The biofilm life cycle: expanding the conceptual model of biofilm formation

Bacterial biofilms are often defined as communities of surface-attached bacteria and are typically depicted with a classic mushroom-shaped structure characteristic of Pseudomonas aeruginosa . However, it has become evident that this is not how all biofilms develop, especially in vivo, in clinical an...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nature reviews. Microbiology Ročník 20; číslo 10; s. 608 - 620
Hlavní autoři: Sauer, Karin, Stoodley, Paul, Goeres, Darla M., Hall-Stoodley, Luanne, Burmølle, Mette, Stewart, Philip S., Bjarnsholt, Thomas
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 01.10.2022
Nature Publishing Group
Témata:
ISSN:1740-1526, 1740-1534, 1740-1534
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Bacterial biofilms are often defined as communities of surface-attached bacteria and are typically depicted with a classic mushroom-shaped structure characteristic of Pseudomonas aeruginosa . However, it has become evident that this is not how all biofilms develop, especially in vivo, in clinical and industrial settings, and in the environment, where biofilms often are observed as non-surface-attached aggregates. In this Review, we describe the origin of the current five-step biofilm development model and why it fails to capture many aspects of bacterial biofilm physiology. We aim to present a simplistic developmental model for biofilm formation that is flexible enough to include all the diverse scenarios and microenvironments where biofilms are formed. With this new expanded, inclusive model, we hereby introduce a common platform for developing an understanding of biofilms and anti-biofilm strategies that can be tailored to the microenvironment under investigation. In this Review, Bjarnsholt and colleagues propose a revised conceptual model of the biofilm life cycle that encompasses the three major steps of biofilm formation — aggregation, growth and disaggregation — independently of surfaces, and initiation from single-cell planktonic bacteria, and thus represents a broader range of biofilm systems.
AbstractList Bacterial biofilms are often defined as communities of surface-attached bacteria and are typically depicted with a classic mushroom-shaped structure characteristic of Pseudomonas aeruginosa . However, it has become evident that this is not how all biofilms develop, especially in vivo, in clinical and industrial settings, and in the environment, where biofilms often are observed as non-surface-attached aggregates. In this Review, we describe the origin of the current five-step biofilm development model and why it fails to capture many aspects of bacterial biofilm physiology. We aim to present a simplistic developmental model for biofilm formation that is flexible enough to include all the diverse scenarios and microenvironments where biofilms are formed. With this new expanded, inclusive model, we hereby introduce a common platform for developing an understanding of biofilms and anti-biofilm strategies that can be tailored to the microenvironment under investigation. In this Review, Bjarnsholt and colleagues propose a revised conceptual model of the biofilm life cycle that encompasses the three major steps of biofilm formation — aggregation, growth and disaggregation — independently of surfaces, and initiation from single-cell planktonic bacteria, and thus represents a broader range of biofilm systems.
Bacterial biofilms are often defined as communities of surface-attached bacteria and are typically depicted with a classic mushroom-shaped structure characteristic of Pseudomonas aeruginosa. However, it has become evident that this is not how all biofilms develop, especially in vivo, in clinical and industrial settings, and in the environment, where biofilms often are observed as non-surface-attached aggregates. In this Review, we describe the origin of the current five-step biofilm development model and why it fails to capture many aspects of bacterial biofilm physiology. We aim to present a simplistic developmental model for biofilm formation that is flexible enough to include all the diverse scenarios and microenvironments where biofilms are formed. With this new expanded, inclusive model, we hereby introduce a common platform for developing an understanding of biofilms and anti-biofilm strategies that can be tailored to the microenvironment under investigation.
Bacterial biofilms are often defined as communities of surface attached bacteria. Biofilms are typically depicted with a classic mushroom-shaped structure that is a characteristic of Pseudomonas aeruginosa. However, it has become evident that this is not how all biofilms develop, especially in in vivo in clinical, industrial settings and in the environment where biofilms often are observed as non-surface attached aggregates. In this Review, we describe the rationale behind the 5-step model and why it fails to capture many aspects of bacterial biofilm physiology. We aim to present a simplistic developmental model for biofilm formation that is flexible enough to include all the diverse scenarios and microenvironments where biofilms are formed. With this new expanded, inclusive model, we hereby introduce a common platform for developing understanding of biofilms and antibiofilm strategies that can be tailored to the microenvironment under investigation.
Bacterial biofilms are often defined as communities of surface-attached bacteria and are typically depicted with a classic mushroom-shaped structure characteristic of Pseudomonas aeruginosa. However, it has become evident that this is not how all biofilms develop, especially in vivo, in clinical and industrial settings, and in the environment, where biofilms often are observed as non-surface-attached aggregates. In this Review, we describe the origin of the current five-step biofilm development model and why it fails to capture many aspects of bacterial biofilm physiology. We aim to present a simplistic developmental model for biofilm formation that is flexible enough to include all the diverse scenarios and microenvironments where biofilms are formed. With this new expanded, inclusive model, we hereby introduce a common platform for developing an understanding of biofilms and anti-biofilm strategies that can be tailored to the microenvironment under investigation.In this Review, Bjarnsholt and colleagues propose a revised conceptual model of the biofilm life cycle that encompasses the three major steps of biofilm formation — aggregation, growth and disaggregation — independently of surfaces, and initiation from single-cell planktonic bacteria, and thus represents a broader range of biofilm systems.
Bacterial biofilms are often defined as communities of surface-attached bacteria and are typically depicted with a classic mushroom-shaped structure characteristic of Pseudomonas aeruginosa. However, it has become evident that this is not how all biofilms develop, especially in vivo, in clinical and industrial settings, and in the environment, where biofilms often are observed as non-surface-attached aggregates. In this Review, we describe the origin of the current five-step biofilm development model and why it fails to capture many aspects of bacterial biofilm physiology. We aim to present a simplistic developmental model for biofilm formation that is flexible enough to include all the diverse scenarios and microenvironments where biofilms are formed. With this new expanded, inclusive model, we hereby introduce a common platform for developing an understanding of biofilms and anti-biofilm strategies that can be tailored to the microenvironment under investigation.Bacterial biofilms are often defined as communities of surface-attached bacteria and are typically depicted with a classic mushroom-shaped structure characteristic of Pseudomonas aeruginosa. However, it has become evident that this is not how all biofilms develop, especially in vivo, in clinical and industrial settings, and in the environment, where biofilms often are observed as non-surface-attached aggregates. In this Review, we describe the origin of the current five-step biofilm development model and why it fails to capture many aspects of bacterial biofilm physiology. We aim to present a simplistic developmental model for biofilm formation that is flexible enough to include all the diverse scenarios and microenvironments where biofilms are formed. With this new expanded, inclusive model, we hereby introduce a common platform for developing an understanding of biofilms and anti-biofilm strategies that can be tailored to the microenvironment under investigation.
Author Bjarnsholt, Thomas
Stoodley, Paul
Goeres, Darla M.
Stewart, Philip S.
Sauer, Karin
Burmølle, Mette
Hall-Stoodley, Luanne
AuthorAffiliation 1. Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
6. National Biofilm Innovation Centre (NBIC) and National Centre for Advanced Tribology at Southampton (nCATS), Mechanical Engineering, University of Southampton, Southampton, UK
3. Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
7. Department of Chemical and Biological Engineering and Center for Biofilm Engineering, Montana State University
5. Department of Microbiology, The Ohio State University, Columbus, OH, USA
4. Department of Orthopaedics, The Ohio State University, Columbus, OH, USA
2. Binghamton Biofilm Research Center, Binghamton University, Binghamton, New York, USA
8. Department of Microbiology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
9. Department of Immunology and Microbiology, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
10. Department of Clinical Microbiology, Rigshospitalet, Copenhag
AuthorAffiliation_xml – name: 1. Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
– name: 2. Binghamton Biofilm Research Center, Binghamton University, Binghamton, New York, USA
– name: 5. Department of Microbiology, The Ohio State University, Columbus, OH, USA
– name: 7. Department of Chemical and Biological Engineering and Center for Biofilm Engineering, Montana State University
– name: 3. Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
– name: 8. Department of Microbiology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
– name: 6. National Biofilm Innovation Centre (NBIC) and National Centre for Advanced Tribology at Southampton (nCATS), Mechanical Engineering, University of Southampton, Southampton, UK
– name: 4. Department of Orthopaedics, The Ohio State University, Columbus, OH, USA
– name: 10. Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
– name: 9. Department of Immunology and Microbiology, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
Author_xml – sequence: 1
  givenname: Karin
  orcidid: 0000-0002-1177-6328
  surname: Sauer
  fullname: Sauer, Karin
  organization: Department of Biological Sciences, Binghamton University, Binghamton Biofilm Research Center, Binghamton University
– sequence: 2
  givenname: Paul
  orcidid: 0000-0001-6069-273X
  surname: Stoodley
  fullname: Stoodley, Paul
  organization: Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Department of Orthopaedics, The Ohio State University, Department of Microbiology, The Ohio State University, National Biofilm Innovation Centre (NBIC) and National Centre for Advanced Tribology at Southampton (nCATS), Mechanical Engineering, University of Southampton
– sequence: 3
  givenname: Darla M.
  orcidid: 0000-0002-6320-9616
  surname: Goeres
  fullname: Goeres, Darla M.
  organization: Department of Chemical and Biological Engineering and Center for Biofilm Engineering, Montana State University
– sequence: 4
  givenname: Luanne
  orcidid: 0000-0003-2531-4797
  surname: Hall-Stoodley
  fullname: Hall-Stoodley, Luanne
  organization: Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University
– sequence: 5
  givenname: Mette
  orcidid: 0000-0003-1870-632X
  surname: Burmølle
  fullname: Burmølle, Mette
  organization: Department of Biology, Faculty of Science, University of Copenhagen
– sequence: 6
  givenname: Philip S.
  orcidid: 0000-0001-7773-8570
  surname: Stewart
  fullname: Stewart, Philip S.
  organization: Department of Chemical and Biological Engineering and Center for Biofilm Engineering, Montana State University
– sequence: 7
  givenname: Thomas
  orcidid: 0000-0002-8003-7414
  surname: Bjarnsholt
  fullname: Bjarnsholt, Thomas
  email: tbjarnsholt@sund.ku.dk
  organization: Department of Immunology and Microbiology, Faculty of Health and Medical Science, University of Copenhagen, Department of Clinical Microbiology, Rigshospitalet
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35922483$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1TAQhS1URH_gBVigSGzYBGZsJ45ZIKGKAqISm7K2HGdy68qxL3GC6Nvj9rYX6KLe2JK_c3RmzjE7iCkSYy8R3iKI7l2W2ChdA-c1gGpVDU_YESoJNTZCHuzfvD1kxzlfAfCmUfwZOxSN5lx24oh9u7ikqvdp9GGqgh-pctcu0PuKfm9tHHzcVEshXIqOtstqQzWlgUKVxr1qTPNkF5_ic_Z0tCHTi7v7hP04-3Rx-qU-__756-nH89pJJZd66LC1WE6vuQbsh95iZ6WUMFghgAYQg2r6BkYQtpMoOuwJkITgCG2jxQn7sPPdrv1Eg6O4zDaY7ewnO1-bZL35_yf6S7NJv4wubmUzxeDNncGcfq6UFzP57CgEGymt2fBWdy3XSmFBXz9Ar9I6xzKe4QolR41CFOrVv4n2Ue73XIBuB7g55TzTaJxfbpdWAvpgEMxNpWZXqSmVmttKDRQpfyC9d39UJHaiXOC4oflv7EdUfwAPEbIU
CitedBy_id crossref_primary_10_1016_j_ijbiomac_2024_130747
crossref_primary_10_1016_j_watcyc_2025_06_003
crossref_primary_10_1016_j_micpath_2024_106856
crossref_primary_10_1093_lambio_ovae012
crossref_primary_10_1016_j_pmatsci_2024_101384
crossref_primary_10_3390_microorganisms11061568
crossref_primary_10_3390_futurepharmacol5030035
crossref_primary_10_3390_antibiotics14050432
crossref_primary_10_1016_j_bioelechem_2025_108980
crossref_primary_10_1016_j_micpath_2024_106738
crossref_primary_10_3390_v15010196
crossref_primary_10_1016_j_mex_2025_103630
crossref_primary_10_1016_j_cej_2025_161878
crossref_primary_10_1016_j_scitotenv_2023_167469
crossref_primary_10_1016_j_coelec_2024_101486
crossref_primary_10_1016_j_envres_2025_122610
crossref_primary_10_1016_j_mimet_2024_106927
crossref_primary_10_1021_acsestwater_5c00504
crossref_primary_10_1080_17460913_2025_2457286
crossref_primary_10_3390_microorganisms13071554
crossref_primary_10_1038_s41579_023_00905_2
crossref_primary_10_1073_pnas_2312276120
crossref_primary_10_1002_admi_202400660
crossref_primary_10_1016_j_foodres_2025_115762
crossref_primary_10_12677_acm_2025_1541289
crossref_primary_10_1038_s41467_024_51940_3
crossref_primary_10_1007_s11356_023_31752_6
crossref_primary_10_1016_j_envres_2023_115894
crossref_primary_10_1016_j_apsusc_2023_156681
crossref_primary_10_1016_j_aca_2024_343022
crossref_primary_10_3390_bios13070695
crossref_primary_10_1016_j_copbio_2023_102969
crossref_primary_10_1016_j_enceco_2025_03_006
crossref_primary_10_1128_jb_00006_24
crossref_primary_10_1016_j_cej_2025_161527
crossref_primary_10_1016_j_ijbiomac_2024_138579
crossref_primary_10_1016_j_watres_2025_124374
crossref_primary_10_1007_s10811_024_03339_2
crossref_primary_10_1134_S002626172460650X
crossref_primary_10_3390_antibiotics13080688
crossref_primary_10_1038_s41396_023_01494_x
crossref_primary_10_1016_j_apmt_2024_102138
crossref_primary_10_1016_j_softx_2024_102011
crossref_primary_10_1016_j_surfin_2025_106222
crossref_primary_10_1002_advs_202413197
crossref_primary_10_2174_0115734137301010240507101533
crossref_primary_10_1021_acsomega_5c01534
crossref_primary_10_3390_fermentation10120661
crossref_primary_10_1038_s41522_023_00428_x
crossref_primary_10_3390_ijms252212116
crossref_primary_10_1002_adhm_202403300
crossref_primary_10_1007_s00430_024_00799_8
crossref_primary_10_3390_microorganisms10091788
crossref_primary_10_1016_j_mattod_2023_06_006
crossref_primary_10_1080_17435889_2025_2459049
crossref_primary_10_3390_pathogens13040320
crossref_primary_10_3390_genes16050485
crossref_primary_10_1016_j_jes_2025_03_052
crossref_primary_10_32350_bsr_72_04
crossref_primary_10_3390_molecules30092031
crossref_primary_10_3389_fvets_2024_1353551
crossref_primary_10_1103_PhysRevE_111_024410
crossref_primary_10_1039_D3BM01584J
crossref_primary_10_3390_antibiotics12071164
crossref_primary_10_1016_j_chom_2025_07_009
crossref_primary_10_1016_j_micpath_2024_106989
crossref_primary_10_3390_diagnostics14192116
crossref_primary_10_1016_j_corsci_2025_113211
crossref_primary_10_1128_jb_00018_23
crossref_primary_10_1002_mlf2_70024
crossref_primary_10_1016_j_micpath_2024_106866
crossref_primary_10_3390_ijms252111684
crossref_primary_10_3389_fvets_2024_1514952
crossref_primary_10_3389_fmicb_2025_1612534
crossref_primary_10_1016_j_seppur_2025_132344
crossref_primary_10_1016_j_resmic_2025_104296
crossref_primary_10_3390_antibiotics13070621
crossref_primary_10_1016_j_micres_2025_128199
crossref_primary_10_1016_j_cej_2025_159782
crossref_primary_10_1016_j_ejbt_2023_12_001
crossref_primary_10_3168_jds_2023_23306
crossref_primary_10_1080_08927014_2025_2515922
crossref_primary_10_1002_cbdv_202400408
crossref_primary_10_1038_s41522_025_00782_y
crossref_primary_10_3390_ijms26188929
crossref_primary_10_1007_s00044_025_03471_9
crossref_primary_10_1016_j_biortech_2024_131375
crossref_primary_10_1016_j_cell_2023_09_016
crossref_primary_10_3389_fimmu_2025_1491777
crossref_primary_10_1007_s11157_025_09742_6
crossref_primary_10_1016_j_lwt_2024_116163
crossref_primary_10_1080_08927014_2023_2265817
crossref_primary_10_1016_j_jece_2024_113862
crossref_primary_10_1038_s42003_024_06698_1
crossref_primary_10_4103_MJBL_MJBL_353_24
crossref_primary_10_1016_j_ecolind_2024_112452
crossref_primary_10_3390_microorganisms11122965
crossref_primary_10_1002_mlf2_70031
crossref_primary_10_1128_spectrum_00690_23
crossref_primary_10_1016_j_jece_2025_119203
crossref_primary_10_1007_s00203_023_03802_7
crossref_primary_10_1002_mabi_202300489
crossref_primary_10_1002_bit_28624
crossref_primary_10_1186_s12866_025_04210_1
crossref_primary_10_22207_JPAM_19_2_31
crossref_primary_10_3390_ijms241914500
crossref_primary_10_1038_s41467_025_60935_7
crossref_primary_10_1093_lambio_ovad119
crossref_primary_10_1021_acs_jpcb_4c08666
crossref_primary_10_3390_molecules30132710
crossref_primary_10_1007_s12088_025_01501_z
crossref_primary_10_3748_wjg_v29_i10_1445
crossref_primary_10_1016_j_colsurfb_2023_113727
crossref_primary_10_3390_microorganisms12122650
crossref_primary_10_1016_j_foodcont_2024_110734
crossref_primary_10_1016_j_compgeo_2024_106700
crossref_primary_10_1186_s12903_024_04230_9
crossref_primary_10_3390_microorganisms12122404
crossref_primary_10_1016_j_fm_2024_104687
crossref_primary_10_1038_s41598_023_41323_x
crossref_primary_10_1038_s41467_025_60567_x
crossref_primary_10_3389_fcimb_2024_1507332
crossref_primary_10_1002_anie_202414259
crossref_primary_10_1016_j_fpsl_2025_101473
crossref_primary_10_3390_w17152277
crossref_primary_10_1016_j_eti_2023_103521
crossref_primary_10_1016_j_xcrp_2025_102500
crossref_primary_10_1016_j_jece_2025_119215
crossref_primary_10_1080_14787210_2025_2536837
crossref_primary_10_1016_j_semcdb_2022_12_002
crossref_primary_10_3390_microorganisms11061533
crossref_primary_10_1002_adfm_202400998
crossref_primary_10_31083_j_fbl2904133
crossref_primary_10_3390_microorganisms12101966
crossref_primary_10_3390_cancers16172997
crossref_primary_10_1116_6_0003996
crossref_primary_10_1016_j_foodres_2025_115831
crossref_primary_10_1038_s41529_023_00370_5
crossref_primary_10_3390_antibiotics12040754
crossref_primary_10_1016_j_seh_2023_100002
crossref_primary_10_1038_s41522_023_00385_5
crossref_primary_10_1016_j_crfs_2025_101164
crossref_primary_10_1080_08927014_2023_2284316
crossref_primary_10_1016_j_micpath_2024_106834
crossref_primary_10_1016_j_ymeth_2024_01_014
crossref_primary_10_1007_s43630_024_00586_7
crossref_primary_10_1021_acsami_4c21252
crossref_primary_10_1007_s11426_024_2411_7
crossref_primary_10_1016_j_microb_2025_100356
crossref_primary_10_1016_j_mtbio_2025_102191
crossref_primary_10_1007_s13369_024_08832_x
crossref_primary_10_1007_s13205_025_04252_2
crossref_primary_10_1126_sciadv_adt8213
crossref_primary_10_1007_s42770_025_01640_x
crossref_primary_10_1016_j_eurpolymj_2022_111638
crossref_primary_10_1016_j_foodchem_2024_138373
crossref_primary_10_1128_iai_00512_24
crossref_primary_10_1093_ismejo_wraf065
crossref_primary_10_1016_j_jconrel_2023_01_003
crossref_primary_10_3748_wjg_v29_i10_1589
crossref_primary_10_21597_jist_1295306
crossref_primary_10_3390_nano13050904
crossref_primary_10_1016_j_jenvman_2025_124192
crossref_primary_10_1016_j_micres_2024_127859
crossref_primary_10_1021_acsami_5c06672
crossref_primary_10_1093_jac_dkae382
crossref_primary_10_1002_ps_8453
crossref_primary_10_1002_cbic_202500425
crossref_primary_10_1128_mmbr_00097_23
crossref_primary_10_1016_j_it_2023_12_004
crossref_primary_10_1002_adhm_202501162
crossref_primary_10_1002_adhm_202403597
crossref_primary_10_3390_biom13091367
crossref_primary_10_1016_j_envpol_2023_121196
crossref_primary_10_1038_s41522_024_00492_x
crossref_primary_10_3390_pharmaceutics16111350
crossref_primary_10_1016_j_ijbiomac_2024_137786
crossref_primary_10_3390_ijms24108709
crossref_primary_10_3892_br_2025_1973
crossref_primary_10_1002_ange_202414259
crossref_primary_10_1093_jambio_lxae231
crossref_primary_10_1016_j_jconrel_2025_113618
crossref_primary_10_1016_j_oneear_2024_11_004
crossref_primary_10_1016_j_biomaterials_2024_122690
crossref_primary_10_1016_j_envpol_2023_123285
crossref_primary_10_1016_j_tim_2023_06_005
crossref_primary_10_3390_antibiotics12050896
crossref_primary_10_1016_j_biortech_2024_130527
crossref_primary_10_1002_adfm_202425467
crossref_primary_10_3389_fmicb_2023_1331363
crossref_primary_10_1016_j_envsoft_2025_106396
crossref_primary_10_1084_jem_20221086
crossref_primary_10_1002_anie_202319966
crossref_primary_10_1002_adma_202506119
crossref_primary_10_1016_j_colcom_2023_100717
crossref_primary_10_1016_j_jwpe_2024_105642
crossref_primary_10_1016_j_microb_2024_100175
crossref_primary_10_1002_adfm_202414687
crossref_primary_10_1134_S0018143923080039
crossref_primary_10_1093_ismejo_wraf160
crossref_primary_10_1016_j_gca_2024_05_003
crossref_primary_10_1016_j_carbpol_2024_122726
crossref_primary_10_3389_fmicb_2025_1532151
crossref_primary_10_1016_j_ejmech_2024_116675
crossref_primary_10_1016_j_jcis_2025_138628
crossref_primary_10_3389_fmicb_2023_1287680
crossref_primary_10_3390_app142110008
crossref_primary_10_3390_microorganisms11030664
crossref_primary_10_3390_foods14071266
crossref_primary_10_1016_j_jece_2024_112284
crossref_primary_10_3390_microorganisms12061249
crossref_primary_10_1038_s44259_024_00046_3
crossref_primary_10_1111_apm_13356
crossref_primary_10_1007_s00784_023_05454_9
crossref_primary_10_5826_mrm_2025_1018
crossref_primary_10_1080_10408398_2024_2400593
crossref_primary_10_3390_polym16172409
crossref_primary_10_1016_j_meatsci_2025_109902
crossref_primary_10_1128_jb_00152_23
crossref_primary_10_3390_antibiotics12081264
crossref_primary_10_1038_s41522_022_00346_4
crossref_primary_10_1002_adma_202307680
crossref_primary_10_1016_j_micpath_2025_107277
crossref_primary_10_1371_journal_pgen_1011243
crossref_primary_10_1002_advs_202206153
crossref_primary_10_1016_j_microb_2025_100436
crossref_primary_10_3390_ijms24044030
crossref_primary_10_1128_mmbr_00138_24
crossref_primary_10_1016_j_actbio_2023_08_038
crossref_primary_10_1371_journal_pone_0304491
crossref_primary_10_1016_j_advwatres_2024_104877
crossref_primary_10_1016_j_lssr_2025_01_002
crossref_primary_10_1016_j_bioflm_2024_100249
crossref_primary_10_1016_j_heliyon_2024_e32766
crossref_primary_10_3390_antibiotics12081260
crossref_primary_10_3390_gels11080567
crossref_primary_10_1016_j_bioflm_2024_100245
crossref_primary_10_1016_j_micres_2024_127656
crossref_primary_10_1039_D5TB01036E
crossref_primary_10_1186_s40168_024_01762_8
crossref_primary_10_1002_ps_8525
crossref_primary_10_2217_nnm_2023_0243
crossref_primary_10_3390_antibiotics12040747
crossref_primary_10_1016_j_hazadv_2025_100896
crossref_primary_10_3390_biomedicines12102291
crossref_primary_10_3390_pharmaceutics16081075
crossref_primary_10_1002_anie_202510900
crossref_primary_10_1186_s13068_025_02644_3
crossref_primary_10_1038_s41522_023_00397_1
crossref_primary_10_1093_burnst_tkae041
crossref_primary_10_1177_15347346231206449
crossref_primary_10_1111_apm_13455
crossref_primary_10_3390_antibiotics14050503
crossref_primary_10_3390_antibiotics13020184
crossref_primary_10_3390_foods12244495
crossref_primary_10_3390_nano14201644
crossref_primary_10_1080_10889868_2024_2420071
crossref_primary_10_1016_j_drudis_2023_103673
crossref_primary_10_3390_microorganisms12040783
crossref_primary_10_3390_microorganisms12040784
crossref_primary_10_1016_j_microb_2025_100321
crossref_primary_10_1016_j_isci_2025_112063
crossref_primary_10_1007_s10517_024_06174_0
crossref_primary_10_1016_j_bioflm_2025_100307
crossref_primary_10_1007_s00249_025_01784_6
crossref_primary_10_3390_foods12203863
crossref_primary_10_1016_j_cej_2025_166919
crossref_primary_10_1016_j_bioadv_2024_214126
crossref_primary_10_1093_femsmc_xtae030
crossref_primary_10_1186_s13020_025_01147_5
crossref_primary_10_3389_fmicb_2024_1450682
crossref_primary_10_3390_ijms26188767
crossref_primary_10_1016_j_ocl_2023_10_001
crossref_primary_10_1007_s00203_025_04394_0
crossref_primary_10_3390_ijms242417242
crossref_primary_10_1128_jb_00077_25
crossref_primary_10_1002_ardp_70049
crossref_primary_10_3390_pr12122856
crossref_primary_10_1016_j_bioflm_2025_100312
crossref_primary_10_3390_ijms24119475
crossref_primary_10_1016_j_matt_2025_101961
crossref_primary_10_1080_14656566_2025_2519692
crossref_primary_10_3168_jds_2024_25554
crossref_primary_10_1002_adma_202411092
crossref_primary_10_1007_s11426_024_2013_y
crossref_primary_10_1016_j_cbpa_2023_102418
crossref_primary_10_1128_msphere_01092_24
crossref_primary_10_1002_advs_202307048
crossref_primary_10_3390_ijms231810778
crossref_primary_10_1002_adma_202404411
crossref_primary_10_1128_aac_01858_24
crossref_primary_10_1134_S0026261724606560
crossref_primary_10_1139_cjm_2025_0051
crossref_primary_10_1073_pnas_2319903121
crossref_primary_10_1177_03635465231181649
crossref_primary_10_1016_j_lwt_2024_115805
crossref_primary_10_1016_j_watres_2025_124209
crossref_primary_10_1016_j_aquaculture_2025_742878
crossref_primary_10_1021_acs_biomac_5c00407
crossref_primary_10_1038_s41579_024_01098_y
crossref_primary_10_3390_app13179854
crossref_primary_10_1039_D3FO00152K
crossref_primary_10_1016_j_tibtech_2024_08_005
crossref_primary_10_1016_j_actbio_2024_02_029
crossref_primary_10_1134_S0026261725601083
crossref_primary_10_1007_s00203_024_04157_3
crossref_primary_10_1016_j_anaerobe_2024_102873
crossref_primary_10_1002_advs_202301694
crossref_primary_10_1080_14787210_2025_2538614
crossref_primary_10_1016_j_aca_2023_341227
crossref_primary_10_3390_biom14081018
crossref_primary_10_1016_j_cell_2024_03_001
crossref_primary_10_1080_1040841X_2025_2510247
crossref_primary_10_1016_j_scitotenv_2023_169838
crossref_primary_10_1016_j_fbio_2025_107352
crossref_primary_10_1016_j_mimet_2024_106956
crossref_primary_10_3390_microorganisms11051331
crossref_primary_10_3390_microorganisms11030692
crossref_primary_10_1002_adma_202311855
crossref_primary_10_1016_j_mtbio_2025_101724
crossref_primary_10_1002_smll_202206220
crossref_primary_10_1016_j_cossms_2025_101222
crossref_primary_10_1002_adma_202411194
crossref_primary_10_1016_j_ijbiomac_2025_146973
crossref_primary_10_1007_s11259_023_10180_4
crossref_primary_10_1128_jb_00210_24
crossref_primary_10_1080_0972060X_2024_2318339
crossref_primary_10_1016_j_watres_2023_120985
crossref_primary_10_1089_mdr_2025_0006
crossref_primary_10_1038_s41579_024_01086_2
crossref_primary_10_1016_j_porgcoat_2024_108699
crossref_primary_10_1016_j_jfp_2025_100619
crossref_primary_10_1139_cjm_2023_0096
crossref_primary_10_3389_fcimb_2023_1335389
crossref_primary_10_1002_smll_202409824
crossref_primary_10_1093_ismejo_wrae135
crossref_primary_10_1002_adma_202309797
crossref_primary_10_1016_j_microb_2025_100508
crossref_primary_10_3390_jof9090900
crossref_primary_10_1002_anbr_202400013
crossref_primary_10_1093_ismeco_ycaf004
crossref_primary_10_1016_j_jare_2024_06_008
crossref_primary_10_1021_acsaenm_5c00179
crossref_primary_10_1016_j_fitote_2023_105508
crossref_primary_10_1134_S0026261723604281
crossref_primary_10_1016_j_fbio_2025_106040
crossref_primary_10_1016_j_biomaterials_2024_122739
crossref_primary_10_1146_annurev_genet_111523_102459
crossref_primary_10_1038_s44320_024_00056_3
crossref_primary_10_1016_j_injury_2024_111638
crossref_primary_10_1016_j_scitotenv_2023_165695
crossref_primary_10_3390_antibiotics13100919
crossref_primary_10_1007_s10068_023_01415_w
crossref_primary_10_3390_pathogens13050393
crossref_primary_10_1016_j_watres_2025_123142
crossref_primary_10_1016_j_biotechadv_2023_108170
crossref_primary_10_1016_j_micpath_2025_107373
crossref_primary_10_1111_1462_2920_16698
crossref_primary_10_1099_jmm_0_002047
crossref_primary_10_1016_j_envpol_2025_126952
crossref_primary_10_1016_j_jvs_2024_04_015
crossref_primary_10_1073_pnas_2423574122
crossref_primary_10_1016_j_micpath_2025_107426
crossref_primary_10_1038_s41589_024_01708_z
crossref_primary_10_52575_2687_0940_2023_46_3_274_285
crossref_primary_10_1080_21505594_2023_2289775
crossref_primary_10_3389_fcimb_2023_1195803
crossref_primary_10_3390_pharmaceutics15061633
crossref_primary_10_1080_13543776_2024_2338101
crossref_primary_10_1007_s00430_025_00854_y
crossref_primary_10_1016_j_mib_2024_102537
crossref_primary_10_1093_femsec_fiae035
crossref_primary_10_1016_j_bioflm_2025_100264
crossref_primary_10_1016_j_jconrel_2024_01_061
crossref_primary_10_1002_bip_70029
crossref_primary_10_1038_s41579_023_00920_3
crossref_primary_10_1016_j_ijbiomac_2025_140022
crossref_primary_10_1007_s00248_023_02185_y
crossref_primary_10_1016_j_coemr_2024_100537
crossref_primary_10_1002_adma_202301623
crossref_primary_10_1016_j_ijbiomac_2024_132115
crossref_primary_10_1016_j_jsbmb_2024_106654
crossref_primary_10_1111_1471_0307_13169
crossref_primary_10_3390_agronomy14092135
crossref_primary_10_1016_j_saa_2023_123391
crossref_primary_10_1080_10408398_2024_2354524
crossref_primary_10_7717_peerj_19149
crossref_primary_10_1039_D2BM01783K
crossref_primary_10_1016_j_pt_2024_08_001
crossref_primary_10_1128_aem_00821_25
crossref_primary_10_1016_j_ijfoodmicro_2024_110587
crossref_primary_10_1038_s41598_022_24431_y
crossref_primary_10_1007_s11051_024_05971_y
crossref_primary_10_1007_s11814_024_00340_w
crossref_primary_10_1111_mpp_70107
crossref_primary_10_1099_mic_0_001407
crossref_primary_10_1016_j_tibtech_2024_03_009
crossref_primary_10_1016_j_colsurfb_2023_113584
crossref_primary_10_1007_s10989_024_10606_w
crossref_primary_10_1128_cmr_00024_23
crossref_primary_10_3390_v16121816
crossref_primary_10_3390_pathogens12111319
crossref_primary_10_1073_pnas_2403842121
crossref_primary_10_1016_j_vibspec_2025_103846
crossref_primary_10_1089_phage_2024_0029
crossref_primary_10_1371_journal_pgen_1011870
crossref_primary_10_1007_s40588_022_00187_x
crossref_primary_10_1038_s42003_024_06978_w
crossref_primary_10_1139_cjm_2024_0155
crossref_primary_10_1016_j_cofs_2024_101124
crossref_primary_10_1016_j_matchemphys_2024_129507
crossref_primary_10_1021_acs_jmedchem_5c01258
crossref_primary_10_2166_wst_2023_214
crossref_primary_10_1016_j_scitotenv_2024_178184
crossref_primary_10_1038_s41579_022_00785_y
crossref_primary_10_1016_j_tim_2025_04_014
crossref_primary_10_1007_s11426_023_1825_7
crossref_primary_10_1016_j_micpath_2025_107577
crossref_primary_10_1016_j_bioflm_2025_100270
crossref_primary_10_1016_j_micpath_2025_107331
crossref_primary_10_1021_acselectrochem_5c00244
crossref_primary_10_1038_s41522_024_00573_x
crossref_primary_10_3390_ijms24098138
crossref_primary_10_1007_s00253_023_12955_w
crossref_primary_10_1021_acsnano_4c15743
crossref_primary_10_1002_adma_202411468
crossref_primary_10_5435_JAAOS_D_24_00471
crossref_primary_10_1038_s41467_024_48295_0
crossref_primary_10_3390_ijms241411680
crossref_primary_10_1016_j_jconrel_2024_10_064
crossref_primary_10_1128_aem_00651_23
crossref_primary_10_3390_antibiotics14020146
crossref_primary_10_1002_adfm_202413036
crossref_primary_10_1016_j_colsurfb_2025_114811
crossref_primary_10_1016_j_ejmech_2024_117163
crossref_primary_10_3390_microorganisms11081934
crossref_primary_10_1007_s11259_024_10308_0
crossref_primary_10_1016_j_surfcoat_2023_129497
crossref_primary_10_1128_spectrum_02303_23
crossref_primary_10_1016_j_foodres_2025_117348
crossref_primary_10_1038_s41467_025_60570_2
crossref_primary_10_1016_j_jece_2023_111718
crossref_primary_10_1016_j_scitotenv_2025_180124
crossref_primary_10_1038_s41598_025_08879_2
crossref_primary_10_1109_MIM_2024_10622088
crossref_primary_10_3390_jof9111078
crossref_primary_10_1016_j_micpath_2024_107103
crossref_primary_10_1016_j_ijbiomac_2025_141430
crossref_primary_10_1016_j_crmicr_2025_100434
crossref_primary_10_1007_s00284_025_04345_4
crossref_primary_10_1016_j_jwpe_2025_107614
crossref_primary_10_1002_jobm_70070
crossref_primary_10_3390_idr17030064
crossref_primary_10_1016_j_micpath_2025_107876
crossref_primary_10_1002_mba2_56
crossref_primary_10_1016_j_jddst_2025_107330
crossref_primary_10_1080_10408398_2023_2279687
crossref_primary_10_1128_jb_00503_24
crossref_primary_10_1111_apm_13310
crossref_primary_10_1038_s41567_024_02572_3
crossref_primary_10_1039_D3BM00730H
crossref_primary_10_1128_aac_01641_22
crossref_primary_10_1128_mbio_01196_25
crossref_primary_10_1016_j_tifs_2025_105218
crossref_primary_10_5937_scriptamed56_57135
crossref_primary_10_1016_j_vetmic_2025_110724
crossref_primary_10_1016_j_cej_2025_162255
crossref_primary_10_1016_j_foodcont_2025_111319
crossref_primary_10_1080_00405000_2024_2332851
crossref_primary_10_1128_aem_00697_24
crossref_primary_10_1371_journal_pone_0310010
crossref_primary_10_1080_08927014_2025_2507893
crossref_primary_10_1186_s40643_024_00832_x
crossref_primary_10_3390_molecules30061387
crossref_primary_10_7759_cureus_70629
crossref_primary_10_1038_s41579_025_01147_0
crossref_primary_10_1038_s41598_025_95822_0
crossref_primary_10_3390_biomedicines11020413
crossref_primary_10_1099_mic_0_001569
crossref_primary_10_1038_s41522_025_00655_4
crossref_primary_10_1016_j_bioactmat_2024_08_031
crossref_primary_10_1128_aem_00663_24
crossref_primary_10_1016_j_jwpe_2024_106350
crossref_primary_10_3389_fcimb_2025_1533658
crossref_primary_10_1099_mic_0_001449
crossref_primary_10_1038_s44341_025_00019_1
crossref_primary_10_1128_cmr_00104_23
crossref_primary_10_1016_j_biotechadv_2024_108505
crossref_primary_10_3389_fcimb_2025_1610625
crossref_primary_10_1016_j_bioactmat_2025_05_029
crossref_primary_10_1016_j_aquaculture_2025_742258
crossref_primary_10_1016_j_molstruc_2024_140941
crossref_primary_10_3390_antibiotics14020111
crossref_primary_10_1007_s10570_024_05801_3
crossref_primary_10_1002_ange_202319966
crossref_primary_10_25092_baunfbed_1527387
crossref_primary_10_3390_bios14060302
crossref_primary_10_1038_s41522_024_00601_w
crossref_primary_10_1016_j_scitotenv_2025_180226
crossref_primary_10_1038_s41522_025_00666_1
crossref_primary_10_1016_j_bioactmat_2023_06_017
crossref_primary_10_1016_j_cub_2024_07_078
crossref_primary_10_1093_milmed_usaf340
crossref_primary_10_3390_foods12071503
crossref_primary_10_1128_msystems_01045_23
crossref_primary_10_1002_adtp_202300217
crossref_primary_10_1016_j_biomaterials_2024_122578
crossref_primary_10_3389_fmicb_2024_1386830
crossref_primary_10_1016_j_micpath_2025_107650
crossref_primary_10_1371_journal_pone_0297692
crossref_primary_10_3390_ijms25063402
crossref_primary_10_3390_microorganisms12050892
crossref_primary_10_1016_j_cels_2025_101352
crossref_primary_10_1016_j_ijfoodmicro_2024_110630
crossref_primary_10_1016_j_bioelechem_2023_108587
crossref_primary_10_1002_adfm_202422753
crossref_primary_10_1016_j_apsoil_2025_106213
crossref_primary_10_3390_ijms26189193
crossref_primary_10_3390_ph17030386
crossref_primary_10_3390_ijms26052181
crossref_primary_10_1016_j_mimet_2023_106808
crossref_primary_10_3390_bioengineering12020148
crossref_primary_10_1146_annurev_chembioeng_100522_110939
crossref_primary_10_1002_jor_25822
crossref_primary_10_1002_wnan_1944
crossref_primary_10_1128_iai_00072_23
crossref_primary_10_1126_science_adl1102
crossref_primary_10_1146_annurev_micro_041522_101729
crossref_primary_10_1016_j_colsurfb_2024_114330
crossref_primary_10_1186_s12951_024_02974_8
crossref_primary_10_1002_pro_70294
crossref_primary_10_1016_j_fsi_2025_110576
crossref_primary_10_1038_s41579_023_00985_0
crossref_primary_10_1140_epje_s10189_024_00450_7
crossref_primary_10_1016_j_ailsci_2025_100137
crossref_primary_10_1016_j_corsci_2024_112005
crossref_primary_10_1016_j_jconrel_2025_114204
crossref_primary_10_1038_s41467_024_50116_3
crossref_primary_10_1128_aem_01548_23
crossref_primary_10_33878_2073_7556_2025_24_3_95_105
crossref_primary_10_1016_j_fbio_2024_103580
crossref_primary_10_1016_j_micres_2024_128034
crossref_primary_10_1007_s11431_024_2721_5
crossref_primary_10_1016_j_jece_2023_111377
crossref_primary_10_1016_j_injury_2025_112165
crossref_primary_10_1360_TB_2024_1090
crossref_primary_10_1128_aem_01914_24
crossref_primary_10_3390_antibiotics12020328
crossref_primary_10_3390_microorganisms13020234
crossref_primary_10_3390_ijms24010597
crossref_primary_10_1016_j_nantod_2023_102123
crossref_primary_10_1186_s12934_024_02636_2
crossref_primary_10_1159_000540991
crossref_primary_10_1016_j_jmst_2023_07_001
crossref_primary_10_3390_microorganisms11071765
crossref_primary_10_1016_j_micpath_2023_106182
crossref_primary_10_3390_microorganisms11071768
crossref_primary_10_1016_j_jhazmat_2024_135902
crossref_primary_10_1002_bmm2_70014
crossref_primary_10_3390_microorganisms13081850
crossref_primary_10_1016_j_mam_2025_101351
crossref_primary_10_1093_femsre_fuad050
crossref_primary_10_1016_j_envpol_2023_122896
crossref_primary_10_1016_j_micres_2025_128102
crossref_primary_10_1002_wnan_1968
crossref_primary_10_1016_j_micres_2025_128341
crossref_primary_10_1093_pnasnexus_pgae238
crossref_primary_10_1116_6_0003883
crossref_primary_10_1007_s41779_025_01175_2
crossref_primary_10_1111_jocd_16524
crossref_primary_10_1016_j_compbiolchem_2025_108596
crossref_primary_10_3389_fvets_2023_1248584
crossref_primary_10_1128_mbio_00872_25
crossref_primary_10_3390_antibiotics12020334
crossref_primary_10_1371_journal_pcbi_1011807
crossref_primary_10_1007_s10853_025_10983_7
crossref_primary_10_1021_acsnano_4c16606
crossref_primary_10_1038_s41598_024_60093_8
crossref_primary_10_3389_fcimb_2024_1336773
crossref_primary_10_36953_ECJ_29562934
crossref_primary_10_1021_acs_langmuir_5c03289
crossref_primary_10_1186_s40580_025_00488_z
crossref_primary_10_1016_j_ese_2025_100557
crossref_primary_10_1002_advs_202502063
crossref_primary_10_1080_10412905_2025_2550962
crossref_primary_10_31612_2616_4868_5_2025_05
crossref_primary_10_3389_fphy_2023_1239632
crossref_primary_10_3390_pathogens14060536
crossref_primary_10_1002_agt2_402
crossref_primary_10_1016_j_job_2025_100633
crossref_primary_10_1080_20002297_2023_2196897
crossref_primary_10_1016_j_bioelechem_2024_108731
crossref_primary_10_3389_fcimb_2023_1327069
crossref_primary_10_1007_s00253_024_13246_8
crossref_primary_10_3390_ijms24032733
crossref_primary_10_1093_femsre_fuad047
crossref_primary_10_1186_s43556_023_00164_w
crossref_primary_10_3389_fcimb_2022_1093692
crossref_primary_10_3390_antibiotics12020349
crossref_primary_10_1098_rsta_2024_0251
crossref_primary_10_3390_ijms25158351
crossref_primary_10_1016_j_jinorgbio_2023_112190
crossref_primary_10_1002_adma_202304991
crossref_primary_10_1016_j_apsb_2023_12_016
crossref_primary_10_1002_ange_202510900
crossref_primary_10_1098_rsta_2024_0253
crossref_primary_10_1016_j_ese_2025_100561
crossref_primary_10_3389_fcimb_2023_1237164
crossref_primary_10_1007_s44194_024_00039_4
crossref_primary_10_1073_pnas_2204466120
crossref_primary_10_1039_D5FO02121A
crossref_primary_10_1007_s11274_023_03584_6
crossref_primary_10_1038_s41522_023_00427_y
crossref_primary_10_1002_sstr_202200329
crossref_primary_10_1016_j_nantod_2024_102449
crossref_primary_10_1007_s00259_024_06997_z
crossref_primary_10_1016_j_biomaterials_2024_123060
crossref_primary_10_1038_s41522_025_00673_2
crossref_primary_10_3390_ijms232113494
crossref_primary_10_1002_adma_202505503
crossref_primary_10_1111_wrr_70005
crossref_primary_10_1016_j_rineng_2025_104331
crossref_primary_10_1016_j_seppur_2025_132979
crossref_primary_10_1080_1040841X_2025_2555937
crossref_primary_10_1080_13543776_2024_2367940
crossref_primary_10_2174_0115680266327984241018111547
crossref_primary_10_1016_j_actbio_2024_12_042
crossref_primary_10_1128_mmbr_00225_24
crossref_primary_10_1128_jb_00386_22
crossref_primary_10_1098_rsta_2024_0267
crossref_primary_10_1016_j_celrep_2024_115214
crossref_primary_10_1002_agt2_666
crossref_primary_10_1016_j_virusres_2023_199178
crossref_primary_10_1016_j_mtchem_2024_102377
crossref_primary_10_1093_femsre_fuad060
crossref_primary_10_1002_admi_202300324
crossref_primary_10_1016_j_mtchem_2024_102375
crossref_primary_10_1002_adfm_202405487
crossref_primary_10_1099_mic_0_001498
crossref_primary_10_1073_pnas_2315850121
crossref_primary_10_1016_j_scitotenv_2023_163968
crossref_primary_10_3390_ijms24087474
crossref_primary_10_3390_ijms25010421
crossref_primary_10_1007_s11756_024_01767_6
crossref_primary_10_1002_adhm_202400593
crossref_primary_10_1111_1758_2229_13182
crossref_primary_10_3390_antibiotics13040343
crossref_primary_10_3389_fcimb_2024_1426340
crossref_primary_10_1371_journal_ppat_1011453
crossref_primary_10_1128_jb_00365_23
crossref_primary_10_3390_microorganisms11092329
crossref_primary_10_3390_ijms252111773
crossref_primary_10_1016_j_theriogenology_2023_09_016
crossref_primary_10_1002_mabi_202500239
crossref_primary_10_1080_08927014_2023_2177538
crossref_primary_10_3389_fcimb_2022_1049347
crossref_primary_10_1016_j_jwpe_2024_106073
crossref_primary_10_1002_jobm_202400460
crossref_primary_10_1007_s12602_025_10542_1
crossref_primary_10_1007_s00203_024_04171_5
crossref_primary_10_1039_D3NR02010J
crossref_primary_10_1016_j_lwt_2025_117642
crossref_primary_10_1128_aem_01071_24
crossref_primary_10_1016_j_actbio_2025_07_029
crossref_primary_10_1021_acsabm_5c01274
crossref_primary_10_1016_j_jhazmat_2025_138689
crossref_primary_10_1016_j_nanoen_2024_109946
crossref_primary_10_1038_s42005_024_01866_5
crossref_primary_10_1128_jb_00166_23
crossref_primary_10_1016_j_colsurfb_2025_114556
crossref_primary_10_3390_ijms26104733
crossref_primary_10_1080_14712598_2024_2430623
crossref_primary_10_1039_D5MH00966A
crossref_primary_10_1038_s41579_025_01155_0
crossref_primary_10_1016_j_bioelechem_2024_108657
crossref_primary_10_1053_j_gastro_2024_04_032
crossref_primary_10_1007_s42773_024_00384_5
crossref_primary_10_1016_j_abs_2025_06_001
crossref_primary_10_1016_j_scitotenv_2025_178671
crossref_primary_10_3390_pharmaceutics16030396
crossref_primary_10_3389_fcimb_2023_1333773
crossref_primary_10_1016_j_drup_2023_101012
crossref_primary_10_1016_j_jmst_2023_09_016
crossref_primary_10_1080_10408398_2024_2312539
crossref_primary_10_1007_s11783_024_1896_0
crossref_primary_10_2217_nnm_2022_0239
crossref_primary_10_1007_s11356_024_35241_2
crossref_primary_10_1186_s12934_024_02637_1
crossref_primary_10_1016_j_desal_2025_118869
crossref_primary_10_1016_j_fbio_2025_106842
crossref_primary_10_1016_j_watres_2024_121462
crossref_primary_10_1016_j_bioactmat_2025_07_009
crossref_primary_10_1016_j_nantod_2023_102141
crossref_primary_10_1002_biot_202300074
crossref_primary_10_3390_microorganisms11071626
Cites_doi 10.1128/JCM.00688-18
10.1128/AEM.02264-17
10.1136/thoraxjnl-2021-217576
10.1007/s00374-015-0996-1
10.1111/apm.13163
10.3389/fmicb.2017.02649
10.1128/mBio.03579-20
10.3389/fmicb.2016.00796
10.1007/5584_2020_573
10.1126/science.abi4882
10.1128/mBio.02945-19
10.1183/13993003.00612-2017
10.1128/mBio.03042-19
10.1073/pnas.2003700117
10.1371/journal.ppat.1000052
10.1111/mmi.13634
10.1111/1462-2920.13883
10.1128/AEM.68.9.4457-4464.2002
10.1186/1471-2180-8-173
10.1111/j.1574-6941.2008.00465.x
10.1111/j.1745-4565.2005.00024.x
10.1111/wrr.12841
10.1038/s41522-020-00183-3
10.1007/s00430-020-00691-1
10.1128/AAC.48.4.1175-1187.2004
10.1038/nrmicro2960
10.1128/JB.00022-12
10.1038/nrmicro.2017.99
10.1111/j.1574-695X.2012.00968.x
10.1128/AAC.48.4.1168-1174.2004
10.1126/scisignal.aaw8905
10.1098/rstb.2019.0080
10.1016/j.mib.2016.01.004
10.1111/j.1365-2958.2011.07733.x
10.1038/nrmicro.2016.190
10.1073/pnas.1806005115
10.1128/JB.00305-11
10.1111/mec.14529
10.1046/j.1365-2958.1998.01062.x
10.1002/ppul.21011
10.1111/1462-2920.12483
10.7554/eLife.70794
10.1128/jb.184.4.1140-1154.2002
10.1128/JB.00585-07
10.1016/j.ejbt.2017.11.001
10.1146/annurev.mi.41.100187.002251
10.1128/JB.187.4.1441-1454.2005
10.3389/fmicb.2021.655873
10.1128/JB.00732-13
10.1098/rsob.180066
10.1002/jctb.6850
10.1002/jobm.201900569
10.1016/S1473-3099(21)00122-5
10.1007/978-1-4939-0467-9_1
10.1038/s41598-018-27504-z
10.1111/j.1524-475X.2007.00283.x
10.1111/bjd.15007
10.1371/journal.pone.0221012
10.1073/pnas.1217993109
10.1002/lno.11420
10.1073/pnas.1919099117
10.1016/j.watres.2017.09.054
10.1038/scientificamerican0178-86
10.1089/wound.2017.0770
10.1038/s41529-022-00234-4
10.1016/j.jmst.2018.02.023
10.1371/journal.ppat.1000668
10.1001/jama.296.2.202
10.1128/jb.46.1.39-56.1943
10.1016/j.tim.2012.10.008
10.1126/science.1181185
10.1046/j.1365-2958.2003.03877.x
10.1128/JB.185.3.699-700.2003
10.1111/j.1365-2958.2005.04941.x
10.1002/ppp3.10167
10.1111/mmi.13863
10.1001/jamadermatol.2017.0904
10.1128/JB.186.14.4486-4491.2004
10.1128/JCM.00501-08
10.1002/jor.23505
10.1128/AEM.00710-08
10.1016/j.tim.2008.11.001
10.1172/JCI0213870
10.1074/jbc.R115.711507
10.1038/35037627
10.1093/jac/dkp060
10.1046/j.1365-2958.2003.03432.x
10.1111/1462-2920.13719
10.1098/rsif.2012.0498
10.1016/j.devcel.2004.08.020
10.1128/mBio.00237-16
10.1016/j.sedgeo.2005.12.022
10.1016/0043-1354(73)90002-X
10.1007/BF01569978
10.1080/10643389.2020.1769433
10.1038/s41579-019-0158-9
10.1126/science.280.5361.295
10.1038/s41579-020-0385-0
10.5371/hp.2018.30.3.138
10.1038/s41598-021-84525-x
10.1046/j.1365-2958.2003.03525.x
10.1146/annurev.micro.56.012302.160705
10.1073/pnas.1717525115
10.1038/nrmicro1838
10.1074/jbc.M116.746743
10.1093/infdis/jiu514
10.1128/aem.59.4.1181-1186.1993
10.1128/MMBR.64.4.847-867.2000
10.1099/jmm.0.45969-0
10.1111/j.1462-2920.2008.01658.x
10.1016/j.fuel.2020.119731
10.1016/j.engfailanal.2021.105474
10.1128/JB.00239-13
10.1128/AAC.04579-14
10.1128/aem.61.3.860-867.1995
10.1016/j.tim.2004.11.004
10.1046/j.1462-2920.2003.00542.x
10.1371/journal.pone.0072968
10.1111/1462-2920.13816
10.1111/j.1365-2958.2006.05421.x
10.3390/pathogens2020288
10.1128/9781555818166
10.1038/ismej.2013.194
10.1016/j.scitotenv.2018.09.355
10.1111/mmi.12018
10.1099/mic.0.27536-0
10.3390/ijms19103157
10.1111/j.1462-2920.2011.02657.x
10.1016/j.tim.2013.06.002
10.1128/jb.179.24.7663-7670.1997
10.1016/j.prrv.2012.03.001
10.1186/1471-2180-10-294
10.1128/JB.00318-13
10.1177/00220345000790010201
10.1038/35101627
10.1007/s00253-018-8990-9
10.1183/13993003.01102-2015
10.1186/s12929-019-0554-5
10.1128/JB.185.7.2080-2095.2003
10.1016/j.cmi.2014.10.024
10.1002/cyto.a.20685
10.1016/j.tim.2017.09.008
10.1128/JB.00387-10
10.3389/fmicb.2020.01368
10.1371/journal.pone.0024235
10.1371/journal.pone.0005513
10.1128/MMBR.00043-12
10.1371/annotation/08d0f2a8-0c40-4a0c-b546-0025648e73f0
10.1089/wound.2020.1176
10.1046/j.1365-2958.1998.00797.x
10.1016/j.scitotenv.2020.137417
10.1038/nrmicro821
10.3390/ijms20143423
10.1093/femsre/fuy001
10.1016/j.biotechadv.2017.11.005
10.1016/j.scitotenv.2021.149708
10.1111/1462-2920.12186
10.1080/1040841X.2016.1208146
10.1016/j.watres.2021.117593
10.1111/j.1365-2958.2008.06152.x
10.1002/bit.260450607
10.1161/01.CIR.66.6.1339
10.1016/j.tig.2020.10.007
10.1128/JB.187.1.37-44.2005
10.1007/978-3-030-16775-2_4
10.1139/m81-143
10.1128/JB.188.7.2325-2335.2006
10.1111/j.1574-695X.2010.00714.x
10.1007/978-3-642-19940-0_1
10.1093/femsre/fuw013
10.1371/journal.pone.0027943
ContentType Journal Article
Copyright Springer Nature Limited 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2022. Springer Nature Limited.
Copyright_xml – notice: Springer Nature Limited 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2022. Springer Nature Limited.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7RV
7U9
7X7
7XB
88A
88E
88I
8AO
8C1
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB0
LK8
M0S
M1P
M2P
M7N
M7P
NAPCQ
P64
PCBAR
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
7X8
5PM
DOI 10.1038/s41579-022-00767-0
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Nursing & Allied Health Database
Virology and AIDS Abstracts
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database (ProQuest)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

ProQuest Central Student
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1740-1534
EndPage 620
ExternalDocumentID PMC9841534
35922483
10_1038_s41579_022_00767_0
Genre Journal Article
Review
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R01 AI150761
– fundername: NIGMS NIH HHS
  grantid: R01 GM124436
GroupedDBID ---
.55
0R~
123
29M
36B
39C
3V.
4.4
53G
70F
7RV
7X7
88A
88E
88I
8AO
8C1
8CJ
8FE
8FH
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAWYQ
AAYZH
AAZLF
ABAWZ
ABDBF
ABJNI
ABLJU
ABUWG
ACGFO
ACGFS
ACMJI
ACPRK
ACUHS
ADBBV
ADFRT
AENEX
AEUYN
AFBBN
AFKRA
AFRAH
AFSHS
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BBNVY
BENPR
BHPHI
BKEYQ
BKKNO
BKSAR
BPHCQ
BVXVI
CCPQU
CS3
D1J
DB5
DU5
DWQXO
EAD
EAP
EAS
EBS
EE.
EJD
EMB
EMK
EMOBN
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IH2
IHR
INH
INR
ITC
LGEZI
LK8
LOTEE
M0L
M1P
M2P
M7P
MM.
N9A
NADUK
NAPCQ
NNMJJ
NXXTH
O9-
ODYON
P2P
PCBAR
PQQKQ
PROAC
PSQYO
Q2X
QF4
QM4
QN7
QO4
RNR
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
WOW
X7M
AAYXX
ABFSG
ACSTC
AEZWR
AFANA
AFHIU
AGSTI
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
7QL
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c474t-d816a1111b92901bdba18a4440da330ed03d75b50f03a841381be01e332106593
IEDL.DBID M2P
ISICitedReferencesCount 833
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000835583600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1740-1526
1740-1534
IngestDate Tue Nov 04 02:07:09 EST 2025
Wed Oct 01 14:40:10 EDT 2025
Sun Nov 30 04:55:28 EST 2025
Mon Jul 21 06:08:44 EDT 2025
Tue Nov 18 22:37:50 EST 2025
Sat Nov 29 03:06:06 EST 2025
Fri Feb 21 02:38:50 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License 2022. Springer Nature Limited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-d816a1111b92901bdba18a4440da330ed03d75b50f03a841381be01e332106593
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-1177-6328
0000-0001-7773-8570
0000-0003-1870-632X
0000-0002-8003-7414
0000-0003-2531-4797
0000-0001-6069-273X
0000-0002-6320-9616
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/9841534
PMID 35922483
PQID 2714219133
PQPubID 27584
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9841534
proquest_miscellaneous_2698629771
proquest_journals_2714219133
pubmed_primary_35922483
crossref_citationtrail_10_1038_s41579_022_00767_0
crossref_primary_10_1038_s41579_022_00767_0
springer_journals_10_1038_s41579_022_00767_0
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature reviews. Microbiology
PublicationTitleAbbrev Nat Rev Microbiol
PublicationTitleAlternate Nat Rev Microbiol
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Ring (CR149) 2017; 176
Bidossi, Bottagisio, Savadori, De Vecchi (CR124) 2020; 11
Potvin (CR179) 2003; 5
Davies, Charabarty, Geesey (CR42) 1993; 59
Krasteva (CR175) 2010; 327
Raghupathi (CR7) 2018
Thaarup, Bjarnsholt (CR22) 2021; 10
Gilbertie (CR159) 2019; 14
Ashrafi (CR116) 2018; 8
Schleheck (CR126) 2009; 4
Salta, Wharton, Blache, Stokes, Briand (CR117) 2013; 15
Costerton (CR13) 1987; 41
Pamp, Sternberg, Tolker-Nielsen (CR28) 2009; 75
Dudareva (CR110) 2018
Knott (CR133) 2021; 12
Williamson (CR58) 2012; 194
Petrova, Sauer (CR84) 2010; 192
Azeredo (CR24) 2017; 43
Koo, Allan, Howlin, Stoodley, Hall-Stoodley (CR139) 2017; 15
Zobell (CR21) 1943; 46
Annous, Solomon, Cooke, Burke (CR10) 2005; 25
Qvist (CR151) 2015; 46
Díaz-Pascual (CR155) 2021; 10
Vishwakarma (CR14) 2020; 60
Nair, Periasamy, Yang, Kjelleberg, Rice (CR171) 2017; 292
Flemming (CR3) 2021; 7
Colvin (CR44) 2012; 14
Petrova, Sauer (CR62) 2016; 30
Murga, Stewart, Daly (CR91) 1995; 45
Rumbaugh, Sauer (CR61) 2020; 18
Steinberg (CR64) 2020; 13
Franca, Pinheiro, van Loosdrecht, Lourenço (CR142) 2018; 36
Shrout (CR174) 2006; 62
Kowalski, Morelli, Schultz, Nadell, Cramer (CR136) 2020; 117
Pestrak (CR122) 2020; 15
Bagge (CR45) 2004; 48
Boles, Horswill (CR176) 2008; 4
Liao, Schurr, Sauer (CR169) 2013; 195
Klauck, Serra, Possling, Hengge (CR172) 2018; 8
Secor, Michaels, Ratjen, Jennings, Singh (CR130) 2018; 115
Cornforth (CR137) 2018; 115
Kirketerp-Moller, Stewart, Bjarnsholt (CR146) 2020; 28
Bjarnsholt (CR99) 2013; 21
Bowen, Burne, Wu, Koo (CR115) 2018; 26
Wagner, Bushnell, Passador, Brooks, Iglewski (CR164) 2003; 185
Davies (CR49) 1998; 280
Tuck, Watkin, Somers, Machuca (CR100) 2022; 6
Espinosa-Urgel (CR51) 2003; 185
Sauer, Steczko, Ash (CR93) 2009; 63
Kowalski, Morelli, Stajich, Nadell, Cramer (CR170) 2021
Wood (CR48) 2000; 79
Klausen (CR29) 2003; 48
Walker (CR98) 2017
CR141
Hall-Stoodley, Costerton, Stoodley (CR25) 2004; 2
Jurelevicius (CR15) 2021; 288
Petrova, Schurr, Schurr, Sauer (CR53) 2012; 86
Stewart, Franklin (CR56) 2008; 6
Trego, Mills, Collins (CR102) 2021; 51
Dal Co, van Vliet, Ackermann (CR135) 2019; 374
Lenz, Williamson, Pitts, Stewart, Franklin (CR173) 2008; 74
Dastgheyb, Parvizi, Shapiro, Hickok, Otto (CR132) 2015; 211
Petrova, Sauer (CR37) 2009; 5
Vitzilaiou, Kuria, Siegumfeldt, Rasmussen, Knøchel (CR17) 2021; 204
Hu, Xiao, Liao, Leng, Lu (CR33) 2021; 96
Pamp, Gjermansen, Johansen, Tolker-Nielsen (CR154) 2008; 68
Vasconcelos (CR158) 2006; 185
Schembri, Kjaergaard, Klemm (CR162) 2003; 48
Ring (CR150) 2017; 153
Cornforth, Diggle, Melvin, Bomberger, Whiteley (CR19) 2020
Hall-Stoodley (CR95) 2006; 296
Moormeier, Bayles (CR31) 2017; 104
McCoy, Bryers, Robbins, Costerton (CR2) 1981; 27
Wood, Gong, Daykin, Williams, Pierson (CR46) 1997; 179
Alhede (CR16) 2011; 6
Kragh (CR128) 2017
Fabbri (CR89) 2017; 19
Flemming, Wuertz (CR12) 2019; 17
CR63
Liu (CR92) 2017; 19
Fux, Wilson, Stoodley (CR111) 2004; 186
Ren (CR166) 2018; 42
Prieto-Barajas, Valencia-Cantero, Santoyo (CR72) 2018; 31
Purcell, Tamayo (CR69) 2016; 40
Zhao, Liu, Wang, Wu (CR36) 2020; 718
Zetsche, Larsson, Iversen, Ploug (CR103) 2020; 65
Landry, An, Hupp, Singh, Parsek (CR119) 2006; 59
Petrova, Sauer (CR85) 2011; 193
Alhede (CR153) 2020; 209
Risse-Buhl (CR145) 2017; 127
Hall-Stoodley, Stoodley (CR129) 2005; 13
Wu (CR35) 2021; 7
Chang, Kao (CR74) 2019; 26
Costerton, Geesey, Cheng (CR1) 1978; 238
Pii (CR75) 2015
Worlitzsch (CR121) 2002; 109
Mantzorou, Ververidis (CR71) 2019; 651
Chambers, Sauer (CR82) 2013; 21
CR79
CR78
Merritt, Brothers, Kuchma, O’Toole (CR81) 2007; 189
Hao (CR73) 2018; 19
Bjarnsholt (CR105) 2009; 44
Gloag, Wozniak, Stoodley, Hall-Stoodley (CR107) 2021; 11
Lequette, Greenberg (CR50) 2005; 187
Marrie, Nelligan, Costerton (CR20) 1982; 66
Davies, Geesey (CR43) 1995; 61
Bagge (CR165) 2004; 48
Jensen (CR108) 2017; 35
Li, Renz, Trampuz (CR109) 2018; 30
Roth-Schulze (CR76) 2018; 27
Bjarnsholt (CR18) 2022; 22
Wilén, Liébana, Persson, Modin, Hermansson (CR104) 2018; 102
Bjarnsholt (CR156) 2021
Bakaletz (CR97) 2012; 13
CR8
Haussler, Fuqua (CR60) 2013; 195
Hall-Stoodley (CR96) 2008; 8
Whiteley (CR163) 2001; 413
Petrova, Gupta, Liao, Goodwine, Sauer (CR38) 2017; 19
Serra, Hengge (CR167) 2014; 16
Hoiby (CR5) 2015; 21
Purevdorj-Gage, Costerton, Stoodley (CR65) 2005; 151
Kragh (CR140) 2016; 7
Monds, O’Toole (CR77) 2009; 17
Yin, Wang, Liu, He (CR70) 2019; 20
Jenal, Reinders, Lori (CR68) 2017; 15
Kim (CR114) 2020; 117
Bahrami, Khouzani, Harchegani (CR144) 2021; 127
Irie (CR26) 2012; 109
Kolpen (CR6) 2022
Valentini, Filloux (CR66) 2016; 291
Dastgheyb (CR118) 2015; 59
Davey, O’Toole (CR40) 2000; 64
Gupta, Marques, Petrova, Sauer (CR47) 2013; 195
Friedman, Kolter (CR88) 2004; 51
Allegrucci (CR94) 2006; 188
Bay (CR112) 2020
Kragh (CR125) 2018
Bielecki (CR178) 2011; 6
James, Beaudette, Costerton (CR90) 1995; 15
Liu, Lu, Wu, Kerr, Wu (CR34) 2021; 801
Heacock-Kang (CR59) 2017; 106
Stoodley, Sauer, Davies, Costerton (CR30) 2002; 56
Secor, Michaels, Ratjen, Jennings, Singh (CR131) 2018; 115
Vlamakis, Chai, Beauregard, Losick, Kolter (CR32) 2013; 11
Dar, Dar, Cai, Newman (CR134) 2021
Dorken, Ferguson, French, Poon (CR160) 2012; 9
Kuchma, Connolly, O’Toole (CR52) 2005; 187
Povolotsky, Keren-Paz, Kolodkin-Gal (CR168) 2021; 37
Petrova, Schurr, Schurr, Sauer (CR83) 2011; 81
Sauer, Camper, Ehrlich, Costerton, Davies (CR27) 2002; 184
Characklis (CR41) 1973; 7
Serra, Hengge (CR57) 2014; 16
Li (CR143) 2018; 34
Goodman (CR80) 2004; 7
Macias-Valcayo (CR123) 2020
Lebeaux, Chauhan, Rendueles, Beloin (CR4) 2013; 2013
Folsom (CR152) 2010; 10
Rudrappa, Biedrzycki, Bais (CR11) 2008; 64
Barken (CR87) 2008; 10
Römling, Galperin, Gomelsky (CR67) 2013; 77
Bjarnsholt (CR106) 2008; 16
Bay (CR148) 2018; 7
Lee (CR86) 2014; 8
Tkacz, Poole (CR9) 2021; 3
Kirketerp-Moller (CR157) 2008; 46
O’Toole, Kolter (CR161) 1998; 30
Chan (CR147) 2016
Sternberg, Bjarnsholt, Shirtliff (CR23) 2014; 1147
Haaber, Cohn, Frees, Andersen, Ingmer (CR127) 2012; 7
Sriramulu, Lünsdorf, Lam, Römling (CR54) 2005; 54
O’Toole, Kolter (CR39) 1998; 28
Hall-Stoodley (CR101) 2012; 65
Rumbo-Feal (CR177) 2013; 8
Purevdorj, Costerton, Stoodley (CR55) 2002; 68
Burmolle (CR113) 2010; 59
Singh (CR120) 2000; 407
Rossi, Falcone, Molin, Johansen (CR138) 2018; 9
RD Monds (767_CR77) 2009; 17
Y Irie (767_CR26) 2012; 109
KN Kragh (767_CR125) 2018
K Sauer (767_CR27) 2002; 184
GA James (767_CR90) 1995; 15
L Hall-Stoodley (767_CR129) 2005; 13
N Hoiby (767_CR5) 2015; 21
CE Zobell (767_CR21) 1943; 46
T Bjarnsholt (767_CR156) 2021
CA Fux (767_CR111) 2004; 186
J Liao (767_CR169) 2013; 195
L Hall-Stoodley (767_CR101) 2012; 65
JM Gilbertie (767_CR159) 2019; 14
M Ashrafi (767_CR116) 2018; 8
HA Nair (767_CR171) 2017; 292
767_CR78
DG Davies (767_CR42) 1993; 59
VE Wagner (767_CR164) 2003; 185
Y Heacock-Kang (767_CR59) 2017; 106
T Bjarnsholt (767_CR18) 2022; 22
J Azeredo (767_CR24) 2017; 43
PK Singh (767_CR120) 2000; 407
OE Petrova (767_CR53) 2012; 86
KN Kragh (767_CR128) 2017
OE Petrova (767_CR62) 2016; 30
J Liu (767_CR34) 2021; 801
767_CR79
M Alhede (767_CR16) 2011; 6
P Stoodley (767_CR30) 2002; 56
Y Pii (767_CR75) 2015
PK Raghupathi (767_CR7) 2018
M Alhede (767_CR153) 2020; 209
E Rossi (767_CR138) 2018; 9
RDG Franca (767_CR142) 2018; 36
PR Secor (767_CR131) 2018; 115
T Qvist (767_CR151) 2015; 46
AL Goodman (767_CR80) 2004; 7
GA O’Toole (767_CR161) 1998; 30
V Vishwakarma (767_CR14) 2020; 60
DO Serra (767_CR167) 2014; 16
M Klausen (767_CR29) 2003; 48
KM Colvin (767_CR44) 2012; 14
OE Petrova (767_CR37) 2009; 5
M Whiteley (767_CR163) 2001; 413
PS Stewart (767_CR56) 2008; 6
DE Moormeier (767_CR31) 2017; 104
KP Rumbaugh (767_CR61) 2020; 18
767_CR63
B-M Wilén (767_CR104) 2018; 102
B Purevdorj-Gage (767_CR65) 2005; 151
C Li (767_CR109) 2018; 30
K Kirketerp-Moller (767_CR157) 2008; 46
JR Chambers (767_CR82) 2013; 21
767_CR141
L Hall-Stoodley (767_CR96) 2008; 8
IC Thaarup (767_CR22) 2021; 10
JP Folsom (767_CR152) 2010; 10
U Risse-Buhl (767_CR145) 2017; 127
HC Ring (767_CR149) 2017; 176
CS Chan (767_CR147) 2016
K Gupta (767_CR47) 2013; 195
RM Landry (767_CR119) 2006; 59
DW Wood (767_CR46) 1997; 179
H Vlamakis (767_CR32) 2013; 11
KWK Lee (767_CR86) 2014; 8
E Potvin (767_CR179) 2003; 5
M Valentini (767_CR66) 2016; 291
S Dastgheyb (767_CR132) 2015; 211
WG Characklis (767_CR41) 1973; 7
N Bagge (767_CR45) 2004; 48
N Steinberg (767_CR64) 2020; 13
C Vasconcelos (767_CR158) 2006; 185
Y Zhao (767_CR36) 2020; 718
WH Bowen (767_CR115) 2018; 26
M Allegrucci (767_CR94) 2006; 188
DO Serra (767_CR57) 2014; 16
SJ Pamp (767_CR28) 2009; 75
A Mantzorou (767_CR71) 2019; 651
A Dal Co (767_CR135) 2019; 374
TJ Marrie (767_CR20) 1982; 66
TL Povolotsky (767_CR168) 2021; 37
HC Ring (767_CR150) 2017; 153
OE Petrova (767_CR84) 2010; 192
D Jurelevicius (767_CR15) 2021; 288
J Haaber (767_CR127) 2012; 7
S Rumbo-Feal (767_CR177) 2013; 8
Y Lequette (767_CR50) 2005; 187
KN Kragh (767_CR140) 2016; 7
H Koo (767_CR139) 2017; 15
DG Davies (767_CR43) 1995; 61
B Tuck (767_CR100) 2022; 6
JH Merritt (767_CR81) 2007; 189
T Bjarnsholt (767_CR106) 2008; 16
K Kirketerp-Moller (767_CR146) 2020; 28
U Römling (767_CR67) 2013; 77
DG Davies (767_CR49) 1998; 280
LK Jensen (767_CR108) 2017; 35
K Sauer (767_CR93) 2009; 63
T Rudrappa (767_CR11) 2008; 64
A Macias-Valcayo (767_CR123) 2020
P Bielecki (767_CR178) 2011; 6
KS Williamson (767_CR58) 2012; 194
LO Bakaletz (767_CR97) 2012; 13
KB Barken (767_CR87) 2008; 10
Y Ren (767_CR166) 2018; 42
T Bjarnsholt (767_CR105) 2009; 44
GA O’Toole (767_CR39) 1998; 28
A Bidossi (767_CR124) 2020; 11
D Worlitzsch (767_CR121) 2002; 109
N Bagge (767_CR165) 2004; 48
Y Li (767_CR143) 2018; 34
BA Annous (767_CR10) 2005; 25
L Bay (767_CR148) 2018; 7
G Klauck (767_CR172) 2018; 8
C Sternberg (767_CR23) 2014; 1147
OE Petrova (767_CR83) 2011; 81
Y Hao (767_CR73) 2018; 19
AP Lenz (767_CR173) 2008; 74
D Kim (767_CR114) 2020; 117
D Schleheck (767_CR126) 2009; 4
OE Petrova (767_CR38) 2017; 19
H-C Flemming (767_CR3) 2021; 7
SR Wood (767_CR48) 2000; 79
S Haussler (767_CR60) 2013; 195
M Dudareva (767_CR110) 2018
F Díaz-Pascual (767_CR155) 2021; 10
C-S Chang (767_CR74) 2019; 26
W Yin (767_CR70) 2019; 20
WT Walker (767_CR98) 2017
A Tkacz (767_CR9) 2021; 3
CH Kowalski (767_CR136) 2020; 117
U Jenal (767_CR68) 2017; 15
PV Krasteva (767_CR175) 2010; 327
JD Shrout (767_CR174) 2006; 62
CM Prieto-Barajas (767_CR72) 2018; 31
MJ Pestrak (767_CR122) 2020; 15
AC Trego (767_CR102) 2021; 51
AJ Roth-Schulze (767_CR76) 2018; 27
BC Wu (767_CR35) 2021; 7
L Hall-Stoodley (767_CR95) 2006; 296
M Espinosa-Urgel (767_CR51) 2003; 185
B Purevdorj (767_CR55) 2002; 68
DM Cornforth (767_CR19) 2020
M Burmolle (767_CR113) 2010; 59
PR Secor (767_CR130) 2018; 115
A Bahrami (767_CR144) 2021; 127
ME Davey (767_CR40) 2000; 64
S Fabbri (767_CR89) 2017; 19
ES Gloag (767_CR107) 2021; 11
E-M Zetsche (767_CR103) 2020; 65
M Kolpen (767_CR6) 2022
EB Purcell (767_CR69) 2016; 40
L Bay (767_CR112) 2020
HC Flemming (767_CR12) 2019; 17
Y Hu (767_CR33) 2021; 96
MA Schembri (767_CR162) 2003; 48
OE Petrova (767_CR85) 2011; 193
SS Dastgheyb (767_CR118) 2015; 59
D Dar (767_CR134) 2021
JW Costerton (767_CR13) 1987; 41
W Liu (767_CR92) 2017; 19
DM Cornforth (767_CR137) 2018; 115
WF McCoy (767_CR2) 1981; 27
R Murga (767_CR91) 1995; 45
S Knott (767_CR133) 2021; 12
M Salta (767_CR117) 2013; 15
DD Sriramulu (767_CR54) 2005; 54
BR Boles (767_CR176) 2008; 4
JW Costerton (767_CR1) 1978; 238
767_CR8
D Lebeaux (767_CR4) 2013; 2013
SL Kuchma (767_CR52) 2005; 187
CH Kowalski (767_CR170) 2021
L Friedman (767_CR88) 2004; 51
G Dorken (767_CR160) 2012; 9
SJ Pamp (767_CR154) 2008; 68
L Hall-Stoodley (767_CR25) 2004; 2
T Bjarnsholt (767_CR99) 2013; 21
E Vitzilaiou (767_CR17) 2021; 204
References_xml – volume: 115
  start-page: E5125
  year: 2018
  end-page: E5134
  ident: CR137
  article-title: Pseudomonas aeruginosa transcriptome during human infection
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 11
  start-page: 157
  year: 2013
  end-page: 168
  ident: CR32
  article-title: Sticking together: building a biofilm the Bacillus subtilis way
  publication-title: Nat. Rev. Microbiol.
– volume: 19
  start-page: 2893
  year: 2017
  end-page: 2905
  ident: CR92
  article-title: Low-abundant species facilitates specific spatial organization that promotes multispecies biofilm formation
  publication-title: Env. Microbiol.
– volume: 26
  start-page: 229
  year: 2018
  end-page: 242
  ident: CR115
  article-title: Oral biofilms: pathogens, matrix, and polymicrobial interactions in microenvironments
  publication-title: Trends Microbiol.
– volume: 27
  start-page: 1952
  year: 2018
  end-page: 1965
  ident: CR76
  article-title: Functional biogeography and host specificity of bacterial communities associated with the Marine Green Alga Ulva spp
  publication-title: Mol. Ecol.
– volume: 61
  start-page: 860
  year: 1995
  end-page: 867
  ident: CR43
  article-title: Regulation of the alginate biosynthesis gene in during biofilm development in continuous culture
  publication-title: Appl. Environ. Microbiol.
– volume: 68
  start-page: 4457
  year: 2002
  end-page: 4464
  ident: CR55
  article-title: Influence of hydrodynamics and cell signaling on the structure and behavior of Pseudomonas aeruginosa biofilms
  publication-title: Appl. Environ. Microbiol.
– volume: 115
  start-page: 10780
  year: 2018
  ident: CR130
  article-title: Entropically driven aggregation of bacteria by host polymers promotes antibiotic tolerance in Pseudomonas aeruginosa
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 25
  start-page: 276
  year: 2005
  end-page: 287
  ident: CR10
  article-title: Biofilm formation by spp. on Cantaloupe melons
  publication-title: J. Food Saf.
– volume: 184
  start-page: 1140
  year: 2002
  end-page: 1154
  ident: CR27
  article-title: Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm
  publication-title: J. Bacteriol.
– volume: 204
  start-page: 117593
  year: 2021
  ident: CR17
  article-title: The impact of bacterial cell aggregation on UV inactivation kinetics
  publication-title: Water Res.
– volume: 59
  start-page: 2122
  year: 2015
  end-page: 2128
  ident: CR118
  article-title: Staphylococcal persistence due to biofilm formation in synovial fluid containing prophylactic cefazolin
  publication-title: Antimicrob. Agents Chemother.
– volume: 13
  start-page: eaaw8905
  year: 2020
  ident: CR64
  article-title: The extracellular matrix protein TasA is a developmental cue that maintains a motile subpopulation within Bacillus subtilis biofilms
  publication-title: Sci. Signal.
– volume: 40
  start-page: 753
  year: 2016
  end-page: 773
  ident: CR69
  article-title: Cyclic diguanylate signaling in Gram-positive bacteria
  publication-title: FEMS Microbiol. Rev.
– volume: 59
  start-page: 324
  year: 2010
  end-page: 336
  ident: CR113
  article-title: Biofilms in chronic infections - a matter of opportunity - monospecies biofilms in multispecies infections
  publication-title: FEMS Immunol. Med. Microbiol.
– volume: 15
  year: 2020
  ident: CR122
  article-title: Investigation of synovial fluid induced Staphylococcus aureus aggregate development and its impact on surface attachment and biofilm formation
  publication-title: PLoS ONE
– volume: 7
  year: 2016
  ident: CR140
  article-title: Role of multicellular aggregates in biofilm formation
  publication-title: mBio
– year: 2018
  ident: CR110
  article-title: Sonication versus tissue sampling for diagnosis of prosthetic joint and other orthopedic device-related infections
  publication-title: J. Clin. Microbiol.
  doi: 10.1128/JCM.00688-18
– ident: CR8
– volume: 6
  year: 2011
  ident: CR178
  article-title: In-vivo expression profiling of Pseudomonas aeruginosa infections reveals niche-specific and strain-independent transcriptional programs
  publication-title: PLoS ONE
– volume: 35
  start-page: 2211
  year: 2017
  end-page: 2221
  ident: CR108
  article-title: Novel porcine model of implant-associated osteomyelitis: a comprehensive analysis of local, regional, and systemic response
  publication-title: J. Orthop. Res.
– volume: 30
  start-page: 138
  year: 2018
  end-page: 146
  ident: CR109
  article-title: Management of periprosthetic joint infection
  publication-title: Hip Pelvis
– volume: 19
  start-page: 2005
  year: 2017
  end-page: 2024
  ident: CR38
  article-title: Divide and conquer: the two-component hybrid SagS enables biofilm formation and recalcitrance of biofilm cells to antimicrobial agents via distinct regulatory circuits
  publication-title: Environ. Microbiol.
– volume: 13
  start-page: 7
  year: 2005
  end-page: 10
  ident: CR129
  article-title: Biofilm formation and dispersal and the transmission of human pathogens
  publication-title: Trends Microbiol.
– year: 2018
  ident: CR125
  article-title: The inoculation method could impact the outcome of microbiological experiments
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02264-17
– volume: 195
  start-page: 2947
  year: 2013
  end-page: 2958
  ident: CR60
  article-title: Biofilms 2012: new discoveries and significant wrinkles in a dynamic field
  publication-title: J. Bacteriol.
– volume: 11
  year: 2021
  ident: CR107
  article-title: Mycobacterium abscessus biofilms have viscoelastic properties which may contribute to their recalcitrance in chronic pulmonary infections
  publication-title: Sci. Rep.
– year: 2017
  ident: CR128
  article-title: Inoculation method could impact the outcome of microbiological experiments
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02264-17
– volume: 195
  start-page: 3352
  year: 2013
  end-page: 3363
  ident: CR169
  article-title: The MerR-like regulator BrlR confers biofilm tolerance by activating multidrug-efflux pumps in biofilms
  publication-title: J. Bacteriol.
– volume: 10
  start-page: 2331
  year: 2008
  end-page: 2343
  ident: CR87
  article-title: Roles of type IV pili, flagellum-mediated motility and extracellular DNA in the formation of mature multicellular structures in biofilms
  publication-title: Environ. Microbiol.
– volume: 48
  start-page: 1175
  year: 2004
  end-page: 1187
  ident: CR165
  article-title: Pseudomonas aeruginosa biofilms exposed to imipenem exhibit changes in global gene expression and beta-lactamase and alginate production
  publication-title: Antimicrob. Agents Chemother.
– volume: 59
  start-page: 142
  year: 2006
  end-page: 151
  ident: CR119
  article-title: Mucin-Pseudomonas aeruginosa interactions promote biofilm formation and antibiotic resistance
  publication-title: Mol. Microbiol.
– volume: 187
  start-page: 1441
  year: 2005
  end-page: 1454
  ident: CR52
  article-title: A three-component regulatory system regulates biofilm maturation and type III secretion in
  publication-title: J. Bacteriol.
– volume: 127
  start-page: 105474
  year: 2021
  ident: CR144
  article-title: Establishing the root cause of a failure in a firewater pipeline
  publication-title: Eng. Fail. Anal.
– volume: 10
  start-page: 91
  year: 2021
  end-page: 102
  ident: CR22
  article-title: Current in vitro biofilm-infected chronic wound models for developing new treatment possibilities
  publication-title: Adv. Wound Care
– volume: 48
  start-page: 1511
  year: 2003
  end-page: 1524
  ident: CR29
  article-title: Biofilm formation by wild type, flagella and type IV pili mutants
  publication-title: Mol. Microbiol.
– volume: 46
  start-page: 2717
  year: 2008
  end-page: 2722
  ident: CR157
  article-title: Distribution, organization, and ecology of bacteria in chronic wounds
  publication-title: J. Clin. Microbiol.
– volume: 5
  start-page: 1294
  year: 2003
  end-page: 1308
  ident: CR179
  article-title: In vivo functional genomics of Pseudomonas aeruginosa for high-throughput screening of new virulence factors and antibacterial targets
  publication-title: Environ. Microbiol.
– volume: 27
  start-page: 910
  year: 1981
  end-page: 917
  ident: CR2
  article-title: Observations of fouling biofilm formation
  publication-title: Can. J. Microbiol.
– volume: 117
  start-page: 12375
  year: 2020
  end-page: 12386
  ident: CR114
  article-title: Spatial mapping of polymicrobial communities reveals a precise biogeography associated with human dental caries
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 7
  start-page: 105
  year: 2018
  end-page: 113
  ident: CR148
  article-title: Bacterial aggregates establish at the edges of acute epidermal wounds
  publication-title: Adv. Wound Care
– volume: 151
  start-page: 1569
  year: 2005
  end-page: 1576
  ident: CR65
  article-title: Phenotypic differentiation and seeding dispersal in non-mucoid and mucoid Pseudomonas aeruginosa biofilms
  publication-title: Microbiology
– volume: 17
  start-page: 73
  year: 2009
  end-page: 87
  ident: CR77
  article-title: The developmental model of microbial biofilms: ten years of a paradigm up for review
  publication-title: Trends Microbiol.
– volume: 64
  start-page: 153
  year: 2008
  end-page: 166
  ident: CR11
  article-title: Causes and consequences of plant-associated biofilms
  publication-title: FEMS Microbiol. Ecol.
– volume: 718
  start-page: 137417
  year: 2020
  ident: CR36
  article-title: Interactions between dicyandiamide and periphytic biofilms in paddy soils and subsequent effects on nitrogen cycling
  publication-title: Sci. Total Environ.
– volume: 48
  start-page: 1168
  year: 2004
  end-page: 1174
  ident: CR45
  article-title: Dynamics and spatial distribution of β-lactamase expression in biofilms
  publication-title: Antimicrob. Agents Chemother.
– volume: 15
  start-page: 271
  year: 2017
  end-page: 284
  ident: CR68
  article-title: Cyclic di-GMP: second messenger extraordinaire
  publication-title: Nat. Rev. Microbiol.
– volume: 104
  start-page: 365
  year: 2017
  end-page: 376
  ident: CR31
  article-title: Staphylococcus aureus biofilm: a complex developmental organism
  publication-title: Mol. Microbiol.
– volume: 238
  start-page: 86
  year: 1978
  end-page: 95
  ident: CR1
  article-title: How bacteria stick
  publication-title: Sci. Am.
– volume: 51
  start-page: 675
  year: 2004
  end-page: 690
  ident: CR88
  article-title: Genes involved in matrix formation in PA14 biofilms
  publication-title: Mol. Microbiol.
– volume: 56
  start-page: 187
  year: 2002
  end-page: 209
  ident: CR30
  article-title: Biofilms as complex differentiated communities
  publication-title: Annu. Rev. Microbiol.
– volume: 209
  start-page: 669
  year: 2020
  end-page: 680
  ident: CR153
  article-title: Bacterial aggregate size determines phagocytosis efficiency of polymorphonuclear leukocytes
  publication-title: Med. Microbiol. Immunol.
– volume: 64
  start-page: 847
  year: 2000
  end-page: 867
  ident: CR40
  article-title: Microbial biofilms: from ecology to molecular genetics
  publication-title: Microbiol. Mol. Biol. Rev.
– volume: 19
  start-page: 4417
  year: 2017
  end-page: 4431
  ident: CR89
  article-title: Fluid-driven interfacial instabilities and turbulence in bacterial biofilms
  publication-title: Env. Microbiol.
– year: 2022
  ident: CR6
  article-title: Bacterial biofilms predominate in both acute and chronic human lung infections
  publication-title: Thorax
  doi: 10.1136/thoraxjnl-2021-217576
– volume: 37
  start-page: 4
  year: 2021
  end-page: 8
  ident: CR168
  article-title: Metabolic microenvironments drive microbial differentiation and antibiotic resistance
  publication-title: Trends Genet.
– volume: 4
  year: 2009
  ident: CR126
  article-title: Pseudomonas aeruginosa PAO1 preferentially grows as aggregates in liquid batch cultures and disperses upon starvation.
  publication-title: PLoS ONE
– volume: 15
  start-page: 740
  year: 2017
  end-page: 755
  ident: CR139
  article-title: Targeting microbial biofilms: current and prospective therapeutic strategies
  publication-title: Nat. Rev. Microbiol.
– volume: 66
  start-page: 1339
  year: 1982
  end-page: 1341
  ident: CR20
  article-title: A scanning and transmission electron microscopic study of an infected endocardial pacemaker lead
  publication-title: Circulation
– volume: 6
  year: 2022
  ident: CR100
  article-title: A critical review of marine biofilms on metallic materials
  publication-title: NPJ Mater. Degrad.
– volume: 176
  start-page: 993
  year: 2017
  end-page: 1000
  ident: CR149
  article-title: Bacterial biofilm in chronic lesions of hidradenitis suppurativa
  publication-title: Br. J. Dermatol.
– volume: 74
  start-page: 4463
  year: 2008
  end-page: 4471
  ident: CR173
  article-title: Localized gene expression in Pseudomonas aeruginosa biofilms
  publication-title: Appl. Environ. Microbiol.
– volume: 44
  start-page: 547
  year: 2009
  end-page: 558
  ident: CR105
  article-title: Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients
  publication-title: Pediatr. Pulmonol.
– volume: 115
  start-page: 10780
  year: 2018
  end-page: 10785
  ident: CR131
  article-title: Entropically driven aggregation of bacteria by host polymers promotes antibiotic tolerance in Pseudomonas aeruginosa
  publication-title: Proc. Natl Acad. Sci. USA
– ident: CR63
– volume: 2
  start-page: 95
  year: 2004
  end-page: 108
  ident: CR25
  article-title: Bacterial biofilms: from the natural environment to infectious diseases
  publication-title: Nat. Rev. Microbiol.
– volume: 20
  start-page: 3423
  year: 2019
  ident: CR70
  article-title: Biofilms: the microbial “protective clothing” in extreme environments
  publication-title: Int. J. Mol. Sci.
– volume: 13
  start-page: 154
  year: 2012
  end-page: 159
  ident: CR97
  article-title: Bacterial biofilms in the upper airway - evidence for role in pathology and implications for treatment of otitis media
  publication-title: Paediatr. Respir. Rev.
– year: 2015
  ident: CR75
  article-title: Microbial interactions in the rhizosphere: beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A review
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s00374-015-0996-1
– volume: 7
  year: 2012
  ident: CR127
  article-title: Planktonic aggregates of Staphylococcus aureus protect against common antibiotics
  publication-title: PLoS ONE
– volume: 117
  start-page: 22473
  year: 2020
  end-page: 22483
  ident: CR136
  article-title: Fungal biofilm architecture produces hypoxic microenvironments that drive antifungal resistance
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 407
  start-page: 762
  year: 2000
  end-page: 764
  ident: CR120
  article-title: Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms
  publication-title: Nature
– volume: 28
  start-page: 593
  year: 2020
  end-page: 599
  ident: CR146
  article-title: The zone model: a conceptual model for understanding the microenvironment of chronic wound infection
  publication-title: Wound Repair Regen.
– volume: 651
  start-page: 3187
  year: 2019
  end-page: 3201
  ident: CR71
  article-title: Microalgal biofilms: a further step over current microalgal cultivation techniques
  publication-title: Sci. Total Environ.
– volume: 16
  start-page: 1455
  year: 2014
  end-page: 1471
  ident: CR167
  article-title: Stress responses go three dimensional – the spatial order of physiological differentiation in bacterial macrocolony biofilms
  publication-title: Environ. Microbiol.
– volume: 19
  start-page: 3157
  year: 2018
  ident: CR73
  article-title: Influence of dental prosthesis and restorative materials interface on oral biofilms
  publication-title: Int. J. Mol. Sci.
– volume: 10
  year: 2021
  ident: CR155
  article-title: Spatial alanine metabolism determines local growth dynamics of Escherichia coli colonies
  publication-title: eLife
– volume: 186
  start-page: 4486
  year: 2004
  end-page: 4491
  ident: CR111
  article-title: Detachment characteristics and oxacillin resistance of Staphyloccocus aureus biofilm emboli in an in vitro catheter infection model
  publication-title: J. Bacteriol.
– volume: 6
  year: 2011
  ident: CR16
  article-title: Phenotypes of non-attached Pseudomonas aeruginosa aggregates resemble surface attached biofilm
  publication-title: PLoS ONE
– year: 2021
  ident: CR156
  article-title: The impact of mental models on the treatment and research of chronic infections due to biofilms
  publication-title: APMIS
  doi: 10.1111/apm.13163
– volume: 18
  start-page: 571
  year: 2020
  end-page: 586
  ident: CR61
  article-title: Biofilm dispersion
  publication-title: Nat. Rev. Microbiol.
– volume: 8
  year: 2013
  ident: CR177
  article-title: Whole transcriptome analysis of Acinetobacter baumannii assessed by RNA-sequencing reveals different mRNA expression profiles in biofilm compared to planktonic cells.
  publication-title: PLoS ONE
– volume: 31
  start-page: 48
  year: 2018
  end-page: 56
  ident: CR72
  article-title: Microbial mat ecosystems: structure types, functional diversity, and biotechnological application
  publication-title: Electron. J. Biotechnol.
– volume: 109
  start-page: 317
  year: 2002
  end-page: 325
  ident: CR121
  article-title: Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients
  publication-title: J. Clin. Invest.
– volume: 62
  start-page: 1264
  year: 2006
  end-page: 1277
  ident: CR174
  article-title: The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional
  publication-title: Mol. Microbiol.
– volume: 60
  start-page: 198
  year: 2020
  end-page: 206
  ident: CR14
  article-title: Impact of environmental biofilms: industrial components and its remediation
  publication-title: J. Basic Microbiol.
– volume: 45
  start-page: 503
  year: 1995
  end-page: 510
  ident: CR91
  article-title: Quantitative analysis of biofilm thickness variability
  publication-title: Biotechnol. Bioeng.
– volume: 75
  start-page: 90
  year: 2009
  end-page: 103
  ident: CR28
  article-title: Insight into the microbial multicellular lifestyle via flow-cell technology and confocal microscopy
  publication-title: Cytom. A
– volume: 7
  start-page: 1249
  year: 1973
  end-page: 1258
  ident: CR41
  article-title: Attached microbial growths-II. Frictional resistance due to microbial slimes
  publication-title: Water Res.
– volume: 65
  start-page: 1818
  year: 2020
  end-page: 1833
  ident: CR103
  article-title: Flow and diffusion around and within diatom aggregates: effects of aggregate composition and shape.
  publication-title: Limnol. Oceanogr.
– volume: 21
  start-page: 39
  year: 2013
  end-page: 49
  ident: CR82
  article-title: Small RNAs and their role in biofilm formation
  publication-title: Trends Microbiol.
– volume: 41
  start-page: 435
  year: 1987
  end-page: 464
  ident: CR13
  article-title: Bacterial biofilms in nature and disease
  publication-title: Annu. Rev. Microbiol.
– volume: 288
  start-page: 119731
  year: 2021
  ident: CR15
  article-title: Long-term souring treatment using nitrate and biocides in high-temperature oil reservoirs
  publication-title: Fuel
– year: 2018
  ident: CR7
  article-title: Synergistic interactions within a multispecies biofilm enhance individual species protection against grazing by a pelagic protozoan
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2017.02649
– volume: 292
  start-page: 477
  year: 2017
  end-page: 487
  ident: CR171
  article-title: Real time, spatial, and temporal mapping of the distribution of c-di-GMP during biofilm development
  publication-title: J. Biol. Chem.
– volume: 192
  start-page: 5275
  year: 2010
  end-page: 5288
  ident: CR84
  article-title: The novel two-component regulatory system BfiSR regulates biofilm development by controlling the small RNA through CafA
  publication-title: J. Bacteriol.
– volume: 185
  start-page: 699
  year: 2003
  end-page: 700
  ident: CR51
  article-title: Resident parking only: rhamnolipids maintain fluid channels in biofilms
  publication-title: J. Bacteriol.
– volume: 65
  start-page: 127
  year: 2012
  end-page: 145
  ident: CR101
  article-title: Towards diagnostic guidelines for biofilm-associated infections
  publication-title: FEMS Immunol. Med. Microbiol.
– volume: 291
  start-page: 12547
  year: 2016
  end-page: 12555
  ident: CR66
  article-title: Biofilms and cyclic di-GMP (c-di-GMP) signaling: lessons from Pseudomonas aeruginosa and other bacteria
  publication-title: J. Biol. Chem.
– volume: 43
  start-page: 313
  year: 2017
  end-page: 351
  ident: CR24
  article-title: Critical review on biofilm methods
  publication-title: Crit. Rev. Microbiol.
– volume: 48
  start-page: 253
  year: 2003
  end-page: 267
  ident: CR162
  article-title: Global gene expression in Escherichia coli biofilms
  publication-title: Mol. Microbiol.
– volume: 185
  start-page: 2080
  year: 2003
  end-page: 2095
  ident: CR164
  article-title: Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment
  publication-title: J. Bacteriol.
– year: 2021
  ident: CR170
  article-title: A heterogeneously expressed gene family modulates the biofilm architecture and hypoxic growth of Aspergillus fumigatus
  publication-title: mBio
  doi: 10.1128/mBio.03579-20
– volume: 54
  start-page: 667
  year: 2005
  end-page: 676
  ident: CR54
  article-title: Microcolony formation: a novel biofilm model of for the cystic fibrosis lung
  publication-title: J. Med. Microbiol.
– volume: 801
  start-page: 149708
  year: 2021
  ident: CR34
  article-title: Interactions between periphytic biofilms and dissolved organic matter at soil-water interface and the consequent effects on soil phosphorus fraction changes
  publication-title: Sci. Total Environ.
– volume: 179
  start-page: 7663
  year: 1997
  end-page: 7670
  ident: CR46
  article-title: N-acyl-homoserine lactone-mediated regulation of phenazine gene expression by 30-84 in the wheat rhizosphere
  publication-title: J. Bacteriol.
– volume: 28
  start-page: 449
  year: 1998
  end-page: 461
  ident: CR39
  article-title: Initiation of biofilm formation in WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis
  publication-title: Mol. Microbiol.
– volume: 46
  start-page: 39
  year: 1943
  end-page: 56
  ident: CR21
  article-title: The effect of solid surfaces upon bacterial activity
  publication-title: J. Bacteriol.
– year: 2016
  ident: CR147
  article-title: The architecture of iron microbial mats reflects the adaptation of chemolithotrophic iron oxidation in freshwater and marine environments
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2016.00796
– volume: 10
  start-page: 294
  year: 2010
  ident: CR152
  article-title: Physiology of Pseudomonas aeruginosa in biofilms as revealed by transcriptome analysis
  publication-title: BMC Microbiol.
– volume: 30
  start-page: 67
  year: 2016
  end-page: 78
  ident: CR62
  article-title: Escaping the biofilm in more than one way: desorption, detachment or dispersion
  publication-title: Curr. Opin. Microbiol.
– volume: 102
  start-page: 5005
  year: 2018
  end-page: 5020
  ident: CR104
  article-title: The mechanisms of granulation of activated sludge in wastewater treatment, its optimization, and impact on effluent quality
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 15
  start-page: 2879
  year: 2013
  end-page: 2893
  ident: CR117
  article-title: Marine biofilms on artificial surfaces: structure and dynamics
  publication-title: Environ. Microbiol.
– year: 2020
  ident: CR123
  article-title: Synovial fluid mediated aggregation of clinical strains of four enterobacterial species
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/5584_2020_573
– volume: 280
  start-page: 295
  year: 1998
  end-page: 298
  ident: CR49
  article-title: The involvement of cell-to-cell signals in the development of a bacterial biofilm
  publication-title: Science
– volume: 189
  start-page: 8154
  year: 2007
  end-page: 8164
  ident: CR81
  article-title: SadC reciprocally influences biofilm formation and swarming motility via modulation of exopolysaccharide production and flagellar function
  publication-title: J. Bacteriol.
– volume: 8
  year: 2018
  ident: CR116
  article-title: Validation of biofilm formation on human skin wound models and demonstration of clinically translatable bacteria-specific volatile signatures
  publication-title: Sci. Rep.
– volume: 185
  start-page: 175
  year: 2006
  end-page: 183
  ident: CR158
  article-title: Lithifying microbial mats in Lagoa Vermelha, Brazil: modern Precambrian relics?
  publication-title: Sediment. Geol.
– volume: 1147
  start-page: 3
  year: 2014
  end-page: 22
  ident: CR23
  article-title: Methods for dynamic investigations of surface-attached in vitro bacterial and fungal biofilms
  publication-title: Methods Mol. Biol.
– volume: 21
  start-page: 466
  year: 2013
  end-page: 474
  ident: CR99
  article-title: The in vivo biofilm
  publication-title: Trends Microbiol.
– volume: 36
  start-page: 228
  year: 2018
  end-page: 246
  ident: CR142
  article-title: Stability of aerobic granules during long-term bioreactor operation
  publication-title: Biotechnol. Adv.
– volume: 109
  start-page: 20632
  year: 2012
  end-page: 20636
  ident: CR26
  article-title: Self-produced exopolysaccharide is a signal that stimulates biofilm formation in Pseudomonas aeruginosa
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 14
  start-page: 1913
  year: 2012
  end-page: 1928
  ident: CR44
  article-title: The Pel and Psl polysaccharides provide structural redundancy within the biofilm matrix
  publication-title: Environ. Microbiol.
– year: 2021
  ident: CR134
  article-title: Spatial transcriptomics of planktonic and sessile bacterial populations at single-cell resolution
  publication-title: Science
  doi: 10.1126/science.abi4882
– volume: 68
  start-page: 223
  year: 2008
  end-page: 240
  ident: CR154
  article-title: Tolerance to the antimicrobial peptide colistin in Pseudomonas aeruginosa biofilms is linked to metabolically active cells, and depends on the pmr and mexAB-oprM genes
  publication-title: Mol. Microbiol.
– volume: 26
  start-page: 59
  year: 2019
  ident: CR74
  article-title: Current understanding of the gut microbiota shaping mechanisms
  publication-title: J. Biomed. Sci.
– volume: 7
  year: 2021
  ident: CR35
  article-title: Human organoid biofilm model for assessing antibiofilm activity of novel agents
  publication-title: NPJ Biofilms Microbiomes
– volume: 63
  start-page: 937
  year: 2009
  end-page: 945
  ident: CR93
  article-title: Effect of a solution containing citrate/methylene blue/parabens on bacteria and biofilm, and comparison with various heparin solutions
  publication-title: J. Antimicrob. Chemother.
– ident: CR78
– volume: 106
  start-page: 976
  year: 2017
  end-page: 985
  ident: CR59
  article-title: Spatial transcriptomes within the biofilm architecture
  publication-title: Mol. Microbiol.
– volume: 7
  start-page: 745
  year: 2004
  end-page: 754
  ident: CR80
  article-title: A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa
  publication-title: Dev. Cell
– volume: 16
  start-page: 1455
  year: 2014
  end-page: 1471
  ident: CR57
  article-title: Stress responses go three dimensional–the spatial order of physiological differentiation in bacterial macrocolony biofilms
  publication-title: Environ. Microbiol.
– volume: 22
  start-page: e88
  year: 2022
  end-page: e92
  ident: CR18
  article-title: The importance of understanding the infectious microenvironment
  publication-title: Lancet Infect. Dis.
– volume: 374
  start-page: 20190080
  year: 2019
  ident: CR135
  article-title: Emergent microscale gradients give rise to metabolic cross-feeding and antibiotic tolerance in clonal bacterial populations
  publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci.
– volume: 127
  start-page: 211
  year: 2017
  end-page: 222
  ident: CR145
  article-title: The role of hydrodynamics in shaping the composition and architecture of epilithic biofilms in fluvial ecosystems
  publication-title: Water Res.
– volume: 413
  start-page: 860
  year: 2001
  end-page: 864
  ident: CR163
  article-title: Gene expression in Pseudomonas aeruginosa biofilms
  publication-title: Nature
– volume: 193
  start-page: 6614
  year: 2011
  end-page: 6628
  ident: CR85
  article-title: SagS contributes to the motile-sessile switch and acts in concert with BfiSR to enable biofilm formation
  publication-title: J. Bacteriol.
– volume: 153
  start-page: 897
  year: 2017
  end-page: 905
  ident: CR150
  article-title: The follicular skin microbiome in patients with hidradenitis suppurativa and healthy controls
  publication-title: JAMA Dermatol.
– volume: 2013
  start-page: 288
  year: 2013
  end-page: 356
  ident: CR4
  article-title: From in vitro to in vivo models of bacterial biofilm-related infections
  publication-title: Pathogens
– volume: 12
  start-page: 655873
  year: 2021
  ident: CR133
  article-title: Staphylococcus aureus floating biofilm formation and phenotype in synovial fluid depends on albumin, fibrinogen, and hyaluronic acid
  publication-title: Front. Microbiol.
– volume: 7
  start-page: 10
  year: 2021
  ident: CR3
  article-title: Who put the film in biofilm? The migration of a term from wastewater engineering to medicine and beyond
  publication-title: NPJ Biofilms Microbiomes
– volume: 5
  year: 2009
  ident: CR37
  article-title: A novel signaling network essential for regulating biofilm development
  publication-title: PLoS Pathog.
– volume: 16
  start-page: 2
  year: 2008
  end-page: 10
  ident: CR106
  article-title: Why chronic wounds will not heal: a novel hypothesis
  publication-title: Wound Repair Regen.
– volume: 59
  start-page: 1181
  year: 1993
  end-page: 1186
  ident: CR42
  article-title: Exopolysaccharide production in biofilms: substratum activation of alginate gene expression by Pseudomonas aeruginosa
  publication-title: Appl. Environ. Microbiol.
– volume: 46
  start-page: 1823
  year: 2015
  end-page: 1826
  ident: CR151
  article-title: Chronic pulmonary disease with Mycobacterium abscessus complex is a biofilm infection
  publication-title: Eur. Respir. J.
– volume: 188
  start-page: 2325
  year: 2006
  end-page: 2335
  ident: CR94
  article-title: Phenotypic characterization of biofilm development
  publication-title: J. Bacteriol.
– ident: CR79
– volume: 195
  start-page: 4975
  year: 2013
  end-page: 4987
  ident: CR47
  article-title: Antimicrobial tolerance of biofilms is activated during an early developmental stage and requires the two-component hybrid SagS
  publication-title: J. Bacteriol.
– volume: 194
  start-page: 2062
  year: 2012
  end-page: 2073
  ident: CR58
  article-title: Heterogeneity in biofilms includes expression of ribosome hibernation factors in the antibiotic-tolerant subpopulation and hypoxia-induced stress response in the metabolically active population
  publication-title: J. Bacteriol.
– volume: 42
  start-page: 259
  year: 2018
  end-page: 272
  ident: CR166
  article-title: Emergent heterogeneous microenvironments in biofilms: substratum surface heterogeneity and bacterial adhesion force-sensing
  publication-title: FEMS Microbiol. Rev.
– year: 2020
  ident: CR112
  article-title: Universal dermal microbiome in human skin
  publication-title: mBio
  doi: 10.1128/mBio.02945-19
– volume: 8
  start-page: 894
  year: 2014
  end-page: 907
  ident: CR86
  article-title: Biofilm development and enhanced stress resistance of a model, mixed-species community biofilm
  publication-title: ISME J.
– volume: 21
  start-page: S1
  issue: Suppl. 1
  year: 2015
  end-page: S25
  ident: CR5
  article-title: ESCMID guideline for the diagnosis and treatment of biofilm infections 2014
  publication-title: Clin. Microbiol. Infect.
– volume: 9
  year: 2018
  ident: CR138
  article-title: High-resolution in situ transcriptomics of Pseudomonas aeruginosa unveils genotype independent patho-phenotypes in cystic fibrosis lungs
  publication-title: Nat. Commun.
– volume: 34
  start-page: 1713
  year: 2018
  end-page: 1718
  ident: CR143
  article-title: Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry: a review
  publication-title: J. Mater. Sci. Technol.
– volume: 14
  year: 2019
  ident: CR159
  article-title: Equine or porcine synovial fluid as a novel ex vivo model for the study of bacterial free-floating biofilms that form in human joint infections
  publication-title: PLoS ONE
– volume: 15
  start-page: 257
  year: 1995
  end-page: 262
  ident: CR90
  article-title: Interspecies bacterial interactions in biofilms
  publication-title: J. Ind. Microbiol.
– volume: 77
  start-page: 1
  year: 2013
  end-page: 52
  ident: CR67
  article-title: Cyclic di-GMP: the first 25 years of a universal bacterial second messenger
  publication-title: Microbiol. Mol. Biol. Rev.
– volume: 8
  start-page: 173
  year: 2008
  ident: CR96
  article-title: Characterization of biofilm matrix, degradation by DNase treatment and evidence of capsule downregulation in Streptococcus pneumoniae clinical isolates
  publication-title: BMC Microbiol.
– volume: 17
  start-page: 247
  year: 2019
  end-page: 260
  ident: CR12
  article-title: Bacteria and archaea on earth and their abundance in biofilms
  publication-title: Nat. Rev. Microbiol.
– volume: 79
  start-page: 21
  year: 2000
  end-page: 27
  ident: CR48
  article-title: Architecture of intact natural human plaque biofilms studied by confocal laser scanning microscopy
  publication-title: J. Dent. Res.
– volume: 81
  start-page: 767
  year: 2011
  end-page: 783
  ident: CR83
  article-title: The novel two-component regulator BfmR controls bacteriophage-mediated lysis and DNA release during biofilm development through PhdA
  publication-title: Mol. Microbiol
– volume: 296
  start-page: 202
  year: 2006
  end-page: 211
  ident: CR95
  article-title: Direct detection of bacterial biofilms on the middle-ear mucosa of children with chronic otitis media
  publication-title: JAMA
– volume: 96
  start-page: 2993
  year: 2021
  end-page: 3008
  ident: CR33
  article-title: Development of microalgal biofilm for wastewater remediation: from mechanism to practical application
  publication-title: J. Chem. Technol. Biotechnol.
– volume: 211
  start-page: 641
  year: 2015
  end-page: 650
  ident: CR132
  article-title: Effect of biofilms on recalcitrance of staphylococcal joint infection to antibiotic treatment
  publication-title: J. Infect. Dis.
– volume: 187
  start-page: 37
  year: 2005
  end-page: 44
  ident: CR50
  article-title: Timing and localization of rhamnolipid synthesis gene expression in Pseudomonas aeruginosa biofilms
  publication-title: J. Bacteriol.
– volume: 6
  start-page: 199
  year: 2008
  end-page: 210
  ident: CR56
  article-title: Physiological heterogeneity in biofilms
  publication-title: Nat. Rev. Microbiol.
– year: 2017
  ident: CR98
  article-title: Primary ciliary dyskinesia ciliated airway cells show increased susceptibility to Haemophilus influenzae biofilm formation
  publication-title: Eur. Respir. J.
  doi: 10.1183/13993003.00612-2017
– volume: 9
  start-page: 3490
  year: 2012
  end-page: 3502
  ident: CR160
  article-title: Aggregation by depletion attraction in cultures of bacteria producing exopolysaccharide
  publication-title: J. R. Soc. Interface
– volume: 30
  start-page: 295
  year: 1998
  end-page: 304
  ident: CR161
  article-title: Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development
  publication-title: Mol. Microbiol.
– volume: 8
  start-page: 180066
  year: 2018
  ident: CR172
  article-title: Spatial organization of different sigma factor activities and c-di-GMP signalling within the three-dimensional landscape of a bacterial biofilm
  publication-title: Open Biol.
– volume: 327
  start-page: 866
  year: 2010
  end-page: 868
  ident: CR175
  article-title: Vibrio cholerae VpsT regulates matrix production and motility by directly sensing cyclic di-GMP
  publication-title: Science
– ident: CR141
– volume: 4
  year: 2008
  ident: CR176
  article-title: Agr-mediated dispersal of Staphylococcus aureus biofilms
  publication-title: PLoS Pathog.
– year: 2020
  ident: CR19
  article-title: Quantitative framework for model evaluation in microbiology research using Pseudomonas aeruginosa and cystic fibrosis infection as a test case
  publication-title: mBio
  doi: 10.1128/mBio.03042-19
– volume: 86
  start-page: 819
  year: 2012
  end-page: 835
  ident: CR53
  article-title: Microcolony formation by the opportunistic pathogen requires pyruvate and pyruvate fermentation
  publication-title: Mol. Microbiol.
– volume: 51
  start-page: 1702
  year: 2021
  end-page: 1725
  ident: CR102
  article-title: Granular biofilms: function, application, and new trends as model microbial communities
  publication-title: Crit. Rev. Environ. Sci. Technol.
– volume: 11
  start-page: 1368
  year: 2020
  ident: CR124
  article-title: Identification and characterization of planktonic biofilm-like aggregates in infected synovial fluids from joint infections
  publication-title: Front. Microbiol.
– volume: 3
  start-page: 124
  year: 2021
  end-page: 129
  ident: CR9
  article-title: The plant microbiome: the dark and dirty secrets of plant growth
  publication-title: Plants People Planet
– year: 2018
  ident: 767_CR110
  publication-title: J. Clin. Microbiol.
  doi: 10.1128/JCM.00688-18
– year: 2020
  ident: 767_CR112
  publication-title: mBio
  doi: 10.1128/mBio.02945-19
– volume: 117
  start-page: 22473
  year: 2020
  ident: 767_CR136
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2003700117
– volume: 4
  year: 2008
  ident: 767_CR176
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1000052
– volume: 104
  start-page: 365
  year: 2017
  ident: 767_CR31
  publication-title: Mol. Microbiol.
  doi: 10.1111/mmi.13634
– volume: 19
  start-page: 4417
  year: 2017
  ident: 767_CR89
  publication-title: Env. Microbiol.
  doi: 10.1111/1462-2920.13883
– volume: 68
  start-page: 4457
  year: 2002
  ident: 767_CR55
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.68.9.4457-4464.2002
– volume: 8
  start-page: 173
  year: 2008
  ident: 767_CR96
  publication-title: BMC Microbiol.
  doi: 10.1186/1471-2180-8-173
– volume: 64
  start-page: 153
  year: 2008
  ident: 767_CR11
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/j.1574-6941.2008.00465.x
– volume: 15
  year: 2020
  ident: 767_CR122
  publication-title: PLoS ONE
– volume: 25
  start-page: 276
  year: 2005
  ident: 767_CR10
  publication-title: J. Food Saf.
  doi: 10.1111/j.1745-4565.2005.00024.x
– volume: 28
  start-page: 593
  year: 2020
  ident: 767_CR146
  publication-title: Wound Repair Regen.
  doi: 10.1111/wrr.12841
– volume: 7
  start-page: 10
  year: 2021
  ident: 767_CR3
  publication-title: NPJ Biofilms Microbiomes
  doi: 10.1038/s41522-020-00183-3
– volume: 209
  start-page: 669
  year: 2020
  ident: 767_CR153
  publication-title: Med. Microbiol. Immunol.
  doi: 10.1007/s00430-020-00691-1
– volume: 48
  start-page: 1175
  year: 2004
  ident: 767_CR165
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.48.4.1175-1187.2004
– volume: 11
  start-page: 157
  year: 2013
  ident: 767_CR32
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro2960
– volume: 194
  start-page: 2062
  year: 2012
  ident: 767_CR58
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.00022-12
– volume: 15
  start-page: 740
  year: 2017
  ident: 767_CR139
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro.2017.99
– volume: 65
  start-page: 127
  year: 2012
  ident: 767_CR101
  publication-title: FEMS Immunol. Med. Microbiol.
  doi: 10.1111/j.1574-695X.2012.00968.x
– volume: 48
  start-page: 1168
  year: 2004
  ident: 767_CR45
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.48.4.1168-1174.2004
– volume: 13
  start-page: eaaw8905
  year: 2020
  ident: 767_CR64
  publication-title: Sci. Signal.
  doi: 10.1126/scisignal.aaw8905
– volume: 374
  start-page: 20190080
  year: 2019
  ident: 767_CR135
  publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci.
  doi: 10.1098/rstb.2019.0080
– volume: 30
  start-page: 67
  year: 2016
  ident: 767_CR62
  publication-title: Curr. Opin. Microbiol.
  doi: 10.1016/j.mib.2016.01.004
– volume: 81
  start-page: 767
  year: 2011
  ident: 767_CR83
  publication-title: Mol. Microbiol
  doi: 10.1111/j.1365-2958.2011.07733.x
– volume: 9
  year: 2018
  ident: 767_CR138
  publication-title: Nat. Commun.
– year: 2021
  ident: 767_CR134
  publication-title: Science
  doi: 10.1126/science.abi4882
– volume: 15
  start-page: 271
  year: 2017
  ident: 767_CR68
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro.2016.190
– volume: 115
  start-page: 10780
  year: 2018
  ident: 767_CR131
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1806005115
– volume: 193
  start-page: 6614
  year: 2011
  ident: 767_CR85
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.00305-11
– volume: 27
  start-page: 1952
  year: 2018
  ident: 767_CR76
  publication-title: Mol. Ecol.
  doi: 10.1111/mec.14529
– volume: 30
  start-page: 295
  year: 1998
  ident: 767_CR161
  publication-title: Mol. Microbiol.
  doi: 10.1046/j.1365-2958.1998.01062.x
– volume: 44
  start-page: 547
  year: 2009
  ident: 767_CR105
  publication-title: Pediatr. Pulmonol.
  doi: 10.1002/ppul.21011
– volume: 16
  start-page: 1455
  year: 2014
  ident: 767_CR167
  publication-title: Environ. Microbiol.
  doi: 10.1111/1462-2920.12483
– volume: 10
  year: 2021
  ident: 767_CR155
  publication-title: eLife
  doi: 10.7554/eLife.70794
– volume: 184
  start-page: 1140
  year: 2002
  ident: 767_CR27
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.184.4.1140-1154.2002
– volume: 189
  start-page: 8154
  year: 2007
  ident: 767_CR81
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.00585-07
– volume: 31
  start-page: 48
  year: 2018
  ident: 767_CR72
  publication-title: Electron. J. Biotechnol.
  doi: 10.1016/j.ejbt.2017.11.001
– year: 2017
  ident: 767_CR98
  publication-title: Eur. Respir. J.
  doi: 10.1183/13993003.00612-2017
– volume: 41
  start-page: 435
  year: 1987
  ident: 767_CR13
  publication-title: Annu. Rev. Microbiol.
  doi: 10.1146/annurev.mi.41.100187.002251
– volume: 187
  start-page: 1441
  year: 2005
  ident: 767_CR52
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.187.4.1441-1454.2005
– volume: 12
  start-page: 655873
  year: 2021
  ident: 767_CR133
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2021.655873
– volume: 195
  start-page: 4975
  year: 2013
  ident: 767_CR47
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.00732-13
– year: 2022
  ident: 767_CR6
  publication-title: Thorax
  doi: 10.1136/thoraxjnl-2021-217576
– volume: 7
  year: 2021
  ident: 767_CR35
  publication-title: NPJ Biofilms Microbiomes
– volume: 8
  start-page: 180066
  year: 2018
  ident: 767_CR172
  publication-title: Open Biol.
  doi: 10.1098/rsob.180066
– year: 2016
  ident: 767_CR147
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2016.00796
– volume: 96
  start-page: 2993
  year: 2021
  ident: 767_CR33
  publication-title: J. Chem. Technol. Biotechnol.
  doi: 10.1002/jctb.6850
– volume: 60
  start-page: 198
  year: 2020
  ident: 767_CR14
  publication-title: J. Basic Microbiol.
  doi: 10.1002/jobm.201900569
– volume: 22
  start-page: e88
  year: 2022
  ident: 767_CR18
  publication-title: Lancet Infect. Dis.
  doi: 10.1016/S1473-3099(21)00122-5
– volume: 1147
  start-page: 3
  year: 2014
  ident: 767_CR23
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-0467-9_1
– volume: 8
  year: 2018
  ident: 767_CR116
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-27504-z
– volume: 16
  start-page: 2
  year: 2008
  ident: 767_CR106
  publication-title: Wound Repair Regen.
  doi: 10.1111/j.1524-475X.2007.00283.x
– volume: 176
  start-page: 993
  year: 2017
  ident: 767_CR149
  publication-title: Br. J. Dermatol.
  doi: 10.1111/bjd.15007
– volume: 14
  year: 2019
  ident: 767_CR159
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0221012
– volume: 109
  start-page: 20632
  year: 2012
  ident: 767_CR26
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1217993109
– volume: 65
  start-page: 1818
  year: 2020
  ident: 767_CR103
  publication-title: Limnol. Oceanogr.
  doi: 10.1002/lno.11420
– volume: 117
  start-page: 12375
  year: 2020
  ident: 767_CR114
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1919099117
– volume: 127
  start-page: 211
  year: 2017
  ident: 767_CR145
  publication-title: Water Res.
  doi: 10.1016/j.watres.2017.09.054
– volume: 238
  start-page: 86
  year: 1978
  ident: 767_CR1
  publication-title: Sci. Am.
  doi: 10.1038/scientificamerican0178-86
– volume: 7
  start-page: 105
  year: 2018
  ident: 767_CR148
  publication-title: Adv. Wound Care
  doi: 10.1089/wound.2017.0770
– volume: 6
  year: 2022
  ident: 767_CR100
  publication-title: NPJ Mater. Degrad.
  doi: 10.1038/s41529-022-00234-4
– volume: 34
  start-page: 1713
  year: 2018
  ident: 767_CR143
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2018.02.023
– volume: 5
  year: 2009
  ident: 767_CR37
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1000668
– ident: 767_CR78
– volume: 296
  start-page: 202
  year: 2006
  ident: 767_CR95
  publication-title: JAMA
  doi: 10.1001/jama.296.2.202
– volume: 46
  start-page: 39
  year: 1943
  ident: 767_CR21
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.46.1.39-56.1943
– volume: 21
  start-page: 39
  year: 2013
  ident: 767_CR82
  publication-title: Trends Microbiol.
  doi: 10.1016/j.tim.2012.10.008
– volume: 327
  start-page: 866
  year: 2010
  ident: 767_CR175
  publication-title: Science
  doi: 10.1126/science.1181185
– volume: 51
  start-page: 675
  year: 2004
  ident: 767_CR88
  publication-title: Mol. Microbiol.
  doi: 10.1046/j.1365-2958.2003.03877.x
– year: 2021
  ident: 767_CR156
  publication-title: APMIS
  doi: 10.1111/apm.13163
– volume: 185
  start-page: 699
  year: 2003
  ident: 767_CR51
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.185.3.699-700.2003
– volume: 59
  start-page: 142
  year: 2006
  ident: 767_CR119
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2005.04941.x
– volume: 3
  start-page: 124
  year: 2021
  ident: 767_CR9
  publication-title: Plants People Planet
  doi: 10.1002/ppp3.10167
– volume: 106
  start-page: 976
  year: 2017
  ident: 767_CR59
  publication-title: Mol. Microbiol.
  doi: 10.1111/mmi.13863
– volume: 153
  start-page: 897
  year: 2017
  ident: 767_CR150
  publication-title: JAMA Dermatol.
  doi: 10.1001/jamadermatol.2017.0904
– volume: 186
  start-page: 4486
  year: 2004
  ident: 767_CR111
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.186.14.4486-4491.2004
– volume: 46
  start-page: 2717
  year: 2008
  ident: 767_CR157
  publication-title: J. Clin. Microbiol.
  doi: 10.1128/JCM.00501-08
– volume: 35
  start-page: 2211
  year: 2017
  ident: 767_CR108
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.23505
– volume: 74
  start-page: 4463
  year: 2008
  ident: 767_CR173
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00710-08
– volume: 17
  start-page: 73
  year: 2009
  ident: 767_CR77
  publication-title: Trends Microbiol.
  doi: 10.1016/j.tim.2008.11.001
– volume: 109
  start-page: 317
  year: 2002
  ident: 767_CR121
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI0213870
– volume: 291
  start-page: 12547
  year: 2016
  ident: 767_CR66
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.R115.711507
– volume: 407
  start-page: 762
  year: 2000
  ident: 767_CR120
  publication-title: Nature
  doi: 10.1038/35037627
– volume: 63
  start-page: 937
  year: 2009
  ident: 767_CR93
  publication-title: J. Antimicrob. Chemother.
  doi: 10.1093/jac/dkp060
– volume: 48
  start-page: 253
  year: 2003
  ident: 767_CR162
  publication-title: Mol. Microbiol.
  doi: 10.1046/j.1365-2958.2003.03432.x
– volume: 19
  start-page: 2005
  year: 2017
  ident: 767_CR38
  publication-title: Environ. Microbiol.
  doi: 10.1111/1462-2920.13719
– volume: 9
  start-page: 3490
  year: 2012
  ident: 767_CR160
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2012.0498
– year: 2015
  ident: 767_CR75
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s00374-015-0996-1
– volume: 7
  start-page: 745
  year: 2004
  ident: 767_CR80
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2004.08.020
– volume: 7
  year: 2016
  ident: 767_CR140
  publication-title: mBio
  doi: 10.1128/mBio.00237-16
– volume: 185
  start-page: 175
  year: 2006
  ident: 767_CR158
  publication-title: Sediment. Geol.
  doi: 10.1016/j.sedgeo.2005.12.022
– volume: 7
  start-page: 1249
  year: 1973
  ident: 767_CR41
  publication-title: Water Res.
  doi: 10.1016/0043-1354(73)90002-X
– volume: 15
  start-page: 257
  year: 1995
  ident: 767_CR90
  publication-title: J. Ind. Microbiol.
  doi: 10.1007/BF01569978
– volume: 51
  start-page: 1702
  year: 2021
  ident: 767_CR102
  publication-title: Crit. Rev. Environ. Sci. Technol.
  doi: 10.1080/10643389.2020.1769433
– volume: 115
  start-page: 10780
  year: 2018
  ident: 767_CR130
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1806005115
– volume: 17
  start-page: 247
  year: 2019
  ident: 767_CR12
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/s41579-019-0158-9
– volume: 280
  start-page: 295
  year: 1998
  ident: 767_CR49
  publication-title: Science
  doi: 10.1126/science.280.5361.295
– volume: 18
  start-page: 571
  year: 2020
  ident: 767_CR61
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/s41579-020-0385-0
– volume: 30
  start-page: 138
  year: 2018
  ident: 767_CR109
  publication-title: Hip Pelvis
  doi: 10.5371/hp.2018.30.3.138
– volume: 11
  year: 2021
  ident: 767_CR107
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-84525-x
– volume: 48
  start-page: 1511
  year: 2003
  ident: 767_CR29
  publication-title: Mol. Microbiol.
  doi: 10.1046/j.1365-2958.2003.03525.x
– volume: 56
  start-page: 187
  year: 2002
  ident: 767_CR30
  publication-title: Annu. Rev. Microbiol.
  doi: 10.1146/annurev.micro.56.012302.160705
– volume: 115
  start-page: E5125
  year: 2018
  ident: 767_CR137
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1717525115
– volume: 6
  start-page: 199
  year: 2008
  ident: 767_CR56
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro1838
– volume: 292
  start-page: 477
  year: 2017
  ident: 767_CR171
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M116.746743
– volume: 211
  start-page: 641
  year: 2015
  ident: 767_CR132
  publication-title: J. Infect. Dis.
  doi: 10.1093/infdis/jiu514
– volume: 59
  start-page: 1181
  year: 1993
  ident: 767_CR42
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/aem.59.4.1181-1186.1993
– volume: 64
  start-page: 847
  year: 2000
  ident: 767_CR40
  publication-title: Microbiol. Mol. Biol. Rev.
  doi: 10.1128/MMBR.64.4.847-867.2000
– volume: 54
  start-page: 667
  year: 2005
  ident: 767_CR54
  publication-title: J. Med. Microbiol.
  doi: 10.1099/jmm.0.45969-0
– volume: 10
  start-page: 2331
  year: 2008
  ident: 767_CR87
  publication-title: Environ. Microbiol.
  doi: 10.1111/j.1462-2920.2008.01658.x
– volume: 288
  start-page: 119731
  year: 2021
  ident: 767_CR15
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.119731
– year: 2020
  ident: 767_CR19
  publication-title: mBio
  doi: 10.1128/mBio.03042-19
– volume: 127
  start-page: 105474
  year: 2021
  ident: 767_CR144
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2021.105474
– volume: 195
  start-page: 2947
  year: 2013
  ident: 767_CR60
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.00239-13
– volume: 59
  start-page: 2122
  year: 2015
  ident: 767_CR118
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.04579-14
– volume: 61
  start-page: 860
  year: 1995
  ident: 767_CR43
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/aem.61.3.860-867.1995
– volume: 13
  start-page: 7
  year: 2005
  ident: 767_CR129
  publication-title: Trends Microbiol.
  doi: 10.1016/j.tim.2004.11.004
– volume: 5
  start-page: 1294
  year: 2003
  ident: 767_CR179
  publication-title: Environ. Microbiol.
  doi: 10.1046/j.1462-2920.2003.00542.x
– volume: 8
  year: 2013
  ident: 767_CR177
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0072968
– volume: 19
  start-page: 2893
  year: 2017
  ident: 767_CR92
  publication-title: Env. Microbiol.
  doi: 10.1111/1462-2920.13816
– volume: 62
  start-page: 1264
  year: 2006
  ident: 767_CR174
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2006.05421.x
– volume: 2013
  start-page: 288
  year: 2013
  ident: 767_CR4
  publication-title: Pathogens
  doi: 10.3390/pathogens2020288
– ident: 767_CR79
  doi: 10.1128/9781555818166
– volume: 8
  start-page: 894
  year: 2014
  ident: 767_CR86
  publication-title: ISME J.
  doi: 10.1038/ismej.2013.194
– volume: 651
  start-page: 3187
  year: 2019
  ident: 767_CR71
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.09.355
– volume: 86
  start-page: 819
  year: 2012
  ident: 767_CR53
  publication-title: Mol. Microbiol.
  doi: 10.1111/mmi.12018
– volume: 151
  start-page: 1569
  year: 2005
  ident: 767_CR65
  publication-title: Microbiology
  doi: 10.1099/mic.0.27536-0
– volume: 19
  start-page: 3157
  year: 2018
  ident: 767_CR73
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms19103157
– volume: 14
  start-page: 1913
  year: 2012
  ident: 767_CR44
  publication-title: Environ. Microbiol.
  doi: 10.1111/j.1462-2920.2011.02657.x
– volume: 21
  start-page: 466
  year: 2013
  ident: 767_CR99
  publication-title: Trends Microbiol.
  doi: 10.1016/j.tim.2013.06.002
– volume: 16
  start-page: 1455
  year: 2014
  ident: 767_CR57
  publication-title: Environ. Microbiol.
  doi: 10.1111/1462-2920.12483
– volume: 179
  start-page: 7663
  year: 1997
  ident: 767_CR46
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.179.24.7663-7670.1997
– volume: 13
  start-page: 154
  year: 2012
  ident: 767_CR97
  publication-title: Paediatr. Respir. Rev.
  doi: 10.1016/j.prrv.2012.03.001
– volume: 10
  start-page: 294
  year: 2010
  ident: 767_CR152
  publication-title: BMC Microbiol.
  doi: 10.1186/1471-2180-10-294
– year: 2020
  ident: 767_CR123
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/5584_2020_573
– volume: 195
  start-page: 3352
  year: 2013
  ident: 767_CR169
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.00318-13
– volume: 79
  start-page: 21
  year: 2000
  ident: 767_CR48
  publication-title: J. Dent. Res.
  doi: 10.1177/00220345000790010201
– volume: 413
  start-page: 860
  year: 2001
  ident: 767_CR163
  publication-title: Nature
  doi: 10.1038/35101627
– volume: 102
  start-page: 5005
  year: 2018
  ident: 767_CR104
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-018-8990-9
– volume: 46
  start-page: 1823
  year: 2015
  ident: 767_CR151
  publication-title: Eur. Respir. J.
  doi: 10.1183/13993003.01102-2015
– volume: 26
  start-page: 59
  year: 2019
  ident: 767_CR74
  publication-title: J. Biomed. Sci.
  doi: 10.1186/s12929-019-0554-5
– volume: 185
  start-page: 2080
  year: 2003
  ident: 767_CR164
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.185.7.2080-2095.2003
– ident: 767_CR8
– volume: 21
  start-page: S1
  issue: Suppl. 1
  year: 2015
  ident: 767_CR5
  publication-title: Clin. Microbiol. Infect.
  doi: 10.1016/j.cmi.2014.10.024
– volume: 75
  start-page: 90
  year: 2009
  ident: 767_CR28
  publication-title: Cytom. A
  doi: 10.1002/cyto.a.20685
– volume: 26
  start-page: 229
  year: 2018
  ident: 767_CR115
  publication-title: Trends Microbiol.
  doi: 10.1016/j.tim.2017.09.008
– volume: 192
  start-page: 5275
  year: 2010
  ident: 767_CR84
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.00387-10
– volume: 11
  start-page: 1368
  year: 2020
  ident: 767_CR124
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2020.01368
– volume: 6
  year: 2011
  ident: 767_CR178
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0024235
– volume: 4
  year: 2009
  ident: 767_CR126
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0005513
– volume: 77
  start-page: 1
  year: 2013
  ident: 767_CR67
  publication-title: Microbiol. Mol. Biol. Rev.
  doi: 10.1128/MMBR.00043-12
– volume: 7
  year: 2012
  ident: 767_CR127
  publication-title: PLoS ONE
  doi: 10.1371/annotation/08d0f2a8-0c40-4a0c-b546-0025648e73f0
– volume: 10
  start-page: 91
  year: 2021
  ident: 767_CR22
  publication-title: Adv. Wound Care
  doi: 10.1089/wound.2020.1176
– year: 2018
  ident: 767_CR125
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02264-17
– volume: 28
  start-page: 449
  year: 1998
  ident: 767_CR39
  publication-title: Mol. Microbiol.
  doi: 10.1046/j.1365-2958.1998.00797.x
– volume: 718
  start-page: 137417
  year: 2020
  ident: 767_CR36
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.137417
– year: 2018
  ident: 767_CR7
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2017.02649
– volume: 2
  start-page: 95
  year: 2004
  ident: 767_CR25
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro821
– volume: 20
  start-page: 3423
  year: 2019
  ident: 767_CR70
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms20143423
– volume: 42
  start-page: 259
  year: 2018
  ident: 767_CR166
  publication-title: FEMS Microbiol. Rev.
  doi: 10.1093/femsre/fuy001
– volume: 36
  start-page: 228
  year: 2018
  ident: 767_CR142
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2017.11.005
– volume: 801
  start-page: 149708
  year: 2021
  ident: 767_CR34
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.149708
– volume: 15
  start-page: 2879
  year: 2013
  ident: 767_CR117
  publication-title: Environ. Microbiol.
  doi: 10.1111/1462-2920.12186
– volume: 43
  start-page: 313
  year: 2017
  ident: 767_CR24
  publication-title: Crit. Rev. Microbiol.
  doi: 10.1080/1040841X.2016.1208146
– volume: 204
  start-page: 117593
  year: 2021
  ident: 767_CR17
  publication-title: Water Res.
  doi: 10.1016/j.watres.2021.117593
– volume: 68
  start-page: 223
  year: 2008
  ident: 767_CR154
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2008.06152.x
– volume: 45
  start-page: 503
  year: 1995
  ident: 767_CR91
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.260450607
– volume: 66
  start-page: 1339
  year: 1982
  ident: 767_CR20
  publication-title: Circulation
  doi: 10.1161/01.CIR.66.6.1339
– volume: 37
  start-page: 4
  year: 2021
  ident: 767_CR168
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2020.10.007
– year: 2021
  ident: 767_CR170
  publication-title: mBio
  doi: 10.1128/mBio.03579-20
– volume: 187
  start-page: 37
  year: 2005
  ident: 767_CR50
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.187.1.37-44.2005
– ident: 767_CR141
  doi: 10.1007/978-3-030-16775-2_4
– volume: 27
  start-page: 910
  year: 1981
  ident: 767_CR2
  publication-title: Can. J. Microbiol.
  doi: 10.1139/m81-143
– year: 2017
  ident: 767_CR128
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02264-17
– volume: 188
  start-page: 2325
  year: 2006
  ident: 767_CR94
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.188.7.2325-2335.2006
– volume: 59
  start-page: 324
  year: 2010
  ident: 767_CR113
  publication-title: FEMS Immunol. Med. Microbiol.
  doi: 10.1111/j.1574-695X.2010.00714.x
– ident: 767_CR63
  doi: 10.1007/978-3-642-19940-0_1
– volume: 40
  start-page: 753
  year: 2016
  ident: 767_CR69
  publication-title: FEMS Microbiol. Rev.
  doi: 10.1093/femsre/fuw013
– volume: 6
  year: 2011
  ident: 767_CR16
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0027943
SSID ssj0025572
Score 2.7534897
SecondaryResourceType review_article
Snippet Bacterial biofilms are often defined as communities of surface-attached bacteria and are typically depicted with a classic mushroom-shaped structure...
Bacterial biofilms are often defined as communities of surface attached bacteria. Biofilms are typically depicted with a classic mushroom-shaped structure that...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 608
SubjectTerms 631/326/2565/107
631/326/421
631/326/46
Animals
Bacteria
Biofilms
Biomedical and Life Sciences
Disaggregation
Infectious Diseases
Life Cycle Stages
Life cycles
Life Sciences
Medical Microbiology
Microbiology
Microenvironments
Parasitology
Pseudomonas aeruginosa
Pseudomonas aeruginosa - physiology
Review Article
Virology
Title The biofilm life cycle: expanding the conceptual model of biofilm formation
URI https://link.springer.com/article/10.1038/s41579-022-00767-0
https://www.ncbi.nlm.nih.gov/pubmed/35922483
https://www.proquest.com/docview/2714219133
https://www.proquest.com/docview/2698629771
https://pubmed.ncbi.nlm.nih.gov/PMC9841534
Volume 20
WOSCitedRecordID wos000835583600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1740-1534
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0025572
  issn: 1740-1526
  databaseCode: 7RV
  dateStart: 20031001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFH9iG0i7jO8RGFWQuIE1u3ZimwuCaRMSoqomQL1FtmOLSlvarS3a_nuenTRTmdiFiy-x09rv2e_nvI8fwFurlalNTYnz3BKhSkYiSSHRhbGhdIGHoBLZhByN1GSix90Ht0UXVrk-E9NBXc9c_EZ-OJRM4O7CK9XH-QWJrFHRu9pRaGzBDiIbFkO6vg3H_YWrKBJ5E4JuStBOlV3SDOXqcIGGS2oSY9mjM0oSummYbqHN20GTf3lOk0E6efi_U3kEex0UzT-1uvMY7vnmCTxoySmvn8JX1KDcTiOl93l-Ng0-d9fY70Pur-ZtLkyO4DF3bd7jCt-UWHXyWehH9ZmRz-DHyfH3oy-ko14gTkixJLVipYmnqdXR0Wpra5gyQghaG86prymvZWELGig3Cg0hol9PmecxJagsNH8O282s8S8gR_M3FA6BoDVBoIxsrJ_DNa6AdF6HMgO2XvfKdXXJIz3GWZX841xVrawqlFWVZFXRDN71Y-ZtVY47ex-s5VB1O3RR3Qghgzf9Y9xb0WFiGj9bYZ9S44UPETLLYL-Vfv9zvNCIfhSOlht60XeIdbs3nzTTX6l-t8YFK7jI4P1ag27-1r9n8fLuWbyC3WHU5hRneADby8uVfw333e_ldHE5gC15-jO2E5laha06YgPY-Xw8Gp8O0r6JrRz_AV3FF0U
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH6qCggu7EuggJHgBFad2ElsJIQQULWaMuqhSL0F27HFSCUzdGaA-VP8Rp6dpRoqeuuBs-0ktt-at3wAz42SutY1o9ZxQ4UsUhpACqnKtfGF9dx7GcEmyvFYHh2pgw343dfChLTKXiZGQV1PbfhHvp2VqUDuQpfq7ew7DahRIbraQ2i0ZDFyq5_oss3f7H3A-32RZTsfD9_v0g5VgFpRigWtZVroICiMCjFEUxudSi2EYLVG597VjNdlbnLmGdcSZTwado6ljodqlyIPzZdQ5F8SobNYSBXMDgYHL88jWBQa-YyiXiy6Ih3G5fYcFWWpaMidD8GvkrJ1RXjGuj2bpPlXpDYqwJ0b_9vR3YTrnalN3rW8cQs2XHMbrrTgm6s7MEIOIWYSIMu_keOJd8SucN5r4n7N2lofgsYxsW1d5xKfFFGDyNQPq4bKz7vw-UJ2cg82m2njHgBB9Z4Ji4au0V7kqTShPxBXeOKldcoXCaT9PVe267se4D-Oqxj_57JqaaNC2qgibVQsgZfDmlnbdeTc2Vv9vVedBJpXp5eewLNhGGVHCAjpxk2XOKdQ6NCiB5AmcL-ltuF1PFdo3UlcXa7R4TAh9CVfH2kmX2N_coUHlnORwKueYk8_69-7eHj-Lp7C1d3DT_vV_t549AiuZYGTYk7lFmwuTpbuMVy2PxaT-cmTyJMEvlw0Jf8BLb1qOQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD6aOkC8cIcFBhgJnsCqUzuJjYQQsFVMRVWFQNpbZju2qLSlZW2B_jV-Hce5TWVib3vgOXZbO9-59Vw-gOdGSV3oglHruKFCpjENJIVUJdr41HruvazIJrLxWB4eqskW_G57YUJZZasTK0VdzGz4j7w_yGKB0oUhVd83ZRGTveHb-XcaGKRCprWl06ghMnLrnxi-Ld4c7OG7fjEYDPe_fPhIG4YBakUmlrSQcaqD0jAq5BNNYXQstRCCFRoDfVcwXmSJSZhnXEvU9-jkORY7Hjpf0iQMYkL1v52hkyF6sP1-fzz53IV7SVJRR6HLzyhaybRp2WFc9hdoNjNFQyV9SIVllG2axXO-7vmSzb_ytpU5HN78ny_yFtxonHDyrpaa27DlyjtwtablXN-FEcoOMdNAZn5CjqfeEbvGda-J-zWvu4AIus3E1h2fK_ykik-IzHy3q-sJvQdfL-Uk96FXzkq3AwQN_0BYdIGN9iKJpQmTg7jC28-sUz6NIG7feW6bieyBGOQ4ryoDuMxrnOSIk7zCSc4ieNntmdfzSC5cvdtiIG900yI_A0AEz7rHqFVCqkiXbrbCNanCUBdjgziCBzXyuq_jiUK_T-LubAOT3YIwsXzzSTn9Vk0uV3hhCRcRvGrRe_az_n2Khxef4ilcQwDnnw7Go0dwfRCEqiq23IXe8nTlHsMV-2M5XZw-aQSUwNFlQ_kPwbJ0Uw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+biofilm+life+cycle%3A+expanding+the+conceptual+model+of+biofilm+formation&rft.jtitle=Nature+reviews.+Microbiology&rft.au=Sauer%2C+Karin&rft.au=Stoodley%2C+Paul&rft.au=Goeres%2C+Darla+M&rft.au=Hall-Stoodley%2C+Luanne&rft.date=2022-10-01&rft.eissn=1740-1534&rft.volume=20&rft.issue=10&rft.spage=608&rft_id=info:doi/10.1038%2Fs41579-022-00767-0&rft_id=info%3Apmid%2F35922483&rft.externalDocID=35922483
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1740-1526&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1740-1526&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1740-1526&client=summon