Strong electron–phonon coupling in magic-angle twisted bilayer graphene
The unusual properties of superconductivity in magic-angle twisted bilayer graphene (MATBG) have sparked considerable research interest 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 – 13 . However, despite the dedication of intensive experimental efforts and the proposal of several possible pairi...
Gespeichert in:
| Veröffentlicht in: | Nature (London) Jg. 636; H. 8042; S. 342 - 347 |
|---|---|
| Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Nature Publishing Group UK
12.12.2024
Nature Publishing Group |
| Schlagworte: | |
| ISSN: | 0028-0836, 1476-4687, 1476-4687 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The unusual properties of superconductivity in magic-angle twisted bilayer graphene (MATBG) have sparked considerable research interest
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
,
12
–
13
. However, despite the dedication of intensive experimental efforts and the proposal of several possible pairing mechanisms
14
,
15
,
16
,
17
,
18
,
19
,
20
,
21
,
22
,
23
–
24
, the origin of its superconductivity remains elusive. Here, by utilizing angle-resolved photoemission spectroscopy with micrometre spatial resolution, we reveal flat-band replicas in superconducting MATBG, where MATBG is unaligned with its hexagonal boron nitride substrate
11
. These replicas show uniform energy spacing, approximately 150 ± 15 meV apart, indicative of strong electron–boson coupling. Strikingly, these replicas are absent in non-superconducting twisted bilayer graphene (TBG) systems, either when MATBG is aligned to hexagonal boron nitride or when TBG deviates from the magic angle. Calculations suggest that the formation of these flat-band replicas in superconducting MATBG are attributed to the strong coupling between flat-band electrons and an optical phonon mode at the graphene K point, facilitated by intervalley scattering. These findings, although they do not necessarily put electron–phonon coupling as the main driving force for the superconductivity in MATBG, unravel the electronic structure inherent in superconducting MATBG, thereby providing crucial information for understanding the unusual electronic landscape from which its superconductivity is derived.
Angle-resolved photoemission spectroscopy of superconducting magic-angle twisted bilayer graphene reveals flat-band replicas that are indicative of strong electron–phonon coupling; these replicas are absent in non-superconducting twisted bilayer graphene. |
|---|---|
| AbstractList | The unusual properties of superconductivity in magic-angle twisted bilayer graphene (MATBG) have sparked considerable research interest. However, despite the dedication of intensive experimental efforts and the proposal of several possible pairing mechanisms, the origin of its superconductivity remains elusive. Here, by utilizing angle-resolved photoemission spectroscopy with micrometre spatial resolution, we reveal flat-band replicas in superconducting MATBG, where MATBG is unaligned with its hexagonal boron nitride substrate. These replicas show uniform energy spacing, approximately 150 ± 15 meV apart, indicative of strong electron–boson coupling. Strikingly, these replicas are absent in non-superconducting twisted bilayer graphene (TBG) systems, either when MATBG is aligned to hexagonal boron nitride or when TBG deviates from the magic angle. Calculations suggest that the formation of these flat-band replicas in superconducting MATBG are attributed to the strong coupling between flat-band electrons and an optical phonon mode at the graphene K point, facilitated by intervalley scattering. These findings, although they do not necessarily put electron–phonon coupling as the main driving force for the superconductivity in MATBG, unravel the electronic structure inherent in superconducting MATBG, thereby providing crucial information for understanding the unusual electronic landscape from which its superconductivity is derived. The unusual properties of superconductivity in magic-angle twisted bilayer graphene (MATBG) have sparked considerable research interest 1–13 . However, despite the dedication of intensive experimental efforts and the proposal of several possible pairing mechanisms 14–24 , the origin of its superconductivity remains elusive. Here, by utilizing angle-resolved photoemission spectroscopy with micrometre spatial resolution, we reveal flat-band replicas in superconducting MATBG, where MATBG is unaligned with its hexagonal boron nitride substrate 11 . These replicas show uniform energy spacing, approximately 150 ± 15 meV apart, indicative of strong electron–boson coupling. Strikingly, these replicas are absent in non-superconducting twisted bilayer graphene (TBG) systems, either when MATBG is aligned to hexagonal boron nitride or when TBG deviates from the magic angle. Calculations suggest that the formation of these flat-band replicas in superconducting MATBG are attributed to the strong coupling between flat-band electrons and an optical phonon mode at the graphene K point, facilitated by intervalley scattering. These findings, although they do not necessarily put electron–phonon coupling as the main driving force for the superconductivity in MATBG, unravel the electronic structure inherent in superconducting MATBG, thereby providing crucial information for understanding the unusual electronic landscape from which its superconductivity is derived. The unusual properties of superconductivity in magic-angle twisted bilayer graphene (MATBG) have sparked considerable research interest1-13. However, despite the dedication of intensive experimental efforts and the proposal of several possible pairing mechanisms14-24, the origin of its superconductivity remains elusive. Here, by utilizing angle-resolved photoemission spectroscopy with micrometre spatial resolution, we reveal flat-band replicas in superconducting MATBG, where MATBG is unaligned with its hexagonal boron nitride substrate11. These replicas show uniform energy spacing, approximately 150 ± 15 meV apart, indicative of strong electron-boson coupling. Strikingly, these replicas are absent in non-superconducting twisted bilayer graphene (TBG) systems, either when MATBG is aligned to hexagonal boron nitride or when TBG deviates from the magic angle. Calculations suggest that the formation of these flat-band replicas in superconducting MATBG are attributed to the strong coupling between flat-band electrons and an optical phonon mode at the graphene K point, facilitated by intervalley scattering. These findings, although they do not necessarily put electron-phonon coupling as the main driving force for the superconductivity in MATBG, unravel the electronic structure inherent in superconducting MATBG, thereby providing crucial information for understanding the unusual electronic landscape from which its superconductivity is derived.The unusual properties of superconductivity in magic-angle twisted bilayer graphene (MATBG) have sparked considerable research interest1-13. However, despite the dedication of intensive experimental efforts and the proposal of several possible pairing mechanisms14-24, the origin of its superconductivity remains elusive. Here, by utilizing angle-resolved photoemission spectroscopy with micrometre spatial resolution, we reveal flat-band replicas in superconducting MATBG, where MATBG is unaligned with its hexagonal boron nitride substrate11. These replicas show uniform energy spacing, approximately 150 ± 15 meV apart, indicative of strong electron-boson coupling. Strikingly, these replicas are absent in non-superconducting twisted bilayer graphene (TBG) systems, either when MATBG is aligned to hexagonal boron nitride or when TBG deviates from the magic angle. Calculations suggest that the formation of these flat-band replicas in superconducting MATBG are attributed to the strong coupling between flat-band electrons and an optical phonon mode at the graphene K point, facilitated by intervalley scattering. These findings, although they do not necessarily put electron-phonon coupling as the main driving force for the superconductivity in MATBG, unravel the electronic structure inherent in superconducting MATBG, thereby providing crucial information for understanding the unusual electronic landscape from which its superconductivity is derived. The unusual properties of superconductivity in magic-angle twisted bilayer graphene (MATBG) have sparked considerable research interest 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 – 13 . However, despite the dedication of intensive experimental efforts and the proposal of several possible pairing mechanisms 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 – 24 , the origin of its superconductivity remains elusive. Here, by utilizing angle-resolved photoemission spectroscopy with micrometre spatial resolution, we reveal flat-band replicas in superconducting MATBG, where MATBG is unaligned with its hexagonal boron nitride substrate 11 . These replicas show uniform energy spacing, approximately 150 ± 15 meV apart, indicative of strong electron–boson coupling. Strikingly, these replicas are absent in non-superconducting twisted bilayer graphene (TBG) systems, either when MATBG is aligned to hexagonal boron nitride or when TBG deviates from the magic angle. Calculations suggest that the formation of these flat-band replicas in superconducting MATBG are attributed to the strong coupling between flat-band electrons and an optical phonon mode at the graphene K point, facilitated by intervalley scattering. These findings, although they do not necessarily put electron–phonon coupling as the main driving force for the superconductivity in MATBG, unravel the electronic structure inherent in superconducting MATBG, thereby providing crucial information for understanding the unusual electronic landscape from which its superconductivity is derived. Angle-resolved photoemission spectroscopy of superconducting magic-angle twisted bilayer graphene reveals flat-band replicas that are indicative of strong electron–phonon coupling; these replicas are absent in non-superconducting twisted bilayer graphene. The unusual properties of superconductivity in magic-angle twisted bilayer graphene (MATBG) have sparked considerable research interest . However, despite the dedication of intensive experimental efforts and the proposal of several possible pairing mechanisms , the origin of its superconductivity remains elusive. Here, by utilizing angle-resolved photoemission spectroscopy with micrometre spatial resolution, we reveal flat-band replicas in superconducting MATBG, where MATBG is unaligned with its hexagonal boron nitride substrate . These replicas show uniform energy spacing, approximately 150 ± 15 meV apart, indicative of strong electron-boson coupling. Strikingly, these replicas are absent in non-superconducting twisted bilayer graphene (TBG) systems, either when MATBG is aligned to hexagonal boron nitride or when TBG deviates from the magic angle. Calculations suggest that the formation of these flat-band replicas in superconducting MATBG are attributed to the strong coupling between flat-band electrons and an optical phonon mode at the graphene K point, facilitated by intervalley scattering. These findings, although they do not necessarily put electron-phonon coupling as the main driving force for the superconductivity in MATBG, unravel the electronic structure inherent in superconducting MATBG, thereby providing crucial information for understanding the unusual electronic landscape from which its superconductivity is derived. The unusual properties of superconductivity in magic-angle twisted bilayer graphene (MATBG) have sparked considerable research interest1–13. However, despite the dedication of intensive experimental efforts and the proposal of several possible pairing mechanisms14–24, the origin of its superconductivity remains elusive. Here, by utilizing angle-resolved photoemission spectroscopy with micrometre spatial resolution, we reveal flat-band replicas in superconducting MATBG, where MATBG is unaligned with its hexagonal boron nitride substrate11. These replicas show uniform energy spacing, approximately 150 ± 15 meV apart, indicative of strong electron–boson coupling. Strikingly, these replicas are absent in non-superconducting twisted bilayer graphene (TBG) systems, either when MATBG is aligned to hexagonal boron nitride or when TBG deviates from the magic angle. Calculations suggest that the formation of these flat-band replicas in superconducting MATBG are attributed to the strong coupling between flat-band electrons and an optical phonon mode at the graphene K point, facilitated by intervalley scattering. These findings, although they do not necessarily put electron–phonon coupling as the main driving force for the superconductivity in MATBG, unravel the electronic structure inherent in superconducting MATBG, thereby providing crucial information for understanding the unusual electronic landscape from which its superconductivity is derived. Angle-resolved photoemission spectroscopy of superconducting magic-angle twisted bilayer graphene reveals flat-band replicas that are indicative of strong electron–phonon coupling; these replicas are absent in non-superconducting twisted bilayer graphene. |
| Author | Zhang, Shihao Yan, Haoran Taniguchi, Takashi Rotenberg, Eli Bernevig, B. Andrei Nuckolls, Kevin P. Li, Yiwei Yazdani, Ali Liu, Chaoxing Chen, Yulin Wang, Yao Lee, Ryan L. He, Lin Pan, Ding Chen, Cheng Bostwick, Aaron Li, Chu He, Shanmei Ding, Shuhan Liu, Jianpeng Pei, Ding Hao, Chenyue Jozwiak, Chris Han, Xu Xiao, Hanbo Li, Qiao Oh, Myungchul Liu, Zhongkai Wong, Dillon Miao, Wangqian Peng, Cheng Dai, Xi Gao, Han Watanabe, Kenji |
| Author_xml | – sequence: 1 givenname: Cheng surname: Chen fullname: Chen, Cheng organization: Laboratory for Topological Physics and School of Physical Science and Technology, ShanghaiTech University, Department of Physics, University of Oxford – sequence: 2 givenname: Kevin P. orcidid: 0000-0002-1078-7113 surname: Nuckolls fullname: Nuckolls, Kevin P. organization: Joseph Henry Laboratories, Princeton University, Department of Physics, Princeton University, Department of Physics, Massachusetts Institute of Technology – sequence: 3 givenname: Shuhan surname: Ding fullname: Ding, Shuhan organization: Department of Chemistry, Emory University – sequence: 4 givenname: Wangqian surname: Miao fullname: Miao, Wangqian organization: Materials Department, University of California, Santa Barbara – sequence: 5 givenname: Dillon surname: Wong fullname: Wong, Dillon organization: Joseph Henry Laboratories, Princeton University, Department of Physics, Princeton University – sequence: 6 givenname: Myungchul orcidid: 0000-0003-0477-1390 surname: Oh fullname: Oh, Myungchul organization: Joseph Henry Laboratories, Princeton University, Department of Physics, Princeton University, Department of Semiconductor Engineering, Pohang University of Science and Technology (POSTECH) – sequence: 7 givenname: Ryan L. surname: Lee fullname: Lee, Ryan L. organization: Joseph Henry Laboratories, Princeton University, Department of Physics, Princeton University – sequence: 8 givenname: Shanmei surname: He fullname: He, Shanmei organization: Department of Physics, University of Oxford – sequence: 9 givenname: Cheng orcidid: 0009-0006-3433-1467 surname: Peng fullname: Peng, Cheng organization: Department of Physics, University of Oxford – sequence: 10 givenname: Ding surname: Pei fullname: Pei, Ding organization: Laboratory for Topological Physics and School of Physical Science and Technology, ShanghaiTech University – sequence: 11 givenname: Yiwei surname: Li fullname: Li, Yiwei organization: Institute for Advanced Studies (IAS), Wuhan University – sequence: 12 givenname: Chenyue surname: Hao fullname: Hao, Chenyue organization: Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University – sequence: 13 givenname: Haoran surname: Yan fullname: Yan, Haoran organization: Department of Chemistry, Emory University – sequence: 14 givenname: Hanbo orcidid: 0000-0001-8247-3378 surname: Xiao fullname: Xiao, Hanbo organization: Laboratory for Topological Physics and School of Physical Science and Technology, ShanghaiTech University – sequence: 15 givenname: Han surname: Gao fullname: Gao, Han organization: Laboratory for Topological Physics and School of Physical Science and Technology, ShanghaiTech University – sequence: 16 givenname: Qiao surname: Li fullname: Li, Qiao organization: Laboratory for Topological Physics and School of Physical Science and Technology, ShanghaiTech University – sequence: 17 givenname: Shihao orcidid: 0000-0002-5787-5022 surname: Zhang fullname: Zhang, Shihao organization: Laboratory for Topological Physics and School of Physical Science and Technology, ShanghaiTech University – sequence: 18 givenname: Jianpeng orcidid: 0000-0002-8564-0415 surname: Liu fullname: Liu, Jianpeng organization: Laboratory for Topological Physics and School of Physical Science and Technology, ShanghaiTech University – sequence: 19 givenname: Lin orcidid: 0000-0001-5251-1687 surname: He fullname: He, Lin organization: Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University – sequence: 20 givenname: Kenji orcidid: 0000-0003-3701-8119 surname: Watanabe fullname: Watanabe, Kenji organization: Research Center for Functional Materials, National Institute for Materials Science – sequence: 21 givenname: Takashi orcidid: 0000-0002-1467-3105 surname: Taniguchi fullname: Taniguchi, Takashi organization: International Center for Materials Nanoarchitectonics, National Institute for Materials Science – sequence: 22 givenname: Chris orcidid: 0000-0002-0980-3753 surname: Jozwiak fullname: Jozwiak, Chris organization: Advanced Light Source, Lawrence Berkeley National Laboratory – sequence: 23 givenname: Aaron orcidid: 0000-0002-9008-2980 surname: Bostwick fullname: Bostwick, Aaron organization: Advanced Light Source, Lawrence Berkeley National Laboratory – sequence: 24 givenname: Eli orcidid: 0000-0002-3979-8844 surname: Rotenberg fullname: Rotenberg, Eli organization: Advanced Light Source, Lawrence Berkeley National Laboratory – sequence: 25 givenname: Chu orcidid: 0000-0003-2441-2205 surname: Li fullname: Li, Chu organization: Department of Physics, Hong Kong University of Science and Technology – sequence: 26 givenname: Xu orcidid: 0000-0001-6116-3258 surname: Han fullname: Han, Xu organization: Department of Physics, Hong Kong University of Science and Technology – sequence: 27 givenname: Ding orcidid: 0000-0002-2353-0130 surname: Pan fullname: Pan, Ding organization: Department of Physics, Hong Kong University of Science and Technology – sequence: 28 givenname: Zhongkai orcidid: 0000-0003-3373-8039 surname: Liu fullname: Liu, Zhongkai organization: Laboratory for Topological Physics and School of Physical Science and Technology, ShanghaiTech University – sequence: 29 givenname: Xi orcidid: 0000-0002-2396-0966 surname: Dai fullname: Dai, Xi organization: Department of Physics, Hong Kong University of Science and Technology – sequence: 30 givenname: Chaoxing orcidid: 0000-0003-1881-1365 surname: Liu fullname: Liu, Chaoxing organization: Department of Physics, The Pennsylvania State University – sequence: 31 givenname: B. Andrei orcidid: 0000-0001-6337-4024 surname: Bernevig fullname: Bernevig, B. Andrei organization: Department of Physics, Princeton University, Donostia International Physics Center, IKERBASQUE, Basque Foundation for Science – sequence: 32 givenname: Yao orcidid: 0000-0003-1736-0187 surname: Wang fullname: Wang, Yao email: yao.wang@emory.edu organization: Department of Chemistry, Emory University, Department of Physics and Astronomy, Clemson University – sequence: 33 givenname: Ali orcidid: 0000-0003-4996-8904 surname: Yazdani fullname: Yazdani, Ali organization: Joseph Henry Laboratories, Princeton University, Department of Physics, Princeton University – sequence: 34 givenname: Yulin orcidid: 0000-0001-8960-9725 surname: Chen fullname: Chen, Yulin email: yulin.chen@physics.ox.ac.uk organization: Laboratory for Topological Physics and School of Physical Science and Technology, ShanghaiTech University, Department of Physics, University of Oxford |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39663492$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/2499452$$D View this record in Osti.gov |
| BookMark | eNp9UbtuFDEUtVAQ2QR-gAKNqGgG_Bo_KoQiHpEiUQC15fXenXXktQfbwyod_8Af8iV4mQQBRSpbuud17zlDJzFFQOgpwS8JZupV4WRQoseU91hRKvvDA7QiXIqeCyVP0ApjqtqIiVN0Vso1xnggkj9Cp0wLwbimK3T5qeYUxw4CuOPv5_cf0y41o86leQq-jXzs9nb0rrdxDNDVgy8VNt3aB3sDuRuznXYQ4TF6uLWhwJPb9xx9eff288WH_urj-8uLN1e945LXfqMwFVoKLAbFnAYtHRCnBQEYtGVkgyVoJvkgMaNuqwVjsGYDJkxgTpxi5-j1ojvN6z1sHMSabTBT9nubb0yy3vw7iX5nxvTNENJ2loI3heeLQirVm-J8BbdzKcZ2AkO51nygDfTi1ianrzOUava-OAjBRkhzMYxwIQbKqWjQZ38n-hPl7soNoBaAy6mUDFvTPG316RjQB0OwORZqlkJNK9T8LtQcGpX-R71Tv5fEFlJp4DhCNtdpzrG1ch_rF2hctCA |
| CitedBy_id | crossref_primary_10_1038_s41467_025_62461_y crossref_primary_10_1103_PhysRevX_15_021028 crossref_primary_10_1038_s41598_025_91336_x crossref_primary_10_1103_22j6_2p89 crossref_primary_10_1103_PhysRevB_111_045113 crossref_primary_10_1103_PhysRevB_111_085128 crossref_primary_10_1103_PhysRevB_111_155126 crossref_primary_10_1103_9n8v_7rx2 crossref_primary_10_1038_s41586_025_08881_8 crossref_primary_10_1038_s41467_025_59325_w crossref_primary_10_7498_aps_74_20250305 crossref_primary_10_1103_PhysRevB_111_085143 crossref_primary_10_1088_1361_6633_adeebb crossref_primary_10_1103_xxyt_4bql crossref_primary_10_1038_s42005_025_02244_5 crossref_primary_10_1103_PhysRevB_111_035110 crossref_primary_10_1103_PhysRevB_111_144513 crossref_primary_10_1103_7z4z_vlj8 crossref_primary_10_1016_j_diamond_2025_112209 crossref_primary_10_1103_PhysRevB_111_L020502 crossref_primary_10_1209_0295_5075_adfd7c |
| Cites_doi | 10.1080/08940886.2018.1483660 10.1103/PhysRevB.98.075154 10.1038/s41586-020-2339-0 10.1140/epjp/s13360-020-00647-7 10.1038/s41586-019-1431-9 10.1038/s41567-020-01041-x 10.1103/PhysRevB.44.317 10.1126/science.aaw3780 10.1103/PhysRevLett.122.257002 10.1103/PhysRevB.105.104515 10.1126/science.1186489 10.1103/PhysRevB.98.220504 10.1038/s41586-019-1695-0 10.1021/acs.nanolett.5b05263 10.1103/PhysRevLett.121.217001 10.1103/PhysRevB.107.125112 10.1038/s41567-020-0928-3 10.1103/PhysRevLett.121.257001 10.1103/PhysRevX.9.041010 10.1038/ncomms14468 10.1038/s41535-021-00386-7 10.1038/35087518 10.1038/s41563-020-00840-0 10.1126/science.aav1910 10.1021/acs.nanolett.7b04604 10.1038/nmat4623 10.1038/nature26160 10.1038/nature26154 10.1103/PhysRevLett.133.146001 10.1073/pnas.1810947115 10.1126/sciadv.abf5299 10.1038/s41586-020-2963-8 10.1103/PhysRevB.97.235453 10.1103/PhysRevB.102.155136 10.1038/s41578-018-0047-2 10.1038/s41586-020-2255-3 10.1103/PhysRevB.110.045133 10.1038/nature13894 10.1038/s41467-019-08560-z 10.1038/s41586-020-3028-8 10.1103/PhysRevB.98.241412 10.1038/nature04704 10.1126/science.aar3394 10.1103/RevModPhys.93.025006 10.1038/s41586-019-1422-x 10.1038/s41567-020-0906-9 10.1038/s41567-020-0974-x 10.1103/PhysRevLett.127.167001 10.1038/s41586-021-04121-x 10.1103/PhysRevLett.121.087001 10.1126/science.aay5533 10.1038/s41586-021-03192-0 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024 2024 |
| Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024 2024 |
| CorporateAuthor | Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) Princeton University, NJ (United States) |
| CorporateAuthor_xml | – name: Princeton University, NJ (United States) – name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) |
| DBID | C6C AAYXX CITATION NPM 7X8 OIOZB OTOTI 5PM |
| DOI | 10.1038/s41586-024-08227-w |
| DatabaseName | Springer Nature Open Access Journals CrossRef PubMed MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Physics |
| EISSN | 1476-4687 |
| EndPage | 347 |
| ExternalDocumentID | PMC11634764 2499452 39663492 10_1038_s41586_024_08227_w |
| Genre | Journal Article |
| GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 07C 0R~ 123 186 1OL 29M 2KS 39C 53G 5RE 6TJ 70F 7RV 85S 8WZ 97F A6W A7Z AAEEF AAHBH AAHTB AAIKC AAKAB AAMNW AASDW AAYEP AAYZH AAZLF ABDQB ABFSI ABIVO ABJNI ABLJU ABOCM ABPEJ ABPPZ ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACWUS ADBBV ADFRT ADUKH AENEX AFBBN AFFNX AFLOW AFRAH AFSHS AGAYW AGHSJ AGHTU AGOIJ AGSOS AHMBA AHSBF AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN BENPR BHPHI BIN BKKNO C6C CJ0 CS3 DU5 E.- E.L EAP EBS EE. EPS EXGXG F5P FAC FEDTE FQGFK FSGXE HCIFZ HG6 HVGLF HZ~ IAO ICQ IEA IEP IGS IH2 IHR INH IOF IPY KOO L7B LGEZI LOTEE LSO M0K M2O M7P N9A NADUK NEPJS NXXTH O9- OBC ODYON OES OHH OMK OVD P2P PKN PV9 RND RNS RNT RNTTT RXW SC5 SHXYY SIXXV SJN SNYQT SOJ TAE TAOOD TBHMF TDRGL TEORI TN5 TSG TWZ U5U UIG UKR UMD UQL VQA VVN WH7 X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YJ6 YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ~02 ~88 ~KM 0WA AARCD AAYXX ABFSG ABUFD ACSTC AEZWR AFANA AFHIU AFKWF AGSTI AHWEU AIXLP ALPWD ATHPR CITATION NAPCQ NFIDA TUS .-4 .GJ .HR 00M 08P 1CY 1VR 1VW 2XV 354 3EH 3O- 4.4 41X 41~ 42X 4R4 663 79B 7X2 7X7 7XC 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 97L 9M8 A8Z AAJYS AAKAS AAVBQ AAYOK ABAWZ ABDBF ABDPE ABEFU ABJCF ABMOR ABNNU ABTAH ABUWG ACBNA ACBTR ACRPL ACTDY ACUHS ADNMO ADRHT ADYSU ADZCM AETEA AEUYN AFFDN AFHKK AFKRA AGCDD AGGDT AGNAY AIDAL AIYXT AJUXI APEBS ARTTT AZQEC B0M BBNVY BCR BCU BDKGC BEC BES BGLVJ BKEYQ BKOMP BKSAR BLC BPHCQ BVXVI CCPQU D1I D1J D1K DB5 DO4 DWQXO EAD EAS EAZ EBC EBD EBO ECC EJD EMB EMF EMH EMK EMOBN EPL ESE ESN ESX EX3 FA8 FYUFA GNUQQ GUQSH HMCUK I-F INR ISR ITC J5H K6- KB. L-9 L6V LK5 LK8 M1P M2M M2P M7R M7S MVM N4W NEJ NPM OHT P-O P62 PATMY PCBAR PDBOC PEA PHGZT PM3 PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X QS- R05 R4F RHI S0X SJFOW SKT SV3 TH9 TUD UAO UBY UHB UKHRP USG VOH WOW X7L XOL YQI YQJ YV5 YXA YYP YYQ ZCG ZE2 ZGI ZHY ZKB ZKG ZY4 ~7V ~8M ~G0 7X8 OIOZB OTOTI 5PM AFFHD PHGZM PJZUB PPXIY PQGLB |
| ID | FETCH-LOGICAL-c474t-d802697606583c9e97ce1c961ee59a31d07e937457032cf9633eb350136041c83 |
| ISICitedReferencesCount | 25 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001397120900022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0028-0836 1476-4687 |
| IngestDate | Tue Nov 04 02:04:56 EST 2025 Mon Nov 24 02:23:36 EST 2025 Sun Nov 09 10:30:59 EST 2025 Thu Apr 03 07:06:03 EDT 2025 Tue Nov 18 22:01:32 EST 2025 Sat Nov 29 04:19:21 EST 2025 Fri Feb 21 02:36:21 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8042 |
| Language | English |
| License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c474t-d802697606583c9e97ce1c961ee59a31d07e937457032cf9633eb350136041c83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Shanghai Municipal Science and Technology Major Project ARO MURI Research Grants Council of the Hong Kong Special Administrative Region, China ONR Simons Investigator Grant USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities (SUF) SC0016239; AC02-05CH11231; SC0024524; FG02-07ER46419 National Natural Science Foundation of China National Science Foundation (NSF) European Research Council (ERC) National Key R&D program of China Gordon and Betty Moore Foundation’s EPiQS initiative |
| ORCID | 0000-0002-2396-0966 0000-0003-1881-1365 0000-0003-0477-1390 0000-0002-3979-8844 0000-0003-3373-8039 0000-0003-1736-0187 0000-0002-2353-0130 0000-0001-6337-4024 0000-0002-0980-3753 0000-0003-4996-8904 0000-0002-1078-7113 0000-0001-5251-1687 0000-0002-9008-2980 0000-0003-3701-8119 0000-0001-8247-3378 0009-0006-3433-1467 0000-0002-1467-3105 0000-0001-6116-3258 0000-0003-2441-2205 0000-0001-8960-9725 0000-0002-5787-5022 0000-0002-8564-0415 0000000214673105 0000000239798844 0000000285640415 0000000189609725 0000000161163258 0000000333738039 0000000163374024 0000000318811365 0000000317360187 0000000209803753 0000000152511687 0000000223530130 0000000349968904 0009000634331467 0000000210787113 0000000290082980 0000000223960966 0000000304771390 0000000257875022 0000000337018119 0000000182473378 0000000324412205 |
| OpenAccessLink | https://www.osti.gov/servlets/purl/2499452 |
| PMID | 39663492 |
| PQID | 3146652426 |
| PQPubID | 23479 |
| PageCount | 6 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11634764 osti_scitechconnect_2499452 proquest_miscellaneous_3146652426 pubmed_primary_39663492 crossref_citationtrail_10_1038_s41586_024_08227_w crossref_primary_10_1038_s41586_024_08227_w springer_journals_10_1038_s41586_024_08227_w |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-12 |
| PublicationDateYYYYMMDD | 2024-12-12 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-12 day: 12 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England – name: United States |
| PublicationSubtitle | International weekly journal of science |
| PublicationTitle | Nature (London) |
| PublicationTitleAbbrev | Nature |
| PublicationTitleAlternate | Nature |
| PublicationYear | 2024 |
| Publisher | Nature Publishing Group UK Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
| References | MIB Utama (8227_CR30) 2021; 17 Z Wang (8227_CR32) 2016; 15 A Lanzara (8227_CR46) 2001; 412 D Reznik (8227_CR47) 2006; 440 M Oh (8227_CR11) 2021; 600 M Serlin (8227_CR5) 2020; 367 8227_CR34 H Polshyn (8227_CR50) 2020; 588 C Xu (8227_CR15) 2018; 121 J Yu (8227_CR45) 2022; 105 B Lian (8227_CR18) 2019; 122 Y Cao (8227_CR1) 2018; 556 W Miao (8227_CR52) 2023; 107 A Uri (8227_CR27) 2020; 581 C Zhang (8227_CR38) 2017; 8 X Lu (8227_CR3) 2019; 574 A Kerelsky (8227_CR7) 2019; 572 E Khalaf (8227_CR24) 2021; 7 YW Choi (8227_CR21) 2018; 98 AL Sharpe (8227_CR6) 2019; 365 JJ Lee (8227_CR31) 2014; 515 C Chen (8227_CR33) 2018; 18 A Bostwick (8227_CR40) 2010; 328 S Lisi (8227_CR29) 2021; 17 8227_CR44 8227_CR42 8227_CR41 F Wu (8227_CR19) 2018; 121 M Angeli (8227_CR43) 2020; 135 H Yang (8227_CR26) 2018; 3 K Kim (8227_CR51) 2016; 16 EY Andrei (8227_CR12) 2020; 19 F Guinea (8227_CR17) 2018; 115 8227_CR16 8227_CR14 Y He (8227_CR48) 2018; 362 RJ Koch (8227_CR28) 2018; 31 G Martnez (8227_CR39) 1991; 44 L Balents (8227_CR13) 2020; 16 Y Cao (8227_CR2) 2018; 556 8227_CR25 M Yankowitz (8227_CR4) 2019; 363 Y Xie (8227_CR8) 2019; 572 D Wong (8227_CR10) 2020; 582 CC Liu (8227_CR23) 2018; 121 Q Song (8227_CR37) 2019; 10 Y Saito (8227_CR35) 2020; 16 TJ Peltonen (8227_CR20) 2018; 98 T Cea (8227_CR36) 2020; 102 JM Park (8227_CR49) 2021; 590 KP Nuckolls (8227_CR9) 2020; 588 YW Choi (8227_CR22) 2021; 127 |
| References_xml | – volume: 31 start-page: 50 year: 2018 ident: 8227_CR28 publication-title: Synchrotron Radiat. News doi: 10.1080/08940886.2018.1483660 – ident: 8227_CR14 doi: 10.1103/PhysRevB.98.075154 – volume: 582 start-page: 198 year: 2020 ident: 8227_CR10 publication-title: Nature doi: 10.1038/s41586-020-2339-0 – volume: 135 year: 2020 ident: 8227_CR43 publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/s13360-020-00647-7 – volume: 572 start-page: 95 year: 2019 ident: 8227_CR7 publication-title: Nature doi: 10.1038/s41586-019-1431-9 – volume: 17 start-page: 189 year: 2021 ident: 8227_CR29 publication-title: Nat. Phys. doi: 10.1038/s41567-020-01041-x – volume: 44 start-page: 317 year: 1991 ident: 8227_CR39 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.44.317 – volume: 365 start-page: 605 year: 2019 ident: 8227_CR6 publication-title: Science doi: 10.1126/science.aaw3780 – volume: 122 year: 2019 ident: 8227_CR18 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.257002 – volume: 105 year: 2022 ident: 8227_CR45 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.105.104515 – volume: 328 start-page: 999 year: 2010 ident: 8227_CR40 publication-title: Science doi: 10.1126/science.1186489 – volume: 98 year: 2018 ident: 8227_CR20 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.98.220504 – volume: 574 start-page: 653 year: 2019 ident: 8227_CR3 publication-title: Nature doi: 10.1038/s41586-019-1695-0 – volume: 16 start-page: 1989 year: 2016 ident: 8227_CR51 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b05263 – volume: 121 year: 2018 ident: 8227_CR23 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.217001 – volume: 107 start-page: 125112 year: 2023 ident: 8227_CR52 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.107.125112 – volume: 16 start-page: 926 year: 2020 ident: 8227_CR35 publication-title: Nat. Phys. doi: 10.1038/s41567-020-0928-3 – volume: 121 year: 2018 ident: 8227_CR19 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.257001 – ident: 8227_CR42 doi: 10.1103/PhysRevX.9.041010 – volume: 8 year: 2017 ident: 8227_CR38 publication-title: Nat. Commun. doi: 10.1038/ncomms14468 – ident: 8227_CR41 doi: 10.1038/s41535-021-00386-7 – volume: 412 start-page: 510 year: 2001 ident: 8227_CR46 publication-title: Nature doi: 10.1038/35087518 – volume: 19 start-page: 1265 year: 2020 ident: 8227_CR12 publication-title: Nat. Mater. doi: 10.1038/s41563-020-00840-0 – volume: 363 start-page: 1059 year: 2019 ident: 8227_CR4 publication-title: Science doi: 10.1126/science.aav1910 – volume: 18 start-page: 1082 year: 2018 ident: 8227_CR33 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b04604 – volume: 15 start-page: 835 year: 2016 ident: 8227_CR32 publication-title: Nat. Mater. doi: 10.1038/nmat4623 – volume: 556 start-page: 43 year: 2018 ident: 8227_CR1 publication-title: Nature doi: 10.1038/nature26160 – volume: 556 start-page: 80 year: 2018 ident: 8227_CR2 publication-title: Nature doi: 10.1038/nature26154 – ident: 8227_CR44 doi: 10.1103/PhysRevLett.133.146001 – volume: 115 start-page: 13174 year: 2018 ident: 8227_CR17 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1810947115 – volume: 7 start-page: eabf5299 year: 2021 ident: 8227_CR24 publication-title: Sci. Adv. doi: 10.1126/sciadv.abf5299 – volume: 588 start-page: 66 year: 2020 ident: 8227_CR50 publication-title: Nature doi: 10.1038/s41586-020-2963-8 – ident: 8227_CR16 doi: 10.1103/PhysRevB.97.235453 – volume: 102 year: 2020 ident: 8227_CR36 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.102.155136 – volume: 3 start-page: 341 year: 2018 ident: 8227_CR26 publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-018-0047-2 – volume: 581 start-page: 47 year: 2020 ident: 8227_CR27 publication-title: Nature doi: 10.1038/s41586-020-2255-3 – ident: 8227_CR34 doi: 10.1103/PhysRevB.110.045133 – volume: 515 start-page: 245 year: 2014 ident: 8227_CR31 publication-title: Nature doi: 10.1038/nature13894 – volume: 10 year: 2019 ident: 8227_CR37 publication-title: Nat. Commun. doi: 10.1038/s41467-019-08560-z – volume: 588 start-page: 610 year: 2020 ident: 8227_CR9 publication-title: Nature doi: 10.1038/s41586-020-3028-8 – volume: 98 year: 2018 ident: 8227_CR21 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.98.241412 – volume: 440 start-page: 1170 year: 2006 ident: 8227_CR47 publication-title: Nature doi: 10.1038/nature04704 – volume: 362 start-page: 62 year: 2018 ident: 8227_CR48 publication-title: Science doi: 10.1126/science.aar3394 – ident: 8227_CR25 doi: 10.1103/RevModPhys.93.025006 – volume: 572 start-page: 101 year: 2019 ident: 8227_CR8 publication-title: Nature doi: 10.1038/s41586-019-1422-x – volume: 16 start-page: 725 year: 2020 ident: 8227_CR13 publication-title: Nat. Phys. doi: 10.1038/s41567-020-0906-9 – volume: 17 start-page: 184 year: 2021 ident: 8227_CR30 publication-title: Nat. Phys. doi: 10.1038/s41567-020-0974-x – volume: 127 year: 2021 ident: 8227_CR22 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.127.167001 – volume: 600 start-page: 240 year: 2021 ident: 8227_CR11 publication-title: Nature doi: 10.1038/s41586-021-04121-x – volume: 121 year: 2018 ident: 8227_CR15 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.087001 – volume: 367 start-page: 900 year: 2020 ident: 8227_CR5 publication-title: Science doi: 10.1126/science.aay5533 – volume: 590 start-page: 249 year: 2021 ident: 8227_CR49 publication-title: Nature doi: 10.1038/s41586-021-03192-0 |
| SSID | ssj0005174 |
| Score | 2.6210356 |
| Snippet | The unusual properties of superconductivity in magic-angle twisted bilayer graphene (MATBG) have sparked considerable research interest
1
,
2
,
3
,
4
,
5
,
6
,... The unusual properties of superconductivity in magic-angle twisted bilayer graphene (MATBG) have sparked considerable research interest 1–13 . However, despite... The unusual properties of superconductivity in magic-angle twisted bilayer graphene (MATBG) have sparked considerable research interest . However, despite the... The unusual properties of superconductivity in magic-angle twisted bilayer graphene (MATBG) have sparked considerable research interest1-13. However, despite... The unusual properties of superconductivity in magic-angle twisted bilayer graphene (MATBG) have sparked considerable research interest. However, despite the... The unusual properties of superconductivity in magic-angle twisted bilayer graphene (MATBG) have sparked considerable research interest1–13. However, despite... |
| SourceID | pubmedcentral osti proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 342 |
| SubjectTerms | 140/146 639/301/357/918/1052 639/766/119/1003 639/766/119/995 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY Electronic properties and devices Electronic properties and materials Humanities and Social Sciences multidisciplinary Science Science (multidisciplinary) Superconducting properties and materials |
| Title | Strong electron–phonon coupling in magic-angle twisted bilayer graphene |
| URI | https://link.springer.com/article/10.1038/s41586-024-08227-w https://www.ncbi.nlm.nih.gov/pubmed/39663492 https://www.proquest.com/docview/3146652426 https://www.osti.gov/servlets/purl/2499452 https://pubmed.ncbi.nlm.nih.gov/PMC11634764 |
| Volume | 636 |
| WOSCitedRecordID | wos001397120900022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAQT databaseName: Nature customDbUrl: eissn: 1476-4687 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: RNT dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.nature.com providerName: Nature Publishing |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZYAYkXxMatG0xBQghUrNWxm9iPaGzwUApiHfTNShz3Irq0W9p1P5_jS9J2nabxwEvauk7t9vt6fGwffwehtzrKYNygGSYRhwlKHGqcMhViwpVSUcYUsbkOf7XjTof3euKH34opbDqBOM_51ZWY_leooQzANkdn_wHu6kOhAJ4D6HAF2OF6J-BPzOL2oFHmt8Em-Hxigs3n07E_wHKWgL3DST4Y68ZsYYAGN3Q0TsD9blgFa52vRQh1rPrnavaPavng0J_uMI-DamV5rv4Avwp38OcSWqxOkX32OVROhvPhkpjfRoldsv0NfTovCevXIkKreEhWlicJiyPMIj-E6hvKvM2NnOqJJxdvOoUtb0Spe7Vh3J2UewEuBzeB0wwbtfoYL5ZDWbl93_kuj0_bbdk96nXfTc-xSTJmNuN9xpUtdD-MW8IYwZ-d7jIiyIl2Vx32Z6yg2YPNRtf8mNoE7PFNc5TNUNtr--3Wjek-QY_9_CP45Hizje7pfAc9tHHAqthB297WF8F7L0j-4Sn64igVXKNUUFIqGOXBCqUCT6nAUyooKfUMnR4fdQ-_Yp-AAysWsxnOOMzQwV81bipVQotYaaJERLRuiYSSrBlrcG-ZUXELVR9sOdWp2ammUZMRxelzVIPu6JcoSKlifaiU0rDFiGCiH9FMMaUzmrG0n9YRKX9Oqbw6vUmSMpY2SoJy6SCQAIG0EMhFHTWqe6ZOm-XW2nsGJQmepZFHViaOTM1kCFN-1grr6E0JngQDa3bNklxP5oWk4EtELePJ1tELB2bVGhXgsDMBd_M1mKsKRrx9_Z18NLQi7gQmQkA0VkcfS0ZIb0WKW77F7h36uYceLf-cr1BtdjHXr9EDdTkbFRf7aCvu8X3L_L_xXMSZ |
| linkProvider | Nature Publishing |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strong+electron-phonon+coupling+in+magic-angle+twisted+bilayer+graphene&rft.jtitle=Nature+%28London%29&rft.au=Chen%2C+Cheng&rft.au=Nuckolls%2C+Kevin+P&rft.au=Ding%2C+Shuhan&rft.au=Miao%2C+Wangqian&rft.date=2024-12-12&rft.issn=1476-4687&rft.eissn=1476-4687&rft.volume=636&rft.issue=8042&rft.spage=342&rft_id=info:doi/10.1038%2Fs41586-024-08227-w&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |