Strong electron–phonon coupling in magic-angle twisted bilayer graphene

The unusual properties of superconductivity in magic-angle twisted bilayer graphene (MATBG) have sparked considerable research interest 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 – 13 . However, despite the dedication of intensive experimental efforts and the proposal of several possible pairi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) Jg. 636; H. 8042; S. 342 - 347
Hauptverfasser: Chen, Cheng, Nuckolls, Kevin P., Ding, Shuhan, Miao, Wangqian, Wong, Dillon, Oh, Myungchul, Lee, Ryan L., He, Shanmei, Peng, Cheng, Pei, Ding, Li, Yiwei, Hao, Chenyue, Yan, Haoran, Xiao, Hanbo, Gao, Han, Li, Qiao, Zhang, Shihao, Liu, Jianpeng, He, Lin, Watanabe, Kenji, Taniguchi, Takashi, Jozwiak, Chris, Bostwick, Aaron, Rotenberg, Eli, Li, Chu, Han, Xu, Pan, Ding, Liu, Zhongkai, Dai, Xi, Liu, Chaoxing, Bernevig, B. Andrei, Wang, Yao, Yazdani, Ali, Chen, Yulin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 12.12.2024
Nature Publishing Group
Schlagworte:
ISSN:0028-0836, 1476-4687, 1476-4687
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The unusual properties of superconductivity in magic-angle twisted bilayer graphene (MATBG) have sparked considerable research interest 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 – 13 . However, despite the dedication of intensive experimental efforts and the proposal of several possible pairing mechanisms 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 – 24 , the origin of its superconductivity remains elusive. Here, by utilizing angle-resolved photoemission spectroscopy with micrometre spatial resolution, we reveal flat-band replicas in superconducting MATBG, where MATBG is unaligned with its hexagonal boron nitride substrate 11 . These replicas show uniform energy spacing, approximately 150 ± 15 meV apart, indicative of strong electron–boson coupling. Strikingly, these replicas are absent in non-superconducting twisted bilayer graphene (TBG) systems, either when MATBG is aligned to hexagonal boron nitride or when TBG deviates from the magic angle. Calculations suggest that the formation of these flat-band replicas in superconducting MATBG are attributed to the strong coupling between flat-band electrons and an optical phonon mode at the graphene K point, facilitated by intervalley scattering. These findings, although they do not necessarily put electron–phonon coupling as the main driving force for the superconductivity in MATBG, unravel the electronic structure inherent in superconducting MATBG, thereby providing crucial information for understanding the unusual electronic landscape from which its superconductivity is derived. Angle-resolved photoemission spectroscopy of superconducting magic-angle twisted bilayer graphene reveals flat-band replicas that are indicative of strong electron–phonon coupling; these replicas are absent in non-superconducting twisted bilayer graphene.
AbstractList The unusual properties of superconductivity in magic-angle twisted bilayer graphene (MATBG) have sparked considerable research interest. However, despite the dedication of intensive experimental efforts and the proposal of several possible pairing mechanisms, the origin of its superconductivity remains elusive. Here, by utilizing angle-resolved photoemission spectroscopy with micrometre spatial resolution, we reveal flat-band replicas in superconducting MATBG, where MATBG is unaligned with its hexagonal boron nitride substrate. These replicas show uniform energy spacing, approximately 150 ± 15 meV apart, indicative of strong electron–boson coupling. Strikingly, these replicas are absent in non-superconducting twisted bilayer graphene (TBG) systems, either when MATBG is aligned to hexagonal boron nitride or when TBG deviates from the magic angle. Calculations suggest that the formation of these flat-band replicas in superconducting MATBG are attributed to the strong coupling between flat-band electrons and an optical phonon mode at the graphene K point, facilitated by intervalley scattering. These findings, although they do not necessarily put electron–phonon coupling as the main driving force for the superconductivity in MATBG, unravel the electronic structure inherent in superconducting MATBG, thereby providing crucial information for understanding the unusual electronic landscape from which its superconductivity is derived.
The unusual properties of superconductivity in magic-angle twisted bilayer graphene (MATBG) have sparked considerable research interest 1–13 . However, despite the dedication of intensive experimental efforts and the proposal of several possible pairing mechanisms 14–24 , the origin of its superconductivity remains elusive. Here, by utilizing angle-resolved photoemission spectroscopy with micrometre spatial resolution, we reveal flat-band replicas in superconducting MATBG, where MATBG is unaligned with its hexagonal boron nitride substrate 11 . These replicas show uniform energy spacing, approximately 150 ± 15 meV apart, indicative of strong electron–boson coupling. Strikingly, these replicas are absent in non-superconducting twisted bilayer graphene (TBG) systems, either when MATBG is aligned to hexagonal boron nitride or when TBG deviates from the magic angle. Calculations suggest that the formation of these flat-band replicas in superconducting MATBG are attributed to the strong coupling between flat-band electrons and an optical phonon mode at the graphene K point, facilitated by intervalley scattering. These findings, although they do not necessarily put electron–phonon coupling as the main driving force for the superconductivity in MATBG, unravel the electronic structure inherent in superconducting MATBG, thereby providing crucial information for understanding the unusual electronic landscape from which its superconductivity is derived.
The unusual properties of superconductivity in magic-angle twisted bilayer graphene (MATBG) have sparked considerable research interest1-13. However, despite the dedication of intensive experimental efforts and the proposal of several possible pairing mechanisms14-24, the origin of its superconductivity remains elusive. Here, by utilizing angle-resolved photoemission spectroscopy with micrometre spatial resolution, we reveal flat-band replicas in superconducting MATBG, where MATBG is unaligned with its hexagonal boron nitride substrate11. These replicas show uniform energy spacing, approximately 150 ± 15 meV apart, indicative of strong electron-boson coupling. Strikingly, these replicas are absent in non-superconducting twisted bilayer graphene (TBG) systems, either when MATBG is aligned to hexagonal boron nitride or when TBG deviates from the magic angle. Calculations suggest that the formation of these flat-band replicas in superconducting MATBG are attributed to the strong coupling between flat-band electrons and an optical phonon mode at the graphene K point, facilitated by intervalley scattering. These findings, although they do not necessarily put electron-phonon coupling as the main driving force for the superconductivity in MATBG, unravel the electronic structure inherent in superconducting MATBG, thereby providing crucial information for understanding the unusual electronic landscape from which its superconductivity is derived.The unusual properties of superconductivity in magic-angle twisted bilayer graphene (MATBG) have sparked considerable research interest1-13. However, despite the dedication of intensive experimental efforts and the proposal of several possible pairing mechanisms14-24, the origin of its superconductivity remains elusive. Here, by utilizing angle-resolved photoemission spectroscopy with micrometre spatial resolution, we reveal flat-band replicas in superconducting MATBG, where MATBG is unaligned with its hexagonal boron nitride substrate11. These replicas show uniform energy spacing, approximately 150 ± 15 meV apart, indicative of strong electron-boson coupling. Strikingly, these replicas are absent in non-superconducting twisted bilayer graphene (TBG) systems, either when MATBG is aligned to hexagonal boron nitride or when TBG deviates from the magic angle. Calculations suggest that the formation of these flat-band replicas in superconducting MATBG are attributed to the strong coupling between flat-band electrons and an optical phonon mode at the graphene K point, facilitated by intervalley scattering. These findings, although they do not necessarily put electron-phonon coupling as the main driving force for the superconductivity in MATBG, unravel the electronic structure inherent in superconducting MATBG, thereby providing crucial information for understanding the unusual electronic landscape from which its superconductivity is derived.
The unusual properties of superconductivity in magic-angle twisted bilayer graphene (MATBG) have sparked considerable research interest 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 – 13 . However, despite the dedication of intensive experimental efforts and the proposal of several possible pairing mechanisms 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 – 24 , the origin of its superconductivity remains elusive. Here, by utilizing angle-resolved photoemission spectroscopy with micrometre spatial resolution, we reveal flat-band replicas in superconducting MATBG, where MATBG is unaligned with its hexagonal boron nitride substrate 11 . These replicas show uniform energy spacing, approximately 150 ± 15 meV apart, indicative of strong electron–boson coupling. Strikingly, these replicas are absent in non-superconducting twisted bilayer graphene (TBG) systems, either when MATBG is aligned to hexagonal boron nitride or when TBG deviates from the magic angle. Calculations suggest that the formation of these flat-band replicas in superconducting MATBG are attributed to the strong coupling between flat-band electrons and an optical phonon mode at the graphene K point, facilitated by intervalley scattering. These findings, although they do not necessarily put electron–phonon coupling as the main driving force for the superconductivity in MATBG, unravel the electronic structure inherent in superconducting MATBG, thereby providing crucial information for understanding the unusual electronic landscape from which its superconductivity is derived. Angle-resolved photoemission spectroscopy of superconducting magic-angle twisted bilayer graphene reveals flat-band replicas that are indicative of strong electron–phonon coupling; these replicas are absent in non-superconducting twisted bilayer graphene.
The unusual properties of superconductivity in magic-angle twisted bilayer graphene (MATBG) have sparked considerable research interest . However, despite the dedication of intensive experimental efforts and the proposal of several possible pairing mechanisms , the origin of its superconductivity remains elusive. Here, by utilizing angle-resolved photoemission spectroscopy with micrometre spatial resolution, we reveal flat-band replicas in superconducting MATBG, where MATBG is unaligned with its hexagonal boron nitride substrate . These replicas show uniform energy spacing, approximately 150 ± 15 meV apart, indicative of strong electron-boson coupling. Strikingly, these replicas are absent in non-superconducting twisted bilayer graphene (TBG) systems, either when MATBG is aligned to hexagonal boron nitride or when TBG deviates from the magic angle. Calculations suggest that the formation of these flat-band replicas in superconducting MATBG are attributed to the strong coupling between flat-band electrons and an optical phonon mode at the graphene K point, facilitated by intervalley scattering. These findings, although they do not necessarily put electron-phonon coupling as the main driving force for the superconductivity in MATBG, unravel the electronic structure inherent in superconducting MATBG, thereby providing crucial information for understanding the unusual electronic landscape from which its superconductivity is derived.
The unusual properties of superconductivity in magic-angle twisted bilayer graphene (MATBG) have sparked considerable research interest1–13. However, despite the dedication of intensive experimental efforts and the proposal of several possible pairing mechanisms14–24, the origin of its superconductivity remains elusive. Here, by utilizing angle-resolved photoemission spectroscopy with micrometre spatial resolution, we reveal flat-band replicas in superconducting MATBG, where MATBG is unaligned with its hexagonal boron nitride substrate11. These replicas show uniform energy spacing, approximately 150 ± 15 meV apart, indicative of strong electron–boson coupling. Strikingly, these replicas are absent in non-superconducting twisted bilayer graphene (TBG) systems, either when MATBG is aligned to hexagonal boron nitride or when TBG deviates from the magic angle. Calculations suggest that the formation of these flat-band replicas in superconducting MATBG are attributed to the strong coupling between flat-band electrons and an optical phonon mode at the graphene K point, facilitated by intervalley scattering. These findings, although they do not necessarily put electron–phonon coupling as the main driving force for the superconductivity in MATBG, unravel the electronic structure inherent in superconducting MATBG, thereby providing crucial information for understanding the unusual electronic landscape from which its superconductivity is derived. Angle-resolved photoemission spectroscopy of superconducting magic-angle twisted bilayer graphene reveals flat-band replicas that are indicative of strong electron–phonon coupling; these replicas are absent in non-superconducting twisted bilayer graphene.
Author Zhang, Shihao
Yan, Haoran
Taniguchi, Takashi
Rotenberg, Eli
Bernevig, B. Andrei
Nuckolls, Kevin P.
Li, Yiwei
Yazdani, Ali
Liu, Chaoxing
Chen, Yulin
Wang, Yao
Lee, Ryan L.
He, Lin
Pan, Ding
Chen, Cheng
Bostwick, Aaron
Li, Chu
He, Shanmei
Ding, Shuhan
Liu, Jianpeng
Pei, Ding
Hao, Chenyue
Jozwiak, Chris
Han, Xu
Xiao, Hanbo
Li, Qiao
Oh, Myungchul
Liu, Zhongkai
Wong, Dillon
Miao, Wangqian
Peng, Cheng
Dai, Xi
Gao, Han
Watanabe, Kenji
Author_xml – sequence: 1
  givenname: Cheng
  surname: Chen
  fullname: Chen, Cheng
  organization: Laboratory for Topological Physics and School of Physical Science and Technology, ShanghaiTech University, Department of Physics, University of Oxford
– sequence: 2
  givenname: Kevin P.
  orcidid: 0000-0002-1078-7113
  surname: Nuckolls
  fullname: Nuckolls, Kevin P.
  organization: Joseph Henry Laboratories, Princeton University, Department of Physics, Princeton University, Department of Physics, Massachusetts Institute of Technology
– sequence: 3
  givenname: Shuhan
  surname: Ding
  fullname: Ding, Shuhan
  organization: Department of Chemistry, Emory University
– sequence: 4
  givenname: Wangqian
  surname: Miao
  fullname: Miao, Wangqian
  organization: Materials Department, University of California, Santa Barbara
– sequence: 5
  givenname: Dillon
  surname: Wong
  fullname: Wong, Dillon
  organization: Joseph Henry Laboratories, Princeton University, Department of Physics, Princeton University
– sequence: 6
  givenname: Myungchul
  orcidid: 0000-0003-0477-1390
  surname: Oh
  fullname: Oh, Myungchul
  organization: Joseph Henry Laboratories, Princeton University, Department of Physics, Princeton University, Department of Semiconductor Engineering, Pohang University of Science and Technology (POSTECH)
– sequence: 7
  givenname: Ryan L.
  surname: Lee
  fullname: Lee, Ryan L.
  organization: Joseph Henry Laboratories, Princeton University, Department of Physics, Princeton University
– sequence: 8
  givenname: Shanmei
  surname: He
  fullname: He, Shanmei
  organization: Department of Physics, University of Oxford
– sequence: 9
  givenname: Cheng
  orcidid: 0009-0006-3433-1467
  surname: Peng
  fullname: Peng, Cheng
  organization: Department of Physics, University of Oxford
– sequence: 10
  givenname: Ding
  surname: Pei
  fullname: Pei, Ding
  organization: Laboratory for Topological Physics and School of Physical Science and Technology, ShanghaiTech University
– sequence: 11
  givenname: Yiwei
  surname: Li
  fullname: Li, Yiwei
  organization: Institute for Advanced Studies (IAS), Wuhan University
– sequence: 12
  givenname: Chenyue
  surname: Hao
  fullname: Hao, Chenyue
  organization: Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University
– sequence: 13
  givenname: Haoran
  surname: Yan
  fullname: Yan, Haoran
  organization: Department of Chemistry, Emory University
– sequence: 14
  givenname: Hanbo
  orcidid: 0000-0001-8247-3378
  surname: Xiao
  fullname: Xiao, Hanbo
  organization: Laboratory for Topological Physics and School of Physical Science and Technology, ShanghaiTech University
– sequence: 15
  givenname: Han
  surname: Gao
  fullname: Gao, Han
  organization: Laboratory for Topological Physics and School of Physical Science and Technology, ShanghaiTech University
– sequence: 16
  givenname: Qiao
  surname: Li
  fullname: Li, Qiao
  organization: Laboratory for Topological Physics and School of Physical Science and Technology, ShanghaiTech University
– sequence: 17
  givenname: Shihao
  orcidid: 0000-0002-5787-5022
  surname: Zhang
  fullname: Zhang, Shihao
  organization: Laboratory for Topological Physics and School of Physical Science and Technology, ShanghaiTech University
– sequence: 18
  givenname: Jianpeng
  orcidid: 0000-0002-8564-0415
  surname: Liu
  fullname: Liu, Jianpeng
  organization: Laboratory for Topological Physics and School of Physical Science and Technology, ShanghaiTech University
– sequence: 19
  givenname: Lin
  orcidid: 0000-0001-5251-1687
  surname: He
  fullname: He, Lin
  organization: Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University
– sequence: 20
  givenname: Kenji
  orcidid: 0000-0003-3701-8119
  surname: Watanabe
  fullname: Watanabe, Kenji
  organization: Research Center for Functional Materials, National Institute for Materials Science
– sequence: 21
  givenname: Takashi
  orcidid: 0000-0002-1467-3105
  surname: Taniguchi
  fullname: Taniguchi, Takashi
  organization: International Center for Materials Nanoarchitectonics, National Institute for Materials Science
– sequence: 22
  givenname: Chris
  orcidid: 0000-0002-0980-3753
  surname: Jozwiak
  fullname: Jozwiak, Chris
  organization: Advanced Light Source, Lawrence Berkeley National Laboratory
– sequence: 23
  givenname: Aaron
  orcidid: 0000-0002-9008-2980
  surname: Bostwick
  fullname: Bostwick, Aaron
  organization: Advanced Light Source, Lawrence Berkeley National Laboratory
– sequence: 24
  givenname: Eli
  orcidid: 0000-0002-3979-8844
  surname: Rotenberg
  fullname: Rotenberg, Eli
  organization: Advanced Light Source, Lawrence Berkeley National Laboratory
– sequence: 25
  givenname: Chu
  orcidid: 0000-0003-2441-2205
  surname: Li
  fullname: Li, Chu
  organization: Department of Physics, Hong Kong University of Science and Technology
– sequence: 26
  givenname: Xu
  orcidid: 0000-0001-6116-3258
  surname: Han
  fullname: Han, Xu
  organization: Department of Physics, Hong Kong University of Science and Technology
– sequence: 27
  givenname: Ding
  orcidid: 0000-0002-2353-0130
  surname: Pan
  fullname: Pan, Ding
  organization: Department of Physics, Hong Kong University of Science and Technology
– sequence: 28
  givenname: Zhongkai
  orcidid: 0000-0003-3373-8039
  surname: Liu
  fullname: Liu, Zhongkai
  organization: Laboratory for Topological Physics and School of Physical Science and Technology, ShanghaiTech University
– sequence: 29
  givenname: Xi
  orcidid: 0000-0002-2396-0966
  surname: Dai
  fullname: Dai, Xi
  organization: Department of Physics, Hong Kong University of Science and Technology
– sequence: 30
  givenname: Chaoxing
  orcidid: 0000-0003-1881-1365
  surname: Liu
  fullname: Liu, Chaoxing
  organization: Department of Physics, The Pennsylvania State University
– sequence: 31
  givenname: B. Andrei
  orcidid: 0000-0001-6337-4024
  surname: Bernevig
  fullname: Bernevig, B. Andrei
  organization: Department of Physics, Princeton University, Donostia International Physics Center, IKERBASQUE, Basque Foundation for Science
– sequence: 32
  givenname: Yao
  orcidid: 0000-0003-1736-0187
  surname: Wang
  fullname: Wang, Yao
  email: yao.wang@emory.edu
  organization: Department of Chemistry, Emory University, Department of Physics and Astronomy, Clemson University
– sequence: 33
  givenname: Ali
  orcidid: 0000-0003-4996-8904
  surname: Yazdani
  fullname: Yazdani, Ali
  organization: Joseph Henry Laboratories, Princeton University, Department of Physics, Princeton University
– sequence: 34
  givenname: Yulin
  orcidid: 0000-0001-8960-9725
  surname: Chen
  fullname: Chen, Yulin
  email: yulin.chen@physics.ox.ac.uk
  organization: Laboratory for Topological Physics and School of Physical Science and Technology, ShanghaiTech University, Department of Physics, University of Oxford
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39663492$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/2499452$$D View this record in Osti.gov
BookMark eNp9UbtuFDEUtVAQ2QR-gAKNqGgG_Bo_KoQiHpEiUQC15fXenXXktQfbwyod_8Af8iV4mQQBRSpbuud17zlDJzFFQOgpwS8JZupV4WRQoseU91hRKvvDA7QiXIqeCyVP0ApjqtqIiVN0Vso1xnggkj9Cp0wLwbimK3T5qeYUxw4CuOPv5_cf0y41o86leQq-jXzs9nb0rrdxDNDVgy8VNt3aB3sDuRuznXYQ4TF6uLWhwJPb9xx9eff288WH_urj-8uLN1e945LXfqMwFVoKLAbFnAYtHRCnBQEYtGVkgyVoJvkgMaNuqwVjsGYDJkxgTpxi5-j1ojvN6z1sHMSabTBT9nubb0yy3vw7iX5nxvTNENJ2loI3heeLQirVm-J8BbdzKcZ2AkO51nygDfTi1ianrzOUava-OAjBRkhzMYxwIQbKqWjQZ38n-hPl7soNoBaAy6mUDFvTPG316RjQB0OwORZqlkJNK9T8LtQcGpX-R71Tv5fEFlJp4DhCNtdpzrG1ch_rF2hctCA
CitedBy_id crossref_primary_10_1038_s41467_025_62461_y
crossref_primary_10_1103_PhysRevX_15_021028
crossref_primary_10_1038_s41598_025_91336_x
crossref_primary_10_1103_22j6_2p89
crossref_primary_10_1103_PhysRevB_111_045113
crossref_primary_10_1103_PhysRevB_111_085128
crossref_primary_10_1103_PhysRevB_111_155126
crossref_primary_10_1103_9n8v_7rx2
crossref_primary_10_1038_s41586_025_08881_8
crossref_primary_10_1038_s41467_025_59325_w
