Deep learning-based reconstruction of ultrasound images from raw channel data

Purpose We investigate the feasibility of reconstructing ultrasound images directly from raw channel data using a deep learning network. Starting from the raw data, we present the network the full measurement information, allowing for a more generic reconstruction to form, as compared to common reco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for computer assisted radiology and surgery Jg. 15; H. 9; S. 1487 - 1490
Hauptverfasser: Strohm, Hannah, Rothlübbers, Sven, Eickel, Klaus, Günther, Matthias
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cham Springer International Publishing 01.09.2020
Springer Nature B.V
Schlagworte:
ISSN:1861-6410, 1861-6429, 1861-6429
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Purpose We investigate the feasibility of reconstructing ultrasound images directly from raw channel data using a deep learning network. Starting from the raw data, we present the network the full measurement information, allowing for a more generic reconstruction to form, as compared to common reconstructions constrained by physical models using fixed speed of sound assumptions. Methods We propose a U-Net-like architecture for the given task. Additional layers with strided convolutions downsample the raw data. Hyperparameter optimization was used to find a suitable learning rate. We train and test our deep learning approach on plane wave ultrasound images with a single insonification angle. The dataset includes phantom as well as in vivo data. Results The images produced by our method are visually comparable to ones reconstructed with the conventional delay and sum algorithm. Deviations between prediction and ground truth are likely to be related to speckle noise. For the test set, the mean absolute error is 4.23 ± 1.52 for the phantom images and 6.09 ± 0.72 for the in vivo data. Conclusion The result shows the feasibility of our approach and opens up new research directions regarding information retrieval from raw channel data. As the networks reconstruction performance is limited by the quality of the ground truth images, using other ultrasound reconstruction technique or image types as target data would be of interest.
AbstractList We investigate the feasibility of reconstructing ultrasound images directly from raw channel data using a deep learning network. Starting from the raw data, we present the network the full measurement information, allowing for a more generic reconstruction to form, as compared to common reconstructions constrained by physical models using fixed speed of sound assumptions.PURPOSEWe investigate the feasibility of reconstructing ultrasound images directly from raw channel data using a deep learning network. Starting from the raw data, we present the network the full measurement information, allowing for a more generic reconstruction to form, as compared to common reconstructions constrained by physical models using fixed speed of sound assumptions.We propose a U-Net-like architecture for the given task. Additional layers with strided convolutions downsample the raw data. Hyperparameter optimization was used to find a suitable learning rate. We train and test our deep learning approach on plane wave ultrasound images with a single insonification angle. The dataset includes phantom as well as in vivo data.METHODSWe propose a U-Net-like architecture for the given task. Additional layers with strided convolutions downsample the raw data. Hyperparameter optimization was used to find a suitable learning rate. We train and test our deep learning approach on plane wave ultrasound images with a single insonification angle. The dataset includes phantom as well as in vivo data.The images produced by our method are visually comparable to ones reconstructed with the conventional delay and sum algorithm. Deviations between prediction and ground truth are likely to be related to speckle noise. For the test set, the mean absolute error is [Formula: see text] for the phantom images and [Formula: see text] for the in vivo data.RESULTSThe images produced by our method are visually comparable to ones reconstructed with the conventional delay and sum algorithm. Deviations between prediction and ground truth are likely to be related to speckle noise. For the test set, the mean absolute error is [Formula: see text] for the phantom images and [Formula: see text] for the in vivo data.The result shows the feasibility of our approach and opens up new research directions regarding information retrieval from raw channel data. As the networks reconstruction performance is limited by the quality of the ground truth images, using other ultrasound reconstruction technique or image types as target data would be of interest.CONCLUSIONThe result shows the feasibility of our approach and opens up new research directions regarding information retrieval from raw channel data. As the networks reconstruction performance is limited by the quality of the ground truth images, using other ultrasound reconstruction technique or image types as target data would be of interest.
PurposeWe investigate the feasibility of reconstructing ultrasound images directly from raw channel data using a deep learning network. Starting from the raw data, we present the network the full measurement information, allowing for a more generic reconstruction to form, as compared to common reconstructions constrained by physical models using fixed speed of sound assumptions.MethodsWe propose a U-Net-like architecture for the given task. Additional layers with strided convolutions downsample the raw data. Hyperparameter optimization was used to find a suitable learning rate. We train and test our deep learning approach on plane wave ultrasound images with a single insonification angle. The dataset includes phantom as well as in vivo data.ResultsThe images produced by our method are visually comparable to ones reconstructed with the conventional delay and sum algorithm. Deviations between prediction and ground truth are likely to be related to speckle noise. For the test set, the mean absolute error is 4.23±1.52 for the phantom images and 6.09±0.72 for the in vivo data.ConclusionThe result shows the feasibility of our approach and opens up new research directions regarding information retrieval from raw channel data. As the networks reconstruction performance is limited by the quality of the ground truth images, using other ultrasound reconstruction technique or image types as target data would be of interest.
We investigate the feasibility of reconstructing ultrasound images directly from raw channel data using a deep learning network. Starting from the raw data, we present the network the full measurement information, allowing for a more generic reconstruction to form, as compared to common reconstructions constrained by physical models using fixed speed of sound assumptions. We propose a U-Net-like architecture for the given task. Additional layers with strided convolutions downsample the raw data. Hyperparameter optimization was used to find a suitable learning rate. We train and test our deep learning approach on plane wave ultrasound images with a single insonification angle. The dataset includes phantom as well as in vivo data. The images produced by our method are visually comparable to ones reconstructed with the conventional delay and sum algorithm. Deviations between prediction and ground truth are likely to be related to speckle noise. For the test set, the mean absolute error is [Formula: see text] for the phantom images and [Formula: see text] for the in vivo data. The result shows the feasibility of our approach and opens up new research directions regarding information retrieval from raw channel data. As the networks reconstruction performance is limited by the quality of the ground truth images, using other ultrasound reconstruction technique or image types as target data would be of interest.
Purpose We investigate the feasibility of reconstructing ultrasound images directly from raw channel data using a deep learning network. Starting from the raw data, we present the network the full measurement information, allowing for a more generic reconstruction to form, as compared to common reconstructions constrained by physical models using fixed speed of sound assumptions. Methods We propose a U-Net-like architecture for the given task. Additional layers with strided convolutions downsample the raw data. Hyperparameter optimization was used to find a suitable learning rate. We train and test our deep learning approach on plane wave ultrasound images with a single insonification angle. The dataset includes phantom as well as in vivo data. Results The images produced by our method are visually comparable to ones reconstructed with the conventional delay and sum algorithm. Deviations between prediction and ground truth are likely to be related to speckle noise. For the test set, the mean absolute error is 4.23 ± 1.52 for the phantom images and 6.09 ± 0.72 for the in vivo data. Conclusion The result shows the feasibility of our approach and opens up new research directions regarding information retrieval from raw channel data. As the networks reconstruction performance is limited by the quality of the ground truth images, using other ultrasound reconstruction technique or image types as target data would be of interest.
Author Günther, Matthias
Rothlübbers, Sven
Eickel, Klaus
Strohm, Hannah
Author_xml – sequence: 1
  givenname: Hannah
  orcidid: 0000-0001-8355-484X
  surname: Strohm
  fullname: Strohm, Hannah
  email: hannah.strohm@mevis.fraunhofer.de
  organization: Fraunhofer Institute for Digital Medicine MEVIS
– sequence: 2
  givenname: Sven
  surname: Rothlübbers
  fullname: Rothlübbers, Sven
  organization: Fraunhofer Institute for Digital Medicine MEVIS
– sequence: 3
  givenname: Klaus
  surname: Eickel
  fullname: Eickel, Klaus
  organization: University of Bremen
– sequence: 4
  givenname: Matthias
  surname: Günther
  fullname: Günther, Matthias
  organization: Fraunhofer Institute for Digital Medicine MEVIS, University of Bremen
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32495155$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1v3CAQhlGVKl_tH8ghQuqlF7cMHgy-RKrSTylVL80ZsXi8ceSFDdhd9d-X7SabNoccEEg878w7856wgxADMXYG4h0Iod9nAIWmElKUA62uNi_YMZgGqgZle7B_gzhiJznfCoFK1-qQHdUSWwVKHbPvH4nWfCSXwhCW1cJl6ngiH0Oe0uynIQYeez6PU3I5zqHjw8otKfM-xRVPbsP9jQuBRt65yb1iL3s3Znp9f5-y68-ffl5-ra5-fPl2-eGq8qhxqjptTI291qIhBX3XNK1xUqoGSRqoPZLvoFMIiCgbv_AIREY4ckYthHT1KbvY1V3PixV1nkKxN9p1KubSbxvdYP__CcONXcZfViO0aHQp8Pa-QIp3M-XJrobsaRxdoDhnK1G0ZYm12KJvnqC3cU6hjFeoWppWqRYKdf6vo72Vh00XQO4An2LOifo9AsJu47S7OG2J0_6N026KyDwR-WFy21DKVMP4vLTeSXPpE5aUHm0_o_oDYYW1CQ
CitedBy_id crossref_primary_10_1109_TUFFC_2021_3064303
crossref_primary_10_1007_s00371_021_02350_9
crossref_primary_10_1016_j_artmed_2023_102664
crossref_primary_10_1109_TUFFC_2024_3462299
crossref_primary_10_3390_s23218760
crossref_primary_10_1088_1361_6560_ad997f
crossref_primary_10_3390_app12083754
crossref_primary_10_1109_TMI_2021_3087450
crossref_primary_10_1016_j_ultras_2023_107096
crossref_primary_10_3389_fphy_2024_1398393
crossref_primary_10_1016_j_compmedimag_2022_102073
Cites_doi 10.1109/TUFFC.2017.2736890
10.1109/CISS.2019.8692835
10.1109/ICASSP.2018.8461575
10.1109/ULTSYM.2016.7728908
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
5PM
DOI 10.1007/s11548-020-02197-w
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Computer Science
EISSN 1861-6429
EndPage 1490
ExternalDocumentID PMC7419487
32495155
10_1007_s11548_020_02197_w
Genre Journal Article
GrantInformation_xml – fundername: Fraunhofer-Gesellschaft
  grantid: 600 725
  funderid: http://dx.doi.org/10.13039/501100003185
– fundername: Fraunhofer-Gesellschaft
  grantid: 600 725
– fundername: ;
  grantid: 600 725
GroupedDBID ---
-5E
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
203
29J
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABOCM
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
ARMRJ
ASPBG
AVWKF
AVXWI
AXYYD
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DNIVK
DPUIP
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
EN4
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
IMOTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KPH
LLZTM
M4Y
MA-
N2Q
N9A
NPVJJ
NQJWS
NU0
O9-
O93
O9I
O9J
OAM
P2P
P9S
PF0
PT4
QOR
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S1Z
S27
S37
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
YLTOR
Z45
Z7R
Z7V
Z7X
Z82
Z83
Z87
Z88
ZMTXR
ZOVNA
~A9
7X7
88E
8FI
8FJ
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ABUWG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
FYUFA
HCIFZ
HMCUK
M1P
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PSQYO
UKHRP
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
5PM
ID FETCH-LOGICAL-c474t-d78834f7706e51fd6698a22564e2813c4ecd1d54144426cbc41ee80aea85b02a3
IEDL.DBID RSV
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000537649700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1861-6410
1861-6429
IngestDate Thu Aug 21 18:45:25 EDT 2025
Thu Oct 02 09:53:48 EDT 2025
Tue Oct 07 07:16:48 EDT 2025
Thu Apr 03 06:50:19 EDT 2025
Tue Nov 18 22:23:27 EST 2025
Sat Nov 29 01:30:17 EST 2025
Fri Feb 21 02:42:14 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Deep learning
Plane wave ultrasound imaging
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-d78834f7706e51fd6698a22564e2813c4ecd1d54144426cbc41ee80aea85b02a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8355-484X
OpenAccessLink https://link.springer.com/10.1007/s11548-020-02197-w
PMID 32495155
PQID 2432895591
PQPubID 2043910
PageCount 4
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7419487
proquest_miscellaneous_2409642307
proquest_journals_2432895591
pubmed_primary_32495155
crossref_primary_10_1007_s11548_020_02197_w
crossref_citationtrail_10_1007_s11548_020_02197_w
springer_journals_10_1007_s11548_020_02197_w
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Germany
– name: Heidelberg
PublicationSubtitle A journal for interdisciplinary research, development and applications of image guided diagnosis and therapy
PublicationTitle International journal for computer assisted radiology and surgery
PublicationTitleAbbrev Int J CARS
PublicationTitleAlternate Int J Comput Assist Radiol Surg
PublicationYear 2020
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Liebgott H, Rodriguez-Molares A, Cervenansky F, Jensen JA, Bernard O (2016) Plane-wave imaging challenge in medical ultrasound. In: 2016 IEEE International ultrasonics symposium (IUS), pp 1–4. https://doi.org/10.1109/ULTSYM.2016.7728908
GasseMMilliozFRouxEGarciaDLiebgottHFribouletDHigh-quality plane wave compounding using convolutional neural networksIEEE Trans Ultrasonics Ferroelectr Freq Control201764101637163910.1109/TUFFC.2017.2736890
Nair AA, Tran TD, Reiter A, Bell MAL (2019) A generative adversarial neural network for beamforming ultrasound images: invited presentation. In: 2019 53rd Annual conference on information sciences and systems (CISS), pp 1–6. https://doi.org/10.1109/CISS.2019.8692835
Simson W, Göbl R, Paschali M, Krönke M, Scheidhauer K, Weber W, Navab N (2019) End-to-end learning-based ultrasound reconstruction. arXiv e-prints arXiv:1904.04696
Falkner S, Klein A, Hutter F (2018) BOHB: robust and efficient hyperparameter optimization at scale. In: Proceedings of the 35th international conference on machine learning, proceedings of machine learning research, vol 80, pp 1437–1446
Nair AA, Tran TD, Reiter A, Bell MAL (2018) A deep learning based alternative to beamforming ultrasound images. In: 2018 IEEE International conference on acoustics, speech and signal processing (ICASSP), pp 3359–3363
2197_CR4
M Gasse (2197_CR2) 2017; 64
2197_CR3
2197_CR1
2197_CR6
2197_CR5
References_xml – reference: GasseMMilliozFRouxEGarciaDLiebgottHFribouletDHigh-quality plane wave compounding using convolutional neural networksIEEE Trans Ultrasonics Ferroelectr Freq Control201764101637163910.1109/TUFFC.2017.2736890
– reference: Falkner S, Klein A, Hutter F (2018) BOHB: robust and efficient hyperparameter optimization at scale. In: Proceedings of the 35th international conference on machine learning, proceedings of machine learning research, vol 80, pp 1437–1446
– reference: Liebgott H, Rodriguez-Molares A, Cervenansky F, Jensen JA, Bernard O (2016) Plane-wave imaging challenge in medical ultrasound. In: 2016 IEEE International ultrasonics symposium (IUS), pp 1–4. https://doi.org/10.1109/ULTSYM.2016.7728908
– reference: Nair AA, Tran TD, Reiter A, Bell MAL (2018) A deep learning based alternative to beamforming ultrasound images. In: 2018 IEEE International conference on acoustics, speech and signal processing (ICASSP), pp 3359–3363
– reference: Simson W, Göbl R, Paschali M, Krönke M, Scheidhauer K, Weber W, Navab N (2019) End-to-end learning-based ultrasound reconstruction. arXiv e-prints arXiv:1904.04696,
– reference: Nair AA, Tran TD, Reiter A, Bell MAL (2019) A generative adversarial neural network for beamforming ultrasound images: invited presentation. In: 2019 53rd Annual conference on information sciences and systems (CISS), pp 1–6. https://doi.org/10.1109/CISS.2019.8692835
– volume: 64
  start-page: 1637
  issue: 10
  year: 2017
  ident: 2197_CR2
  publication-title: IEEE Trans Ultrasonics Ferroelectr Freq Control
  doi: 10.1109/TUFFC.2017.2736890
– ident: 2197_CR4
  doi: 10.1109/CISS.2019.8692835
– ident: 2197_CR5
– ident: 2197_CR1
– ident: 2197_CR3
  doi: 10.1109/ICASSP.2018.8461575
– ident: 2197_CR6
  doi: 10.1109/ULTSYM.2016.7728908
SSID ssj0045735
Score 2.2874196
Snippet Purpose We investigate the feasibility of reconstructing ultrasound images directly from raw channel data using a deep learning network. Starting from the raw...
We investigate the feasibility of reconstructing ultrasound images directly from raw channel data using a deep learning network. Starting from the raw data, we...
PurposeWe investigate the feasibility of reconstructing ultrasound images directly from raw channel data using a deep learning network. Starting from the raw...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1487
SubjectTerms Algorithms
Computer Imaging
Computer Science
Contrast Media
Deep Learning
Diagnosis, Computer-Assisted - methods
Feasibility
Ground truth
Health Informatics
Humans
Image Processing, Computer-Assisted - methods
Image quality
Image reconstruction
Imaging
In vivo methods and tests
Information retrieval
Machine learning
Medicine
Medicine & Public Health
Models, Theoretical
Optimization
Pattern Recognition and Graphics
Phantoms, Imaging
Plane waves
Radiology
Reference Values
Reproducibility of Results
Short Communication
Signal-To-Noise Ratio
Surgery
Target recognition
Ultrasonic imaging
Ultrasonic testing
Ultrasonography
Ultrasound
Vision
Title Deep learning-based reconstruction of ultrasound images from raw channel data
URI https://link.springer.com/article/10.1007/s11548-020-02197-w
https://www.ncbi.nlm.nih.gov/pubmed/32495155
https://www.proquest.com/docview/2432895591
https://www.proquest.com/docview/2409642307
https://pubmed.ncbi.nlm.nih.gov/PMC7419487
Volume 15
WOSCitedRecordID wos000537649700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1861-6429
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0045735
  issn: 1861-6410
  databaseCode: RSV
  dateStart: 20060301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RghAXCuUVWiojcQNLcey14yOCVhxohXhUe4sS24GVlmzVtOzfZ8brZLW0RYJznMSPGc98mscH8Cq0Hh15LznaXokApVW8qZuct41qFV7KrY3ti08_mpOTcjq1n1JRWD9kuw8hyXhTr4vdyLvmBHfQLlnDl1twG81dSYQNn7-cDvevmphIqylKLbhWIk-lMtd_Y9McXfExr6ZK_hEvjWboaOf_FvAA7ie3k71dyclDuBW6XdgZKB1Y0vBduHucYu2P4Ph9CGcssUp852TuPIv4eew5yxYtu5zjjHsiZ2Kzn3g59YwqVth5vWRUVNyFOaMs1Mfw7ejw67sPPJEvcKeMuuAesbFUrTG5DhPReq1tWaPyaxWKUkingvPCE4m4QiPvGqdECGVeh7qcNHlRyyew3S268AzYpLZ5o3NvEV4q650tjA5SakdRz0LKDMRwBpVLncmJIGNerXsq09ZVuHVV3LpqmcHr8Z2zVV-Ov47eH462SjraV4WSiDYRUYkMXo6PUbsoZFJ3YXFJYxDiKUqWz-DpShLG30mi7UZ3LAOzISPjAOrcvfmkm_2IHbzRjbOIFDN4M0jKelo3r-L5vw3fg3tFFDZKiNuHbZSN8ALuuF8Xs_78ALbMtDyImvMb87ESCg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_BQLAXBmOwwAAj8QaW4th14kcETEO0FYIx7S1KbAcqlXRaNvrvc-c6qcoACZ5zSfxxXz_dF8AL3zh05J3kaHslApRG8bqqU97UqlGolBsT2hefjPPptDg9NR9jUVjXZ7v3IcmgqdfFbuRdc4I7aJdMzpfX4YZCi0Ud8z99Pun1rxrlYaymKLTgWok0lsr8_hub5uiKj3k1VfKXeGkwQ4c7_7eBu3Anup3s9YpP7sE13-7CTj_SgUUJ34Vbkxhrvw-Tt96fsThV4isnc-dYwM9Dz1m2aNjlHFfc0XAmNvuOyqljVLHCzqslo6Li1s8ZZaHuwZfDd8dvjngcvsCtytUFd4iNpWryPNV-JBqntSkqFH6tfFYIaZW3TjgaIq7QyNvaKuF9kVa-KkZ1mlXyAWy1i9bvAxtVJq116gzCS2WcNVmuvZTaUtQzkzIB0d9BaWNnchqQMS_XPZXp6Eo8ujIcXblM4OXwztmqL8dfqQ_6qy2jjHZlpiSiTURUIoHnw2OULgqZVK1fXBINQjxFyfIJPFxxwvA7SWO70R1LIN_gkYGAOndvPmln30IHb3TjDCLFBF71nLJe1p938ejfyJ_B7aPjybgcv59-eAzbWWA8So47gC3kE_8EbtofF7Pu_GmQn59eDBQG
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9RAFD5BMIQXQbxQAR0T33RC25mddh6JuIEIGxKV8Na0c8FN1u6GXdy_7zmzbdcVNTE-97Sdy7l9OTeAN85bdOSt4Gh7BQIUL3lVVjH3lfQSlbLXoX3x1Xk2GOTX1_rypyr-kO3ehiQXNQ3UpameHU2sP1oWvpGnzQn6oI3SGZ8_gA1JifSE1z9dtbpY9rIwYjPJVcIVEjRlM7__xqppuudv3k-b_CV2GkxSf_v_N7MDjxp3lB0v-OcxrLl6F7bbUQ-skfxd2LxoYvBP4OLEuQlrpk3ccDKDlgVc3fWiZWPP7ka4-ikNbWLDb6i0powqWdhtOWdUbFy7EaPs1Kfwpf_h8_tT3gxl4EZmcsYtYmYhfZbFyvUSb5XSeYlKQUmX5okw0hmbWBouLtH4m8rIxLk8Ll2Z96o4LcUzWK_HtdsD1it1XKnYaoSdUluj00w5IZShaGgqRARJex-FaTqW0-CMUbHstUxHV-DRFeHoinkEb7t3Jot-HX-lPmivuWhkd1qkUiAKRaSVRPC6e4xSR6GUsnbjO6JB6CcpiT6C5wuu6H4naJw3umkRZCv80hFQR-_VJ_Xwa-jsje6dRgQZwbuWa5bL-vMuXvwb-SvYvDzpF-dng4_7sJUGvqOcuQNYRzZxh_DQfJ8Np7cvgyj9ABwdHOo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning-based+reconstruction+of+ultrasound+images+from+raw+channel+data&rft.jtitle=International+journal+for+computer+assisted+radiology+and+surgery&rft.au=Strohm%2C+Hannah&rft.au=Rothl%C3%BCbbers%2C+Sven&rft.au=Eickel%2C+Klaus&rft.au=G%C3%BCnther%2C+Matthias&rft.date=2020-09-01&rft.pub=Springer+International+Publishing&rft.issn=1861-6410&rft.eissn=1861-6429&rft.volume=15&rft.issue=9&rft.spage=1487&rft.epage=1490&rft_id=info:doi/10.1007%2Fs11548-020-02197-w&rft_id=info%3Apmid%2F32495155&rft.externalDocID=PMC7419487
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-6410&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-6410&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-6410&client=summon