start-page: 313 year: 2017 ident: 767_CR24 publication-title: Crit. Rev. Microbiol. doi: 10.1080/1040841X.2016.1208146 – volume: 204 start-page: 117593 year: 2021 ident: 767_CR17 publication-title: Water Res. doi: 10.1016/j.watres.2021.117593 – volume: 68 start-page: 223 year: 2008 ident: 767_CR154 publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2008.06152.x – volume: 45 start-page: 503 year: 1995 ident: 767_CR91 publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.260450607 – volume: 66 start-page: 1339 year: 1982 ident: 767_CR20 publication-title: Circulation doi: 10.1161/01.CIR.66.6.1339 – volume: 37 start-page: 4 year: 2021 ident: 767_CR168 publication-title: Trends Genet. doi: 10.1016/j.tig.2020.10.007 – year: 2021 ident: 767_CR170 publication-title: mBio doi: 10.1128/mBio.03579-20 – volume: 187 start-page: 37 year: 2005 ident: 767_CR50 publication-title: J. Bacteriol. doi: 10.1128/JB.187.1.37-44.2005 – ident: 767_CR141 doi: 10.1007/978-3-030-16775-2_4 – volume: 27 start-page: 910 year: 1981 ident: 767_CR2 publication-title: Can. J. Microbiol. doi: 10.1139/m81-143 – year: 2017 ident: 767_CR128 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02264-17 – volume: 188 start-page: 2325 year: 2006 ident: 767_CR94 publication-title: J. Bacteriol. doi: 10.1128/JB.188.7.2325-2335.2006 – volume: 59 start-page: 324 year: 2010 ident: 767_CR113 publication-title: FEMS Immunol. Med. Microbiol. doi: 10.1111/j.1574-695X.2010.00714.x – ident: 767_CR63 doi: 10.1007/978-3-642-19940-0_1 – volume: 40 start-page: 753 year: 2016 ident: 767_CR69 publication-title: FEMS Microbiol. Rev. doi: 10.1093/femsre/fuw013 – volume: 6 year: 2011 ident: 767_CR16 publication-title: PLoS ONE doi: 10.1371/journal.pone.0027943 |
| SSID | ssj0025572 |
| Score | 2.7534897 |
| SecondaryResourceType | review_article |
| Snippet | Bacterial biofilms are often defined as communities of surface-attached bacteria and are typically depicted with a classic mushroom-shaped structure... Bacterial biofilms are often defined as communities of surface attached bacteria. Biofilms are typically depicted with a classic mushroom-shaped structure that... |
| SourceID | pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 608 |
| SubjectTerms | 631/326/2565/107 631/326/421 631/326/46 Animals Bacteria Biofilms Biomedical and Life Sciences Disaggregation Infectious Diseases Life Cycle Stages Life cycles Life Sciences Medical Microbiology Microbiology Microenvironments Parasitology Pseudomonas aeruginosa Pseudomonas aeruginosa - physiology Review Article Virology |
| Title | The biofilm life cycle: expanding the conceptual model of biofilm formation |
| URI | https://link.springer.com/article/10.1038/s41579-022-00767-0 https://www.ncbi.nlm.nih.gov/pubmed/35922483 https://www.proquest.com/docview/2714219133 https://www.proquest.com/docview/2698629771 https://pubmed.ncbi.nlm.nih.gov/PMC9841534 |
| Volume | 20 |
| WOSCitedRecordID | wos000835583600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Nursing & Allied Health Database customDbUrl: eissn: 1740-1534 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0025572 issn: 1740-1526 databaseCode: 7RV dateStart: 20031001 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFH9iG0i7jO8RGFWQuIE1u3ZimwuCaRMSoqomQL1FtmOLSlvarS3a_nuenTRTmdiFiy-x09rv2e_nvI8fwFurlalNTYnz3BKhSkYiSSHRhbGhdIGHoBLZhByN1GSix90Ht0UXVrk-E9NBXc9c_EZ-OJRM4O7CK9XH-QWJrFHRu9pRaGzBDiIbFkO6vg3H_YWrKBJ5E4JuStBOlV3SDOXqcIGGS2oSY9mjM0oSummYbqHN20GTf3lOk0E6efi_U3kEex0UzT-1uvMY7vnmCTxoySmvn8JX1KDcTiOl93l-Ng0-d9fY70Pur-ZtLkyO4DF3bd7jCt-UWHXyWehH9ZmRz-DHyfH3oy-ko14gTkixJLVipYmnqdXR0Wpra5gyQghaG86prymvZWELGig3Cg0hol9PmecxJagsNH8O282s8S8gR_M3FA6BoDVBoIxsrJ_DNa6AdF6HMgO2XvfKdXXJIz3GWZX841xVrawqlFWVZFXRDN71Y-ZtVY47ex-s5VB1O3RR3Qghgzf9Y9xb0WFiGj9bYZ9S44UPETLLYL-Vfv9zvNCIfhSOlht60XeIdbs3nzTTX6l-t8YFK7jI4P1ag27-1r9n8fLuWbyC3WHU5hRneADby8uVfw333e_ldHE5gC15-jO2E5laha06YgPY-Xw8Gp8O0r6JrRz_AV3FF0U |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH6qCggu7EuggJHgBFad2ElsJIQQULWaMuqhSL0F27HFSCUzdGaA-VP8Rp6dpRoqeuuBs-0ktt-at3wAz42SutY1o9ZxQ4UsUhpACqnKtfGF9dx7GcEmyvFYHh2pgw343dfChLTKXiZGQV1PbfhHvp2VqUDuQpfq7ew7DahRIbraQ2i0ZDFyq5_oss3f7H3A-32RZTsfD9_v0g5VgFpRigWtZVroICiMCjFEUxudSi2EYLVG597VjNdlbnLmGdcSZTwado6ljodqlyIPzZdQ5F8SobNYSBXMDgYHL88jWBQa-YyiXiy6Ih3G5fYcFWWpaMidD8GvkrJ1RXjGuj2bpPlXpDYqwJ0b_9vR3YTrnalN3rW8cQs2XHMbrrTgm6s7MEIOIWYSIMu_keOJd8SucN5r4n7N2lofgsYxsW1d5xKfFFGDyNQPq4bKz7vw-UJ2cg82m2njHgBB9Z4Ji4au0V7kqTShPxBXeOKldcoXCaT9PVe267se4D-Oqxj_57JqaaNC2qgibVQsgZfDmlnbdeTc2Vv9vVedBJpXp5eewLNhGGVHCAjpxk2XOKdQ6NCiB5AmcL-ltuF1PFdo3UlcXa7R4TAh9CVfH2kmX2N_coUHlnORwKueYk8_69-7eHj-Lp7C1d3DT_vV_t549AiuZYGTYk7lFmwuTpbuMVy2PxaT-cmTyJMEvlw0Jf8BLb1qOQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD6aOkC8cIcFBhgJnsCqUzuJjYQQsFVMRVWFQNpbZju2qLSlZW2B_jV-Hce5TWVib3vgOXZbO9-59Vw-gOdGSV3oglHruKFCpjENJIVUJdr41HruvazIJrLxWB4eqskW_G57YUJZZasTK0VdzGz4j7w_yGKB0oUhVd83ZRGTveHb-XcaGKRCprWl06ghMnLrnxi-Ld4c7OG7fjEYDPe_fPhIG4YBakUmlrSQcaqD0jAq5BNNYXQstRCCFRoDfVcwXmSJSZhnXEvU9-jkORY7Hjpf0iQMYkL1v52hkyF6sP1-fzz53IV7SVJRR6HLzyhaybRp2WFc9hdoNjNFQyV9SIVllG2axXO-7vmSzb_ytpU5HN78ny_yFtxonHDyrpaa27DlyjtwtablXN-FEcoOMdNAZn5CjqfeEbvGda-J-zWvu4AIus3E1h2fK_ykik-IzHy3q-sJvQdfL-Uk96FXzkq3AwQN_0BYdIGN9iKJpQmTg7jC28-sUz6NIG7feW6bieyBGOQ4ryoDuMxrnOSIk7zCSc4ieNntmdfzSC5cvdtiIG900yI_A0AEz7rHqFVCqkiXbrbCNanCUBdjgziCBzXyuq_jiUK_T-LubAOT3YIwsXzzSTn9Vk0uV3hhCRcRvGrRe_az_n2Khxef4ilcQwDnnw7Go0dwfRCEqiq23IXe8nTlHsMV-2M5XZw-aQSUwNFlQ_kPwbJ0Uw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+biofilm+life+cycle%3A+expanding+the+conceptual+model+of+biofilm+formation&rft.jtitle=Nature+reviews.+Microbiology&rft.au=Sauer%2C+Karin&rft.au=Stoodley%2C+Paul&rft.au=Goeres%2C+Darla+M&rft.au=Hall-Stoodley%2C+Luanne&rft.date=2022-10-01&rft.eissn=1740-1534&rft.volume=20&rft.issue=10&rft.spage=608&rft_id=info:doi/10.1038%2Fs41579-022-00767-0&rft_id=info%3Apmid%2F35922483&rft.externalDocID=35922483 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1740-1526&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1740-1526&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1740-1526&client=summon |