crossref_primary_10_7498_aps_74_20250305
crossref_primary_10_1103_PhysRevB_111_085143
crossref_primary_10_1088_1361_6633_adeebb
crossref_primary_10_1103_xxyt_4bql
crossref_primary_10_1038_s42005_025_02244_5
crossref_primary_10_1103_PhysRevB_111_035110
crossref_primary_10_1103_PhysRevB_111_144513
crossref_primary_10_1103_7z4z_vlj8
crossref_primary_10_1016_j_diamond_2025_112209
crossref_primary_10_1103_PhysRevB_111_L020502
crossref_primary_10_1209_0295_5075_adfd7c
Cites_doi 10.1080/08940886.2018.1483660
10.1103/PhysRevB.98.075154
10.1038/s41586-020-2339-0
10.1140/epjp/s13360-020-00647-7
10.1038/s41586-019-1431-9
10.1038/s41567-020-01041-x
10.1103/PhysRevB.44.317
10.1126/science.aaw3780
10.1103/PhysRevLett.122.257002
10.1103/PhysRevB.105.104515
10.1126/science.1186489
10.1103/PhysRevB.98.220504
10.1038/s41586-019-1695-0
10.1021/acs.nanolett.5b05263
10.1103/PhysRevLett.121.217001
10.1103/PhysRevB.107.125112
10.1038/s41567-020-0928-3
10.1103/PhysRevLett.121.257001
10.1103/PhysRevX.9.041010
10.1038/ncomms14468
10.1038/s41535-021-00386-7
10.1038/35087518
10.1038/s41563-020-00840-0
10.1126/science.aav1910
10.1021/acs.nanolett.7b04604
10.1038/nmat4623
10.1038/nature26160
10.1038/nature26154
10.1103/PhysRevLett.133.146001
10.1073/pnas.1810947115
10.1126/sciadv.abf5299
10.1038/s41586-020-2963-8
10.1103/PhysRevB.97.235453
10.1103/PhysRevB.102.155136
10.1038/s41578-018-0047-2
10.1038/s41586-020-2255-3
10.1103/PhysRevB.110.045133
10.1038/nature13894
10.1038/s41467-019-08560-z
10.1038/s41586-020-3028-8
10.1103/PhysRevB.98.241412
10.1038/nature04704
10.1126/science.aar3394
10.1103/RevModPhys.93.025006
10.1038/s41586-019-1422-x
10.1038/s41567-020-0906-9
10.1038/s41567-020-0974-x
10.1103/PhysRevLett.127.167001
10.1038/s41586-021-04121-x
10.1103/PhysRevLett.121.087001
10.1126/science.aay5533
10.1038/s41586-021-03192-0
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024 2024
CorporateAuthor Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Princeton University, NJ (United States)
CorporateAuthor_xml – name: Princeton University, NJ (United States)
– name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
DBID C6C
AAYXX
CITATION
NPM
7X8
OIOZB
OTOTI
5PM
DOI 10.1038/s41586-024-08227-w
DatabaseName Springer Nature Open Access Journals
CrossRef
PubMed
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic

PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 347
ExternalDocumentID PMC11634764
2499452
39663492
10_1038_s41586_024_08227_w
Genre Journal Article
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.XZ
07C
0R~
123
186
1OL
29M
2KS
39C
53G
5RE
6TJ
70F
7RV
85S
8WZ
97F
A6W
A7Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAMNW
AASDW
AAYEP
AAYZH
AAZLF
ABDQB
ABFSI
ABIVO
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACWUS
ADBBV
ADFRT
ADUKH
AENEX
AFBBN
AFFNX
AFLOW
AFRAH
AFSHS
AGAYW
AGHSJ
AGHTU
AGOIJ
AGSOS
AHMBA
AHSBF
AIDUJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
BENPR
BHPHI
BIN
BKKNO
C6C
CJ0
CS3
DU5
E.-
E.L
EAP
EBS
EE.
EPS
EXGXG
F5P
FAC
FEDTE
FQGFK
FSGXE
HCIFZ
HG6
HVGLF
HZ~
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
IOF
IPY
KOO
L7B
LGEZI
LOTEE
LSO
M0K
M2O
M7P
N9A
NADUK
NEPJS
NXXTH
O9-
OBC
ODYON
OES
OHH
OMK
OVD
P2P
PKN
PV9
RND
RNS
RNT
RNTTT
RXW
SC5
SHXYY
SIXXV
SJN
SNYQT
SOJ
TAE
TAOOD
TBHMF
TDRGL
TEORI
TN5
TSG
TWZ
U5U
UIG
UKR
UMD
UQL
VQA
VVN
WH7
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YJ6
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
Z5M
ZCA
~02
~88
~KM
0WA
AARCD
AAYXX
ABFSG
ABUFD
ACSTC
AEZWR
AFANA
AFHIU
AFKWF
AGSTI
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
NAPCQ
NFIDA
TUS
.-4
.GJ
.HR
00M
08P
1CY
1VR
1VW
2XV
354
3EH
3O-
4.4
41X
41~
42X
4R4
663
79B
7X2
7X7
7XC
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
97L
9M8
A8Z
AAJYS
AAKAS
AAVBQ
AAYOK
ABAWZ
ABDBF
ABDPE
ABEFU
ABJCF
ABMOR
ABNNU
ABTAH
ABUWG
ACBNA
ACBTR
ACRPL
ACTDY
ACUHS
ADNMO
ADRHT
ADYSU
ADZCM
AETEA
AEUYN
AFFDN
AFHKK
AFKRA
AGCDD
AGGDT
AGNAY
AIDAL
AIYXT
AJUXI
APEBS
ARTTT
AZQEC
B0M
BBNVY
BCR
BCU
BDKGC
BEC
BES
BGLVJ
BKEYQ
BKOMP
BKSAR
BLC
BPHCQ
BVXVI
CCPQU
D1I
D1J
D1K
DB5
DO4
DWQXO
EAD
EAS
EAZ
EBC
EBD
EBO
ECC
EJD
EMB
EMF
EMH
EMK
EMOBN
EPL
ESE
ESN
ESX
EX3
FA8
FYUFA
GNUQQ
GUQSH
HMCUK
I-F
INR
ISR
ITC
J5H
K6-
KB.
L-9
L6V
LK5
LK8
M1P
M2M
M2P
M7R
M7S
MVM
N4W
NEJ
NPM
OHT
P-O
P62
PATMY
PCBAR
PDBOC
PEA
PHGZT
PM3
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
QS-
R05
R4F
RHI
S0X
SJFOW
SKT
SV3
TH9
TUD
UAO
UBY
UHB
UKHRP
USG
VOH
WOW
X7L
XOL
YQI
YQJ
YV5
YXA
YYP
YYQ
ZCG
ZE2
ZGI
ZHY
ZKB
ZKG
ZY4
~7V
~8M
~G0
7X8
OIOZB
OTOTI
5PM
AFFHD
PHGZM
PJZUB
PPXIY
PQGLB
ID FETCH-LOGICAL-c474t-d802697606583c9e97ce1c961ee59a31d07e937457032cf9633eb350136041c83
ISICitedReferencesCount 25
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001397120900022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0028-0836
1476-4687
IngestDate Tue Nov 04 02:04:56 EST 2025
Mon Nov 24 02:23:36 EST 2025
Sun Nov 09 10:30:59 EST 2025
Thu Apr 03 07:06:03 EDT 2025
Tue Nov 18 22:01:32 EST 2025
Sat Nov 29 04:19:21 EST 2025
Fri Feb 21 02:36:21 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8042
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c474t-d802697606583c9e97ce1c961ee59a31d07e937457032cf9633eb350136041c83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Shanghai Municipal Science and Technology Major Project
ARO MURI
Research Grants Council of the Hong Kong Special Administrative Region, China
ONR
Simons Investigator Grant
USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities (SUF)
SC0016239; AC02-05CH11231; SC0024524; FG02-07ER46419
National Natural Science Foundation of China
National Science Foundation (NSF)
European Research Council (ERC)
National Key R&D program of China
Gordon and Betty Moore Foundation’s EPiQS initiative
ORCID 0000-0002-2396-0966
0000-0003-1881-1365
0000-0003-0477-1390
0000-0002-3979-8844
0000-0003-3373-8039
0000-0003-1736-0187
0000-0002-2353-0130
0000-0001-6337-4024
0000-0002-0980-3753
0000-0003-4996-8904
0000-0002-1078-7113
0000-0001-5251-1687
0000-0002-9008-2980
0000-0003-3701-8119
0000-0001-8247-3378
0009-0006-3433-1467
0000-0002-1467-3105
0000-0001-6116-3258
0000-0003-2441-2205
0000-0001-8960-9725
0000-0002-5787-5022
0000-0002-8564-0415
0000000214673105
0000000239798844
0000000285640415
0000000189609725
0000000161163258
0000000333738039
0000000163374024
0000000318811365
0000000317360187
0000000209803753
0000000152511687
0000000223530130
0000000349968904
0009000634331467
0000000210787113
0000000290082980
0000000223960966
0000000304771390
0000000257875022
0000000337018119
0000000182473378
0000000324412205
OpenAccessLink https://www.osti.gov/servlets/purl/2499452
PMID 39663492
PQID 3146652426
PQPubID 23479
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11634764
osti_scitechconnect_2499452
proquest_miscellaneous_3146652426
pubmed_primary_39663492
crossref_citationtrail_10_1038_s41586_024_08227_w
crossref_primary_10_1038_s41586_024_08227_w
springer_journals_10_1038_s41586_024_08227_w
PublicationCentury 2000
PublicationDate 2024-12-12
PublicationDateYYYYMMDD 2024-12-12
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-12
  day: 12
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: United States
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References MIB Utama (8227_CR30) 2021; 17
Z Wang (8227_CR32) 2016; 15
A Lanzara (8227_CR46) 2001; 412
D Reznik (8227_CR47) 2006; 440
M Oh (8227_CR11) 2021; 600
M Serlin (8227_CR5) 2020; 367
8227_CR34
H Polshyn (8227_CR50) 2020; 588
C Xu (8227_CR15) 2018; 121
J Yu (8227_CR45) 2022; 105
B Lian (8227_CR18) 2019; 122
Y Cao (8227_CR1) 2018; 556
W Miao (8227_CR52) 2023; 107
A Uri (8227_CR27) 2020; 581
C Zhang (8227_CR38) 2017; 8
X Lu (8227_CR3) 2019; 574
A Kerelsky (8227_CR7) 2019; 572
E Khalaf (8227_CR24) 2021; 7
YW Choi (8227_CR21) 2018; 98
AL Sharpe (8227_CR6) 2019; 365
JJ Lee (8227_CR31) 2014; 515
C Chen (8227_CR33) 2018; 18
A Bostwick (8227_CR40) 2010; 328
S Lisi (8227_CR29) 2021; 17
8227_CR44
8227_CR42
8227_CR41
F Wu (8227_CR19) 2018; 121
M Angeli (8227_CR43) 2020; 135
H Yang (8227_CR26) 2018; 3
K Kim (8227_CR51) 2016; 16
EY Andrei (8227_CR12) 2020; 19
F Guinea (8227_CR17) 2018; 115
8227_CR16
8227_CR14
Y He (8227_CR48) 2018; 362
RJ Koch (8227_CR28) 2018; 31
G Martnez (8227_CR39) 1991; 44
L Balents (8227_CR13) 2020; 16
Y Cao (8227_CR2) 2018; 556
8227_CR25
M Yankowitz (8227_CR4) 2019; 363
Y Xie (8227_CR8) 2019; 572
D Wong (8227_CR10) 2020; 582
CC Liu (8227_CR23) 2018; 121
Q Song (8227_CR37) 2019; 10
Y Saito (8227_CR35) 2020; 16
TJ Peltonen (8227_CR20) 2018; 98
T Cea (8227_CR36) 2020; 102
JM Park (8227_CR49) 2021; 590
KP Nuckolls (8227_CR9) 2020; 588
YW Choi (8227_CR22) 2021; 127
References_xml – volume: 31
  start-page: 50
  year: 2018
  ident: 8227_CR28
  publication-title: Synchrotron Radiat. News
  doi: 10.1080/08940886.2018.1483660
– ident: 8227_CR14
  doi: 10.1103/PhysRevB.98.075154
– volume: 582
  start-page: 198
  year: 2020
  ident: 8227_CR10
  publication-title: Nature
  doi: 10.1038/s41586-020-2339-0
– volume: 135
  year: 2020
  ident: 8227_CR43
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/s13360-020-00647-7
– volume: 572
  start-page: 95
  year: 2019
  ident: 8227_CR7
  publication-title: Nature
  doi: 10.1038/s41586-019-1431-9
– volume: 17
  start-page: 189
  year: 2021
  ident: 8227_CR29
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-020-01041-x
– volume: 44
  start-page: 317
  year: 1991
  ident: 8227_CR39
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.44.317
– volume: 365
  start-page: 605
  year: 2019
  ident: 8227_CR6
  publication-title: Science
  doi: 10.1126/science.aaw3780
– volume: 122
  year: 2019
  ident: 8227_CR18
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.257002
– volume: 105
  year: 2022
  ident: 8227_CR45
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.105.104515
– volume: 328
  start-page: 999
  year: 2010
  ident: 8227_CR40
  publication-title: Science
  doi: 10.1126/science.1186489
– volume: 98
  year: 2018
  ident: 8227_CR20
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.98.220504
– volume: 574
  start-page: 653
  year: 2019
  ident: 8227_CR3
  publication-title: Nature
  doi: 10.1038/s41586-019-1695-0
– volume: 16
  start-page: 1989
  year: 2016
  ident: 8227_CR51
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b05263
– volume: 121
  year: 2018
  ident: 8227_CR23
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.217001
– volume: 107
  start-page: 125112
  year: 2023
  ident: 8227_CR52
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.107.125112
– volume: 16
  start-page: 926
  year: 2020
  ident: 8227_CR35
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-020-0928-3
– volume: 121
  year: 2018
  ident: 8227_CR19
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.257001
– ident: 8227_CR42
  doi: 10.1103/PhysRevX.9.041010
– volume: 8
  year: 2017
  ident: 8227_CR38
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14468
– ident: 8227_CR41
  doi: 10.1038/s41535-021-00386-7
– volume: 412
  start-page: 510
  year: 2001
  ident: 8227_CR46
  publication-title: Nature
  doi: 10.1038/35087518
– volume: 19
  start-page: 1265
  year: 2020
  ident: 8227_CR12
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-020-00840-0
– volume: 363
  start-page: 1059
  year: 2019
  ident: 8227_CR4
  publication-title: Science
  doi: 10.1126/science.aav1910
– volume: 18
  start-page: 1082
  year: 2018
  ident: 8227_CR33
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b04604
– volume: 15
  start-page: 835
  year: 2016
  ident: 8227_CR32
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4623
– volume: 556
  start-page: 43
  year: 2018
  ident: 8227_CR1
  publication-title: Nature
  doi: 10.1038/nature26160
– volume: 556
  start-page: 80
  year: 2018
  ident: 8227_CR2
  publication-title: Nature
  doi: 10.1038/nature26154
– ident: 8227_CR44
  doi: 10.1103/PhysRevLett.133.146001
– volume: 115
  start-page: 13174
  year: 2018
  ident: 8227_CR17
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1810947115
– volume: 7
  start-page: eabf5299
  year: 2021
  ident: 8227_CR24
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abf5299
– volume: 588
  start-page: 66
  year: 2020
  ident: 8227_CR50
  publication-title: Nature
  doi: 10.1038/s41586-020-2963-8
– ident: 8227_CR16
  doi: 10.1103/PhysRevB.97.235453
– volume: 102
  year: 2020
  ident: 8227_CR36
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.102.155136
– volume: 3
  start-page: 341
  year: 2018
  ident: 8227_CR26
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-018-0047-2
– volume: 581
  start-page: 47
  year: 2020
  ident: 8227_CR27
  publication-title: Nature
  doi: 10.1038/s41586-020-2255-3
– ident: 8227_CR34
  doi: 10.1103/PhysRevB.110.045133
– volume: 515
  start-page: 245
  year: 2014
  ident: 8227_CR31
  publication-title: Nature
  doi: 10.1038/nature13894
– volume: 10
  year: 2019
  ident: 8227_CR37
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08560-z
– volume: 588
  start-page: 610
  year: 2020
  ident: 8227_CR9
  publication-title: Nature
  doi: 10.1038/s41586-020-3028-8
– volume: 98
  year: 2018
  ident: 8227_CR21
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.98.241412
– volume: 440
  start-page: 1170
  year: 2006
  ident: 8227_CR47
  publication-title: Nature
  doi: 10.1038/nature04704
– volume: 362
  start-page: 62
  year: 2018
  ident: 8227_CR48
  publication-title: Science
  doi: 10.1126/science.aar3394
– ident: 8227_CR25
  doi: 10.1103/RevModPhys.93.025006
– volume: 572
  start-page: 101
  year: 2019
  ident: 8227_CR8
  publication-title: Nature
  doi: 10.1038/s41586-019-1422-x
– volume: 16
  start-page: 725
  year: 2020
  ident: 8227_CR13
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-020-0906-9
– volume: 17
  start-page: 184
  year: 2021
  ident: 8227_CR30
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-020-0974-x
– volume: 127
  year: 2021
  ident: 8227_CR22
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.127.167001
– volume: 600
  start-page: 240
  year: 2021
  ident: 8227_CR11
  publication-title: Nature
  doi: 10.1038/s41586-021-04121-x
– volume: 121
  year: 2018
  ident: 8227_CR15
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.087001
– volume: 367
  start-page: 900
  year: 2020
  ident: 8227_CR5
  publication-title: Science
  doi: 10.1126/science.aay5533
– volume: 590
  start-page: 249
  year: 2021
  ident: 8227_CR49
  publication-title: Nature
  doi: 10.1038/s41586-021-03192-0
SSID ssj0005174
Score 2.6210356
Snippet The unusual properties of superconductivity in magic-angle twisted bilayer graphene (MATBG) have sparked considerable research interest 1 , 2 , 3 , 4 , 5 , 6 ,...
The unusual properties of superconductivity in magic-angle twisted bilayer graphene (MATBG) have sparked considerable research interest 1–13 . However, despite...
The unusual properties of superconductivity in magic-angle twisted bilayer graphene (MATBG) have sparked considerable research interest . However, despite the...
The unusual properties of superconductivity in magic-angle twisted bilayer graphene (MATBG) have sparked considerable research interest1-13. However, despite...
The unusual properties of superconductivity in magic-angle twisted bilayer graphene (MATBG) have sparked considerable research interest. However, despite the...
The unusual properties of superconductivity in magic-angle twisted bilayer graphene (MATBG) have sparked considerable research interest1–13. However, despite...
SourceID pubmedcentral
osti
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 342
SubjectTerms 140/146
639/301/357/918/1052
639/766/119/1003
639/766/119/995
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
Electronic properties and devices
Electronic properties and materials
Humanities and Social Sciences
multidisciplinary
Science
Science (multidisciplinary)
Superconducting properties and materials
Title Strong electron–phonon coupling in magic-angle twisted bilayer graphene
URI https://link.springer.com/article/10.1038/s41586-024-08227-w
https://www.ncbi.nlm.nih.gov/pubmed/39663492
https://www.proquest.com/docview/3146652426
https://www.osti.gov/servlets/purl/2499452
https://pubmed.ncbi.nlm.nih.gov/PMC11634764
Volume 636
WOSCitedRecordID wos001397120900022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAQT
  databaseName: Nature
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: RNT
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.nature.com
  providerName: Nature Publishing
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZYAYkXxMatG0xBQghUrNWxm9iPaGzwUApiHfTNShz3Irq0W9p1P5_jS9J2nabxwEvauk7t9vt6fGwffwehtzrKYNygGSYRhwlKHGqcMhViwpVSUcYUsbkOf7XjTof3euKH34opbDqBOM_51ZWY_leooQzANkdn_wHu6kOhAJ4D6HAF2OF6J-BPzOL2oFHmt8Em-Hxigs3n07E_wHKWgL3DST4Y68ZsYYAGN3Q0TsD9blgFa52vRQh1rPrnavaPavng0J_uMI-DamV5rv4Avwp38OcSWqxOkX32OVROhvPhkpjfRoldsv0NfTovCevXIkKreEhWlicJiyPMIj-E6hvKvM2NnOqJJxdvOoUtb0Spe7Vh3J2UewEuBzeB0wwbtfoYL5ZDWbl93_kuj0_bbdk96nXfTc-xSTJmNuN9xpUtdD-MW8IYwZ-d7jIiyIl2Vx32Z6yg2YPNRtf8mNoE7PFNc5TNUNtr--3Wjek-QY_9_CP45Hizje7pfAc9tHHAqthB297WF8F7L0j-4Sn64igVXKNUUFIqGOXBCqUCT6nAUyooKfUMnR4fdQ-_Yp-AAysWsxnOOMzQwV81bipVQotYaaJERLRuiYSSrBlrcG-ZUXELVR9sOdWp2ammUZMRxelzVIPu6JcoSKlifaiU0rDFiGCiH9FMMaUzmrG0n9YRKX9Oqbw6vUmSMpY2SoJy6SCQAIG0EMhFHTWqe6ZOm-XW2nsGJQmepZFHViaOTM1kCFN-1grr6E0JngQDa3bNklxP5oWk4EtELePJ1tELB2bVGhXgsDMBd_M1mKsKRrx9_Z18NLQi7gQmQkA0VkcfS0ZIb0WKW77F7h36uYceLf-cr1BtdjHXr9EDdTkbFRf7aCvu8X3L_L_xXMSZ
linkProvider Nature Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strong+electron-phonon+coupling+in+magic-angle+twisted+bilayer+graphene&rft.jtitle=Nature+%28London%29&rft.au=Chen%2C+Cheng&rft.au=Nuckolls%2C+Kevin+P&rft.au=Ding%2C+Shuhan&rft.au=Miao%2C+Wangqian&rft.date=2024-12-12&rft.issn=1476-4687&rft.eissn=1476-4687&rft.volume=636&rft.issue=8042&rft.spage=342&rft_id=info:doi/10.1038%2Fs41586-024-08227-w&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon